spi-pxa2xx.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. * Copyright (C) 2013, Intel Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/ioport.h>
  23. #include <linux/errno.h>
  24. #include <linux/err.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/spi/pxa2xx_spi.h>
  28. #include <linux/spi/spi.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/delay.h>
  31. #include <linux/gpio.h>
  32. #include <linux/slab.h>
  33. #include <linux/clk.h>
  34. #include <linux/pm_runtime.h>
  35. #include <linux/acpi.h>
  36. #include <asm/io.h>
  37. #include <asm/irq.h>
  38. #include <asm/delay.h>
  39. #include "spi-pxa2xx.h"
  40. MODULE_AUTHOR("Stephen Street");
  41. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  42. MODULE_LICENSE("GPL");
  43. MODULE_ALIAS("platform:pxa2xx-spi");
  44. #define MAX_BUSES 3
  45. #define TIMOUT_DFLT 1000
  46. /*
  47. * for testing SSCR1 changes that require SSP restart, basically
  48. * everything except the service and interrupt enables, the pxa270 developer
  49. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50. * list, but the PXA255 dev man says all bits without really meaning the
  51. * service and interrupt enables
  52. */
  53. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59. #define LPSS_RX_THRESH_DFLT 64
  60. #define LPSS_TX_LOTHRESH_DFLT 160
  61. #define LPSS_TX_HITHRESH_DFLT 224
  62. /* Offset from drv_data->lpss_base */
  63. #define GENERAL_REG 0x08
  64. #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
  65. #define SSP_REG 0x0c
  66. #define SPI_CS_CONTROL 0x18
  67. #define SPI_CS_CONTROL_SW_MODE BIT(0)
  68. #define SPI_CS_CONTROL_CS_HIGH BIT(1)
  69. static bool is_lpss_ssp(const struct driver_data *drv_data)
  70. {
  71. return drv_data->ssp_type == LPSS_SSP;
  72. }
  73. /*
  74. * Read and write LPSS SSP private registers. Caller must first check that
  75. * is_lpss_ssp() returns true before these can be called.
  76. */
  77. static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
  78. {
  79. WARN_ON(!drv_data->lpss_base);
  80. return readl(drv_data->lpss_base + offset);
  81. }
  82. static void __lpss_ssp_write_priv(struct driver_data *drv_data,
  83. unsigned offset, u32 value)
  84. {
  85. WARN_ON(!drv_data->lpss_base);
  86. writel(value, drv_data->lpss_base + offset);
  87. }
  88. /*
  89. * lpss_ssp_setup - perform LPSS SSP specific setup
  90. * @drv_data: pointer to the driver private data
  91. *
  92. * Perform LPSS SSP specific setup. This function must be called first if
  93. * one is going to use LPSS SSP private registers.
  94. */
  95. static void lpss_ssp_setup(struct driver_data *drv_data)
  96. {
  97. unsigned offset = 0x400;
  98. u32 value, orig;
  99. if (!is_lpss_ssp(drv_data))
  100. return;
  101. /*
  102. * Perform auto-detection of the LPSS SSP private registers. They
  103. * can be either at 1k or 2k offset from the base address.
  104. */
  105. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  106. value = orig | SPI_CS_CONTROL_SW_MODE;
  107. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  108. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  109. if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
  110. offset = 0x800;
  111. goto detection_done;
  112. }
  113. value &= ~SPI_CS_CONTROL_SW_MODE;
  114. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  115. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  116. if (value != orig) {
  117. offset = 0x800;
  118. goto detection_done;
  119. }
  120. detection_done:
  121. /* Now set the LPSS base */
  122. drv_data->lpss_base = drv_data->ioaddr + offset;
  123. /* Enable software chip select control */
  124. value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
  125. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  126. /* Enable multiblock DMA transfers */
  127. if (drv_data->master_info->enable_dma) {
  128. __lpss_ssp_write_priv(drv_data, SSP_REG, 1);
  129. value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
  130. value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
  131. __lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
  132. }
  133. }
  134. static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
  135. {
  136. u32 value;
  137. if (!is_lpss_ssp(drv_data))
  138. return;
  139. value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
  140. if (enable)
  141. value &= ~SPI_CS_CONTROL_CS_HIGH;
  142. else
  143. value |= SPI_CS_CONTROL_CS_HIGH;
  144. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  145. }
  146. static void cs_assert(struct driver_data *drv_data)
  147. {
  148. struct chip_data *chip = drv_data->cur_chip;
  149. if (drv_data->ssp_type == CE4100_SSP) {
  150. write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
  151. return;
  152. }
  153. if (chip->cs_control) {
  154. chip->cs_control(PXA2XX_CS_ASSERT);
  155. return;
  156. }
  157. if (gpio_is_valid(chip->gpio_cs)) {
  158. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  159. return;
  160. }
  161. lpss_ssp_cs_control(drv_data, true);
  162. }
