relocation.c 114 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2009 Oracle. All rights reserved.
  4. */
  5. #include <linux/sched.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/writeback.h>
  8. #include <linux/blkdev.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/slab.h>
  11. #include "ctree.h"
  12. #include "disk-io.h"
  13. #include "transaction.h"
  14. #include "volumes.h"
  15. #include "locking.h"
  16. #include "btrfs_inode.h"
  17. #include "async-thread.h"
  18. #include "free-space-cache.h"
  19. #include "inode-map.h"
  20. #include "qgroup.h"
  21. #include "print-tree.h"
  22. /*
  23. * backref_node, mapping_node and tree_block start with this
  24. */
  25. struct tree_entry {
  26. struct rb_node rb_node;
  27. u64 bytenr;
  28. };
  29. /*
  30. * present a tree block in the backref cache
  31. */
  32. struct backref_node {
  33. struct rb_node rb_node;
  34. u64 bytenr;
  35. u64 new_bytenr;
  36. /* objectid of tree block owner, can be not uptodate */
  37. u64 owner;
  38. /* link to pending, changed or detached list */
  39. struct list_head list;
  40. /* list of upper level blocks reference this block */
  41. struct list_head upper;
  42. /* list of child blocks in the cache */
  43. struct list_head lower;
  44. /* NULL if this node is not tree root */
  45. struct btrfs_root *root;
  46. /* extent buffer got by COW the block */
  47. struct extent_buffer *eb;
  48. /* level of tree block */
  49. unsigned int level:8;
  50. /* is the block in non-reference counted tree */
  51. unsigned int cowonly:1;
  52. /* 1 if no child node in the cache */
  53. unsigned int lowest:1;
  54. /* is the extent buffer locked */
  55. unsigned int locked:1;
  56. /* has the block been processed */
  57. unsigned int processed:1;
  58. /* have backrefs of this block been checked */
  59. unsigned int checked:1;
  60. /*
  61. * 1 if corresponding block has been cowed but some upper
  62. * level block pointers may not point to the new location
  63. */
  64. unsigned int pending:1;
  65. /*
  66. * 1 if the backref node isn't connected to any other
  67. * backref node.
  68. */
  69. unsigned int detached:1;
  70. };
  71. /*
  72. * present a block pointer in the backref cache
  73. */
  74. struct backref_edge {
  75. struct list_head list[2];
  76. struct backref_node *node[2];
  77. };
  78. #define LOWER 0
  79. #define UPPER 1
  80. #define RELOCATION_RESERVED_NODES 256
  81. struct backref_cache {
  82. /* red black tree of all backref nodes in the cache */
  83. struct rb_root rb_root;
  84. /* for passing backref nodes to btrfs_reloc_cow_block */
  85. struct backref_node *path[BTRFS_MAX_LEVEL];
  86. /*
  87. * list of blocks that have been cowed but some block
  88. * pointers in upper level blocks may not reflect the
  89. * new location
  90. */
  91. struct list_head pending[BTRFS_MAX_LEVEL];
  92. /* list of backref nodes with no child node */
  93. struct list_head leaves;
  94. /* list of blocks that have been cowed in current transaction */
  95. struct list_head changed;
  96. /* list of detached backref node. */
  97. struct list_head detached;
  98. u64 last_trans;
  99. int nr_nodes;
  100. int nr_edges;
  101. };
  102. /*
  103. * map address of tree root to tree
  104. */
  105. struct mapping_node {
  106. struct rb_node rb_node;
  107. u64 bytenr;
  108. void *data;
  109. };
  110. struct mapping_tree {
  111. struct rb_root rb_root;
  112. spinlock_t lock;
  113. };
  114. /*
  115. * present a tree block to process
  116. */
  117. struct tree_block {
  118. struct rb_node rb_node;
  119. u64 bytenr;
  120. struct btrfs_key key;
  121. unsigned int level:8;
  122. unsigned int key_ready:1;
  123. };
  124. #define MAX_EXTENTS 128
  125. struct file_extent_cluster {
  126. u64 start;
  127. u64 end;
  128. u64 boundary[MAX_EXTENTS];
  129. unsigned int nr;
  130. };
  131. struct reloc_control {
  132. /* block group to relocate */
  133. struct btrfs_block_group_cache *block_group;
  134. /* extent tree */
  135. struct btrfs_root *extent_root;
  136. /* inode for moving data */
  137. struct inode *data_inode;
  138. struct btrfs_block_rsv *block_rsv;
  139. struct backref_cache backref_cache;
  140. struct file_extent_cluster cluster;
  141. /* tree blocks have been processed */
  142. struct extent_io_tree processed_blocks;
  143. /* map start of tree root to corresponding reloc tree */
  144. struct mapping_tree reloc_root_tree;
  145. /* list of reloc trees */
  146. struct list_head reloc_roots;
  147. /* size of metadata reservation for merging reloc trees */
  148. u64 merging_rsv_size;
  149. /* size of relocated tree nodes */
  150. u64 nodes_relocated;
  151. /* reserved size for block group relocation*/
  152. u64 reserved_bytes;
  153. u64 search_start;
  154. u64 extents_found;
  155. unsigned int stage:8;
  156. unsigned int create_reloc_tree:1;
  157. unsigned int merge_reloc_tree:1;
  158. unsigned int found_file_extent:1;
  159. };
  160. /* stages of data relocation */
  161. #define MOVE_DATA_EXTENTS 0
  162. #define UPDATE_DATA_PTRS 1
  163. static void remove_backref_node(struct backref_cache *cache,
  164. struct backref_node *node);
  165. static void __mark_block_processed(struct reloc_control *rc,
  166. struct backref_node *node);
  167. static void mapping_tree_init(struct mapping_tree *tree)
  168. {
  169. tree->rb_root = RB_ROOT;
  170. spin_lock_init(&tree->lock);
  171. }
  172. static void backref_cache_init(struct backref_cache *cache)
  173. {
  174. int i;
  175. cache->rb_root = RB_ROOT;
  176. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  177. INIT_LIST_HEAD(&cache->pending[i]);
  178. INIT_LIST_HEAD(&cache->changed);
  179. INIT_LIST_HEAD(&cache->detached);
  180. INIT_LIST_HEAD(&cache->leaves);
  181. }
  182. static void backref_cache_cleanup(struct backref_cache *cache)
  183. {
  184. struct backref_node *node;
  185. int i;
  186. while (!list_empty(&cache->detached)) {
  187. node = list_entry(cache->detached.next,
  188. struct backref_node, list);
  189. remove_backref_node(cache, node);
  190. }
  191. while (!list_empty(&cache->leaves)) {
  192. node = list_entry(cache->leaves.next,
  193. struct backref_node, lower);
  194. remove_backref_node(cache, node);
  195. }
  196. cache->last_trans = 0;
  197. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  198. ASSERT(list_empty(&cache->pending[i]));
  199. ASSERT(list_empty(&cache->changed));
  200. ASSERT(list_empty(&cache->detached));
  201. ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
  202. ASSERT(!cache->nr_nodes);
  203. ASSERT(!cache->nr_edges);
  204. }
  205. static struct backref_node *alloc_backref_node(struct backref_cache *cache)
  206. {
  207. struct backref_node *node;
  208. node = kzalloc(sizeof(*node), GFP_NOFS);
  209. if (node) {
  210. INIT_LIST_HEAD(&node->list);
  211. INIT_LIST_HEAD(&node->upper);
  212. INIT_LIST_HEAD(&node->lower);
  213. RB_CLEAR_NODE(&node->rb_node);
  214. cache->nr_nodes++;
  215. }
  216. return node;
  217. }
  218. static void free_backref_node(struct backref_cache *cache,
  219. struct backref_node *node)
  220. {
  221. if (node) {
  222. cache->nr_nodes--;
  223. kfree(node);
  224. }
  225. }
  226. static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
  227. {
  228. struct backref_edge *edge;
  229. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  230. if (edge)
  231. cache->nr_edges++;
  232. return edge;
  233. }
  234. static void free_backref_edge(struct backref_cache *cache,
  235. struct backref_edge *edge)
  236. {
  237. if (edge) {
  238. cache->nr_edges--;
  239. kfree(edge);
  240. }
  241. }
  242. static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
  243. struct rb_node *node)
  244. {
  245. struct rb_node **p = &root->rb_node;
  246. struct rb_node *parent = NULL;
  247. struct tree_entry *entry;
  248. while (*p) {
  249. parent = *p;
  250. entry = rb_entry(parent, struct tree_entry, rb_node);
  251. if (bytenr < entry->bytenr)
  252. p = &(*p)->rb_left;
  253. else if (bytenr > entry->bytenr)
  254. p = &(*p)->rb_right;
  255. else
  256. return parent;
  257. }
  258. rb_link_node(node, parent, p);
  259. rb_insert_color(node, root);
  260. return NULL;
  261. }
  262. static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
  263. {
  264. struct rb_node *n = root->rb_node;
  265. struct tree_entry *entry;
  266. while (n) {
  267. entry = rb_entry(n, struct tree_entry, rb_node);
  268. if (bytenr < entry->bytenr)
  269. n = n->rb_left;
  270. else if (bytenr > entry->bytenr)
  271. n = n->rb_right;
  272. else
  273. return n;
  274. }
  275. return NULL;
  276. }
  277. static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
  278. {
  279. struct btrfs_fs_info *fs_info = NULL;
  280. struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
  281. rb_node);
  282. if (bnode->root)
  283. fs_info = bnode->root->fs_info;
  284. btrfs_panic(fs_info, errno,
  285. "Inconsistency in backref cache found at offset %llu",
  286. bytenr);
  287. }
  288. /*
  289. * walk up backref nodes until reach node presents tree root
  290. */
  291. static struct backref_node *walk_up_backref(struct backref_node *node,
  292. struct backref_edge *edges[],
  293. int *index)
  294. {
  295. struct backref_edge *edge;
  296. int idx = *index;
  297. while (!list_empty(&node->upper)) {
  298. edge = list_entry(node->upper.next,
  299. struct backref_edge, list[LOWER]);
  300. edges[idx++] = edge;
  301. node = edge->node[UPPER];
  302. }
  303. BUG_ON(node->detached);
  304. *index = idx;
  305. return node;
  306. }
  307. /*
  308. * walk down backref nodes to find start of next reference path
  309. */
  310. static struct backref_node *walk_down_backref(struct backref_edge *edges[],
  311. int *index)
  312. {
  313. struct backref_edge *edge;
  314. struct backref_node *lower;
  315. int idx = *index;
  316. while (idx > 0) {
  317. edge = edges[idx - 1];
  318. lower = edge->node[LOWER];
  319. if (list_is_last(&edge->list[LOWER], &lower->upper)) {
  320. idx--;
  321. continue;
  322. }
  323. edge = list_entry(edge->list[LOWER].next,
  324. struct backref_edge, list[LOWER]);
  325. edges[idx - 1] = edge;
  326. *index = idx;
  327. return edge->node[UPPER];
  328. }
  329. *index = 0;
  330. return NULL;
  331. }
  332. static void unlock_node_buffer(struct backref_node *node)
  333. {
  334. if (node->locked) {
  335. btrfs_tree_unlock(node->eb);
  336. node->locked = 0;
  337. }
  338. }
  339. static void drop_node_buffer(struct backref_node *node)
  340. {
  341. if (node->eb) {
  342. unlock_node_buffer(node);
  343. free_extent_buffer(node->eb);
  344. node->eb = NULL;
  345. }
  346. }
  347. static void drop_backref_node(struct backref_cache *tree,
  348. struct backref_node *node)
  349. {
  350. BUG_ON(!list_empty(&node->upper));
  351. drop_node_buffer(node);
  352. list_del(&node->list);
  353. list_del(&node->lower);
  354. if (!RB_EMPTY_NODE(&node->rb_node))
  355. rb_erase(&node->rb_node, &tree->rb_root);
  356. free_backref_node(tree, node);
  357. }
  358. /*
  359. * remove a backref node from the backref cache
  360. */
  361. static void remove_backref_node(struct backref_cache *cache,
  362. struct backref_node *node)
  363. {
  364. struct backref_node *upper;
  365. struct backref_edge *edge;
  366. if (!node)
  367. return;
  368. BUG_ON(!node->lowest && !node->detached);
  369. while (!list_empty(&node->upper)) {
  370. edge = list_entry(node->upper.next, struct backref_edge,
  371. list[LOWER]);
  372. upper = edge->node[UPPER];
  373. list_del(&edge->list[LOWER]);
  374. list_del(&edge->list[UPPER]);
  375. free_backref_edge(cache, edge);
  376. if (RB_EMPTY_NODE(&upper->rb_node)) {
  377. BUG_ON(!list_empty(&node->upper));
  378. drop_backref_node(cache, node);
  379. node = upper;
  380. node->lowest = 1;
  381. continue;
  382. }
  383. /*
  384. * add the node to leaf node list if no other
  385. * child block cached.
  386. */
  387. if (list_empty(&upper->lower)) {
  388. list_add_tail(&upper->lower, &cache->leaves);
  389. upper->lowest = 1;
  390. }
  391. }
  392. drop_backref_node(cache, node);
  393. }
  394. static void update_backref_node(struct backref_cache *cache,
  395. struct backref_node *node, u64 bytenr)
  396. {
  397. struct rb_node *rb_node;
  398. rb_erase(&node->rb_node, &cache->rb_root);
  399. node->bytenr = bytenr;
  400. rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
  401. if (rb_node)
  402. backref_tree_panic(rb_node, -EEXIST, bytenr);
  403. }
  404. /*
  405. * update backref cache after a transaction commit
  406. */
  407. static int update_backref_cache(struct btrfs_trans_handle *trans,
  408. struct backref_cache *cache)
  409. {
  410. struct backref_node *node;
  411. int level = 0;
  412. if (cache->last_trans == 0) {
  413. cache->last_trans = trans->transid;
  414. return 0;
  415. }
  416. if (cache->last_trans == trans->transid)
  417. return 0;
  418. /*
  419. * detached nodes are used to avoid unnecessary backref
  420. * lookup. transaction commit changes the extent tree.
  421. * so the detached nodes are no longer useful.
  422. */
  423. while (!list_empty(&cache->detached)) {
  424. node = list_entry(cache->detached.next,
  425. struct backref_node, list);
  426. remove_backref_node(cache, node);
  427. }
  428. while (!list_empty(&cache->changed)) {
  429. node = list_entry(cache->changed.next,
  430. struct backref_node, list);
  431. list_del_init(&node->list);
  432. BUG_ON(node->pending);
  433. update_backref_node(cache, node, node->new_bytenr);
  434. }
  435. /*
  436. * some nodes can be left in the pending list if there were
  437. * errors during processing the pending nodes.
  438. */
  439. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  440. list_for_each_entry(node, &cache->pending[level], list) {
  441. BUG_ON(!node->pending);
  442. if (node->bytenr == node->new_bytenr)
  443. continue;
  444. update_backref_node(cache, node, node->new_bytenr);
  445. }
  446. }
  447. cache->last_trans = 0;
  448. return 1;
  449. }
  450. static int should_ignore_root(struct btrfs_root *root)
  451. {
  452. struct btrfs_root *reloc_root;
  453. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  454. return 0;
  455. reloc_root = root->reloc_root;
  456. if (!reloc_root)
  457. return 0;
  458. if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
  459. root->fs_info->running_transaction->transid - 1)
  460. return 0;
  461. /*
  462. * if there is reloc tree and it was created in previous
  463. * transaction backref lookup can find the reloc tree,
  464. * so backref node for the fs tree root is useless for
  465. * relocation.
  466. */
  467. return 1;
  468. }
  469. /*
  470. * find reloc tree by address of tree root
  471. */
  472. static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
  473. u64 bytenr)
  474. {
  475. struct rb_node *rb_node;
  476. struct mapping_node *node;
  477. struct btrfs_root *root = NULL;
  478. spin_lock(&rc->reloc_root_tree.lock);
  479. rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
  480. if (rb_node) {
  481. node = rb_entry(rb_node, struct mapping_node, rb_node);
  482. root = (struct btrfs_root *)node->data;
  483. }
  484. spin_unlock(&rc->reloc_root_tree.lock);
  485. return root;
  486. }
  487. static int is_cowonly_root(u64 root_objectid)
  488. {
  489. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
  490. root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
  491. root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
  492. root_objectid == BTRFS_DEV_TREE_OBJECTID ||
  493. root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  494. root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
  495. root_objectid == BTRFS_UUID_TREE_OBJECTID ||
  496. root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
  497. root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  498. return 1;
  499. return 0;
  500. }
  501. static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
  502. u64 root_objectid)
  503. {
  504. struct btrfs_key key;
  505. key.objectid = root_objectid;
  506. key.type = BTRFS_ROOT_ITEM_KEY;
  507. if (is_cowonly_root(root_objectid))
  508. key.offset = 0;
  509. else
  510. key.offset = (u64)-1;
  511. return btrfs_get_fs_root(fs_info, &key, false);
  512. }
  513. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  514. static noinline_for_stack
  515. struct btrfs_root *find_tree_root(struct reloc_control *rc,
  516. struct extent_buffer *leaf,
  517. struct btrfs_extent_ref_v0 *ref0)
  518. {
  519. struct btrfs_root *root;
  520. u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
  521. u64 generation = btrfs_ref_generation_v0(leaf, ref0);
  522. BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
  523. root = read_fs_root(rc->extent_root->fs_info, root_objectid);
  524. BUG_ON(IS_ERR(root));
  525. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
  526. generation != btrfs_root_generation(&root->root_item))
  527. return NULL;
  528. return root;
  529. }
  530. #endif
  531. static noinline_for_stack
  532. int find_inline_backref(struct extent_buffer *leaf, int slot,
  533. unsigned long *ptr, unsigned long *end)
  534. {
  535. struct btrfs_key key;
  536. struct btrfs_extent_item *ei;
  537. struct btrfs_tree_block_info *bi;
  538. u32 item_size;
  539. btrfs_item_key_to_cpu(leaf, &key, slot);
  540. item_size = btrfs_item_size_nr(leaf, slot);
  541. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  542. if (item_size < sizeof(*ei)) {
  543. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  544. return 1;
  545. }
  546. #endif
  547. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  548. WARN_ON(!(btrfs_extent_flags(leaf, ei) &
  549. BTRFS_EXTENT_FLAG_TREE_BLOCK));
  550. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  551. item_size <= sizeof(*ei) + sizeof(*bi)) {
  552. WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
  553. return 1;
  554. }
  555. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  556. item_size <= sizeof(*ei)) {
  557. WARN_ON(item_size < sizeof(*ei));
  558. return 1;
  559. }
  560. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  561. bi = (struct btrfs_tree_block_info *)(ei + 1);
  562. *ptr = (unsigned long)(bi + 1);
  563. } else {
  564. *ptr = (unsigned long)(ei + 1);
  565. }
  566. *end = (unsigned long)ei + item_size;
  567. return 0;
  568. }
  569. /*
  570. * build backref tree for a given tree block. root of the backref tree
  571. * corresponds the tree block, leaves of the backref tree correspond
  572. * roots of b-trees that reference the tree block.
