dcache.c 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645
  1. /*
  2. * fs/dcache.c
  3. *
  4. * Complete reimplementation
  5. * (C) 1997 Thomas Schoebel-Theuer,
  6. * with heavy changes by Linus Torvalds
  7. */
  8. /*
  9. * Notes on the allocation strategy:
  10. *
  11. * The dcache is a master of the icache - whenever a dcache entry
  12. * exists, the inode will always exist. "iput()" is done either when
  13. * the dcache entry is deleted or garbage collected.
  14. */
  15. #include <linux/syscalls.h>
  16. #include <linux/string.h>
  17. #include <linux/mm.h>
  18. #include <linux/fs.h>
  19. #include <linux/fsnotify.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/hash.h>
  23. #include <linux/cache.h>
  24. #include <linux/export.h>
  25. #include <linux/mount.h>
  26. #include <linux/file.h>
  27. #include <asm/uaccess.h>
  28. #include <linux/security.h>
  29. #include <linux/seqlock.h>
  30. #include <linux/swap.h>
  31. #include <linux/bootmem.h>
  32. #include <linux/fs_struct.h>
  33. #include <linux/hardirq.h>
  34. #include <linux/bit_spinlock.h>
  35. #include <linux/rculist_bl.h>
  36. #include <linux/prefetch.h>
  37. #include <linux/ratelimit.h>
  38. #include <linux/list_lru.h>
  39. #include <linux/kasan.h>
  40. #include "internal.h"
  41. #include "mount.h"
  42. /*
  43. * Usage:
  44. * dcache->d_inode->i_lock protects:
  45. * - i_dentry, d_u.d_alias, d_inode of aliases
  46. * dcache_hash_bucket lock protects:
  47. * - the dcache hash table
  48. * s_anon bl list spinlock protects:
  49. * - the s_anon list (see __d_drop)
  50. * dentry->d_sb->s_dentry_lru_lock protects:
  51. * - the dcache lru lists and counters
  52. * d_lock protects:
  53. * - d_flags
  54. * - d_name
  55. * - d_lru
  56. * - d_count
  57. * - d_unhashed()
  58. * - d_parent and d_subdirs
  59. * - childrens' d_child and d_parent
  60. * - d_u.d_alias, d_inode
  61. *
  62. * Ordering:
  63. * dentry->d_inode->i_lock
  64. * dentry->d_lock
  65. * dentry->d_sb->s_dentry_lru_lock
  66. * dcache_hash_bucket lock
  67. * s_anon lock
  68. *
  69. * If there is an ancestor relationship:
  70. * dentry->d_parent->...->d_parent->d_lock
  71. * ...
  72. * dentry->d_parent->d_lock
  73. * dentry->d_lock
  74. *
  75. * If no ancestor relationship:
  76. * if (dentry1 < dentry2)
  77. * dentry1->d_lock
  78. * dentry2->d_lock
  79. */
  80. int sysctl_vfs_cache_pressure __read_mostly = 100;
  81. EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  82. __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  83. EXPORT_SYMBOL(rename_lock);
  84. static struct kmem_cache *dentry_cache __read_mostly;
  85. /*
  86. * This is the single most critical data structure when it comes
  87. * to the dcache: the hashtable for lookups. Somebody should try
  88. * to make this good - I've just made it work.
  89. *
  90. * This hash-function tries to avoid losing too many bits of hash
  91. * information, yet avoid using a prime hash-size or similar.