  163. static void cs_deassert(struct driver_data *drv_data)
  164. {
  165. struct chip_data *chip = drv_data->cur_chip;
  166. if (drv_data->ssp_type == CE4100_SSP)
  167. return;
  168. if (chip->cs_control) {
  169. chip->cs_control(PXA2XX_CS_DEASSERT);
  170. return;
  171. }
  172. if (gpio_is_valid(chip->gpio_cs)) {
  173. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  174. return;
  175. }
  176. lpss_ssp_cs_control(drv_data, false);
  177. }
  178. int pxa2xx_spi_flush(struct driver_data *drv_data)
  179. {
  180. unsigned long limit = loops_per_jiffy << 1;
  181. void __iomem *reg = drv_data->ioaddr;
  182. do {
  183. while (read_SSSR(reg) & SSSR_RNE) {
  184. read_SSDR(reg);
  185. }
  186. } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
  187. write_SSSR_CS(drv_data, SSSR_ROR);
  188. return limit;
  189. }
  190. static int null_writer(struct driver_data *drv_data)
  191. {
  192. void __iomem *reg = drv_data->ioaddr;
  193. u8 n_bytes = drv_data->n_bytes;
  194. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  195. || (drv_data->tx == drv_data->tx_end))
  196. return 0;
  197. write_SSDR(0, reg);
  198. drv_data->tx += n_bytes;
  199. return 1;
  200. }
  201. static int null_reader(struct driver_data *drv_data)
  202. {
  203. void __iomem *reg = drv_data->ioaddr;
  204. u8 n_bytes = drv_data->n_bytes;
  205. while ((read_SSSR(reg) & SSSR_RNE)
  206. && (drv_data->rx < drv_data->rx_end)) {
  207. read_SSDR(reg);
  208. drv_data->rx += n_bytes;
  209. }
  210. return drv_data->rx == drv_data->rx_end;
  211. }
  212. static int u8_writer(struct driver_data *drv_data)
  213. {
  214. void __iomem *reg = drv_data->ioaddr;
  215. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  216. || (drv_data->tx == drv_data->tx_end))
  217. return 0;
  218. write_SSDR(*(u8 *)(drv_data->tx), reg);
  219. ++drv_data->tx;
  220. return 1;
  221. }
  222. static int u8_reader(struct driver_data *drv_data)
  223. {
  224. void __iomem *reg = drv_data->ioaddr;
  225. while ((read_SSSR(reg) & SSSR_RNE)
  226. && (drv_data->rx < drv_data->rx_end)) {
  227. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  228. ++drv_data->rx;
  229. }
  230. return drv_data->rx == drv_data->rx_end;
  231. }
  232. static int u16_writer(struct driver_data *drv_data)
  233. {
  234. void __iomem *reg = drv_data->ioaddr;
  235. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  236. || (drv_data->tx == drv_data->tx_end))
  237. return 0;
  238. write_SSDR(*(u16 *)(drv_data->tx), reg);
  239. drv_data->tx += 2;
  240. return 1;
  241. }
  242. static int u16_reader(struct driver_data *drv_data)
  243. {
  244. void __iomem *reg = drv_data->ioaddr;
  245. while ((read_SSSR(reg) & SSSR_RNE)
  246. && (drv_data->rx < drv_data->rx_end)) {
  247. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  248. drv_data->rx += 2;
  249. }
  250. return drv_data->rx == drv_data->rx_end;
  251. }
  252. static int u32_writer(struct driver_data *drv_data)
  253. {
  254. void __iomem *reg = drv_data->ioaddr;
  255. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  256. || (drv_data->tx == drv_data->tx_end))
  257. return 0;
  258. write_SSDR(*(u32 *)(drv_data->tx), reg);
  259. drv_data->tx += 4;
  260. return 1;
  261. }
  262. static int u32_reader(struct driver_data *drv_data)
  263. {
  264. void __iomem *reg = drv_data->ioaddr;
  265. while ((read_SSSR(reg) & SSSR_RNE)
  266. && (drv_data->rx < drv_data->rx_end)) {
  267. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  268. drv_data->rx += 4;
  269. }
  270. return drv_data->rx == drv_data->rx_end;
  271. }
  272. void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
  273. {
  274. struct spi_message *msg = drv_data->cur_msg;
  275. struct spi_transfer *trans = drv_data->cur_transfer;
  276. /* Move to next transfer */
  277. if (trans->transfer_list.next != &msg->transfers) {
  278. drv_data->cur_transfer =
  279. list_entry(trans->transfer_list.next,
  280. struct spi_transfer,
  281. transfer_list);
  282. return RUNNING_STATE;
  283. } else
  284. return DONE_STATE;
  285. }
  286. /* caller already set message->status; dma and pio irqs are blocked */
  287. static void giveback(struct driver_data *drv_data)
  288. {
  289. struct spi_transfer* last_transfer;
  290. struct spi_message *msg;
  291. msg = drv_data->cur_msg;
  292. drv_data->cur_msg = NULL;
  293. drv_data->cur_transfer = NULL;
  294. last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
  295. transfer_list);
  296. /* Delay if requested before any change in chip select */
  297. if (last_transfer->delay_usecs)
  298. udelay(last_transfer->delay_usecs);
  299. /* Drop chip select UNLESS cs_change is true or we are returning
  300. * a message with an error, or next message is for another chip
  301. */
  302. if (!last_transfer->cs_change)
  303. cs_deassert(drv_data);
  304. else {
  305. struct spi_message *next_msg;
  306. /* Holding of cs was hinted, but we need to make sure
  307. * the next message is for the same chip. Don't waste
  308. * time with the following tests unless this was hinted.