  573. *
  574. * the basic idea of this function is check backrefs of a given block
  575. * to find upper level blocks that reference the block, and then check
  576. * backrefs of these upper level blocks recursively. the recursion stop
  577. * when tree root is reached or backrefs for the block is cached.
  578. *
  579. * NOTE: if we find backrefs for a block are cached, we know backrefs
  580. * for all upper level blocks that directly/indirectly reference the
  581. * block are also cached.
  582. */
  583. static noinline_for_stack
  584. struct backref_node *build_backref_tree(struct reloc_control *rc,
  585. struct btrfs_key *node_key,
  586. int level, u64 bytenr)
  587. {
  588. struct backref_cache *cache = &rc->backref_cache;
  589. struct btrfs_path *path1;
  590. struct btrfs_path *path2;
  591. struct extent_buffer *eb;
  592. struct btrfs_root *root;
  593. struct backref_node *cur;
  594. struct backref_node *upper;
  595. struct backref_node *lower;
  596. struct backref_node *node = NULL;
  597. struct backref_node *exist = NULL;
  598. struct backref_edge *edge;
  599. struct rb_node *rb_node;
  600. struct btrfs_key key;
  601. unsigned long end;
  602. unsigned long ptr;
  603. LIST_HEAD(list);
  604. LIST_HEAD(useless);
  605. int cowonly;
  606. int ret;
  607. int err = 0;
  608. bool need_check = true;
  609. path1 = btrfs_alloc_path();
  610. path2 = btrfs_alloc_path();
  611. if (!path1 || !path2) {
  612. err = -ENOMEM;
  613. goto out;
  614. }
  615. path1->reada = READA_FORWARD;
  616. path2->reada = READA_FORWARD;
  617. node = alloc_backref_node(cache);
  618. if (!node) {
  619. err = -ENOMEM;
  620. goto out;
  621. }
  622. node->bytenr = bytenr;
  623. node->level = level;
  624. node->lowest = 1;
  625. cur = node;
  626. again:
  627. end = 0;
  628. ptr = 0;
  629. key.objectid = cur->bytenr;
  630. key.type = BTRFS_METADATA_ITEM_KEY;
  631. key.offset = (u64)-1;
  632. path1->search_commit_root = 1;
  633. path1->skip_locking = 1;
  634. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
  635. 0, 0);
  636. if (ret < 0) {
  637. err = ret;
  638. goto out;
  639. }
  640. ASSERT(ret);
  641. ASSERT(path1->slots[0]);
  642. path1->slots[0]--;
  643. WARN_ON(cur->checked);
  644. if (!list_empty(&cur->upper)) {
  645. /*
  646. * the backref was added previously when processing
  647. * backref of type BTRFS_TREE_BLOCK_REF_KEY
  648. */
  649. ASSERT(list_is_singular(&cur->upper));
  650. edge = list_entry(cur->upper.next, struct backref_edge,
  651. list[LOWER]);
  652. ASSERT(list_empty(&edge->list[UPPER]));
  653. exist = edge->node[UPPER];
  654. /*
  655. * add the upper level block to pending list if we need
  656. * check its backrefs
  657. */
  658. if (!exist->checked)
  659. list_add_tail(&edge->list[UPPER], &list);
  660. } else {
  661. exist = NULL;
  662. }
  663. while (1) {
  664. cond_resched();
  665. eb = path1->nodes[0];
  666. if (ptr >= end) {
  667. if (path1->slots[0] >= btrfs_header_nritems(eb)) {
  668. ret = btrfs_next_leaf(rc->extent_root, path1);
  669. if (ret < 0) {
  670. err = ret;
  671. goto out;
  672. }
  673. if (ret > 0)
  674. break;
  675. eb = path1->nodes[0];
  676. }
  677. btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
  678. if (key.objectid != cur->bytenr) {
  679. WARN_ON(exist);
  680. break;
  681. }
  682. if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  683. key.type == BTRFS_METADATA_ITEM_KEY) {
  684. ret = find_inline_backref(eb, path1->slots[0],
  685. &ptr, &end);
  686. if (ret)
  687. goto next;
  688. }
  689. }
  690. if (ptr < end) {
  691. /* update key for inline back ref */
  692. struct btrfs_extent_inline_ref *iref;
  693. int type;
  694. iref = (struct btrfs_extent_inline_ref *)ptr;
  695. type = btrfs_get_extent_inline_ref_type(eb, iref,
  696. BTRFS_REF_TYPE_BLOCK);
  697. if (type == BTRFS_REF_TYPE_INVALID) {
  698. err = -EINVAL;
  699. goto out;
  700. }
  701. key.type = type;
  702. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  703. WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
  704. key.type != BTRFS_SHARED_BLOCK_REF_KEY);
  705. }
  706. if (exist &&
  707. ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
  708. exist->owner == key.offset) ||
  709. (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
  710. exist->bytenr == key.offset))) {
  711. exist = NULL;
  712. goto next;
  713. }
  714. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  715. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
  716. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  717. if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  718. struct btrfs_extent_ref_v0 *ref0;
  719. ref0 = btrfs_item_ptr(eb, path1->slots[0],
  720. struct btrfs_extent_ref_v0);
  721. if (key.objectid == key.offset) {
  722. root = find_tree_root(rc, eb, ref0);
  723. if (root && !should_ignore_root(root))
  724. cur->root = root;
  725. else
  726. list_add(&cur->list, &useless);
  727. break;
  728. }
  729. if (is_cowonly_root(btrfs_ref_root_v0(eb,
  730. ref0)))
  731. cur->cowonly = 1;
  732. }
  733. #else
  734. ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
  735. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
  736. #endif
  737. if (key.objectid == key.offset) {
  738. /*
  739. * only root blocks of reloc trees use
  740. * backref of this type.
  741. */
  742. root = find_reloc_root(rc, cur->bytenr);
  743. ASSERT(root);
  744. cur->root = root;
  745. break;
  746. }
  747. edge = alloc_backref_edge(cache);
  748. if (!edge) {
  749. err = -ENOMEM;
  750. goto out;
  751. }
  752. rb_node = tree_search(&cache->rb_root, key.offset);
  753. if (!rb_node) {
  754. upper = alloc_backref_node(cache);
  755. if (!upper) {
  756. free_backref_edge(cache, edge);
  757. err = -ENOMEM;
  758. goto out;
  759. }
  760. upper->bytenr = key.offset;
  761. upper->level = cur->level + 1;
  762. /*
  763. * backrefs for the upper level block isn't
  764. * cached, add the block to pending list
  765. */
  766. list_add_tail(&edge->list[UPPER], &list);
  767. } else {
  768. upper = rb_entry(rb_node, struct backref_node,
  769. rb_node);
  770. ASSERT(upper->checked);
  771. INIT_LIST_HEAD(&edge->list[UPPER]);
  772. }
  773. list_add_tail(&edge->list[LOWER], &cur->upper);
  774. edge->node[LOWER] = cur;
  775. edge->node[UPPER] = upper;
  776. goto next;
  777. } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
  778. goto next;
  779. }
  780. /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
  781. root = read_fs_root(rc->extent_root->fs_info, key.offset);
  782. if (IS_ERR(root)) {
  783. err = PTR_ERR(root);
  784. goto out;
  785. }
  786. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  787. cur->cowonly = 1;
  788. if (btrfs_root_level(&root->root_item) == cur->level) {
  789. /* tree root */
  790. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  791. cur->bytenr);
  792. if (should_ignore_root(root))
  793. list_add(&cur->list, &useless);
  794. else
  795. cur->root = root;
  796. break;
  797. }
  798. level = cur->level + 1;
  799. /*
  800. * searching the tree to find upper level blocks
  801. * reference the block.
  802. */
  803. path2->search_commit_root = 1;
  804. path2->skip_locking = 1;
  805. path2->lowest_level = level;
  806. ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
  807. path2->lowest_level = 0;
  808. if (ret < 0) {
  809. err = ret;
  810. goto out;
  811. }
  812. if (ret > 0 && path2->slots[level] > 0)
  813. path2->slots[level]--;
  814. eb = path2->nodes[level];
  815. if (btrfs_node_blockptr(eb, path2->slots[level]) !=
  816. cur->bytenr) {
  817. btrfs_err(root->fs_info,
  818. "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
  819. cur->bytenr, level - 1, root->objectid,
  820. node_key->objectid, node_key->type,
  821. node_key->offset);
  822. err = -ENOENT;
  823. goto out;
  824. }
  825. lower = cur;
  826. need_check = true;
  827. for (; level < BTRFS_MAX_LEVEL; level++) {
  828. if (!path2->nodes[level]) {
  829. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  830. lower->bytenr);
  831. if (should_ignore_root(root))
  832. list_add(&lower->list, &useless);
  833. else
  834. lower->root = root;
  835. break;
  836. }
  837. edge = alloc_backref_edge(cache);
  838. if (!edge) {
  839. err = -ENOMEM;
  840. goto out;
  841. }
  842. eb = path2->nodes[level];
  843. rb_node = tree_search(&cache->rb_root, eb->start);
  844. if (!rb_node) {
  845. upper = alloc_backref_node(cache);
  846. if (!upper) {
  847. free_backref_edge(cache, edge);
  848. err = -ENOMEM;
  849. goto out;
  850. }
  851. upper->bytenr = eb->start;
  852. upper->owner = btrfs_header_owner(eb);
  853. upper->level = lower->level + 1;
  854. if (!test_bit(BTRFS_ROOT_REF_COWS,
  855. &root->state))
  856. upper->cowonly = 1;
  857. /*
  858. * if we know the block isn't shared
  859. * we can void checking its backrefs.
  860. */
  861. if (btrfs_block_can_be_shared(root, eb))
  862. upper->checked = 0;
  863. else
  864. upper->checked = 1;
  865. /*
  866. * add the block to pending list if we
  867. * need check its backrefs, we only do this once
  868. * while walking up a tree as we will catch
  869. * anything else later on.
  870. */
  871. if (!upper->checked && need_check) {
  872. need_check = false;
  873. list_add_tail(&edge->list[UPPER],
  874. &list);
  875. } else {
  876. if (upper->checked)
  877. need_check = true;
  878. INIT_LIST_HEAD(&edge->list[UPPER]);
  879. }
  880. } else {
  881. upper = rb_entry(rb_node, struct backref_node,
  882. rb_node);
  883. ASSERT(upper->checked);
  884. INIT_LIST_HEAD(&edge->list[UPPER]);
  885. if (!upper->owner)
  886. upper->owner = btrfs_header_owner(eb);
  887. }
  888. list_add_tail(&edge->list[LOWER], &lower->upper);
  889. edge->node[LOWER] = lower;
  890. edge->node[UPPER] = upper;
  891. if (rb_node)
  892. break;
  893. lower = upper;
  894. upper = NULL;
  895. }
  896. btrfs_release_path(path2);
  897. next:
  898. if (ptr < end) {
  899. ptr += btrfs_extent_inline_ref_size(key.type);
  900. if (ptr >= end) {
  901. WARN_ON(ptr > end);
  902. ptr = 0;
  903. end = 0;
  904. }
  905. }
  906. if (ptr >= end)
  907. path1->slots[0]++;
  908. }
  909. btrfs_release_path(path1);
  910. cur->checked = 1;
  911. WARN_ON(exist);
  912. /* the pending list isn't empty, take the first block to process */
  913. if (!list_empty(&list)) {
  914. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  915. list_del_init(&edge->list[UPPER]);
  916. cur = edge->node[UPPER];
  917. goto again;
  918. }
  919. /*
  920. * everything goes well, connect backref nodes and insert backref nodes
  921. * into the cache.
  922. */
  923. ASSERT(node->checked);
  924. cowonly = node->cowonly;
  925. if (!cowonly) {
  926. rb_node = tree_insert(&cache->rb_root, node->bytenr,
  927. &node->rb_node);
  928. if (rb_node)
  929. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  930. list_add_tail(&node->lower, &cache->leaves);
  931. }
  932. list_for_each_entry(edge, &node->upper, list[LOWER])
  933. list_add_tail(&edge->list[UPPER], &list);
  934. while (!list_empty(&list)) {
  935. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  936. list_del_init(&edge->list[UPPER]);
  937. upper = edge->node[UPPER];
  938. if (upper->detached) {
  939. list_del(&edge->list[LOWER]);
  940. lower = edge->node[LOWER];
  941. free_backref_edge(cache, edge);
  942. if (list_empty(&lower->upper))
  943. list_add(&lower->list, &useless);
  944. continue;
  945. }
  946. if (!RB_EMPTY_NODE(&upper->rb_node)) {
  947. if (upper->lowest) {
  948. list_del_init(&upper->lower);
  949. upper->lowest = 0;
  950. }
  951. list_add_tail(&edge->list[UPPER], &upper->lower);
  952. continue;
  953. }
  954. if (!upper->checked) {
  955. /*
  956. * Still want to blow up for developers since this is a
  957. * logic bug.
  958. */
  959. ASSERT(0);
  960. err = -EINVAL;
  961. goto out;
  962. }
  963. if (cowonly != upper->cowonly) {
  964. ASSERT(0);
  965. err = -EINVAL;
  966. goto out;
  967. }
  968. if (!cowonly) {
  969. rb_node = tree_insert(&cache->rb_root, upper->bytenr,
  970. &upper->rb_node);
  971. if (rb_node)
  972. backref_tree_panic(rb_node, -EEXIST,
  973. upper->bytenr);
  974. }
  975. list_add_tail(&edge->list[UPPER], &upper->lower);
  976. list_for_each_entry(edge, &upper->upper, list[LOWER])
  977. list_add_tail(&edge->list[UPPER], &list);
  978. }
  979. /*
  980. * process useless backref nodes. backref nodes for tree leaves
  981. * are deleted from the cache. backref nodes for upper level
  982. * tree blocks are left in the cache to avoid unnecessary backref
  983. * lookup.
  984. */
  985. while (!list_empty(&useless)) {
  986. upper = list_entry(useless.next, struct backref_node, list);
  987. list_del_init(&upper->list);
  988. ASSERT(list_empty(&upper->upper));
  989. if (upper == node)
  990. node = NULL;
  991. if (upper->lowest) {
  992. list_del_init(&upper->lower);
  993. upper->lowest = 0;
  994. }
  995. while (!list_empty(&upper->lower)) {
  996. edge = list_entry(upper->lower.next,
  997. struct backref_edge, list[UPPER]);
  998. list_del(&edge->list[UPPER]);
  999. list_del(&edge->list[LOWER]);
  1000. lower = edge->node[LOWER];
  1001. free_backref_edge(cache, edge);
  1002. if (list_empty(&lower->upper))
  1003. list_add(&lower->list, &useless);
  1004. }
  1005. __mark_block_processed(rc, upper);
  1006. if (upper->level > 0) {
  1007. list_add(&upper->list, &cache->detached);
  1008. upper->detached = 1;
  1009. } else {
  1010. rb_erase(&upper->rb_node, &cache->rb_root);
  1011. free_backref_node(cache, upper);
  1012. }
  1013. }
  1014. out:
  1015. btrfs_free_path(path1);
  1016. btrfs_free_path(path2);
  1017. if (err) {
  1018. while (!list_empty(&useless)) {
  1019. lower = list_entry(useless.next,
  1020. struct backref_node, list);
  1021. list_del_init(&lower->list);
  1022. }
  1023. while (!list_empty(&list)) {
  1024. edge = list_first_entry(&list, struct backref_edge,
  1025. list[UPPER]);
  1026. list_del(&edge->list[UPPER]);
  1027. list_del(&edge->list[LOWER]);
  1028. lower = edge->node[LOWER];
  1029. upper = edge->node[UPPER];
  1030. free_backref_edge(cache, edge);
  1031. /*
  1032. * Lower is no longer linked to any upper backref nodes
  1033. * and isn't in the cache, we can free it ourselves.
  1034. */
  1035. if (list_empty(&lower->upper) &&
  1036. RB_EMPTY_NODE(&lower->rb_node))
  1037. list_add(&lower->list, &useless);
  1038. if (!RB_EMPTY_NODE(&upper->rb_node))
  1039. continue;
  1040. /* Add this guy's upper edges to the list to process */
  1041. list_for_each_entry(edge, &upper->upper, list[LOWER])
  1042. list_add_tail(&edge->list[UPPER], &list);
  1043. if (list_empty(&upper->upper))
  1044. list_add(&upper->list, &useless);
  1045. }
  1046. while (!list_empty(&useless)) {
  1047. lower = list_entry(useless.next,
  1048. struct backref_node, list);
  1049. list_del_init(&lower->list);
  1050. if (lower == node)
  1051. node = NULL;
  1052. free_backref_node(cache, lower);
  1053. }
  1054. free_backref_node(cache, node);
  1055. return ERR_PTR(err);
  1056. }
  1057. ASSERT(!node || !node->detached);
  1058. return node;
  1059. }
  1060. /*
  1061. * helper to add backref node for the newly created snapshot.