  92. */
  93. static unsigned int d_hash_mask __read_mostly;
  94. static unsigned int d_hash_shift __read_mostly;
  95. static struct hlist_bl_head *dentry_hashtable __read_mostly;
  96. static inline struct hlist_bl_head *d_hash(unsigned int hash)
  97. {
  98. return dentry_hashtable + (hash >> (32 - d_hash_shift));
  99. }
  100. #define IN_LOOKUP_SHIFT 10
  101. static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
  102. static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
  103. unsigned int hash)
  104. {
  105. hash += (unsigned long) parent / L1_CACHE_BYTES;
  106. return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
  107. }
  108. /* Statistics gathering. */
  109. struct dentry_stat_t dentry_stat = {
  110. .age_limit = 45,
  111. };
  112. static DEFINE_PER_CPU(long, nr_dentry);
  113. static DEFINE_PER_CPU(long, nr_dentry_unused);
  114. #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
  115. /*
  116. * Here we resort to our own counters instead of using generic per-cpu counters
  117. * for consistency with what the vfs inode code does. We are expected to harvest
  118. * better code and performance by having our own specialized counters.
  119. *
  120. * Please note that the loop is done over all possible CPUs, not over all online
  121. * CPUs. The reason for this is that we don't want to play games with CPUs going
  122. * on and off. If one of them goes off, we will just keep their counters.
  123. *
  124. * glommer: See cffbc8a for details, and if you ever intend to change this,
  125. * please update all vfs counters to match.
  126. */
  127. static long get_nr_dentry(void)
  128. {
  129. int i;
  130. long sum = 0;
  131. for_each_possible_cpu(i)
  132. sum += per_cpu(nr_dentry, i);
  133. return sum < 0 ? 0 : sum;
  134. }
  135. static long get_nr_dentry_unused(void)
  136. {
  137. int i;
  138. long sum = 0;
  139. for_each_possible_cpu(i)
  140. sum += per_cpu(nr_dentry_unused, i);
  141. return sum < 0 ? 0 : sum;
  142. }
  143. int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
  144. size_t *lenp, loff_t *ppos)
  145. {
  146. dentry_stat.nr_dentry = get_nr_dentry();
  147. dentry_stat.nr_unused = get_nr_dentry_unused();
  148. return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  149. }
  150. #endif
  151. /*
  152. * Compare 2 name strings, return 0 if they match, otherwise non-zero.
  153. * The strings are both count bytes long, and count is non-zero.
  154. */
  155. #ifdef CONFIG_DCACHE_WORD_ACCESS
  156. #include <asm/word-at-a-time.h>
  157. /*
  158. * NOTE! 'cs' and 'scount' come from a dentry, so it has a
  159. * aligned allocation for this particular component. We don't
  160. * strictly need the load_unaligned_zeropad() safety, but it
  161. * doesn't hurt either.
  162. *
  163. * In contrast, 'ct' and 'tcount' can be from a pathname, and do
  164. * need the careful unaligned handling.
  165. */
  166. static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
  167. {
  168. unsigned long a,b,mask;
  169. for (;;) {
  170. a = *(unsigned long *)cs;
  171. b = load_unaligned_zeropad(ct);
  172. if (tcount < sizeof(unsigned long))
  173. break;
  174. if (unlikely(a != b))
  175. return 1;
  176. cs += sizeof(unsigned long);
  177. ct += sizeof(unsigned long);
  178. tcount -= sizeof(unsigned long);
  179. if (!tcount)
  180. return 0;
  181. }
  182. mask = bytemask_from_count(tcount);
  183. return unlikely(!!((a ^ b) & mask));
  184. }
  185. #else
  186. static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
  187. {
  188. do {
  189. if (*cs != *ct)
  190. return 1;
  191. cs++;
  192. ct++;
  193. tcount--;
  194. } while (tcount);
  195. return 0;
  196. }
  197. #endif
  198. static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
  199. {
  200. /*
  201. * Be careful about RCU walk racing with rename:
  202. * use 'lockless_dereference' to fetch the name pointer.
  203. *
  204. * NOTE! Even if a rename will mean that the length
  205. * was not loaded atomically, we don't care. The
  206. * RCU walk will check the sequence count eventually,
  207. * and catch it. And we won't overrun the buffer,
  208. * because we're reading the name pointer atomically,
  209. * and a dentry name is guaranteed to be properly
  210. * terminated with a NUL byte.