  309. *
  310. * We cannot postpone this until pump_messages, because
  311. * after calling msg->complete (below) the driver that
  312. * sent the current message could be unloaded, which
  313. * could invalidate the cs_control() callback...
  314. */
  315. /* get a pointer to the next message, if any */
  316. next_msg = spi_get_next_queued_message(drv_data->master);
  317. /* see if the next and current messages point
  318. * to the same chip
  319. */
  320. if (next_msg && next_msg->spi != msg->spi)
  321. next_msg = NULL;
  322. if (!next_msg || msg->state == ERROR_STATE)
  323. cs_deassert(drv_data);
  324. }
  325. spi_finalize_current_message(drv_data->master);
  326. drv_data->cur_chip = NULL;
  327. }
  328. static void reset_sccr1(struct driver_data *drv_data)
  329. {
  330. void __iomem *reg = drv_data->ioaddr;
  331. struct chip_data *chip = drv_data->cur_chip;
  332. u32 sccr1_reg;
  333. sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
  334. sccr1_reg &= ~SSCR1_RFT;
  335. sccr1_reg |= chip->threshold;
  336. write_SSCR1(sccr1_reg, reg);
  337. }
  338. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  339. {
  340. void __iomem *reg = drv_data->ioaddr;
  341. /* Stop and reset SSP */
  342. write_SSSR_CS(drv_data, drv_data->clear_sr);
  343. reset_sccr1(drv_data);
  344. if (!pxa25x_ssp_comp(drv_data))
  345. write_SSTO(0, reg);
  346. pxa2xx_spi_flush(drv_data);
  347. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  348. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  349. drv_data->cur_msg->state = ERROR_STATE;
  350. tasklet_schedule(&drv_data->pump_transfers);
  351. }
  352. static void int_transfer_complete(struct driver_data *drv_data)
  353. {
  354. void __iomem *reg = drv_data->ioaddr;
  355. /* Stop SSP */
  356. write_SSSR_CS(drv_data, drv_data->clear_sr);
  357. reset_sccr1(drv_data);
  358. if (!pxa25x_ssp_comp(drv_data))
  359. write_SSTO(0, reg);
  360. /* Update total byte transferred return count actual bytes read */
  361. drv_data->cur_msg->actual_length += drv_data->len -
  362. (drv_data->rx_end - drv_data->rx);
  363. /* Transfer delays and chip select release are
  364. * handled in pump_transfers or giveback
  365. */
  366. /* Move to next transfer */
  367. drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
  368. /* Schedule transfer tasklet */
  369. tasklet_schedule(&drv_data->pump_transfers);
  370. }
  371. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  372. {
  373. void __iomem *reg = drv_data->ioaddr;
  374. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  375. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  376. u32 irq_status = read_SSSR(reg) & irq_mask;
  377. if (irq_status & SSSR_ROR) {
  378. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  379. return IRQ_HANDLED;
  380. }
  381. if (irq_status & SSSR_TINT) {
  382. write_SSSR(SSSR_TINT, reg);
  383. if (drv_data->read(drv_data)) {
  384. int_transfer_complete(drv_data);
  385. return IRQ_HANDLED;
  386. }
  387. }
  388. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  389. do {
  390. if (drv_data->read(drv_data)) {
  391. int_transfer_complete(drv_data);
  392. return IRQ_HANDLED;
  393. }
  394. } while (drv_data->write(drv_data));
  395. if (drv_data->read(drv_data)) {
  396. int_transfer_complete(drv_data);
  397. return IRQ_HANDLED;
  398. }
  399. if (drv_data->tx == drv_data->tx_end) {
  400. u32 bytes_left;
  401. u32 sccr1_reg;
  402. sccr1_reg = read_SSCR1(reg);
  403. sccr1_reg &= ~SSCR1_TIE;
  404. /*
  405. * PXA25x_SSP has no timeout, set up rx threshould for the
  406. * remaining RX bytes.
  407. */
  408. if (pxa25x_ssp_comp(drv_data)) {
  409. sccr1_reg &= ~SSCR1_RFT;
  410. bytes_left = drv_data->rx_end - drv_data->rx;
  411. switch (drv_data->n_bytes) {
  412. case 4:
  413. bytes_left >>= 1;
  414. case 2:
  415. bytes_left >>= 1;
  416. }
  417. if (bytes_left > RX_THRESH_DFLT)
  418. bytes_left = RX_THRESH_DFLT;
  419. sccr1_reg |= SSCR1_RxTresh(bytes_left);
  420. }
  421. write_SSCR1(sccr1_reg, reg);
  422. }
  423. /* We did something */
  424. return IRQ_HANDLED;
  425. }
  426. static irqreturn_t ssp_int(int irq, void *dev_id)
  427. {
  428. struct driver_data *drv_data = dev_id;
  429. void __iomem *reg = drv_data->ioaddr;
  430. u32 sccr1_reg;
  431. u32 mask = drv_data->mask_sr;
  432. u32 status;
  433. /*
  434. * The IRQ might be shared with other peripherals so we must first
  435. * check that are we RPM suspended or not. If we are we assume that
  436. * the IRQ was not for us (we shouldn't be RPM suspended when the
  437. * interrupt is enabled).