  1062. * the backref node is created by cloning backref node that
  1063. * corresponds to root of source tree
  1064. */
  1065. static int clone_backref_node(struct btrfs_trans_handle *trans,
  1066. struct reloc_control *rc,
  1067. struct btrfs_root *src,
  1068. struct btrfs_root *dest)
  1069. {
  1070. struct btrfs_root *reloc_root = src->reloc_root;
  1071. struct backref_cache *cache = &rc->backref_cache;
  1072. struct backref_node *node = NULL;
  1073. struct backref_node *new_node;
  1074. struct backref_edge *edge;
  1075. struct backref_edge *new_edge;
  1076. struct rb_node *rb_node;
  1077. if (cache->last_trans > 0)
  1078. update_backref_cache(trans, cache);
  1079. rb_node = tree_search(&cache->rb_root, src->commit_root->start);
  1080. if (rb_node) {
  1081. node = rb_entry(rb_node, struct backref_node, rb_node);
  1082. if (node->detached)
  1083. node = NULL;
  1084. else
  1085. BUG_ON(node->new_bytenr != reloc_root->node->start);
  1086. }
  1087. if (!node) {
  1088. rb_node = tree_search(&cache->rb_root,
  1089. reloc_root->commit_root->start);
  1090. if (rb_node) {
  1091. node = rb_entry(rb_node, struct backref_node,
  1092. rb_node);
  1093. BUG_ON(node->detached);
  1094. }
  1095. }
  1096. if (!node)
  1097. return 0;
  1098. new_node = alloc_backref_node(cache);
  1099. if (!new_node)
  1100. return -ENOMEM;
  1101. new_node->bytenr = dest->node->start;
  1102. new_node->level = node->level;
  1103. new_node->lowest = node->lowest;
  1104. new_node->checked = 1;
  1105. new_node->root = dest;
  1106. if (!node->lowest) {
  1107. list_for_each_entry(edge, &node->lower, list[UPPER]) {
  1108. new_edge = alloc_backref_edge(cache);
  1109. if (!new_edge)
  1110. goto fail;
  1111. new_edge->node[UPPER] = new_node;
  1112. new_edge->node[LOWER] = edge->node[LOWER];
  1113. list_add_tail(&new_edge->list[UPPER],
  1114. &new_node->lower);
  1115. }
  1116. } else {
  1117. list_add_tail(&new_node->lower, &cache->leaves);
  1118. }
  1119. rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
  1120. &new_node->rb_node);
  1121. if (rb_node)
  1122. backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
  1123. if (!new_node->lowest) {
  1124. list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
  1125. list_add_tail(&new_edge->list[LOWER],
  1126. &new_edge->node[LOWER]->upper);
  1127. }
  1128. }
  1129. return 0;
  1130. fail:
  1131. while (!list_empty(&new_node->lower)) {
  1132. new_edge = list_entry(new_node->lower.next,
  1133. struct backref_edge, list[UPPER]);
  1134. list_del(&new_edge->list[UPPER]);
  1135. free_backref_edge(cache, new_edge);
  1136. }
  1137. free_backref_node(cache, new_node);
  1138. return -ENOMEM;
  1139. }
  1140. /*
  1141. * helper to add 'address of tree root -> reloc tree' mapping
  1142. */
  1143. static int __must_check __add_reloc_root(struct btrfs_root *root)
  1144. {
  1145. struct btrfs_fs_info *fs_info = root->fs_info;
  1146. struct rb_node *rb_node;
  1147. struct mapping_node *node;
  1148. struct reloc_control *rc = fs_info->reloc_ctl;
  1149. node = kmalloc(sizeof(*node), GFP_NOFS);
  1150. if (!node)
  1151. return -ENOMEM;
  1152. node->bytenr = root->node->start;
  1153. node->data = root;
  1154. spin_lock(&rc->reloc_root_tree.lock);
  1155. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1156. node->bytenr, &node->rb_node);
  1157. spin_unlock(&rc->reloc_root_tree.lock);
  1158. if (rb_node) {
  1159. btrfs_panic(fs_info, -EEXIST,
  1160. "Duplicate root found for start=%llu while inserting into relocation tree",
  1161. node->bytenr);
  1162. }
  1163. list_add_tail(&root->root_list, &rc->reloc_roots);
  1164. return 0;
  1165. }
  1166. /*
  1167. * helper to delete the 'address of tree root -> reloc tree'
  1168. * mapping
  1169. */
  1170. static void __del_reloc_root(struct btrfs_root *root)
  1171. {
  1172. struct btrfs_fs_info *fs_info = root->fs_info;
  1173. struct rb_node *rb_node;
  1174. struct mapping_node *node = NULL;
  1175. struct reloc_control *rc = fs_info->reloc_ctl;
  1176. spin_lock(&rc->reloc_root_tree.lock);
  1177. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1178. root->node->start);
  1179. if (rb_node) {
  1180. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1181. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1182. }
  1183. spin_unlock(&rc->reloc_root_tree.lock);
  1184. if (!node)
  1185. return;
  1186. BUG_ON((struct btrfs_root *)node->data != root);
  1187. spin_lock(&fs_info->trans_lock);
  1188. list_del_init(&root->root_list);
  1189. spin_unlock(&fs_info->trans_lock);
  1190. kfree(node);
  1191. }
  1192. /*
  1193. * helper to update the 'address of tree root -> reloc tree'
  1194. * mapping
  1195. */
  1196. static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
  1197. {
  1198. struct btrfs_fs_info *fs_info = root->fs_info;
  1199. struct rb_node *rb_node;
  1200. struct mapping_node *node = NULL;
  1201. struct reloc_control *rc = fs_info->reloc_ctl;
  1202. spin_lock(&rc->reloc_root_tree.lock);
  1203. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1204. root->node->start);
  1205. if (rb_node) {
  1206. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1207. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1208. }
  1209. spin_unlock(&rc->reloc_root_tree.lock);
  1210. if (!node)
  1211. return 0;
  1212. BUG_ON((struct btrfs_root *)node->data != root);
  1213. spin_lock(&rc->reloc_root_tree.lock);
  1214. node->bytenr = new_bytenr;
  1215. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1216. node->bytenr, &node->rb_node);
  1217. spin_unlock(&rc->reloc_root_tree.lock);
  1218. if (rb_node)
  1219. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  1220. return 0;
  1221. }
  1222. static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
  1223. struct btrfs_root *root, u64 objectid)
  1224. {
  1225. struct btrfs_fs_info *fs_info = root->fs_info;
  1226. struct btrfs_root *reloc_root;
  1227. struct extent_buffer *eb;
  1228. struct btrfs_root_item *root_item;
  1229. struct btrfs_key root_key;
  1230. int ret;
  1231. root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
  1232. BUG_ON(!root_item);
  1233. root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  1234. root_key.type = BTRFS_ROOT_ITEM_KEY;
  1235. root_key.offset = objectid;
  1236. if (root->root_key.objectid == objectid) {
  1237. u64 commit_root_gen;
  1238. /* called by btrfs_init_reloc_root */
  1239. ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
  1240. BTRFS_TREE_RELOC_OBJECTID);
  1241. BUG_ON(ret);
  1242. /*
  1243. * Set the last_snapshot field to the generation of the commit
  1244. * root - like this ctree.c:btrfs_block_can_be_shared() behaves
  1245. * correctly (returns true) when the relocation root is created
  1246. * either inside the critical section of a transaction commit
  1247. * (through transaction.c:qgroup_account_snapshot()) and when
  1248. * it's created before the transaction commit is started.
  1249. */
  1250. commit_root_gen = btrfs_header_generation(root->commit_root);
  1251. btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
  1252. } else {
  1253. /*
  1254. * called by btrfs_reloc_post_snapshot_hook.
  1255. * the source tree is a reloc tree, all tree blocks
  1256. * modified after it was created have RELOC flag
  1257. * set in their headers. so it's OK to not update
  1258. * the 'last_snapshot'.
  1259. */
  1260. ret = btrfs_copy_root(trans, root, root->node, &eb,
  1261. BTRFS_TREE_RELOC_OBJECTID);
  1262. BUG_ON(ret);
  1263. }
  1264. memcpy(root_item, &root->root_item, sizeof(*root_item));
  1265. btrfs_set_root_bytenr(root_item, eb->start);
  1266. btrfs_set_root_level(root_item, btrfs_header_level(eb));
  1267. btrfs_set_root_generation(root_item, trans->transid);
  1268. if (root->root_key.objectid == objectid) {
  1269. btrfs_set_root_refs(root_item, 0);
  1270. memset(&root_item->drop_progress, 0,
  1271. sizeof(struct btrfs_disk_key));
  1272. root_item->drop_level = 0;
  1273. }
  1274. btrfs_tree_unlock(eb);
  1275. free_extent_buffer(eb);
  1276. ret = btrfs_insert_root(trans, fs_info->tree_root,
  1277. &root_key, root_item);
  1278. BUG_ON(ret);
  1279. kfree(root_item);
  1280. reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
  1281. BUG_ON(IS_ERR(reloc_root));
  1282. reloc_root->last_trans = trans->transid;
  1283. return reloc_root;
  1284. }
  1285. /*
  1286. * create reloc tree for a given fs tree. reloc tree is just a
  1287. * snapshot of the fs tree with special root objectid.
  1288. */
  1289. int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
  1290. struct btrfs_root *root)
  1291. {
  1292. struct btrfs_fs_info *fs_info = root->fs_info;
  1293. struct btrfs_root *reloc_root;
  1294. struct reloc_control *rc = fs_info->reloc_ctl;
  1295. struct btrfs_block_rsv *rsv;
  1296. int clear_rsv = 0;
  1297. int ret;
  1298. if (root->reloc_root) {
  1299. reloc_root = root->reloc_root;
  1300. reloc_root->last_trans = trans->transid;
  1301. return 0;
  1302. }
  1303. if (!rc || !rc->create_reloc_tree ||
  1304. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1305. return 0;
  1306. if (!trans->reloc_reserved) {
  1307. rsv = trans->block_rsv;
  1308. trans->block_rsv = rc->block_rsv;
  1309. clear_rsv = 1;
  1310. }
  1311. reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
  1312. if (clear_rsv)
  1313. trans->block_rsv = rsv;
  1314. ret = __add_reloc_root(reloc_root);
  1315. BUG_ON(ret < 0);
  1316. root->reloc_root = reloc_root;
  1317. return 0;
  1318. }
  1319. /*
  1320. * update root item of reloc tree
  1321. */
  1322. int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
  1323. struct btrfs_root *root)
  1324. {
  1325. struct btrfs_fs_info *fs_info = root->fs_info;
  1326. struct btrfs_root *reloc_root;
  1327. struct btrfs_root_item *root_item;
  1328. int ret;
  1329. if (!root->reloc_root)
  1330. goto out;
  1331. reloc_root = root->reloc_root;
  1332. root_item = &reloc_root->root_item;
  1333. if (fs_info->reloc_ctl->merge_reloc_tree &&
  1334. btrfs_root_refs(root_item) == 0) {
  1335. root->reloc_root = NULL;
  1336. __del_reloc_root(reloc_root);
  1337. }
  1338. if (reloc_root->commit_root != reloc_root->node) {
  1339. btrfs_set_root_node(root_item, reloc_root->node);
  1340. free_extent_buffer(reloc_root->commit_root);
  1341. reloc_root->commit_root = btrfs_root_node(reloc_root);
  1342. }
  1343. ret = btrfs_update_root(trans, fs_info->tree_root,
  1344. &reloc_root->root_key, root_item);
  1345. BUG_ON(ret);
  1346. out:
  1347. return 0;
  1348. }
  1349. /*
  1350. * helper to find first cached inode with inode number >= objectid
  1351. * in a subvolume
  1352. */
  1353. static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
  1354. {
  1355. struct rb_node *node;
  1356. struct rb_node *prev;
  1357. struct btrfs_inode *entry;
  1358. struct inode *inode;
  1359. spin_lock(&root->inode_lock);
  1360. again:
  1361. node = root->inode_tree.rb_node;
  1362. prev = NULL;
  1363. while (node) {
  1364. prev = node;
  1365. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1366. if (objectid < btrfs_ino(entry))
  1367. node = node->rb_left;
  1368. else if (objectid > btrfs_ino(entry))
  1369. node = node->rb_right;
  1370. else
  1371. break;
  1372. }
  1373. if (!node) {
  1374. while (prev) {
  1375. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  1376. if (objectid <= btrfs_ino(entry)) {
  1377. node = prev;
  1378. break;
  1379. }
  1380. prev = rb_next(prev);
  1381. }
  1382. }
  1383. while (node) {
  1384. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1385. inode = igrab(&entry->vfs_inode);
  1386. if (inode) {
  1387. spin_unlock(&root->inode_lock);
  1388. return inode;
  1389. }
  1390. objectid = btrfs_ino(entry) + 1;
  1391. if (cond_resched_lock(&root->inode_lock))
  1392. goto again;
  1393. node = rb_next(node);
  1394. }
  1395. spin_unlock(&root->inode_lock);
  1396. return NULL;
  1397. }
  1398. static int in_block_group(u64 bytenr,
  1399. struct btrfs_block_group_cache *block_group)
  1400. {
  1401. if (bytenr >= block_group->key.objectid &&
  1402. bytenr < block_group->key.objectid + block_group->key.offset)
  1403. return 1;
  1404. return 0;
  1405. }
  1406. /*
  1407. * get new location of data
  1408. */
  1409. static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
  1410. u64 bytenr, u64 num_bytes)
  1411. {
  1412. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  1413. struct btrfs_path *path;
  1414. struct btrfs_file_extent_item *fi;
  1415. struct extent_buffer *leaf;
  1416. int ret;
  1417. path = btrfs_alloc_path();
  1418. if (!path)
  1419. return -ENOMEM;
  1420. bytenr -= BTRFS_I(reloc_inode)->index_cnt;
  1421. ret = btrfs_lookup_file_extent(NULL, root, path,
  1422. btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
  1423. if (ret < 0)
  1424. goto out;
  1425. if (ret > 0) {
  1426. ret = -ENOENT;
  1427. goto out;
  1428. }
  1429. leaf = path->nodes[0];
  1430. fi = btrfs_item_ptr(leaf, path->slots[0],
  1431. struct btrfs_file_extent_item);
  1432. BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
  1433. btrfs_file_extent_compression(leaf, fi) ||
  1434. btrfs_file_extent_encryption(leaf, fi) ||
  1435. btrfs_file_extent_other_encoding(leaf, fi));
  1436. if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
  1437. ret = -EINVAL;
  1438. goto out;
  1439. }
  1440. *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1441. ret = 0;
  1442. out:
  1443. btrfs_free_path(path);
  1444. return ret;
  1445. }
  1446. /*
  1447. * update file extent items in the tree leaf to point to
  1448. * the new locations.
  1449. */
  1450. static noinline_for_stack
  1451. int replace_file_extents(struct btrfs_trans_handle *trans,
  1452. struct reloc_control *rc,
  1453. struct btrfs_root *root,
  1454. struct extent_buffer *leaf)
  1455. {
  1456. struct btrfs_fs_info *fs_info = root->fs_info;
  1457. struct btrfs_key key;
  1458. struct btrfs_file_extent_item *fi;
  1459. struct inode *inode = NULL;
  1460. u64 parent;
  1461. u64 bytenr;
  1462. u64 new_bytenr = 0;
  1463. u64 num_bytes;
  1464. u64 end;
  1465. u32 nritems;
  1466. u32 i;
  1467. int ret = 0;
  1468. int first = 1;
  1469. int dirty = 0;
  1470. if (rc->stage != UPDATE_DATA_PTRS)
  1471. return 0;
  1472. /* reloc trees always use full backref */
  1473. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1474. parent = leaf->start;
  1475. else
  1476. parent = 0;
  1477. nritems = btrfs_header_nritems(leaf);
  1478. for (i = 0; i < nritems; i++) {
  1479. cond_resched();
  1480. btrfs_item_key_to_cpu(leaf, &key, i);
  1481. if (key.type != BTRFS_EXTENT_DATA_KEY)
  1482. continue;
  1483. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1484. if (btrfs_file_extent_type(leaf, fi) ==
  1485. BTRFS_FILE_EXTENT_INLINE)
  1486. continue;
  1487. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1488. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1489. if (bytenr == 0)
  1490. continue;
  1491. if (!in_block_group(bytenr, rc->block_group))
  1492. continue;
  1493. /*
  1494. * if we are modifying block in fs tree, wait for readpage
  1495. * to complete and drop the extent cache
  1496. */
  1497. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  1498. if (first) {
  1499. inode = find_next_inode(root, key.objectid);
  1500. first = 0;
  1501. } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
  1502. btrfs_add_delayed_iput(inode);
  1503. inode = find_next_inode(root, key.objectid);
  1504. }
  1505. if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
  1506. end = key.offset +
  1507. btrfs_file_extent_num_bytes(leaf, fi);
  1508. WARN_ON(!IS_ALIGNED(key.offset,
  1509. fs_info->sectorsize));
  1510. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1511. end--;
  1512. ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
  1513. key.offset, end);
  1514. if (!ret)
  1515. continue;
  1516. btrfs_drop_extent_cache(BTRFS_I(inode),
  1517. key.offset, end, 1);
  1518. unlock_extent(&BTRFS_I(inode)->io_tree,
  1519. key.offset, end);
  1520. }
  1521. }
  1522. ret = get_new_location(rc->data_inode, &new_bytenr,
  1523. bytenr, num_bytes);
  1524. if (ret) {
  1525. /*
  1526. * Don't have to abort since we've not changed anything
  1527. * in the file extent yet.
  1528. */
  1529. break;
  1530. }
  1531. btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
  1532. dirty = 1;
  1533. key.offset -= btrfs_file_extent_offset(leaf, fi);
  1534. ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
  1535. num_bytes, parent,
  1536. btrfs_header_owner(leaf),
  1537. key.objectid, key.offset);
  1538. if (ret) {
  1539. btrfs_abort_transaction(trans, ret);
  1540. break;
  1541. }
  1542. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1543. parent, btrfs_header_owner(leaf),
  1544. key.objectid, key.offset);
  1545. if (ret) {
  1546. btrfs_abort_transaction(trans, ret);
  1547. break;
  1548. }
  1549. }
  1550. if (dirty)
  1551. btrfs_mark_buffer_dirty(leaf);
  1552. if (inode)
  1553. btrfs_add_delayed_iput(inode);
  1554. return ret;
  1555. }
  1556. static noinline_for_stack
  1557. int memcmp_node_keys(struct extent_buffer *eb, int slot,
  1558. struct btrfs_path *path, int level)
  1559. {
  1560. struct btrfs_disk_key key1;
  1561. struct btrfs_disk_key key2;
  1562. btrfs_node_key(eb, &key1, slot);
  1563. btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
  1564. return memcmp(&key1, &key2, sizeof(key1));
  1565. }
  1566. /*
  1567. * try to replace tree blocks in fs tree with the new blocks
  1568. * in reloc tree. tree blocks haven't been modified since the
  1569. * reloc tree was create can be replaced.
  1570. *
  1571. * if a block was replaced, level of the block + 1 is returned.
  1572. * if no block got replaced, 0 is returned. if there are other
  1573. * errors, a negative error number is returned.