  211. *
  212. * End result: even if 'len' is wrong, we'll exit
  213. * early because the data cannot match (there can
  214. * be no NUL in the ct/tcount data)
  215. */
  216. const unsigned char *cs = lockless_dereference(dentry->d_name.name);
  217. return dentry_string_cmp(cs, ct, tcount);
  218. }
  219. struct external_name {
  220. union {
  221. atomic_t count;
  222. struct rcu_head head;
  223. } u;
  224. unsigned char name[];
  225. };
  226. static inline struct external_name *external_name(struct dentry *dentry)
  227. {
  228. return container_of(dentry->d_name.name, struct external_name, name[0]);
  229. }
  230. static void __d_free(struct rcu_head *head)
  231. {
  232. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  233. kmem_cache_free(dentry_cache, dentry);
  234. }
  235. static void __d_free_external(struct rcu_head *head)
  236. {
  237. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  238. kfree(external_name(dentry));
  239. kmem_cache_free(dentry_cache, dentry);
  240. }
  241. static inline int dname_external(const struct dentry *dentry)
  242. {
  243. return dentry->d_name.name != dentry->d_iname;
  244. }
  245. static inline void __d_set_inode_and_type(struct dentry *dentry,
  246. struct inode *inode,
  247. unsigned type_flags)
  248. {
  249. unsigned flags;
  250. dentry->d_inode = inode;
  251. flags = READ_ONCE(dentry->d_flags);
  252. flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
  253. flags |= type_flags;
  254. WRITE_ONCE(dentry->d_flags, flags);
  255. }
  256. static inline void __d_clear_type_and_inode(struct dentry *dentry)
  257. {
  258. unsigned flags = READ_ONCE(dentry->d_flags);
  259. flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
  260. WRITE_ONCE(dentry->d_flags, flags);
  261. dentry->d_inode = NULL;
  262. }
  263. static void dentry_free(struct dentry *dentry)
  264. {
  265. WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
  266. if (unlikely(dname_external(dentry))) {
  267. struct external_name *p = external_name(dentry);
  268. if (likely(atomic_dec_and_test(&p->u.count))) {
  269. call_rcu(&dentry->d_u.d_rcu, __d_free_external);
  270. return;
  271. }
  272. }
  273. /* if dentry was never visible to RCU, immediate free is OK */
  274. if (!(dentry->d_flags & DCACHE_RCUACCESS))
  275. __d_free(&dentry->d_u.d_rcu);
  276. else
  277. call_rcu(&dentry->d_u.d_rcu, __d_free);
  278. }
  279. /**
  280. * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
  281. * @dentry: the target dentry
  282. * After this call, in-progress rcu-walk path lookup will fail. This
  283. * should be called after unhashing, and after changing d_inode (if
  284. * the dentry has not already been unhashed).
  285. */
  286. static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
  287. {
  288. lockdep_assert_held(&dentry->d_lock);
  289. /* Go through am invalidation barrier */
  290. write_seqcount_invalidate(&dentry->d_seq);
  291. }
  292. /*
  293. * Release the dentry's inode, using the filesystem
  294. * d_iput() operation if defined.
  295. */
  296. static void dentry_unlink_inode(struct dentry * dentry)
  297. __releases(dentry->d_lock)
  298. __releases(dentry->d_inode->i_lock)
  299. {
  300. struct inode *inode = dentry->d_inode;
  301. bool hashed = !d_unhashed(dentry);
  302. if (hashed)
  303. raw_write_seqcount_begin(&dentry->d_seq);
  304. __d_clear_type_and_inode(dentry);
  305. hlist_del_init(&dentry->d_u.d_alias);
  306. if (hashed)
  307. raw_write_seqcount_end(&dentry->d_seq);
  308. spin_unlock(&dentry->d_lock);
  309. spin_unlock(&inode->i_lock);
  310. if (!inode->i_nlink)
  311. fsnotify_inoderemove(inode);
  312. if (dentry->d_op && dentry->d_op->d_iput)
  313. dentry->d_op->d_iput(dentry, inode);
  314. else
  315. iput(inode);
  316. }
  317. /*
  318. * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
  319. * is in use - which includes both the "real" per-superblock
  320. * LRU list _and_ the DCACHE_SHRINK_LIST use.