  438. */
  439. if (pm_runtime_suspended(&drv_data->pdev->dev))
  440. return IRQ_NONE;
  441. /*
  442. * If the device is not yet in RPM suspended state and we get an
  443. * interrupt that is meant for another device, check if status bits
  444. * are all set to one. That means that the device is already
  445. * powered off.
  446. */
  447. status = read_SSSR(reg);
  448. if (status == ~0)
  449. return IRQ_NONE;
  450. sccr1_reg = read_SSCR1(reg);
  451. /* Ignore possible writes if we don't need to write */
  452. if (!(sccr1_reg & SSCR1_TIE))
  453. mask &= ~SSSR_TFS;
  454. if (!(status & mask))
  455. return IRQ_NONE;
  456. if (!drv_data->cur_msg) {
  457. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  458. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  459. if (!pxa25x_ssp_comp(drv_data))
  460. write_SSTO(0, reg);
  461. write_SSSR_CS(drv_data, drv_data->clear_sr);
  462. dev_err(&drv_data->pdev->dev,
  463. "bad message state in interrupt handler\n");
  464. /* Never fail */
  465. return IRQ_HANDLED;
  466. }
  467. return drv_data->transfer_handler(drv_data);
  468. }
  469. static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
  470. {
  471. unsigned long ssp_clk = drv_data->max_clk_rate;
  472. const struct ssp_device *ssp = drv_data->ssp;
  473. rate = min_t(int, ssp_clk, rate);
  474. if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
  475. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  476. else
  477. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  478. }
  479. static void pump_transfers(unsigned long data)
  480. {
  481. struct driver_data *drv_data = (struct driver_data *)data;
  482. struct spi_message *message = NULL;
  483. struct spi_transfer *transfer = NULL;
  484. struct spi_transfer *previous = NULL;
  485. struct chip_data *chip = NULL;
  486. void __iomem *reg = drv_data->ioaddr;
  487. u32 clk_div = 0;
  488. u8 bits = 0;
  489. u32 speed = 0;
  490. u32 cr0;
  491. u32 cr1;
  492. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  493. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  494. /* Get current state information */
  495. message = drv_data->cur_msg;
  496. transfer = drv_data->cur_transfer;
  497. chip = drv_data->cur_chip;
  498. /* Handle for abort */
  499. if (message->state == ERROR_STATE) {
  500. message->status = -EIO;
  501. giveback(drv_data);
  502. return;
  503. }
  504. /* Handle end of message */
  505. if (message->state == DONE_STATE) {
  506. message->status = 0;
  507. giveback(drv_data);
  508. return;
  509. }
  510. /* Delay if requested at end of transfer before CS change */
  511. if (message->state == RUNNING_STATE) {
  512. previous = list_entry(transfer->transfer_list.prev,
  513. struct spi_transfer,
  514. transfer_list);
  515. if (previous->delay_usecs)
  516. udelay(previous->delay_usecs);
  517. /* Drop chip select only if cs_change is requested */
  518. if (previous->cs_change)
  519. cs_deassert(drv_data);
  520. }
  521. /* Check if we can DMA this transfer */
  522. if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
  523. /* reject already-mapped transfers; PIO won't always work */
  524. if (message->is_dma_mapped
  525. || transfer->rx_dma || transfer->tx_dma) {
  526. dev_err(&drv_data->pdev->dev,
  527. "pump_transfers: mapped transfer length of "
  528. "%u is greater than %d\n",
  529. transfer->len, MAX_DMA_LEN);
  530. message->status = -EINVAL;
  531. giveback(drv_data);
  532. return;
  533. }
  534. /* warn ... we force this to PIO mode */
  535. dev_warn_ratelimited(&message->spi->dev,
  536. "pump_transfers: DMA disabled for transfer length %ld "
  537. "greater than %d\n",
  538. (long)drv_data->len, MAX_DMA_LEN);
  539. }
  540. /* Setup the transfer state based on the type of transfer */
  541. if (pxa2xx_spi_flush(drv_data) == 0) {
  542. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  543. message->status = -EIO;
  544. giveback(drv_data);
  545. return;
  546. }
  547. drv_data->n_bytes = chip->n_bytes;
  548. drv_data->tx = (void *)transfer->tx_buf;
  549. drv_data->tx_end = drv_data->tx + transfer->len;
  550. drv_data->rx = transfer->rx_buf;
  551. drv_data->rx_end = drv_data->rx + transfer->len;
  552. drv_data->rx_dma = transfer->rx_dma;
  553. drv_data->tx_dma = transfer->tx_dma;
  554. drv_data->len = transfer->len;
  555. drv_data->write = drv_data->tx ? chip->write : null_writer;
  556. drv_data->read = drv_data->rx ? chip->read : null_reader;
  557. /* Change speed and bit per word on a per transfer */
  558. cr0 = chip->cr0;
  559. if (transfer->speed_hz || transfer->bits_per_word) {
  560. bits = chip->bits_per_word;
  561. speed = chip->speed_hz;
  562. if (transfer->speed_hz)
  563. speed = transfer->speed_hz;
  564. if (transfer->bits_per_word)
  565. bits = transfer->bits_per_word;
  566. clk_div = ssp_get_clk_div(drv_data, speed);
  567. if (bits <= 8) {
  568. drv_data->n_bytes = 1;
  569. drv_data->read = drv_data->read != null_reader ?