  1574. */
  1575. static noinline_for_stack
  1576. int replace_path(struct btrfs_trans_handle *trans,
  1577. struct btrfs_root *dest, struct btrfs_root *src,
  1578. struct btrfs_path *path, struct btrfs_key *next_key,
  1579. int lowest_level, int max_level)
  1580. {
  1581. struct btrfs_fs_info *fs_info = dest->fs_info;
  1582. struct extent_buffer *eb;
  1583. struct extent_buffer *parent;
  1584. struct btrfs_key key;
  1585. u64 old_bytenr;
  1586. u64 new_bytenr;
  1587. u64 old_ptr_gen;
  1588. u64 new_ptr_gen;
  1589. u64 last_snapshot;
  1590. u32 blocksize;
  1591. int cow = 0;
  1592. int level;
  1593. int ret;
  1594. int slot;
  1595. BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  1596. BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
  1597. last_snapshot = btrfs_root_last_snapshot(&src->root_item);
  1598. again:
  1599. slot = path->slots[lowest_level];
  1600. btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
  1601. eb = btrfs_lock_root_node(dest);
  1602. btrfs_set_lock_blocking(eb);
  1603. level = btrfs_header_level(eb);
  1604. if (level < lowest_level) {
  1605. btrfs_tree_unlock(eb);
  1606. free_extent_buffer(eb);
  1607. return 0;
  1608. }
  1609. if (cow) {
  1610. ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
  1611. BUG_ON(ret);
  1612. }
  1613. btrfs_set_lock_blocking(eb);
  1614. if (next_key) {
  1615. next_key->objectid = (u64)-1;
  1616. next_key->type = (u8)-1;
  1617. next_key->offset = (u64)-1;
  1618. }
  1619. parent = eb;
  1620. while (1) {
  1621. struct btrfs_key first_key;
  1622. level = btrfs_header_level(parent);
  1623. BUG_ON(level < lowest_level);
  1624. ret = btrfs_bin_search(parent, &key, level, &slot);
  1625. if (ret && slot > 0)
  1626. slot--;
  1627. if (next_key && slot + 1 < btrfs_header_nritems(parent))
  1628. btrfs_node_key_to_cpu(parent, next_key, slot + 1);
  1629. old_bytenr = btrfs_node_blockptr(parent, slot);
  1630. blocksize = fs_info->nodesize;
  1631. old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
  1632. btrfs_node_key_to_cpu(parent, &first_key, slot);
  1633. if (level <= max_level) {
  1634. eb = path->nodes[level];
  1635. new_bytenr = btrfs_node_blockptr(eb,
  1636. path->slots[level]);
  1637. new_ptr_gen = btrfs_node_ptr_generation(eb,
  1638. path->slots[level]);
  1639. } else {
  1640. new_bytenr = 0;
  1641. new_ptr_gen = 0;
  1642. }
  1643. if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
  1644. ret = level;
  1645. break;
  1646. }
  1647. if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
  1648. memcmp_node_keys(parent, slot, path, level)) {
  1649. if (level <= lowest_level) {
  1650. ret = 0;
  1651. break;
  1652. }
  1653. eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
  1654. level - 1, &first_key);
  1655. if (IS_ERR(eb)) {
  1656. ret = PTR_ERR(eb);
  1657. break;
  1658. } else if (!extent_buffer_uptodate(eb)) {
  1659. ret = -EIO;
  1660. free_extent_buffer(eb);
  1661. break;
  1662. }
  1663. btrfs_tree_lock(eb);
  1664. if (cow) {
  1665. ret = btrfs_cow_block(trans, dest, eb, parent,
  1666. slot, &eb);
  1667. BUG_ON(ret);
  1668. }
  1669. btrfs_set_lock_blocking(eb);
  1670. btrfs_tree_unlock(parent);
  1671. free_extent_buffer(parent);
  1672. parent = eb;
  1673. continue;
  1674. }
  1675. if (!cow) {
  1676. btrfs_tree_unlock(parent);
  1677. free_extent_buffer(parent);
  1678. cow = 1;
  1679. goto again;
  1680. }
  1681. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1682. path->slots[level]);
  1683. btrfs_release_path(path);
  1684. path->lowest_level = level;
  1685. ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
  1686. path->lowest_level = 0;
  1687. BUG_ON(ret);
  1688. /*
  1689. * Info qgroup to trace both subtrees.
  1690. *
  1691. * We must trace both trees.
  1692. * 1) Tree reloc subtree
  1693. * If not traced, we will leak data numbers
  1694. * 2) Fs subtree
  1695. * If not traced, we will double count old data
  1696. * and tree block numbers, if current trans doesn't free
  1697. * data reloc tree inode.
  1698. */
  1699. ret = btrfs_qgroup_trace_subtree(trans, src, parent,
  1700. btrfs_header_generation(parent),
  1701. btrfs_header_level(parent));
  1702. if (ret < 0)
  1703. break;
  1704. ret = btrfs_qgroup_trace_subtree(trans, dest,
  1705. path->nodes[level],
  1706. btrfs_header_generation(path->nodes[level]),
  1707. btrfs_header_level(path->nodes[level]));
  1708. if (ret < 0)
  1709. break;
  1710. /*
  1711. * swap blocks in fs tree and reloc tree.
  1712. */
  1713. btrfs_set_node_blockptr(parent, slot, new_bytenr);
  1714. btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
  1715. btrfs_mark_buffer_dirty(parent);
  1716. btrfs_set_node_blockptr(path->nodes[level],
  1717. path->slots[level], old_bytenr);
  1718. btrfs_set_node_ptr_generation(path->nodes[level],
  1719. path->slots[level], old_ptr_gen);
  1720. btrfs_mark_buffer_dirty(path->nodes[level]);
  1721. ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
  1722. blocksize, path->nodes[level]->start,
  1723. src->root_key.objectid, level - 1, 0);
  1724. BUG_ON(ret);
  1725. ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
  1726. blocksize, 0, dest->root_key.objectid,
  1727. level - 1, 0);
  1728. BUG_ON(ret);
  1729. ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
  1730. path->nodes[level]->start,
  1731. src->root_key.objectid, level - 1, 0);
  1732. BUG_ON(ret);
  1733. ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
  1734. 0, dest->root_key.objectid, level - 1,
  1735. 0);
  1736. BUG_ON(ret);
  1737. btrfs_unlock_up_safe(path, 0);
  1738. ret = level;
  1739. break;
  1740. }
  1741. btrfs_tree_unlock(parent);
  1742. free_extent_buffer(parent);
  1743. return ret;
  1744. }
  1745. /*
  1746. * helper to find next relocated block in reloc tree
  1747. */
  1748. static noinline_for_stack
  1749. int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1750. int *level)
  1751. {
  1752. struct extent_buffer *eb;
  1753. int i;
  1754. u64 last_snapshot;
  1755. u32 nritems;
  1756. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1757. for (i = 0; i < *level; i++) {
  1758. free_extent_buffer(path->nodes[i]);
  1759. path->nodes[i] = NULL;
  1760. }
  1761. for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
  1762. eb = path->nodes[i];
  1763. nritems = btrfs_header_nritems(eb);
  1764. while (path->slots[i] + 1 < nritems) {
  1765. path->slots[i]++;
  1766. if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
  1767. last_snapshot)
  1768. continue;
  1769. *level = i;
  1770. return 0;
  1771. }
  1772. free_extent_buffer(path->nodes[i]);
  1773. path->nodes[i] = NULL;
  1774. }
  1775. return 1;
  1776. }
  1777. /*
  1778. * walk down reloc tree to find relocated block of lowest level
  1779. */
  1780. static noinline_for_stack
  1781. int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1782. int *level)
  1783. {
  1784. struct btrfs_fs_info *fs_info = root->fs_info;
  1785. struct extent_buffer *eb = NULL;
  1786. int i;
  1787. u64 bytenr;
  1788. u64 ptr_gen = 0;
  1789. u64 last_snapshot;
  1790. u32 nritems;
  1791. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1792. for (i = *level; i > 0; i--) {
  1793. struct btrfs_key first_key;
  1794. eb = path->nodes[i];
  1795. nritems = btrfs_header_nritems(eb);
  1796. while (path->slots[i] < nritems) {
  1797. ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
  1798. if (ptr_gen > last_snapshot)
  1799. break;
  1800. path->slots[i]++;
  1801. }
  1802. if (path->slots[i] >= nritems) {
  1803. if (i == *level)
  1804. break;
  1805. *level = i + 1;
  1806. return 0;
  1807. }
  1808. if (i == 1) {
  1809. *level = i;
  1810. return 0;
  1811. }
  1812. bytenr = btrfs_node_blockptr(eb, path->slots[i]);
  1813. btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
  1814. eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
  1815. &first_key);
  1816. if (IS_ERR(eb)) {
  1817. return PTR_ERR(eb);
  1818. } else if (!extent_buffer_uptodate(eb)) {
  1819. free_extent_buffer(eb);
  1820. return -EIO;
  1821. }
  1822. BUG_ON(btrfs_header_level(eb) != i - 1);
  1823. path->nodes[i - 1] = eb;
  1824. path->slots[i - 1] = 0;
  1825. }
  1826. return 1;
  1827. }
  1828. /*
  1829. * invalidate extent cache for file extents whose key in range of
  1830. * [min_key, max_key)
  1831. */
  1832. static int invalidate_extent_cache(struct btrfs_root *root,
  1833. struct btrfs_key *min_key,
  1834. struct btrfs_key *max_key)
  1835. {
  1836. struct btrfs_fs_info *fs_info = root->fs_info;
  1837. struct inode *inode = NULL;
  1838. u64 objectid;
  1839. u64 start, end;
  1840. u64 ino;
  1841. objectid = min_key->objectid;
  1842. while (1) {
  1843. cond_resched();
  1844. iput(inode);
  1845. if (objectid > max_key->objectid)
  1846. break;
  1847. inode = find_next_inode(root, objectid);
  1848. if (!inode)
  1849. break;
  1850. ino = btrfs_ino(BTRFS_I(inode));
  1851. if (ino > max_key->objectid) {
  1852. iput(inode);
  1853. break;
  1854. }
  1855. objectid = ino + 1;
  1856. if (!S_ISREG(inode->i_mode))
  1857. continue;
  1858. if (unlikely(min_key->objectid == ino)) {
  1859. if (min_key->type > BTRFS_EXTENT_DATA_KEY)
  1860. continue;
  1861. if (min_key->type < BTRFS_EXTENT_DATA_KEY)
  1862. start = 0;
  1863. else {
  1864. start = min_key->offset;
  1865. WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
  1866. }
  1867. } else {
  1868. start = 0;
  1869. }
  1870. if (unlikely(max_key->objectid == ino)) {
  1871. if (max_key->type < BTRFS_EXTENT_DATA_KEY)
  1872. continue;
  1873. if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
  1874. end = (u64)-1;
  1875. } else {
  1876. if (max_key->offset == 0)
  1877. continue;
  1878. end = max_key->offset;
  1879. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1880. end--;
  1881. }
  1882. } else {
  1883. end = (u64)-1;
  1884. }
  1885. /* the lock_extent waits for readpage to complete */
  1886. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1887. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
  1888. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1889. }
  1890. return 0;
  1891. }
  1892. static int find_next_key(struct btrfs_path *path, int level,
  1893. struct btrfs_key *key)
  1894. {
  1895. while (level < BTRFS_MAX_LEVEL) {
  1896. if (!path->nodes[level])
  1897. break;
  1898. if (path->slots[level] + 1 <
  1899. btrfs_header_nritems(path->nodes[level])) {
  1900. btrfs_node_key_to_cpu(path->nodes[level], key,
  1901. path->slots[level] + 1);
  1902. return 0;
  1903. }
  1904. level++;
  1905. }
  1906. return 1;
  1907. }
  1908. /*
  1909. * merge the relocated tree blocks in reloc tree with corresponding
  1910. * fs tree.
  1911. */
  1912. static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
  1913. struct btrfs_root *root)
  1914. {
  1915. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  1916. LIST_HEAD(inode_list);
  1917. struct btrfs_key key;
  1918. struct btrfs_key next_key;
  1919. struct btrfs_trans_handle *trans = NULL;
  1920. struct btrfs_root *reloc_root;
  1921. struct btrfs_root_item *root_item;
  1922. struct btrfs_path *path;
  1923. struct extent_buffer *leaf;
  1924. int level;
  1925. int max_level;
  1926. int replaced = 0;
  1927. int ret;
  1928. int err = 0;
  1929. u32 min_reserved;
  1930. path = btrfs_alloc_path();
  1931. if (!path)
  1932. return -ENOMEM;
  1933. path->reada = READA_FORWARD;
  1934. reloc_root = root->reloc_root;
  1935. root_item = &reloc_root->root_item;
  1936. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  1937. level = btrfs_root_level(root_item);
  1938. extent_buffer_get(reloc_root->node);
  1939. path->nodes[level] = reloc_root->node;
  1940. path->slots[level] = 0;
  1941. } else {
  1942. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  1943. level = root_item->drop_level;
  1944. BUG_ON(level == 0);
  1945. path->lowest_level = level;
  1946. ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
  1947. path->lowest_level = 0;
  1948. if (ret < 0) {
  1949. btrfs_free_path(path);
  1950. return ret;
  1951. }
  1952. btrfs_node_key_to_cpu(path->nodes[level], &next_key,
  1953. path->slots[level]);
  1954. WARN_ON(memcmp(&key, &next_key, sizeof(key)));
  1955. btrfs_unlock_up_safe(path, 0);
  1956. }
  1957. min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  1958. memset(&next_key, 0, sizeof(next_key));
  1959. while (1) {
  1960. ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
  1961. BTRFS_RESERVE_FLUSH_ALL);
  1962. if (ret) {
  1963. err = ret;
  1964. goto out;
  1965. }
  1966. trans = btrfs_start_transaction(root, 0);
  1967. if (IS_ERR(trans)) {
  1968. err = PTR_ERR(trans);
  1969. trans = NULL;
  1970. goto out;
  1971. }
  1972. trans->block_rsv = rc->block_rsv;
  1973. replaced = 0;
  1974. max_level = level;
  1975. ret = walk_down_reloc_tree(reloc_root, path, &level);
  1976. if (ret < 0) {
  1977. err = ret;
  1978. goto out;
  1979. }
  1980. if (ret > 0)
  1981. break;
  1982. if (!find_next_key(path, level, &key) &&
  1983. btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
  1984. ret = 0;
  1985. } else {
  1986. ret = replace_path(trans, root, reloc_root, path,
  1987. &next_key, level, max_level);
  1988. }
  1989. if (ret < 0) {
  1990. err = ret;
  1991. goto out;
  1992. }
  1993. if (ret > 0) {
  1994. level = ret;
  1995. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1996. path->slots[level]);
  1997. replaced = 1;
  1998. }
  1999. ret = walk_up_reloc_tree(reloc_root, path, &level);
  2000. if (ret > 0)
  2001. break;
  2002. BUG_ON(level == 0);
  2003. /*
  2004. * save the merging progress in the drop_progress.
  2005. * this is OK since root refs == 1 in this case.
  2006. */
  2007. btrfs_node_key(path->nodes[level], &root_item->drop_progress,
  2008. path->slots[level]);
  2009. root_item->drop_level = level;
  2010. btrfs_end_transaction_throttle(trans);
  2011. trans = NULL;
  2012. btrfs_btree_balance_dirty(fs_info);
  2013. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2014. invalidate_extent_cache(root, &key, &next_key);
  2015. }
  2016. /*
  2017. * handle the case only one block in the fs tree need to be
  2018. * relocated and the block is tree root.
  2019. */
  2020. leaf = btrfs_lock_root_node(root);
  2021. ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
  2022. btrfs_tree_unlock(leaf);
  2023. free_extent_buffer(leaf);
  2024. if (ret < 0)
  2025. err = ret;
  2026. out:
  2027. btrfs_free_path(path);
  2028. if (err == 0) {
  2029. memset(&root_item->drop_progress, 0,
  2030. sizeof(root_item->drop_progress));
  2031. root_item->drop_level = 0;
  2032. btrfs_set_root_refs(root_item, 0);
  2033. btrfs_update_reloc_root(trans, root);
  2034. }
  2035. if (trans)
  2036. btrfs_end_transaction_throttle(trans);
  2037. btrfs_btree_balance_dirty(fs_info);
  2038. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2039. invalidate_extent_cache(root, &key, &next_key);
  2040. return err;
  2041. }
  2042. static noinline_for_stack
  2043. int prepare_to_merge(struct reloc_control *rc, int err)
  2044. {
  2045. struct btrfs_root *root = rc->extent_root;
  2046. struct btrfs_fs_info *fs_info = root->fs_info;
  2047. struct btrfs_root *reloc_root;
  2048. struct btrfs_trans_handle *trans;
  2049. LIST_HEAD(reloc_roots);
  2050. u64 num_bytes = 0;
  2051. int ret;
  2052. mutex_lock(&fs_info->reloc_mutex);
  2053. rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  2054. rc->merging_rsv_size += rc->nodes_relocated * 2;
  2055. mutex_unlock(&fs_info->reloc_mutex);
  2056. again:
  2057. if (!err) {
  2058. num_bytes = rc->merging_rsv_size;
  2059. ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
  2060. BTRFS_RESERVE_FLUSH_ALL);
  2061. if (ret)
  2062. err = ret;
  2063. }
  2064. trans = btrfs_join_transaction(rc->extent_root);
  2065. if (IS_ERR(trans)) {
  2066. if (!err)
  2067. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2068. num_bytes);
  2069. return PTR_ERR(trans);
  2070. }
  2071. if (!err) {
  2072. if (num_bytes != rc->merging_rsv_size) {
  2073. btrfs_end_transaction(trans);
  2074. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2075. num_bytes);
  2076. goto again;
  2077. }
  2078. }
  2079. rc->merge_reloc_tree = 1;
  2080. while (!list_empty(&rc->reloc_roots)) {
  2081. reloc_root = list_entry(rc->reloc_roots.next,
  2082. struct btrfs_root, root_list);
  2083. list_del_init(&reloc_root->root_list);
  2084. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2085. BUG_ON(IS_ERR(root));
  2086. BUG_ON(root->reloc_root != reloc_root);
  2087. /*
  2088. * set reference count to 1, so btrfs_recover_relocation
  2089. * knows it should resumes merging
  2090. */
  2091. if (!err)
  2092. btrfs_set_root_refs(&reloc_root->root_item, 1);
  2093. btrfs_update_reloc_root(trans, root);
  2094. list_add(&reloc_root->root_list, &reloc_roots);
  2095. }
  2096. list_splice(&reloc_roots, &rc->reloc_roots);
  2097. if (!err)
  2098. btrfs_commit_transaction(trans);
  2099. else
  2100. btrfs_end_transaction(trans);
  2101. return err;
  2102. }
  2103. static noinline_for_stack
  2104. void free_reloc_roots(struct list_head *list)
  2105. {
  2106. struct btrfs_root *reloc_root;
  2107. while (!list_empty(list)) {
  2108. reloc_root = list_entry(list->next, struct btrfs_root,
  2109. root_list);
  2110. __del_reloc_root(reloc_root);
  2111. free_extent_buffer(reloc_root->node);
  2112. free_extent_buffer(reloc_root->commit_root);
  2113. reloc_root->node = NULL;
  2114. reloc_root->commit_root = NULL;
  2115. }
  2116. }
  2117. static noinline_for_stack
  2118. void merge_reloc_roots(struct reloc_control *rc)
  2119. {
  2120. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2121. struct btrfs_root *root;
  2122. struct btrfs_root *reloc_root;
  2123. LIST_HEAD(reloc_roots);
  2124. int found = 0;
  2125. int ret = 0;
  2126. again:
  2127. root = rc->extent_root;
  2128. /*
  2129. * this serializes us with btrfs_record_root_in_transaction,
  2130. * we have to make sure nobody is in the middle of
  2131. * adding their roots to the list while we are
  2132. * doing this splice
  2133. */
  2134. mutex_lock(&fs_info->reloc_mutex);
  2135. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2136. mutex_unlock(&fs_info->reloc_mutex);
  2137. while (!list_empty(&reloc_roots)) {
  2138. found = 1;
  2139. reloc_root = list_entry(reloc_roots.next,
  2140. struct btrfs_root, root_list);
  2141. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  2142. root = read_fs_root(fs_info,
  2143. reloc_root->root_key.offset);
  2144. BUG_ON(IS_ERR(root));
  2145. BUG_ON(root->reloc_root != reloc_root);
  2146. ret = merge_reloc_root(rc, root);
  2147. if (ret) {
  2148. if (list_empty(&reloc_root->root_list))
  2149. list_add_tail(&reloc_root->root_list,
  2150. &reloc_roots);
  2151. goto out;
  2152. }
  2153. } else {
  2154. list_del_init(&reloc_root->root_list);
  2155. }
  2156. ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
  2157. if (ret < 0) {
  2158. if (list_empty(&reloc_root->root_list))
  2159. list_add_tail(&reloc_root->root_list,
  2160. &reloc_roots);
  2161. goto out;
  2162. }
  2163. }
  2164. if (found) {
  2165. found = 0;
  2166. goto again;
  2167. }
  2168. out:
  2169. if (ret) {
  2170. btrfs_handle_fs_error(fs_info, ret, NULL);
  2171. if (!list_empty(&reloc_roots))
  2172. free_reloc_roots(&reloc_roots);
  2173. /* new reloc root may be added */
  2174. mutex_lock(&fs_info->reloc_mutex);
  2175. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2176. mutex_unlock(&fs_info->reloc_mutex);
  2177. if (!list_empty(&reloc_roots))
  2178. free_reloc_roots(&reloc_roots);
  2179. }
  2180. BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
  2181. }
  2182. static void free_block_list(struct rb_root *blocks)
  2183. {
  2184. struct tree_block *block;
  2185. struct rb_node *rb_node;
  2186. while ((rb_node = rb_first(blocks))) {
  2187. block = rb_entry(rb_node, struct tree_block, rb_node);
  2188. rb_erase(rb_node, blocks);
  2189. kfree(block);
  2190. }
  2191. }
  2192. static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
  2193. struct btrfs_root *reloc_root)
  2194. {
  2195. struct btrfs_fs_info *fs_info = reloc_root->fs_info;
  2196. struct btrfs_root *root;
  2197. if (reloc_root->last_trans == trans->transid)
  2198. return 0;
  2199. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2200. BUG_ON(IS_ERR(root));
  2201. BUG_ON(root->reloc_root != reloc_root);
  2202. return btrfs_record_root_in_trans(trans, root);
  2203. }
  2204. static noinline_for_stack
  2205. struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
  2206. struct reloc_control *rc,
  2207. struct backref_node *node,
  2208. struct backref_edge *edges[])
  2209. {
  2210. struct backref_node *next;
  2211. struct btrfs_root *root;
  2212. int index = 0;
  2213. next = node;
  2214. while (1) {
  2215. cond_resched();
  2216. next = walk_up_backref(next, edges, &index);
  2217. root = next->root;
  2218. BUG_ON(!root);
  2219. BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
  2220. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  2221. record_reloc_root_in_trans(trans, root);
  2222. break;
  2223. }
  2224. btrfs_record_root_in_trans(trans, root);
  2225. root = root->reloc_root;
  2226. if (next->new_bytenr != root->node->start) {
  2227. BUG_ON(next->new_bytenr);
  2228. BUG_ON(!list_empty(&next->list));
  2229. next->new_bytenr = root->node->start;
  2230. next->root = root;
  2231. list_add_tail(&next->list,
  2232. &rc->backref_cache.changed);
  2233. __mark_block_processed(rc, next);
  2234. break;
  2235. }
  2236. WARN_ON(1);
  2237. root = NULL;
  2238. next = walk_down_backref(edges, &index);
  2239. if (!next || next->level <= node->level)
  2240. break;
  2241. }
  2242. if (!root)
  2243. return NULL;
  2244. next = node;
  2245. /* setup backref node path for btrfs_reloc_cow_block */
  2246. while (1) {
  2247. rc->backref_cache.path[next->level] = next;
  2248. if (--index < 0)
  2249. break;
  2250. next = edges[index]->node[UPPER];
  2251. }
  2252. return root;
  2253. }
  2254. /*
  2255. * select a tree root for relocation. return NULL if the block
  2256. * is reference counted. we should use do_relocation() in this
  2257. * case. return a tree root pointer if the block isn't reference
  2258. * counted. return -ENOENT if the block is root of reloc tree.
  2259. */
  2260. static noinline_for_stack
  2261. struct btrfs_root *select_one_root(struct backref_node *node)
  2262. {
  2263. struct backref_node *next;
  2264. struct btrfs_root *root;
  2265. struct btrfs_root *fs_root = NULL;
  2266. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2267. int index = 0;
  2268. next = node;
  2269. while (1) {
  2270. cond_resched();
  2271. next = walk_up_backref(next, edges, &index);
  2272. root = next->root;
  2273. BUG_ON(!root);
  2274. /* no other choice for non-references counted tree */
  2275. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  2276. return root;
  2277. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
  2278. fs_root = root;
  2279. if (next != node)
  2280. return NULL;
  2281. next = walk_down_backref(edges, &index);
  2282. if (!next || next->level <= node->level)
  2283. break;
  2284. }
  2285. if (!fs_root)
  2286. return ERR_PTR(-ENOENT);
  2287. return fs_root;
  2288. }
  2289. static noinline_for_stack
  2290. u64 calcu_metadata_size(struct reloc_control *rc,
  2291. struct backref_node *node, int reserve)
  2292. {
  2293. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2294. struct backref_node *next = node;
  2295. struct backref_edge *edge;
  2296. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2297. u64 num_bytes = 0;
  2298. int index = 0;
  2299. BUG_ON(reserve && node->processed);
  2300. while (next) {
  2301. cond_resched();
  2302. while (1) {
  2303. if (next->processed && (reserve || next != node))
  2304. break;
  2305. num_bytes += fs_info->nodesize;
  2306. if (list_empty(&next->upper))
  2307. break;
  2308. edge = list_entry(next->upper.next,
  2309. struct backref_edge, list[LOWER]);
  2310. edges[index++] = edge;
  2311. next = edge->node[UPPER];
  2312. }
  2313. next = walk_down_backref(edges, &index);
  2314. }
  2315. return num_bytes;
  2316. }
  2317. static int reserve_metadata_space(struct btrfs_trans_handle *trans,
  2318. struct reloc_control *rc,
  2319. struct backref_node *node)
  2320. {
  2321. struct btrfs_root *root = rc->extent_root;
  2322. struct btrfs_fs_info *fs_info = root->fs_info;
  2323. u64 num_bytes;
  2324. int ret;
  2325. u64 tmp;
  2326. num_bytes = calcu_metadata_size(rc, node, 1) * 2;
  2327. trans->block_rsv = rc->block_rsv;
  2328. rc->reserved_bytes += num_bytes;
  2329. /*
  2330. * We are under a transaction here so we can only do limited flushing.
  2331. * If we get an enospc just kick back -EAGAIN so we know to drop the
  2332. * transaction and try to refill when we can flush all the things.
  2333. */
  2334. ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
  2335. BTRFS_RESERVE_FLUSH_LIMIT);
  2336. if (ret) {
  2337. tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
  2338. while (tmp <= rc->reserved_bytes)
  2339. tmp <<= 1;
  2340. /*
  2341. * only one thread can access block_rsv at this point,
  2342. * so we don't need hold lock to protect block_rsv.
  2343. * we expand more reservation size here to allow enough
  2344. * space for relocation and we will return eailer in
  2345. * enospc case.
  2346. */
  2347. rc->block_rsv->size = tmp + fs_info->nodesize *
  2348. RELOCATION_RESERVED_NODES;
  2349. return -EAGAIN;
  2350. }
  2351. return 0;
  2352. }
  2353. /*
  2354. * relocate a block tree, and then update pointers in upper level
  2355. * blocks that reference the block to point to the new location.
  2356. *
  2357. * if called by link_to_upper, the block has already been relocated.
  2358. * in that case this function just updates pointers.
  2359. */
  2360. static int do_relocation(struct btrfs_trans_handle *trans,
  2361. struct reloc_control *rc,
  2362. struct backref_node *node,
  2363. struct btrfs_key *key,
  2364. struct btrfs_path *path, int lowest)
  2365. {
  2366. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2367. struct backref_node *upper;
  2368. struct backref_edge *edge;
  2369. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2370. struct btrfs_root *root;
  2371. struct extent_buffer *eb;
  2372. u32 blocksize;
  2373. u64 bytenr;
  2374. u64 generation;
  2375. int slot;
  2376. int ret;
  2377. int err = 0;
  2378. BUG_ON(lowest && node->eb);
  2379. path->lowest_level = node->level + 1;
  2380. rc->backref_cache.path[node->level] = node;
  2381. list_for_each_entry(edge, &node->upper, list[LOWER]) {
  2382. struct btrfs_key first_key;
  2383. cond_resched();
  2384. upper = edge->node[UPPER];
  2385. root = select_reloc_root(trans, rc, upper, edges);
  2386. BUG_ON(!root);
  2387. if (upper->eb && !upper->locked) {
  2388. if (!lowest) {
  2389. ret = btrfs_bin_search(upper->eb, key,
  2390. upper->level, &slot);
  2391. BUG_ON(ret);
  2392. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2393. if (node->eb->start == bytenr)
  2394. goto next;
  2395. }
  2396. drop_node_buffer(upper);
  2397. }
  2398. if (!upper->eb) {
  2399. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2400. if (ret) {
  2401. if (ret < 0)
  2402. err = ret;
  2403. else
  2404. err = -ENOENT;
  2405. btrfs_release_path(path);
  2406. break;
  2407. }
  2408. if (!upper->eb) {
  2409. upper->eb = path->nodes[upper->level];
  2410. path->nodes[upper->level] = NULL;
  2411. } else {
  2412. BUG_ON(upper->eb != path->nodes[upper->level]);
  2413. }
  2414. upper->locked = 1;
  2415. path->locks[upper->level] = 0;
  2416. slot = path->slots[upper->level];
  2417. btrfs_release_path(path);
  2418. } else {
  2419. ret = btrfs_bin_search(upper->eb, key, upper->level,
  2420. &slot);
  2421. BUG_ON(ret);
  2422. }
  2423. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2424. if (lowest) {
  2425. if (bytenr != node->bytenr) {
  2426. btrfs_err(root->fs_info,
  2427. "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
  2428. bytenr, node->bytenr, slot,
  2429. upper->eb->start);
  2430. err = -EIO;
  2431. goto next;
  2432. }
  2433. } else {
  2434. if (node->eb->start == bytenr)
  2435. goto next;
  2436. }
  2437. blocksize = root->fs_info->nodesize;
  2438. generation = btrfs_node_ptr_generation(upper->eb, slot);
  2439. btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
  2440. eb = read_tree_block(fs_info, bytenr, generation,
  2441. upper->level - 1, &first_key);
  2442. if (IS_ERR(eb)) {
  2443. err = PTR_ERR(eb);
  2444. goto next;
  2445. } else if (!extent_buffer_uptodate(eb)) {
  2446. free_extent_buffer(eb);
  2447. err = -EIO;
  2448. goto next;
  2449. }
  2450. btrfs_tree_lock(eb);
  2451. btrfs_set_lock_blocking(eb);
  2452. if (!node->eb) {
  2453. ret = btrfs_cow_block(trans, root, eb, upper->eb,
  2454. slot, &eb);
  2455. btrfs_tree_unlock(eb);
  2456. free_extent_buffer(eb);
  2457. if (ret < 0) {
  2458. err = ret;
  2459. goto next;
  2460. }
  2461. BUG_ON(node->eb != eb);
  2462. } else {
  2463. btrfs_set_node_blockptr(upper->eb, slot,
  2464. node->eb->start);
  2465. btrfs_set_node_ptr_generation(upper->eb, slot,
  2466. trans->transid);
  2467. btrfs_mark_buffer_dirty(upper->eb);
  2468. ret = btrfs_inc_extent_ref(trans, root,
  2469. node->eb->start, blocksize,
  2470. upper->eb->start,
  2471. btrfs_header_owner(upper->eb),
  2472. node->level, 0);
  2473. BUG_ON(ret);
  2474. ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
  2475. BUG_ON(ret);
  2476. }
  2477. next:
  2478. if (!upper->pending)
  2479. drop_node_buffer(upper);
  2480. else
  2481. unlock_node_buffer(upper);
  2482. if (err)
  2483. break;
  2484. }
  2485. if (!err && node->pending) {
  2486. drop_node_buffer(node);
  2487. list_move_tail(&node->list, &rc->backref_cache.changed);
  2488. node->pending = 0;
  2489. }
  2490. path->lowest_level = 0;
  2491. BUG_ON(err == -ENOSPC);
  2492. return err;
  2493. }
  2494. static int link_to_upper(struct btrfs_trans_handle *trans,
  2495. struct reloc_control *rc,
  2496. struct backref_node *node,
  2497. struct btrfs_path *path)
  2498. {
  2499. struct btrfs_key key;
  2500. btrfs_node_key_to_cpu(node->eb, &key, 0);
  2501. return do_relocation(trans, rc, node, &key, path, 0);
  2502. }
  2503. static int finish_pending_nodes(struct btrfs_trans_handle *trans,
  2504. struct reloc_control *rc,
  2505. struct btrfs_path *path, int err)
  2506. {
  2507. LIST_HEAD(list);
  2508. struct backref_cache *cache = &rc->backref_cache;
  2509. struct backref_node *node;
  2510. int level;
  2511. int ret;
  2512. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  2513. while (!list_empty(&cache->pending[level])) {
  2514. node = list_entry(cache->pending[level].next,
  2515. struct backref_node, list);
  2516. list_move_tail(&node->list, &list);
  2517. BUG_ON(!node->pending);
  2518. if (!err) {
  2519. ret = link_to_upper(trans, rc, node, path);
  2520. if (ret < 0)
  2521. err = ret;
  2522. }
  2523. }
  2524. list_splice_init(&list, &cache->pending[level]);
  2525. }
  2526. return err;
  2527. }
  2528. static void mark_block_processed(struct reloc_control *rc,
  2529. u64 bytenr, u32 blocksize)
  2530. {
  2531. set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
  2532. EXTENT_DIRTY);
  2533. }
  2534. static void __mark_block_processed(struct reloc_control *rc,
  2535. struct backref_node *node)
  2536. {
  2537. u32 blocksize;
  2538. if (node->level == 0 ||
  2539. in_block_group(node->bytenr, rc->block_group)) {
  2540. blocksize = rc->extent_root->fs_info->nodesize;
  2541. mark_block_processed(rc, node->bytenr, blocksize);
  2542. }
  2543. node->processed = 1;
  2544. }
  2545. /*
  2546. * mark a block and all blocks directly/indirectly reference the block
  2547. * as processed.