  570. u8_reader : null_reader;
  571. drv_data->write = drv_data->write != null_writer ?
  572. u8_writer : null_writer;
  573. } else if (bits <= 16) {
  574. drv_data->n_bytes = 2;
  575. drv_data->read = drv_data->read != null_reader ?
  576. u16_reader : null_reader;
  577. drv_data->write = drv_data->write != null_writer ?
  578. u16_writer : null_writer;
  579. } else if (bits <= 32) {
  580. drv_data->n_bytes = 4;
  581. drv_data->read = drv_data->read != null_reader ?
  582. u32_reader : null_reader;
  583. drv_data->write = drv_data->write != null_writer ?
  584. u32_writer : null_writer;
  585. }
  586. /* if bits/word is changed in dma mode, then must check the
  587. * thresholds and burst also */
  588. if (chip->enable_dma) {
  589. if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
  590. message->spi,
  591. bits, &dma_burst,
  592. &dma_thresh))
  593. dev_warn_ratelimited(&message->spi->dev,
  594. "pump_transfers: DMA burst size reduced to match bits_per_word\n");
  595. }
  596. cr0 = clk_div
  597. | SSCR0_Motorola
  598. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  599. | SSCR0_SSE
  600. | (bits > 16 ? SSCR0_EDSS : 0);
  601. }
  602. message->state = RUNNING_STATE;
  603. drv_data->dma_mapped = 0;
  604. if (pxa2xx_spi_dma_is_possible(drv_data->len))
  605. drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
  606. if (drv_data->dma_mapped) {
  607. /* Ensure we have the correct interrupt handler */
  608. drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
  609. pxa2xx_spi_dma_prepare(drv_data, dma_burst);
  610. /* Clear status and start DMA engine */
  611. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  612. write_SSSR(drv_data->clear_sr, reg);
  613. pxa2xx_spi_dma_start(drv_data);
  614. } else {
  615. /* Ensure we have the correct interrupt handler */
  616. drv_data->transfer_handler = interrupt_transfer;
  617. /* Clear status */
  618. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  619. write_SSSR_CS(drv_data, drv_data->clear_sr);
  620. }
  621. if (is_lpss_ssp(drv_data)) {
  622. if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
  623. write_SSIRF(chip->lpss_rx_threshold, reg);
  624. if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
  625. write_SSITF(chip->lpss_tx_threshold, reg);
  626. }
  627. /* see if we need to reload the config registers */
  628. if ((read_SSCR0(reg) != cr0)
  629. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  630. (cr1 & SSCR1_CHANGE_MASK)) {
  631. /* stop the SSP, and update the other bits */
  632. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  633. if (!pxa25x_ssp_comp(drv_data))
  634. write_SSTO(chip->timeout, reg);
  635. /* first set CR1 without interrupt and service enables */
  636. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  637. /* restart the SSP */
  638. write_SSCR0(cr0, reg);
  639. } else {
  640. if (!pxa25x_ssp_comp(drv_data))
  641. write_SSTO(chip->timeout, reg);
  642. }
  643. cs_assert(drv_data);
  644. /* after chip select, release the data by enabling service
  645. * requests and interrupts, without changing any mode bits */
  646. write_SSCR1(cr1, reg);
  647. }
  648. static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
  649. struct spi_message *msg)
  650. {
  651. struct driver_data *drv_data = spi_master_get_devdata(master);
  652. drv_data->cur_msg = msg;
  653. /* Initial message state*/
  654. drv_data->cur_msg->state = START_STATE;
  655. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  656. struct spi_transfer,
  657. transfer_list);
  658. /* prepare to setup the SSP, in pump_transfers, using the per
  659. * chip configuration */
  660. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  661. /* Mark as busy and launch transfers */
  662. tasklet_schedule(&drv_data->pump_transfers);
  663. return 0;
  664. }
  665. static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
  666. {
  667. struct driver_data *drv_data = spi_master_get_devdata(master);
  668. /* Disable the SSP now */
  669. write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
  670. drv_data->ioaddr);
  671. return 0;
  672. }
  673. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  674. struct pxa2xx_spi_chip *chip_info)
  675. {
  676. int err = 0;
  677. if (chip == NULL || chip_info == NULL)
  678. return 0;
  679. /* NOTE: setup() can be called multiple times, possibly with
  680. * different chip_info, release previously requested GPIO
  681. */
  682. if (gpio_is_valid(chip->gpio_cs))
  683. gpio_free(chip->gpio_cs);
  684. /* If (*cs_control) is provided, ignore GPIO chip select */
  685. if (chip_info->cs_control) {
  686. chip->cs_control = chip_info->cs_control;
  687. return 0;
  688. }
  689. if (gpio_is_valid(chip_info->gpio_cs)) {
  690. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  691. if (err) {
  692. dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
  693. chip_info->gpio_cs);
  694. return err;
  695. }
  696. chip->gpio_cs = chip_info->gpio_cs;
  697. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  698. err = gpio_direction_output(chip->gpio_cs,
  699. !chip->gpio_cs_inverted);
  700. }
  701. return err;
  702. }
  703. static int setup(struct spi_device *spi)
  704. {
  705. struct pxa2xx_spi_chip *chip_info = NULL;
  706. struct chip_data *chip;
  707. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  708. unsigned int clk_div;
  709. uint tx_thres, tx_hi_thres, rx_thres;
  710. if (is_lpss_ssp(drv_data)) {
  711. tx_thres = LPSS_TX_LOTHRESH_DFLT;
  712. tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
  713. rx_thres = LPSS_RX_THRESH_DFLT;
  714. } else {
  715. tx_thres = TX_THRESH_DFLT;
  716. tx_hi_thres = 0;
  717. rx_thres = RX_THRESH_DFLT;
  718. }
  719. /* Only alloc on first setup */
  720. chip = spi_get_ctldata(spi);
  721. if (!chip) {
  722. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  723. if (!chip) {
  724. dev_err(&spi->dev,
  725. "failed setup: can't allocate chip data\n");
  726. return -ENOMEM;
  727. }
  728. if (drv_data->ssp_type == CE4100_SSP) {
  729. if (spi->chip_select > 4) {
  730. dev_err(&spi->dev,
  731. "failed setup: cs number must not be > 4.\n");
  732. kfree(chip);
  733. return -EINVAL;
  734. }
  735. chip->frm = spi->chip_select;
  736. } else
  737. chip->gpio_cs = -1;
  738. chip->enable_dma = 0;
  739. chip->timeout = TIMOUT_DFLT;
  740. }
  741. /* protocol drivers may change the chip settings, so...