  2548. */
  2549. static void update_processed_blocks(struct reloc_control *rc,
  2550. struct backref_node *node)
  2551. {
  2552. struct backref_node *next = node;
  2553. struct backref_edge *edge;
  2554. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2555. int index = 0;
  2556. while (next) {
  2557. cond_resched();
  2558. while (1) {
  2559. if (next->processed)
  2560. break;
  2561. __mark_block_processed(rc, next);
  2562. if (list_empty(&next->upper))
  2563. break;
  2564. edge = list_entry(next->upper.next,
  2565. struct backref_edge, list[LOWER]);
  2566. edges[index++] = edge;
  2567. next = edge->node[UPPER];
  2568. }
  2569. next = walk_down_backref(edges, &index);
  2570. }
  2571. }
  2572. static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
  2573. {
  2574. u32 blocksize = rc->extent_root->fs_info->nodesize;
  2575. if (test_range_bit(&rc->processed_blocks, bytenr,
  2576. bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
  2577. return 1;
  2578. return 0;
  2579. }
  2580. static int get_tree_block_key(struct btrfs_fs_info *fs_info,
  2581. struct tree_block *block)
  2582. {
  2583. struct extent_buffer *eb;
  2584. BUG_ON(block->key_ready);
  2585. eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
  2586. block->level, NULL);
  2587. if (IS_ERR(eb)) {
  2588. return PTR_ERR(eb);
  2589. } else if (!extent_buffer_uptodate(eb)) {
  2590. free_extent_buffer(eb);
  2591. return -EIO;
  2592. }
  2593. WARN_ON(btrfs_header_level(eb) != block->level);
  2594. if (block->level == 0)
  2595. btrfs_item_key_to_cpu(eb, &block->key, 0);
  2596. else
  2597. btrfs_node_key_to_cpu(eb, &block->key, 0);
  2598. free_extent_buffer(eb);
  2599. block->key_ready = 1;
  2600. return 0;
  2601. }
  2602. /*
  2603. * helper function to relocate a tree block
  2604. */
  2605. static int relocate_tree_block(struct btrfs_trans_handle *trans,
  2606. struct reloc_control *rc,
  2607. struct backref_node *node,
  2608. struct btrfs_key *key,
  2609. struct btrfs_path *path)
  2610. {
  2611. struct btrfs_root *root;
  2612. int ret = 0;
  2613. if (!node)
  2614. return 0;
  2615. BUG_ON(node->processed);
  2616. root = select_one_root(node);
  2617. if (root == ERR_PTR(-ENOENT)) {
  2618. update_processed_blocks(rc, node);
  2619. goto out;
  2620. }
  2621. if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2622. ret = reserve_metadata_space(trans, rc, node);
  2623. if (ret)
  2624. goto out;
  2625. }
  2626. if (root) {
  2627. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2628. BUG_ON(node->new_bytenr);
  2629. BUG_ON(!list_empty(&node->list));
  2630. btrfs_record_root_in_trans(trans, root);
  2631. root = root->reloc_root;
  2632. node->new_bytenr = root->node->start;
  2633. node->root = root;
  2634. list_add_tail(&node->list, &rc->backref_cache.changed);
  2635. } else {
  2636. path->lowest_level = node->level;
  2637. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2638. btrfs_release_path(path);
  2639. if (ret > 0)
  2640. ret = 0;
  2641. }
  2642. if (!ret)
  2643. update_processed_blocks(rc, node);
  2644. } else {
  2645. ret = do_relocation(trans, rc, node, key, path, 1);
  2646. }
  2647. out:
  2648. if (ret || node->level == 0 || node->cowonly)
  2649. remove_backref_node(&rc->backref_cache, node);
  2650. return ret;
  2651. }
  2652. /*
  2653. * relocate a list of blocks
  2654. */
  2655. static noinline_for_stack
  2656. int relocate_tree_blocks(struct btrfs_trans_handle *trans,
  2657. struct reloc_control *rc, struct rb_root *blocks)
  2658. {
  2659. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2660. struct backref_node *node;
  2661. struct btrfs_path *path;
  2662. struct tree_block *block;
  2663. struct rb_node *rb_node;
  2664. int ret;
  2665. int err = 0;
  2666. path = btrfs_alloc_path();
  2667. if (!path) {
  2668. err = -ENOMEM;
  2669. goto out_free_blocks;
  2670. }
  2671. rb_node = rb_first(blocks);
  2672. while (rb_node) {
  2673. block = rb_entry(rb_node, struct tree_block, rb_node);
  2674. if (!block->key_ready)
  2675. readahead_tree_block(fs_info, block->bytenr);
  2676. rb_node = rb_next(rb_node);
  2677. }
  2678. rb_node = rb_first(blocks);
  2679. while (rb_node) {
  2680. block = rb_entry(rb_node, struct tree_block, rb_node);
  2681. if (!block->key_ready) {
  2682. err = get_tree_block_key(fs_info, block);
  2683. if (err)
  2684. goto out_free_path;
  2685. }
  2686. rb_node = rb_next(rb_node);
  2687. }
  2688. rb_node = rb_first(blocks);
  2689. while (rb_node) {
  2690. block = rb_entry(rb_node, struct tree_block, rb_node);
  2691. node = build_backref_tree(rc, &block->key,
  2692. block->level, block->bytenr);
  2693. if (IS_ERR(node)) {
  2694. err = PTR_ERR(node);
  2695. goto out;
  2696. }
  2697. ret = relocate_tree_block(trans, rc, node, &block->key,
  2698. path);
  2699. if (ret < 0) {
  2700. if (ret != -EAGAIN || rb_node == rb_first(blocks))
  2701. err = ret;
  2702. goto out;
  2703. }
  2704. rb_node = rb_next(rb_node);
  2705. }
  2706. out:
  2707. err = finish_pending_nodes(trans, rc, path, err);
  2708. out_free_path:
  2709. btrfs_free_path(path);
  2710. out_free_blocks:
  2711. free_block_list(blocks);
  2712. return err;
  2713. }
  2714. static noinline_for_stack
  2715. int prealloc_file_extent_cluster(struct inode *inode,
  2716. struct file_extent_cluster *cluster)
  2717. {
  2718. u64 alloc_hint = 0;
  2719. u64 start;
  2720. u64 end;
  2721. u64 offset = BTRFS_I(inode)->index_cnt;
  2722. u64 num_bytes;
  2723. int nr = 0;
  2724. int ret = 0;
  2725. u64 prealloc_start = cluster->start - offset;
  2726. u64 prealloc_end = cluster->end - offset;
  2727. u64 cur_offset;
  2728. struct extent_changeset *data_reserved = NULL;
  2729. BUG_ON(cluster->start != cluster->boundary[0]);
  2730. inode_lock(inode);
  2731. ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
  2732. prealloc_end + 1 - prealloc_start);
  2733. if (ret)
  2734. goto out;
  2735. cur_offset = prealloc_start;
  2736. while (nr < cluster->nr) {
  2737. start = cluster->boundary[nr] - offset;
  2738. if (nr + 1 < cluster->nr)
  2739. end = cluster->boundary[nr + 1] - 1 - offset;
  2740. else
  2741. end = cluster->end - offset;
  2742. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2743. num_bytes = end + 1 - start;
  2744. if (cur_offset < start)
  2745. btrfs_free_reserved_data_space(inode, data_reserved,
  2746. cur_offset, start - cur_offset);
  2747. ret = btrfs_prealloc_file_range(inode, 0, start,
  2748. num_bytes, num_bytes,
  2749. end + 1, &alloc_hint);
  2750. cur_offset = end + 1;
  2751. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2752. if (ret)
  2753. break;
  2754. nr++;
  2755. }
  2756. if (cur_offset < prealloc_end)
  2757. btrfs_free_reserved_data_space(inode, data_reserved,
  2758. cur_offset, prealloc_end + 1 - cur_offset);
  2759. out:
  2760. inode_unlock(inode);
  2761. extent_changeset_free(data_reserved);
  2762. return ret;
  2763. }
  2764. static noinline_for_stack
  2765. int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
  2766. u64 block_start)
  2767. {
  2768. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2769. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  2770. struct extent_map *em;
  2771. int ret = 0;
  2772. em = alloc_extent_map();
  2773. if (!em)
  2774. return -ENOMEM;
  2775. em->start = start;
  2776. em->len = end + 1 - start;
  2777. em->block_len = em->len;
  2778. em->block_start = block_start;
  2779. em->bdev = fs_info->fs_devices->latest_bdev;
  2780. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  2781. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2782. while (1) {
  2783. write_lock(&em_tree->lock);
  2784. ret = add_extent_mapping(em_tree, em, 0);
  2785. write_unlock(&em_tree->lock);
  2786. if (ret != -EEXIST) {
  2787. free_extent_map(em);
  2788. break;
  2789. }
  2790. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
  2791. }
  2792. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2793. return ret;
  2794. }
  2795. static int relocate_file_extent_cluster(struct inode *inode,
  2796. struct file_extent_cluster *cluster)
  2797. {
  2798. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2799. u64 page_start;
  2800. u64 page_end;
  2801. u64 offset = BTRFS_I(inode)->index_cnt;
  2802. unsigned long index;
  2803. unsigned long last_index;
  2804. struct page *page;
  2805. struct file_ra_state *ra;
  2806. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  2807. int nr = 0;
  2808. int ret = 0;
  2809. if (!cluster->nr)
  2810. return 0;
  2811. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  2812. if (!ra)
  2813. return -ENOMEM;
  2814. ret = prealloc_file_extent_cluster(inode, cluster);
  2815. if (ret)
  2816. goto out;
  2817. file_ra_state_init(ra, inode->i_mapping);
  2818. ret = setup_extent_mapping(inode, cluster->start - offset,
  2819. cluster->end - offset, cluster->start);
  2820. if (ret)
  2821. goto out;
  2822. index = (cluster->start - offset) >> PAGE_SHIFT;
  2823. last_index = (cluster->end - offset) >> PAGE_SHIFT;
  2824. while (index <= last_index) {
  2825. ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
  2826. PAGE_SIZE);
  2827. if (ret)
  2828. goto out;
  2829. page = find_lock_page(inode->i_mapping, index);
  2830. if (!page) {
  2831. page_cache_sync_readahead(inode->i_mapping,
  2832. ra, NULL, index,
  2833. last_index + 1 - index);
  2834. page = find_or_create_page(inode->i_mapping, index,
  2835. mask);
  2836. if (!page) {
  2837. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2838. PAGE_SIZE, true);
  2839. ret = -ENOMEM;
  2840. goto out;
  2841. }
  2842. }
  2843. if (PageReadahead(page)) {
  2844. page_cache_async_readahead(inode->i_mapping,
  2845. ra, NULL, page, index,
  2846. last_index + 1 - index);
  2847. }
  2848. if (!PageUptodate(page)) {
  2849. btrfs_readpage(NULL, page);
  2850. lock_page(page);
  2851. if (!PageUptodate(page)) {
  2852. unlock_page(page);
  2853. put_page(page);
  2854. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2855. PAGE_SIZE, true);
  2856. btrfs_delalloc_release_extents(BTRFS_I(inode),
  2857. PAGE_SIZE, true);
  2858. ret = -EIO;
  2859. goto out;
  2860. }
  2861. }
  2862. page_start = page_offset(page);
  2863. page_end = page_start + PAGE_SIZE - 1;
  2864. lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
  2865. set_page_extent_mapped(page);
  2866. if (nr < cluster->nr &&
  2867. page_start + offset == cluster->boundary[nr]) {
  2868. set_extent_bits(&BTRFS_I(inode)->io_tree,
  2869. page_start, page_end,
  2870. EXTENT_BOUNDARY);
  2871. nr++;
  2872. }
  2873. ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
  2874. NULL, 0);
  2875. if (ret) {
  2876. unlock_page(page);
  2877. put_page(page);
  2878. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2879. PAGE_SIZE, true);
  2880. btrfs_delalloc_release_extents(BTRFS_I(inode),
  2881. PAGE_SIZE, true);
  2882. clear_extent_bits(&BTRFS_I(inode)->io_tree,
  2883. page_start, page_end,
  2884. EXTENT_LOCKED | EXTENT_BOUNDARY);
  2885. goto out;
  2886. }
  2887. set_page_dirty(page);
  2888. unlock_extent(&BTRFS_I(inode)->io_tree,
  2889. page_start, page_end);
  2890. unlock_page(page);
  2891. put_page(page);
  2892. index++;
  2893. btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
  2894. false);
  2895. balance_dirty_pages_ratelimited(inode->i_mapping);
  2896. btrfs_throttle(fs_info);
  2897. }
  2898. WARN_ON(nr != cluster->nr);
  2899. out:
  2900. kfree(ra);
  2901. return ret;
  2902. }
  2903. static noinline_for_stack
  2904. int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
  2905. struct file_extent_cluster *cluster)
  2906. {
  2907. int ret;
  2908. if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
  2909. ret = relocate_file_extent_cluster(inode, cluster);
  2910. if (ret)
  2911. return ret;
  2912. cluster->nr = 0;
  2913. }
  2914. if (!cluster->nr)
  2915. cluster->start = extent_key->objectid;
  2916. else
  2917. BUG_ON(cluster->nr >= MAX_EXTENTS);
  2918. cluster->end = extent_key->objectid + extent_key->offset - 1;
  2919. cluster->boundary[cluster->nr] = extent_key->objectid;
  2920. cluster->nr++;
  2921. if (cluster->nr >= MAX_EXTENTS) {
  2922. ret = relocate_file_extent_cluster(inode, cluster);
  2923. if (ret)
  2924. return ret;
  2925. cluster->nr = 0;
  2926. }
  2927. return 0;
  2928. }
  2929. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2930. static int get_ref_objectid_v0(struct reloc_control *rc,
  2931. struct btrfs_path *path,
  2932. struct btrfs_key *extent_key,
  2933. u64 *ref_objectid, int *path_change)
  2934. {
  2935. struct btrfs_key key;
  2936. struct extent_buffer *leaf;
  2937. struct btrfs_extent_ref_v0 *ref0;
  2938. int ret;
  2939. int slot;
  2940. leaf = path->nodes[0];
  2941. slot = path->slots[0];
  2942. while (1) {
  2943. if (slot >= btrfs_header_nritems(leaf)) {
  2944. ret = btrfs_next_leaf(rc->extent_root, path);
  2945. if (ret < 0)
  2946. return ret;
  2947. BUG_ON(ret > 0);
  2948. leaf = path->nodes[0];
  2949. slot = path->slots[0];
  2950. if (path_change)
  2951. *path_change = 1;
  2952. }
  2953. btrfs_item_key_to_cpu(leaf, &key, slot);
  2954. if (key.objectid != extent_key->objectid)
  2955. return -ENOENT;
  2956. if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
  2957. slot++;
  2958. continue;
  2959. }
  2960. ref0 = btrfs_item_ptr(leaf, slot,
  2961. struct btrfs_extent_ref_v0);
  2962. *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
  2963. break;
  2964. }
  2965. return 0;
  2966. }
  2967. #endif
  2968. /*
  2969. * helper to add a tree block to the list.
  2970. * the major work is getting the generation and level of the block
  2971. */
  2972. static int add_tree_block(struct reloc_control *rc,
  2973. struct btrfs_key *extent_key,
  2974. struct btrfs_path *path,
  2975. struct rb_root *blocks)
  2976. {
  2977. struct extent_buffer *eb;
  2978. struct btrfs_extent_item *ei;
  2979. struct btrfs_tree_block_info *bi;
  2980. struct tree_block *block;
  2981. struct rb_node *rb_node;
  2982. u32 item_size;
  2983. int level = -1;
  2984. u64 generation;
  2985. eb = path->nodes[0];
  2986. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  2987. if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
  2988. item_size >= sizeof(*ei) + sizeof(*bi)) {
  2989. ei = btrfs_item_ptr(eb, path->slots[0],
  2990. struct btrfs_extent_item);
  2991. if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
  2992. bi = (struct btrfs_tree_block_info *)(ei + 1);
  2993. level = btrfs_tree_block_level(eb, bi);
  2994. } else {
  2995. level = (int)extent_key->offset;
  2996. }
  2997. generation = btrfs_extent_generation(eb, ei);
  2998. } else {
  2999. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3000. u64 ref_owner;
  3001. int ret;
  3002. BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  3003. ret = get_ref_objectid_v0(rc, path, extent_key,
  3004. &ref_owner, NULL);
  3005. if (ret < 0)
  3006. return ret;
  3007. BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
  3008. level = (int)ref_owner;
  3009. /* FIXME: get real generation */
  3010. generation = 0;
  3011. #else
  3012. BUG();
  3013. #endif
  3014. }
  3015. btrfs_release_path(path);
  3016. BUG_ON(level == -1);
  3017. block = kmalloc(sizeof(*block), GFP_NOFS);
  3018. if (!block)
  3019. return -ENOMEM;
  3020. block->bytenr = extent_key->objectid;
  3021. block->key.objectid = rc->extent_root->fs_info->nodesize;
  3022. block->key.offset = generation;
  3023. block->level = level;
  3024. block->key_ready = 0;
  3025. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  3026. if (rb_node)
  3027. backref_tree_panic(rb_node, -EEXIST, block->bytenr);
  3028. return 0;
  3029. }
  3030. /*
  3031. * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
  3032. */
  3033. static int __add_tree_block(struct reloc_control *rc,
  3034. u64 bytenr, u32 blocksize,
  3035. struct rb_root *blocks)
  3036. {
  3037. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3038. struct btrfs_path *path;
  3039. struct btrfs_key key;
  3040. int ret;
  3041. bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
  3042. if (tree_block_processed(bytenr, rc))
  3043. return 0;
  3044. if (tree_search(blocks, bytenr))
  3045. return 0;
  3046. path = btrfs_alloc_path();
  3047. if (!path)
  3048. return -ENOMEM;
  3049. again:
  3050. key.objectid = bytenr;
  3051. if (skinny) {
  3052. key.type = BTRFS_METADATA_ITEM_KEY;
  3053. key.offset = (u64)-1;
  3054. } else {
  3055. key.type = BTRFS_EXTENT_ITEM_KEY;
  3056. key.offset = blocksize;
  3057. }
  3058. path->search_commit_root = 1;
  3059. path->skip_locking = 1;
  3060. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
  3061. if (ret < 0)
  3062. goto out;
  3063. if (ret > 0 && skinny) {
  3064. if (path->slots[0]) {
  3065. path->slots[0]--;
  3066. btrfs_item_key_to_cpu(path->nodes[0], &key,
  3067. path->slots[0]);
  3068. if (key.objectid == bytenr &&
  3069. (key.type == BTRFS_METADATA_ITEM_KEY ||
  3070. (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3071. key.offset == blocksize)))
  3072. ret = 0;
  3073. }
  3074. if (ret) {
  3075. skinny = false;
  3076. btrfs_release_path(path);
  3077. goto again;
  3078. }
  3079. }
  3080. if (ret) {
  3081. ASSERT(ret == 1);
  3082. btrfs_print_leaf(path->nodes[0]);
  3083. btrfs_err(fs_info,
  3084. "tree block extent item (%llu) is not found in extent tree",
  3085. bytenr);
  3086. WARN_ON(1);
  3087. ret = -EINVAL;
  3088. goto out;
  3089. }
  3090. ret = add_tree_block(rc, &key, path, blocks);
  3091. out:
  3092. btrfs_free_path(path);
  3093. return ret;
  3094. }
  3095. /*
  3096. * helper to check if the block use full backrefs for pointers in it
  3097. */
  3098. static int block_use_full_backref(struct reloc_control *rc,
  3099. struct extent_buffer *eb)
  3100. {
  3101. u64 flags;
  3102. int ret;
  3103. if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
  3104. btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
  3105. return 1;
  3106. ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
  3107. eb->start, btrfs_header_level(eb), 1,
  3108. NULL, &flags);
  3109. BUG_ON(ret);
  3110. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  3111. ret = 1;
  3112. else
  3113. ret = 0;
  3114. return ret;
  3115. }
  3116. static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
  3117. struct btrfs_block_group_cache *block_group,
  3118. struct inode *inode,
  3119. u64 ino)
  3120. {
  3121. struct btrfs_key key;
  3122. struct btrfs_root *root = fs_info->tree_root;
  3123. struct btrfs_trans_handle *trans;
  3124. int ret = 0;
  3125. if (inode)
  3126. goto truncate;
  3127. key.objectid = ino;
  3128. key.type = BTRFS_INODE_ITEM_KEY;
  3129. key.offset = 0;
  3130. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3131. if (IS_ERR(inode) || is_bad_inode(inode)) {
  3132. if (!IS_ERR(inode))
  3133. iput(inode);
  3134. return -ENOENT;
  3135. }
  3136. truncate:
  3137. ret = btrfs_check_trunc_cache_free_space(fs_info,
  3138. &fs_info->global_block_rsv);
  3139. if (ret)
  3140. goto out;
  3141. trans = btrfs_join_transaction(root);
  3142. if (IS_ERR(trans)) {
  3143. ret = PTR_ERR(trans);
  3144. goto out;
  3145. }
  3146. ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
  3147. btrfs_end_transaction(trans);
  3148. btrfs_btree_balance_dirty(fs_info);
  3149. out:
  3150. iput(inode);
  3151. return ret;
  3152. }
  3153. /*
  3154. * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
  3155. * this function scans fs tree to find blocks reference the data extent
  3156. */
  3157. static int find_data_references(struct reloc_control *rc,
  3158. struct btrfs_key *extent_key,
  3159. struct extent_buffer *leaf,
  3160. struct btrfs_extent_data_ref *ref,
  3161. struct rb_root *blocks)
  3162. {
  3163. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3164. struct btrfs_path *path;
  3165. struct tree_block *block;
  3166. struct btrfs_root *root;
  3167. struct btrfs_file_extent_item *fi;
  3168. struct rb_node *rb_node;
  3169. struct btrfs_key key;
  3170. u64 ref_root;
  3171. u64 ref_objectid;
  3172. u64 ref_offset;
  3173. u32 ref_count;
  3174. u32 nritems;
  3175. int err = 0;
  3176. int added = 0;
  3177. int counted;
  3178. int ret;
  3179. ref_root = btrfs_extent_data_ref_root(leaf, ref);
  3180. ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
  3181. ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
  3182. ref_count = btrfs_extent_data_ref_count(leaf, ref);
  3183. /*
  3184. * This is an extent belonging to the free space cache, lets just delete
  3185. * it and redo the search.