  742. * if chip_info exists, use it */
  743. chip_info = spi->controller_data;
  744. /* chip_info isn't always needed */
  745. chip->cr1 = 0;
  746. if (chip_info) {
  747. if (chip_info->timeout)
  748. chip->timeout = chip_info->timeout;
  749. if (chip_info->tx_threshold)
  750. tx_thres = chip_info->tx_threshold;
  751. if (chip_info->tx_hi_threshold)
  752. tx_hi_thres = chip_info->tx_hi_threshold;
  753. if (chip_info->rx_threshold)
  754. rx_thres = chip_info->rx_threshold;
  755. chip->enable_dma = drv_data->master_info->enable_dma;
  756. chip->dma_threshold = 0;
  757. if (chip_info->enable_loopback)
  758. chip->cr1 = SSCR1_LBM;
  759. } else if (ACPI_HANDLE(&spi->dev)) {
  760. /*
  761. * Slave devices enumerated from ACPI namespace don't
  762. * usually have chip_info but we still might want to use
  763. * DMA with them.
  764. */
  765. chip->enable_dma = drv_data->master_info->enable_dma;
  766. }
  767. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  768. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  769. chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
  770. chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
  771. | SSITF_TxHiThresh(tx_hi_thres);
  772. /* set dma burst and threshold outside of chip_info path so that if
  773. * chip_info goes away after setting chip->enable_dma, the
  774. * burst and threshold can still respond to changes in bits_per_word */
  775. if (chip->enable_dma) {
  776. /* set up legal burst and threshold for dma */
  777. if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
  778. spi->bits_per_word,
  779. &chip->dma_burst_size,
  780. &chip->dma_threshold)) {
  781. dev_warn(&spi->dev,
  782. "in setup: DMA burst size reduced to match bits_per_word\n");
  783. }
  784. }
  785. clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
  786. chip->speed_hz = spi->max_speed_hz;
  787. chip->cr0 = clk_div
  788. | SSCR0_Motorola
  789. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  790. spi->bits_per_word - 16 : spi->bits_per_word)
  791. | SSCR0_SSE
  792. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  793. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  794. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  795. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  796. if (spi->mode & SPI_LOOP)
  797. chip->cr1 |= SSCR1_LBM;
  798. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  799. if (!pxa25x_ssp_comp(drv_data))
  800. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  801. drv_data->max_clk_rate
  802. / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
  803. chip->enable_dma ? "DMA" : "PIO");
  804. else
  805. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  806. drv_data->max_clk_rate / 2
  807. / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
  808. chip->enable_dma ? "DMA" : "PIO");
  809. if (spi->bits_per_word <= 8) {
  810. chip->n_bytes = 1;
  811. chip->read = u8_reader;
  812. chip->write = u8_writer;
  813. } else if (spi->bits_per_word <= 16) {
  814. chip->n_bytes = 2;
  815. chip->read = u16_reader;
  816. chip->write = u16_writer;
  817. } else if (spi->bits_per_word <= 32) {
  818. chip->cr0 |= SSCR0_EDSS;
  819. chip->n_bytes = 4;
  820. chip->read = u32_reader;
  821. chip->write = u32_writer;
  822. }
  823. chip->bits_per_word = spi->bits_per_word;
  824. spi_set_ctldata(spi, chip);
  825. if (drv_data->ssp_type == CE4100_SSP)
  826. return 0;
  827. return setup_cs(spi, chip, chip_info);
  828. }
  829. static void cleanup(struct spi_device *spi)
  830. {
  831. struct chip_data *chip = spi_get_ctldata(spi);
  832. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  833. if (!chip)
  834. return;
  835. if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
  836. gpio_free(chip->gpio_cs);
  837. kfree(chip);
  838. }
  839. #ifdef CONFIG_ACPI
  840. static struct pxa2xx_spi_master *
  841. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  842. {
  843. struct pxa2xx_spi_master *pdata;
  844. struct acpi_device *adev;
  845. struct ssp_device *ssp;
  846. struct resource *res;
  847. int devid;
  848. if (!ACPI_HANDLE(&pdev->dev) ||
  849. acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  850. return NULL;
  851. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  852. if (!pdata) {
  853. dev_err(&pdev->dev,
  854. "failed to allocate memory for platform data\n");
  855. return NULL;
  856. }
  857. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  858. if (!res)
  859. return NULL;
  860. ssp = &pdata->ssp;
  861. ssp->phys_base = res->start;
  862. ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
  863. if (IS_ERR(ssp->mmio_base))
  864. return NULL;
  865. ssp->clk = devm_clk_get(&pdev->dev, NULL);
  866. ssp->irq = platform_get_irq(pdev, 0);
  867. ssp->type = LPSS_SSP;
  868. ssp->pdev = pdev;
  869. ssp->port_id = -1;
  870. if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
  871. ssp->port_id = devid;
  872. pdata->num_chipselect = 1;
  873. pdata->enable_dma = true;
  874. pdata->tx_chan_id = -1;
  875. pdata->rx_chan_id = -1;
  876. return pdata;
  877. }
  878. static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
  879. { "INT33C0", 0 },
  880. { "INT33C1", 0 },
  881. { "INT3430", 0 },
  882. { "INT3431", 0 },
  883. { "80860F0E", 0 },
  884. { },
  885. };
  886. MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
  887. #else
  888. static inline struct pxa2xx_spi_master *
  889. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  890. {
  891. return NULL;
  892. }
  893. #endif
  894. static int pxa2xx_spi_probe(struct platform_device *pdev)
  895. {
  896. struct device *dev = &pdev->dev;
  897. struct pxa2xx_spi_master *platform_info;
  898. struct spi_master *master;
  899. struct driver_data *drv_data;
  900. struct ssp_device *ssp;
  901. int status;
  902. platform_info = dev_get_platdata(dev);
  903. if (!platform_info) {
  904. platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
  905. if (!platform_info) {
  906. dev_err(&pdev->dev, "missing platform data\n");
  907. return -ENODEV;
  908. }
  909. }
  910. ssp = pxa_ssp_request(pdev->id, pdev->name);
  911. if (!ssp)
  912. ssp = &platform_info->ssp;
  913. if (!ssp->mmio_base) {
  914. dev_err(&pdev->dev, "failed to get ssp\n");
  915. return -ENODEV;
  916. }
  917. /* Allocate master with space for drv_data and null dma buffer */
  918. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  919. if (!master) {
  920. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  921. pxa_ssp_free(ssp);
  922. return -ENOMEM;
  923. }
  924. drv_data = spi_master_get_devdata(master);
  925. drv_data->master = master;
  926. drv_data->master_info = platform_info;
  927. drv_data->pdev = pdev;
  928. drv_data->ssp = ssp;
  929. master->dev.parent = &pdev->dev;
  930. master->dev.of_node = pdev->dev.of_node;
  931. /* the spi->mode bits understood by this driver: */
  932. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  933. master->bus_num = ssp->port_id;
  934. master->num_chipselect = platform_info->num_chipselect;
  935. master->dma_alignment = DMA_ALIGNMENT;
  936. master->cleanup = cleanup;
  937. master->setup = setup;
  938. master->transfer_one_message = pxa2xx_spi_transfer_one_message;
  939. master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
  940. master->auto_runtime_pm = true;
  941. drv_data->ssp_type = ssp->type;
  942. drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
  943. drv_data->ioaddr = ssp->mmio_base;
  944. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  945. if (pxa25x_ssp_comp(drv_data)) {
  946. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  947. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  948. drv_data->dma_cr1 = 0;
  949. drv_data->clear_sr = SSSR_ROR;
  950. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  951. } else {
  952. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  953. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  954. drv_data->dma_cr1 = DEFAULT_DMA_CR1;
  955. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  956. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  957. }
  958. status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
  959. drv_data);
  960. if (status < 0) {
  961. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  962. goto out_error_master_alloc;
  963. }
  964. /* Setup DMA if requested */
  965. drv_data->tx_channel = -1;
  966. drv_data->rx_channel = -1;
  967. if (platform_info->enable_dma) {
  968. status = pxa2xx_spi_dma_setup(drv_data);
  969. if (status) {
  970. dev_dbg(dev, "no DMA channels available, using PIO\n");
  971. platform_info->enable_dma = false;
  972. }
  973. }
  974. /* Enable SOC clock */
  975. clk_prepare_enable(ssp->clk);
  976. drv_data->max_clk_rate = clk_get_rate(ssp->clk);
  977. /* Load default SSP configuration */
  978. write_SSCR0(0, drv_data->ioaddr);
  979. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  980. SSCR1_TxTresh(TX_THRESH_DFLT),
  981. drv_data->ioaddr);
  982. write_SSCR0(SSCR0_SCR(2)