  3186. */
  3187. if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
  3188. ret = delete_block_group_cache(fs_info, rc->block_group,
  3189. NULL, ref_objectid);
  3190. if (ret != -ENOENT)
  3191. return ret;
  3192. ret = 0;
  3193. }
  3194. path = btrfs_alloc_path();
  3195. if (!path)
  3196. return -ENOMEM;
  3197. path->reada = READA_FORWARD;
  3198. root = read_fs_root(fs_info, ref_root);
  3199. if (IS_ERR(root)) {
  3200. err = PTR_ERR(root);
  3201. goto out;
  3202. }
  3203. key.objectid = ref_objectid;
  3204. key.type = BTRFS_EXTENT_DATA_KEY;
  3205. if (ref_offset > ((u64)-1 << 32))
  3206. key.offset = 0;
  3207. else
  3208. key.offset = ref_offset;
  3209. path->search_commit_root = 1;
  3210. path->skip_locking = 1;
  3211. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3212. if (ret < 0) {
  3213. err = ret;
  3214. goto out;
  3215. }
  3216. leaf = path->nodes[0];
  3217. nritems = btrfs_header_nritems(leaf);
  3218. /*
  3219. * the references in tree blocks that use full backrefs
  3220. * are not counted in
  3221. */
  3222. if (block_use_full_backref(rc, leaf))
  3223. counted = 0;
  3224. else
  3225. counted = 1;
  3226. rb_node = tree_search(blocks, leaf->start);
  3227. if (rb_node) {
  3228. if (counted)
  3229. added = 1;
  3230. else
  3231. path->slots[0] = nritems;
  3232. }
  3233. while (ref_count > 0) {
  3234. while (path->slots[0] >= nritems) {
  3235. ret = btrfs_next_leaf(root, path);
  3236. if (ret < 0) {
  3237. err = ret;
  3238. goto out;
  3239. }
  3240. if (WARN_ON(ret > 0))
  3241. goto out;
  3242. leaf = path->nodes[0];
  3243. nritems = btrfs_header_nritems(leaf);
  3244. added = 0;
  3245. if (block_use_full_backref(rc, leaf))
  3246. counted = 0;
  3247. else
  3248. counted = 1;
  3249. rb_node = tree_search(blocks, leaf->start);
  3250. if (rb_node) {
  3251. if (counted)
  3252. added = 1;
  3253. else
  3254. path->slots[0] = nritems;
  3255. }
  3256. }
  3257. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3258. if (WARN_ON(key.objectid != ref_objectid ||
  3259. key.type != BTRFS_EXTENT_DATA_KEY))
  3260. break;
  3261. fi = btrfs_item_ptr(leaf, path->slots[0],
  3262. struct btrfs_file_extent_item);
  3263. if (btrfs_file_extent_type(leaf, fi) ==
  3264. BTRFS_FILE_EXTENT_INLINE)
  3265. goto next;
  3266. if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
  3267. extent_key->objectid)
  3268. goto next;
  3269. key.offset -= btrfs_file_extent_offset(leaf, fi);
  3270. if (key.offset != ref_offset)
  3271. goto next;
  3272. if (counted)
  3273. ref_count--;
  3274. if (added)
  3275. goto next;
  3276. if (!tree_block_processed(leaf->start, rc)) {
  3277. block = kmalloc(sizeof(*block), GFP_NOFS);
  3278. if (!block) {
  3279. err = -ENOMEM;
  3280. break;
  3281. }
  3282. block->bytenr = leaf->start;
  3283. btrfs_item_key_to_cpu(leaf, &block->key, 0);
  3284. block->level = 0;
  3285. block->key_ready = 1;
  3286. rb_node = tree_insert(blocks, block->bytenr,
  3287. &block->rb_node);
  3288. if (rb_node)
  3289. backref_tree_panic(rb_node, -EEXIST,
  3290. block->bytenr);
  3291. }
  3292. if (counted)
  3293. added = 1;
  3294. else
  3295. path->slots[0] = nritems;
  3296. next:
  3297. path->slots[0]++;
  3298. }
  3299. out:
  3300. btrfs_free_path(path);
  3301. return err;
  3302. }
  3303. /*
  3304. * helper to find all tree blocks that reference a given data extent
  3305. */
  3306. static noinline_for_stack
  3307. int add_data_references(struct reloc_control *rc,
  3308. struct btrfs_key *extent_key,
  3309. struct btrfs_path *path,
  3310. struct rb_root *blocks)
  3311. {
  3312. struct btrfs_key key;
  3313. struct extent_buffer *eb;
  3314. struct btrfs_extent_data_ref *dref;
  3315. struct btrfs_extent_inline_ref *iref;
  3316. unsigned long ptr;
  3317. unsigned long end;
  3318. u32 blocksize = rc->extent_root->fs_info->nodesize;
  3319. int ret = 0;
  3320. int err = 0;
  3321. eb = path->nodes[0];
  3322. ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
  3323. end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
  3324. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3325. if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
  3326. ptr = end;
  3327. else
  3328. #endif
  3329. ptr += sizeof(struct btrfs_extent_item);
  3330. while (ptr < end) {
  3331. iref = (struct btrfs_extent_inline_ref *)ptr;
  3332. key.type = btrfs_get_extent_inline_ref_type(eb, iref,
  3333. BTRFS_REF_TYPE_DATA);
  3334. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3335. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  3336. ret = __add_tree_block(rc, key.offset, blocksize,
  3337. blocks);
  3338. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3339. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  3340. ret = find_data_references(rc, extent_key,
  3341. eb, dref, blocks);
  3342. } else {
  3343. ret = -EINVAL;
  3344. btrfs_err(rc->extent_root->fs_info,
  3345. "extent %llu slot %d has an invalid inline ref type",
  3346. eb->start, path->slots[0]);
  3347. }
  3348. if (ret) {
  3349. err = ret;
  3350. goto out;
  3351. }
  3352. ptr += btrfs_extent_inline_ref_size(key.type);
  3353. }
  3354. WARN_ON(ptr > end);
  3355. while (1) {
  3356. cond_resched();
  3357. eb = path->nodes[0];
  3358. if (path->slots[0] >= btrfs_header_nritems(eb)) {
  3359. ret = btrfs_next_leaf(rc->extent_root, path);
  3360. if (ret < 0) {
  3361. err = ret;
  3362. break;
  3363. }
  3364. if (ret > 0)
  3365. break;
  3366. eb = path->nodes[0];
  3367. }
  3368. btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
  3369. if (key.objectid != extent_key->objectid)
  3370. break;
  3371. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3372. if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
  3373. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  3374. #else
  3375. BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
  3376. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3377. #endif
  3378. ret = __add_tree_block(rc, key.offset, blocksize,
  3379. blocks);
  3380. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3381. dref = btrfs_item_ptr(eb, path->slots[0],
  3382. struct btrfs_extent_data_ref);
  3383. ret = find_data_references(rc, extent_key,
  3384. eb, dref, blocks);
  3385. } else {
  3386. ret = 0;
  3387. }
  3388. if (ret) {
  3389. err = ret;
  3390. break;
  3391. }
  3392. path->slots[0]++;
  3393. }
  3394. out:
  3395. btrfs_release_path(path);
  3396. if (err)
  3397. free_block_list(blocks);
  3398. return err;
  3399. }
  3400. /*
  3401. * helper to find next unprocessed extent
  3402. */
  3403. static noinline_for_stack
  3404. int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
  3405. struct btrfs_key *extent_key)
  3406. {
  3407. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3408. struct btrfs_key key;
  3409. struct extent_buffer *leaf;
  3410. u64 start, end, last;
  3411. int ret;
  3412. last = rc->block_group->key.objectid + rc->block_group->key.offset;
  3413. while (1) {
  3414. cond_resched();
  3415. if (rc->search_start >= last) {
  3416. ret = 1;
  3417. break;
  3418. }
  3419. key.objectid = rc->search_start;
  3420. key.type = BTRFS_EXTENT_ITEM_KEY;
  3421. key.offset = 0;
  3422. path->search_commit_root = 1;
  3423. path->skip_locking = 1;
  3424. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
  3425. 0, 0);
  3426. if (ret < 0)
  3427. break;
  3428. next:
  3429. leaf = path->nodes[0];
  3430. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  3431. ret = btrfs_next_leaf(rc->extent_root, path);
  3432. if (ret != 0)
  3433. break;
  3434. leaf = path->nodes[0];
  3435. }
  3436. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3437. if (key.objectid >= last) {
  3438. ret = 1;
  3439. break;
  3440. }
  3441. if (key.type != BTRFS_EXTENT_ITEM_KEY &&
  3442. key.type != BTRFS_METADATA_ITEM_KEY) {
  3443. path->slots[0]++;
  3444. goto next;
  3445. }
  3446. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3447. key.objectid + key.offset <= rc->search_start) {
  3448. path->slots[0]++;
  3449. goto next;
  3450. }
  3451. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  3452. key.objectid + fs_info->nodesize <=
  3453. rc->search_start) {
  3454. path->slots[0]++;
  3455. goto next;
  3456. }
  3457. ret = find_first_extent_bit(&rc->processed_blocks,
  3458. key.objectid, &start, &end,
  3459. EXTENT_DIRTY, NULL);
  3460. if (ret == 0 && start <= key.objectid) {
  3461. btrfs_release_path(path);
  3462. rc->search_start = end + 1;
  3463. } else {
  3464. if (key.type == BTRFS_EXTENT_ITEM_KEY)
  3465. rc->search_start = key.objectid + key.offset;
  3466. else
  3467. rc->search_start = key.objectid +
  3468. fs_info->nodesize;
  3469. memcpy(extent_key, &key, sizeof(key));
  3470. return 0;
  3471. }
  3472. }
  3473. btrfs_release_path(path);
  3474. return ret;
  3475. }
  3476. static void set_reloc_control(struct reloc_control *rc)
  3477. {
  3478. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3479. mutex_lock(&fs_info->reloc_mutex);
  3480. fs_info->reloc_ctl = rc;
  3481. mutex_unlock(&fs_info->reloc_mutex);
  3482. }
  3483. static void unset_reloc_control(struct reloc_control *rc)
  3484. {
  3485. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3486. mutex_lock(&fs_info->reloc_mutex);
  3487. fs_info->reloc_ctl = NULL;
  3488. mutex_unlock(&fs_info->reloc_mutex);
  3489. }
  3490. static int check_extent_flags(u64 flags)
  3491. {
  3492. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3493. (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3494. return 1;
  3495. if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
  3496. !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3497. return 1;
  3498. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3499. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  3500. return 1;
  3501. return 0;
  3502. }
  3503. static noinline_for_stack
  3504. int prepare_to_relocate(struct reloc_control *rc)
  3505. {
  3506. struct btrfs_trans_handle *trans;
  3507. int ret;
  3508. rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
  3509. BTRFS_BLOCK_RSV_TEMP);
  3510. if (!rc->block_rsv)
  3511. return -ENOMEM;
  3512. memset(&rc->cluster, 0, sizeof(rc->cluster));
  3513. rc->search_start = rc->block_group->key.objectid;
  3514. rc->extents_found = 0;
  3515. rc->nodes_relocated = 0;
  3516. rc->merging_rsv_size = 0;
  3517. rc->reserved_bytes = 0;
  3518. rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
  3519. RELOCATION_RESERVED_NODES;
  3520. ret = btrfs_block_rsv_refill(rc->extent_root,
  3521. rc->block_rsv, rc->block_rsv->size,
  3522. BTRFS_RESERVE_FLUSH_ALL);
  3523. if (ret)
  3524. return ret;
  3525. rc->create_reloc_tree = 1;
  3526. set_reloc_control(rc);
  3527. trans = btrfs_join_transaction(rc->extent_root);
  3528. if (IS_ERR(trans)) {
  3529. unset_reloc_control(rc);
  3530. /*
  3531. * extent tree is not a ref_cow tree and has no reloc_root to
  3532. * cleanup. And callers are responsible to free the above
  3533. * block rsv.
  3534. */
  3535. return PTR_ERR(trans);
  3536. }
  3537. btrfs_commit_transaction(trans);
  3538. return 0;
  3539. }
  3540. static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
  3541. {
  3542. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3543. struct rb_root blocks = RB_ROOT;
  3544. struct btrfs_key key;
  3545. struct btrfs_trans_handle *trans = NULL;
  3546. struct btrfs_path *path;
  3547. struct btrfs_extent_item *ei;
  3548. u64 flags;
  3549. u32 item_size;
  3550. int ret;
  3551. int err = 0;
  3552. int progress = 0;
  3553. path = btrfs_alloc_path();
  3554. if (!path)
  3555. return -ENOMEM;
  3556. path->reada = READA_FORWARD;
  3557. ret = prepare_to_relocate(rc);
  3558. if (ret) {
  3559. err = ret;
  3560. goto out_free;
  3561. }
  3562. while (1) {
  3563. rc->reserved_bytes = 0;
  3564. ret = btrfs_block_rsv_refill(rc->extent_root,
  3565. rc->block_rsv, rc->block_rsv->size,
  3566. BTRFS_RESERVE_FLUSH_ALL);
  3567. if (ret) {
  3568. err = ret;
  3569. break;
  3570. }
  3571. progress++;
  3572. trans = btrfs_start_transaction(rc->extent_root, 0);
  3573. if (IS_ERR(trans)) {
  3574. err = PTR_ERR(trans);
  3575. trans = NULL;
  3576. break;
  3577. }
  3578. restart:
  3579. if (update_backref_cache(trans, &rc->backref_cache)) {
  3580. btrfs_end_transaction(trans);
  3581. continue;
  3582. }
  3583. ret = find_next_extent(rc, path, &key);
  3584. if (ret < 0)
  3585. err = ret;
  3586. if (ret != 0)
  3587. break;
  3588. rc->extents_found++;
  3589. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  3590. struct btrfs_extent_item);
  3591. item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
  3592. if (item_size >= sizeof(*ei)) {
  3593. flags = btrfs_extent_flags(path->nodes[0], ei);
  3594. ret = check_extent_flags(flags);
  3595. BUG_ON(ret);
  3596. } else {
  3597. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3598. u64 ref_owner;
  3599. int path_change = 0;
  3600. BUG_ON(item_size !=
  3601. sizeof(struct btrfs_extent_item_v0));
  3602. ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
  3603. &path_change);
  3604. if (ret < 0) {
  3605. err = ret;
  3606. break;
  3607. }
  3608. if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
  3609. flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  3610. else
  3611. flags = BTRFS_EXTENT_FLAG_DATA;
  3612. if (path_change) {
  3613. btrfs_release_path(path);
  3614. path->search_commit_root = 1;
  3615. path->skip_locking = 1;
  3616. ret = btrfs_search_slot(NULL, rc->extent_root,
  3617. &key, path, 0, 0);
  3618. if (ret < 0) {
  3619. err = ret;
  3620. break;
  3621. }
  3622. BUG_ON(ret > 0);
  3623. }
  3624. #else
  3625. BUG();
  3626. #endif
  3627. }
  3628. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  3629. ret = add_tree_block(rc, &key, path, &blocks);
  3630. } else if (rc->stage == UPDATE_DATA_PTRS &&
  3631. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3632. ret = add_data_references(rc, &key, path, &blocks);
  3633. } else {
  3634. btrfs_release_path(path);
  3635. ret = 0;
  3636. }
  3637. if (ret < 0) {
  3638. err = ret;
  3639. break;
  3640. }
  3641. if (!RB_EMPTY_ROOT(&blocks)) {
  3642. ret = relocate_tree_blocks(trans, rc, &blocks);
  3643. if (ret < 0) {
  3644. /*
  3645. * if we fail to relocate tree blocks, force to update
  3646. * backref cache when committing transaction.
  3647. */
  3648. rc->backref_cache.last_trans = trans->transid - 1;
  3649. if (ret != -EAGAIN) {
  3650. err = ret;
  3651. break;
  3652. }
  3653. rc->extents_found--;
  3654. rc->search_start = key.objectid;
  3655. }
  3656. }
  3657. btrfs_end_transaction_throttle(trans);
  3658. btrfs_btree_balance_dirty(fs_info);
  3659. trans = NULL;
  3660. if (rc->stage == MOVE_DATA_EXTENTS &&
  3661. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3662. rc->found_file_extent = 1;
  3663. ret = relocate_data_extent(rc->data_inode,
  3664. &key, &rc->cluster);
  3665. if (ret < 0) {
  3666. err = ret;
  3667. break;
  3668. }
  3669. }
  3670. }
  3671. if (trans && progress && err == -ENOSPC) {
  3672. ret = btrfs_force_chunk_alloc(trans, fs_info,
  3673. rc->block_group->flags);
  3674. if (ret == 1) {
  3675. err = 0;
  3676. progress = 0;
  3677. goto restart;
  3678. }
  3679. }
  3680. btrfs_release_path(path);
  3681. clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
  3682. if (trans) {
  3683. btrfs_end_transaction_throttle(trans);
  3684. btrfs_btree_balance_dirty(fs_info);
  3685. }
  3686. if (!err) {
  3687. ret = relocate_file_extent_cluster(rc->data_inode,
  3688. &rc->cluster);
  3689. if (ret < 0)
  3690. err = ret;
  3691. }
  3692. rc->create_reloc_tree = 0;
  3693. set_reloc_control(rc);
  3694. backref_cache_cleanup(&rc->backref_cache);
  3695. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3696. err = prepare_to_merge(rc, err);
  3697. merge_reloc_roots(rc);
  3698. rc->merge_reloc_tree = 0;
  3699. unset_reloc_control(rc);
  3700. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3701. /* get rid of pinned extents */
  3702. trans = btrfs_join_transaction(rc->extent_root);
  3703. if (IS_ERR(trans)) {
  3704. err = PTR_ERR(trans);
  3705. goto out_free;
  3706. }
  3707. btrfs_commit_transaction(trans);
  3708. out_free:
  3709. btrfs_free_block_rsv(fs_info, rc->block_rsv);
  3710. btrfs_free_path(path);
  3711. return err;
  3712. }
  3713. static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
  3714. struct btrfs_root *root, u64 objectid)
  3715. {
  3716. struct btrfs_path *path;
  3717. struct btrfs_inode_item *item;
  3718. struct extent_buffer *leaf;
  3719. int ret;
  3720. path = btrfs_alloc_path();
  3721. if (!path)
  3722. return -ENOMEM;
  3723. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  3724. if (ret)
  3725. goto out;
  3726. leaf = path->nodes[0];
  3727. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
  3728. memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
  3729. btrfs_set_inode_generation(leaf, item, 1);
  3730. btrfs_set_inode_size(leaf, item, 0);
  3731. btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
  3732. btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
  3733. BTRFS_INODE_PREALLOC);
  3734. btrfs_mark_buffer_dirty(leaf);
  3735. out:
  3736. btrfs_free_path(path);
  3737. return ret;
  3738. }
  3739. /*
  3740. * helper to create inode for data relocation.