  983. | SSCR0_Motorola
  984. | SSCR0_DataSize(8),
  985. drv_data->ioaddr);
  986. if (!pxa25x_ssp_comp(drv_data))
  987. write_SSTO(0, drv_data->ioaddr);
  988. write_SSPSP(0, drv_data->ioaddr);
  989. lpss_ssp_setup(drv_data);
  990. tasklet_init(&drv_data->pump_transfers, pump_transfers,
  991. (unsigned long)drv_data);
  992. pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
  993. pm_runtime_use_autosuspend(&pdev->dev);
  994. pm_runtime_set_active(&pdev->dev);
  995. pm_runtime_enable(&pdev->dev);
  996. /* Register with the SPI framework */
  997. platform_set_drvdata(pdev, drv_data);
  998. status = devm_spi_register_master(&pdev->dev, master);
  999. if (status != 0) {
  1000. dev_err(&pdev->dev, "problem registering spi master\n");
  1001. goto out_error_clock_enabled;
  1002. }
  1003. return status;
  1004. out_error_clock_enabled:
  1005. clk_disable_unprepare(ssp->clk);
  1006. pxa2xx_spi_dma_release(drv_data);
  1007. free_irq(ssp->irq, drv_data);
  1008. out_error_master_alloc:
  1009. spi_master_put(master);
  1010. pxa_ssp_free(ssp);
  1011. return status;
  1012. }
  1013. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1014. {
  1015. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1016. struct ssp_device *ssp;
  1017. if (!drv_data)
  1018. return 0;
  1019. ssp = drv_data->ssp;
  1020. pm_runtime_get_sync(&pdev->dev);
  1021. /* Disable the SSP at the peripheral and SOC level */
  1022. write_SSCR0(0, drv_data->ioaddr);
  1023. clk_disable_unprepare(ssp->clk);
  1024. /* Release DMA */
  1025. if (drv_data->master_info->enable_dma)
  1026. pxa2xx_spi_dma_release(drv_data);
  1027. pm_runtime_put_noidle(&pdev->dev);
  1028. pm_runtime_disable(&pdev->dev);
  1029. /* Release IRQ */
  1030. free_irq(ssp->irq, drv_data);
  1031. /* Release SSP */
  1032. pxa_ssp_free(ssp);
  1033. return 0;
  1034. }
  1035. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1036. {
  1037. int status = 0;
  1038. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1039. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1040. }
  1041. #ifdef CONFIG_PM_SLEEP
  1042. static int pxa2xx_spi_suspend(struct device *dev)
  1043. {
  1044. struct driver_data *drv_data = dev_get_drvdata(dev);
  1045. struct ssp_device *ssp = drv_data->ssp;
  1046. int status = 0;
  1047. status = spi_master_suspend(drv_data->master);
  1048. if (status != 0)
  1049. return status;
  1050. write_SSCR0(0, drv_data->ioaddr);
  1051. clk_disable_unprepare(ssp->clk);
  1052. return 0;
  1053. }
  1054. static int pxa2xx_spi_resume(struct device *dev)
  1055. {
  1056. struct driver_data *drv_data = dev_get_drvdata(dev);
  1057. struct ssp_device *ssp = drv_data->ssp;
  1058. int status = 0;
  1059. pxa2xx_spi_dma_resume(drv_data);
  1060. /* Enable the SSP clock */
  1061. clk_prepare_enable(ssp->clk);
  1062. /* Restore LPSS private register bits */
  1063. lpss_ssp_setup(drv_data);
  1064. /* Start the queue running */
  1065. status = spi_master_resume(drv_data->master);
  1066. if (status != 0) {
  1067. dev_err(dev, "problem starting queue (%d)\n", status);
  1068. return status;
  1069. }
  1070. return 0;
  1071. }
  1072. #endif
  1073. #ifdef CONFIG_PM_RUNTIME
  1074. static int pxa2xx_spi_runtime_suspend(struct device *dev)
  1075. {
  1076. struct driver_data *drv_data = dev_get_drvdata(dev);
  1077. clk_disable_unprepare(drv_data->ssp->clk);
  1078. return 0;
  1079. }
  1080. static int pxa2xx_spi_runtime_resume(struct device *dev)
  1081. {
  1082. struct driver_data *drv_data = dev_get_drvdata(dev);
  1083. clk_prepare_enable(drv_data->ssp->clk);
  1084. return 0;
  1085. }
  1086. #endif
  1087. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1088. SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
  1089. SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
  1090. pxa2xx_spi_runtime_resume, NULL)
  1091. };
  1092. static struct platform_driver driver = {
  1093. .driver = {
  1094. .name = "pxa2xx-spi",
  1095. .owner = THIS_MODULE,
  1096. .pm = &pxa2xx_spi_pm_ops,
  1097. .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
  1098. },
  1099. .probe = pxa2xx_spi_probe,
  1100. .remove = pxa2xx_spi_remove,
  1101. .shutdown = pxa2xx_spi_shutdown,
  1102. };
  1103. static int __init pxa2xx_spi_init(void)
  1104. {
  1105. return platform_driver_register(&driver);
  1106. }
  1107. subsys_initcall(pxa2xx_spi_init);
  1108. static void __exit pxa2xx_spi_exit(void)
  1109. {
  1110. platform_driver_unregister(&driver);
  1111. }
  1112. module_exit(pxa2xx_spi_exit);