  3741. * the inode is in data relocation tree and its link count is 0
  3742. */
  3743. static noinline_for_stack
  3744. struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
  3745. struct btrfs_block_group_cache *group)
  3746. {
  3747. struct inode *inode = NULL;
  3748. struct btrfs_trans_handle *trans;
  3749. struct btrfs_root *root;
  3750. struct btrfs_key key;
  3751. u64 objectid;
  3752. int err = 0;
  3753. root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3754. if (IS_ERR(root))
  3755. return ERR_CAST(root);
  3756. trans = btrfs_start_transaction(root, 6);
  3757. if (IS_ERR(trans))
  3758. return ERR_CAST(trans);
  3759. err = btrfs_find_free_objectid(root, &objectid);
  3760. if (err)
  3761. goto out;
  3762. err = __insert_orphan_inode(trans, root, objectid);
  3763. BUG_ON(err);
  3764. key.objectid = objectid;
  3765. key.type = BTRFS_INODE_ITEM_KEY;
  3766. key.offset = 0;
  3767. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3768. BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
  3769. BTRFS_I(inode)->index_cnt = group->key.objectid;
  3770. err = btrfs_orphan_add(trans, BTRFS_I(inode));
  3771. out:
  3772. btrfs_end_transaction(trans);
  3773. btrfs_btree_balance_dirty(fs_info);
  3774. if (err) {
  3775. if (inode)
  3776. iput(inode);
  3777. inode = ERR_PTR(err);
  3778. }
  3779. return inode;
  3780. }
  3781. static struct reloc_control *alloc_reloc_control(void)
  3782. {
  3783. struct reloc_control *rc;
  3784. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3785. if (!rc)
  3786. return NULL;
  3787. INIT_LIST_HEAD(&rc->reloc_roots);
  3788. backref_cache_init(&rc->backref_cache);
  3789. mapping_tree_init(&rc->reloc_root_tree);
  3790. extent_io_tree_init(&rc->processed_blocks, NULL);
  3791. return rc;
  3792. }
  3793. /*
  3794. * Print the block group being relocated
  3795. */
  3796. static void describe_relocation(struct btrfs_fs_info *fs_info,
  3797. struct btrfs_block_group_cache *block_group)
  3798. {
  3799. char buf[128]; /* prefixed by a '|' that'll be dropped */
  3800. u64 flags = block_group->flags;
  3801. /* Shouldn't happen */
  3802. if (!flags) {
  3803. strcpy(buf, "|NONE");
  3804. } else {
  3805. char *bp = buf;
  3806. #define DESCRIBE_FLAG(f, d) \
  3807. if (flags & BTRFS_BLOCK_GROUP_##f) { \
  3808. bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
  3809. flags &= ~BTRFS_BLOCK_GROUP_##f; \
  3810. }
  3811. DESCRIBE_FLAG(DATA, "data");
  3812. DESCRIBE_FLAG(SYSTEM, "system");
  3813. DESCRIBE_FLAG(METADATA, "metadata");
  3814. DESCRIBE_FLAG(RAID0, "raid0");
  3815. DESCRIBE_FLAG(RAID1, "raid1");
  3816. DESCRIBE_FLAG(DUP, "dup");
  3817. DESCRIBE_FLAG(RAID10, "raid10");
  3818. DESCRIBE_FLAG(RAID5, "raid5");
  3819. DESCRIBE_FLAG(RAID6, "raid6");
  3820. if (flags)
  3821. snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
  3822. #undef DESCRIBE_FLAG
  3823. }
  3824. btrfs_info(fs_info,
  3825. "relocating block group %llu flags %s",
  3826. block_group->key.objectid, buf + 1);
  3827. }
  3828. /*
  3829. * function to relocate all extents in a block group.
  3830. */
  3831. int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
  3832. {
  3833. struct btrfs_root *extent_root = fs_info->extent_root;
  3834. struct reloc_control *rc;
  3835. struct inode *inode;
  3836. struct btrfs_path *path;
  3837. int ret;
  3838. int rw = 0;
  3839. int err = 0;
  3840. rc = alloc_reloc_control();
  3841. if (!rc)
  3842. return -ENOMEM;
  3843. rc->extent_root = extent_root;
  3844. rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
  3845. BUG_ON(!rc->block_group);
  3846. ret = btrfs_inc_block_group_ro(fs_info, rc->block_group);
  3847. if (ret) {
  3848. err = ret;
  3849. goto out;
  3850. }
  3851. rw = 1;
  3852. path = btrfs_alloc_path();
  3853. if (!path) {
  3854. err = -ENOMEM;
  3855. goto out;
  3856. }
  3857. inode = lookup_free_space_inode(fs_info, rc->block_group, path);
  3858. btrfs_free_path(path);
  3859. if (!IS_ERR(inode))
  3860. ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
  3861. else
  3862. ret = PTR_ERR(inode);
  3863. if (ret && ret != -ENOENT) {
  3864. err = ret;
  3865. goto out;
  3866. }
  3867. rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
  3868. if (IS_ERR(rc->data_inode)) {
  3869. err = PTR_ERR(rc->data_inode);
  3870. rc->data_inode = NULL;
  3871. goto out;
  3872. }
  3873. describe_relocation(fs_info, rc->block_group);
  3874. btrfs_wait_block_group_reservations(rc->block_group);
  3875. btrfs_wait_nocow_writers(rc->block_group);
  3876. btrfs_wait_ordered_roots(fs_info, U64_MAX,
  3877. rc->block_group->key.objectid,
  3878. rc->block_group->key.offset);
  3879. while (1) {
  3880. mutex_lock(&fs_info->cleaner_mutex);
  3881. ret = relocate_block_group(rc);
  3882. mutex_unlock(&fs_info->cleaner_mutex);
  3883. if (ret < 0) {
  3884. err = ret;
  3885. goto out;
  3886. }
  3887. if (rc->extents_found == 0)
  3888. break;
  3889. btrfs_info(fs_info, "found %llu extents", rc->extents_found);
  3890. if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
  3891. ret = btrfs_wait_ordered_range(rc->data_inode, 0,
  3892. (u64)-1);
  3893. if (ret) {
  3894. err = ret;
  3895. goto out;
  3896. }
  3897. invalidate_mapping_pages(rc->data_inode->i_mapping,
  3898. 0, -1);
  3899. rc->stage = UPDATE_DATA_PTRS;
  3900. }
  3901. }
  3902. WARN_ON(rc->block_group->pinned > 0);
  3903. WARN_ON(rc->block_group->reserved > 0);
  3904. WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
  3905. out:
  3906. if (err && rw)
  3907. btrfs_dec_block_group_ro(rc->block_group);
  3908. iput(rc->data_inode);
  3909. btrfs_put_block_group(rc->block_group);
  3910. kfree(rc);
  3911. return err;
  3912. }
  3913. static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
  3914. {
  3915. struct btrfs_fs_info *fs_info = root->fs_info;
  3916. struct btrfs_trans_handle *trans;
  3917. int ret, err;
  3918. trans = btrfs_start_transaction(fs_info->tree_root, 0);
  3919. if (IS_ERR(trans))
  3920. return PTR_ERR(trans);
  3921. memset(&root->root_item.drop_progress, 0,
  3922. sizeof(root->root_item.drop_progress));
  3923. root->root_item.drop_level = 0;
  3924. btrfs_set_root_refs(&root->root_item, 0);
  3925. ret = btrfs_update_root(trans, fs_info->tree_root,
  3926. &root->root_key, &root->root_item);
  3927. err = btrfs_end_transaction(trans);
  3928. if (err)
  3929. return err;
  3930. return ret;
  3931. }
  3932. /*
  3933. * recover relocation interrupted by system crash.
  3934. *
  3935. * this function resumes merging reloc trees with corresponding fs trees.
  3936. * this is important for keeping the sharing of tree blocks
  3937. */
  3938. int btrfs_recover_relocation(struct btrfs_root *root)
  3939. {
  3940. struct btrfs_fs_info *fs_info = root->fs_info;
  3941. LIST_HEAD(reloc_roots);
  3942. struct btrfs_key key;
  3943. struct btrfs_root *fs_root;
  3944. struct btrfs_root *reloc_root;
  3945. struct btrfs_path *path;
  3946. struct extent_buffer *leaf;
  3947. struct reloc_control *rc = NULL;
  3948. struct btrfs_trans_handle *trans;
  3949. int ret;
  3950. int err = 0;
  3951. path = btrfs_alloc_path();
  3952. if (!path)
  3953. return -ENOMEM;
  3954. path->reada = READA_BACK;
  3955. key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  3956. key.type = BTRFS_ROOT_ITEM_KEY;
  3957. key.offset = (u64)-1;
  3958. while (1) {
  3959. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
  3960. path, 0, 0);
  3961. if (ret < 0) {
  3962. err = ret;
  3963. goto out;
  3964. }
  3965. if (ret > 0) {
  3966. if (path->slots[0] == 0)
  3967. break;
  3968. path->slots[0]--;
  3969. }
  3970. leaf = path->nodes[0];
  3971. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3972. btrfs_release_path(path);
  3973. if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
  3974. key.type != BTRFS_ROOT_ITEM_KEY)
  3975. break;
  3976. reloc_root = btrfs_read_fs_root(root, &key);
  3977. if (IS_ERR(reloc_root)) {
  3978. err = PTR_ERR(reloc_root);
  3979. goto out;
  3980. }
  3981. list_add(&reloc_root->root_list, &reloc_roots);
  3982. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  3983. fs_root = read_fs_root(fs_info,
  3984. reloc_root->root_key.offset);
  3985. if (IS_ERR(fs_root)) {
  3986. ret = PTR_ERR(fs_root);
  3987. if (ret != -ENOENT) {
  3988. err = ret;
  3989. goto out;
  3990. }
  3991. ret = mark_garbage_root(reloc_root);
  3992. if (ret < 0) {
  3993. err = ret;
  3994. goto out;
  3995. }
  3996. }
  3997. }
  3998. if (key.offset == 0)
  3999. break;
  4000. key.offset--;
  4001. }
  4002. btrfs_release_path(path);
  4003. if (list_empty(&reloc_roots))
  4004. goto out;
  4005. rc = alloc_reloc_control();
  4006. if (!rc) {
  4007. err = -ENOMEM;
  4008. goto out;
  4009. }
  4010. rc->extent_root = fs_info->extent_root;
  4011. set_reloc_control(rc);
  4012. trans = btrfs_join_transaction(rc->extent_root);
  4013. if (IS_ERR(trans)) {
  4014. unset_reloc_control(rc);
  4015. err = PTR_ERR(trans);
  4016. goto out_free;
  4017. }
  4018. rc->merge_reloc_tree = 1;
  4019. while (!list_empty(&reloc_roots)) {
  4020. reloc_root = list_entry(reloc_roots.next,
  4021. struct btrfs_root, root_list);
  4022. list_del(&reloc_root->root_list);
  4023. if (btrfs_root_refs(&reloc_root->root_item) == 0) {
  4024. list_add_tail(&reloc_root->root_list,
  4025. &rc->reloc_roots);
  4026. continue;
  4027. }
  4028. fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
  4029. if (IS_ERR(fs_root)) {
  4030. err = PTR_ERR(fs_root);
  4031. goto out_free;
  4032. }
  4033. err = __add_reloc_root(reloc_root);
  4034. BUG_ON(err < 0); /* -ENOMEM or logic error */
  4035. fs_root->reloc_root = reloc_root;
  4036. }
  4037. err = btrfs_commit_transaction(trans);
  4038. if (err)
  4039. goto out_free;
  4040. merge_reloc_roots(rc);
  4041. unset_reloc_control(rc);
  4042. trans = btrfs_join_transaction(rc->extent_root);
  4043. if (IS_ERR(trans)) {
  4044. err = PTR_ERR(trans);
  4045. goto out_free;
  4046. }
  4047. err = btrfs_commit_transaction(trans);
  4048. out_free:
  4049. kfree(rc);
  4050. out:
  4051. if (!list_empty(&reloc_roots))
  4052. free_reloc_roots(&reloc_roots);
  4053. btrfs_free_path(path);
  4054. if (err == 0) {
  4055. /* cleanup orphan inode in data relocation tree */
  4056. fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  4057. if (IS_ERR(fs_root))
  4058. err = PTR_ERR(fs_root);
  4059. else
  4060. err = btrfs_orphan_cleanup(fs_root);
  4061. }
  4062. return err;
  4063. }
  4064. /*
  4065. * helper to add ordered checksum for data relocation.
  4066. *
  4067. * cloning checksum properly handles the nodatasum extents.
  4068. * it also saves CPU time to re-calculate the checksum.
  4069. */
  4070. int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
  4071. {
  4072. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  4073. struct btrfs_ordered_sum *sums;
  4074. struct btrfs_ordered_extent *ordered;
  4075. int ret;
  4076. u64 disk_bytenr;
  4077. u64 new_bytenr;
  4078. LIST_HEAD(list);
  4079. ordered = btrfs_lookup_ordered_extent(inode, file_pos);
  4080. BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
  4081. disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
  4082. ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
  4083. disk_bytenr + len - 1, &list, 0);
  4084. if (ret)
  4085. goto out;
  4086. while (!list_empty(&list)) {
  4087. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  4088. list_del_init(&sums->list);
  4089. /*
  4090. * We need to offset the new_bytenr based on where the csum is.
  4091. * We need to do this because we will read in entire prealloc
  4092. * extents but we may have written to say the middle of the
  4093. * prealloc extent, so we need to make sure the csum goes with
  4094. * the right disk offset.
  4095. *
  4096. * We can do this because the data reloc inode refers strictly
  4097. * to the on disk bytes, so we don't have to worry about
  4098. * disk_len vs real len like with real inodes since it's all
  4099. * disk length.
  4100. */
  4101. new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
  4102. sums->bytenr = new_bytenr;
  4103. btrfs_add_ordered_sum(inode, ordered, sums);
  4104. }
  4105. out:
  4106. btrfs_put_ordered_extent(ordered);
  4107. return ret;
  4108. }
  4109. int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
  4110. struct btrfs_root *root, struct extent_buffer *buf,
  4111. struct extent_buffer *cow)
  4112. {
  4113. struct btrfs_fs_info *fs_info = root->fs_info;
  4114. struct reloc_control *rc;
  4115. struct backref_node *node;
  4116. int first_cow = 0;
  4117. int level;
  4118. int ret = 0;
  4119. rc = fs_info->reloc_ctl;
  4120. if (!rc)
  4121. return 0;
  4122. BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
  4123. root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
  4124. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  4125. if (buf == root->node)
  4126. __update_reloc_root(root, cow->start);
  4127. }
  4128. level = btrfs_header_level(buf);
  4129. if (btrfs_header_generation(buf) <=
  4130. btrfs_root_last_snapshot(&root->root_item))
  4131. first_cow = 1;
  4132. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
  4133. rc->create_reloc_tree) {
  4134. WARN_ON(!first_cow && level == 0);
  4135. node = rc->backref_cache.path[level];
  4136. BUG_ON(node->bytenr != buf->start &&
  4137. node->new_bytenr != buf->start);
  4138. drop_node_buffer(node);
  4139. extent_buffer_get(cow);
  4140. node->eb = cow;
  4141. node->new_bytenr = cow->start;
  4142. if (!node->pending) {
  4143. list_move_tail(&node->list,
  4144. &rc->backref_cache.pending[level]);
  4145. node->pending = 1;
  4146. }
  4147. if (first_cow)
  4148. __mark_block_processed(rc, node);
  4149. if (first_cow && level > 0)
  4150. rc->nodes_relocated += buf->len;
  4151. }
  4152. if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
  4153. ret = replace_file_extents(trans, rc, root, cow);
  4154. return ret;
  4155. }
  4156. /*
  4157. * called before creating snapshot. it calculates metadata reservation
  4158. * required for relocating tree blocks in the snapshot
  4159. */
  4160. void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
  4161. u64 *bytes_to_reserve)
  4162. {
  4163. struct btrfs_root *root;
  4164. struct reloc_control *rc;
  4165. root = pending->root;
  4166. if (!root->reloc_root)
  4167. return;
  4168. rc = root->fs_info->reloc_ctl;
  4169. if (!rc->merge_reloc_tree)
  4170. return;
  4171. root = root->reloc_root;
  4172. BUG_ON(btrfs_root_refs(&root->root_item) == 0);
  4173. /*
  4174. * relocation is in the stage of merging trees. the space
  4175. * used by merging a reloc tree is twice the size of
  4176. * relocated tree nodes in the worst case. half for cowing
  4177. * the reloc tree, half for cowing the fs tree. the space
  4178. * used by cowing the reloc tree will be freed after the
  4179. * tree is dropped. if we create snapshot, cowing the fs
  4180. * tree may use more space than it frees. so we need
  4181. * reserve extra space.
  4182. */
  4183. *bytes_to_reserve += rc->nodes_relocated;
  4184. }
  4185. /*
  4186. * called after snapshot is created. migrate block reservation
  4187. * and create reloc root for the newly created snapshot
  4188. */
  4189. int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
  4190. struct btrfs_pending_snapshot *pending)
  4191. {
  4192. struct btrfs_root *root = pending->root;
  4193. struct btrfs_root *reloc_root;
  4194. struct btrfs_root *new_root;
  4195. struct reloc_control *rc;
  4196. int ret;
  4197. if (!root->reloc_root)
  4198. return 0;
  4199. rc = root->fs_info->reloc_ctl;
  4200. rc->merging_rsv_size += rc->nodes_relocated;
  4201. if (rc->merge_reloc_tree) {
  4202. ret = btrfs_block_rsv_migrate(&pending->block_rsv,
  4203. rc->block_rsv,
  4204. rc->nodes_relocated, 1);
  4205. if (ret)
  4206. return ret;
  4207. }
  4208. new_root = pending->snap;
  4209. reloc_root = create_reloc_root(trans, root->reloc_root,
  4210. new_root->root_key.objectid);
  4211. if (IS_ERR(reloc_root))
  4212. return PTR_ERR(reloc_root);
  4213. ret = __add_reloc_root(reloc_root);
  4214. BUG_ON(ret < 0);
  4215. new_root->reloc_root = reloc_root;
  4216. if (rc->create_reloc_tree)
  4217. ret = clone_backref_node(trans, rc, root, reloc_root);
  4218. return ret;
  4219. }