  321. *
  322. * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
  323. * on the shrink list (ie not on the superblock LRU list).
  324. *
  325. * The per-cpu "nr_dentry_unused" counters are updated with
  326. * the DCACHE_LRU_LIST bit.
  327. *
  328. * These helper functions make sure we always follow the
  329. * rules. d_lock must be held by the caller.
  330. */
  331. #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
  332. static void d_lru_add(struct dentry *dentry)
  333. {
  334. D_FLAG_VERIFY(dentry, 0);
  335. dentry->d_flags |= DCACHE_LRU_LIST;
  336. this_cpu_inc(nr_dentry_unused);
  337. WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
  338. }
  339. static void d_lru_del(struct dentry *dentry)
  340. {
  341. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  342. dentry->d_flags &= ~DCACHE_LRU_LIST;
  343. this_cpu_dec(nr_dentry_unused);
  344. WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
  345. }
  346. static void d_shrink_del(struct dentry *dentry)
  347. {
  348. D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
  349. list_del_init(&dentry->d_lru);
  350. dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
  351. this_cpu_dec(nr_dentry_unused);
  352. }
  353. static void d_shrink_add(struct dentry *dentry, struct list_head *list)
  354. {
  355. D_FLAG_VERIFY(dentry, 0);
  356. list_add(&dentry->d_lru, list);
  357. dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
  358. this_cpu_inc(nr_dentry_unused);
  359. }
  360. /*
  361. * These can only be called under the global LRU lock, ie during the
  362. * callback for freeing the LRU list. "isolate" removes it from the
  363. * LRU lists entirely, while shrink_move moves it to the indicated
  364. * private list.
  365. */
  366. static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
  367. {
  368. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  369. dentry->d_flags &= ~DCACHE_LRU_LIST;
  370. this_cpu_dec(nr_dentry_unused);
  371. list_lru_isolate(lru, &dentry->d_lru);
  372. }
  373. static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
  374. struct list_head *list)
  375. {
  376. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  377. dentry->d_flags |= DCACHE_SHRINK_LIST;
  378. list_lru_isolate_move(lru, &dentry->d_lru, list);
  379. }
  380. /*
  381. * dentry_lru_(add|del)_list) must be called with d_lock held.
  382. */
  383. static void dentry_lru_add(struct dentry *dentry)
  384. {
  385. if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
  386. d_lru_add(dentry);
  387. }
  388. /**
  389. * d_drop - drop a dentry
  390. * @dentry: dentry to drop
  391. *
  392. * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
  393. * be found through a VFS lookup any more. Note that this is different from
  394. * deleting the dentry - d_delete will try to mark the dentry negative if
  395. * possible, giving a successful _negative_ lookup, while d_drop will
  396. * just make the cache lookup fail.
  397. *
  398. * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
  399. * reason (NFS timeouts or autofs deletes).
  400. *
  401. * __d_drop requires dentry->d_lock.
  402. */
  403. void __d_drop(struct dentry *dentry)
  404. {
  405. if (!d_unhashed(dentry)) {
  406. struct hlist_bl_head *b;
  407. /*
  408. * Hashed dentries are normally on the dentry hashtable,
  409. * with the exception of those newly allocated by
  410. * d_obtain_alias, which are always IS_ROOT:
  411. */
  412. if (unlikely(IS_ROOT(dentry)))
  413. b = &dentry->d_sb->s_anon;
  414. else
  415. b = d_hash(dentry->d_name.hash);
  416. hlist_bl_lock(b);
  417. __hlist_bl_del(&dentry->d_hash);
  418. dentry->d_hash.pprev = NULL;
  419. hlist_bl_unlock(b);
  420. dentry_rcuwalk_invalidate(dentry);
  421. }
  422. }
  423. EXPORT_SYMBOL(__d_drop);
  424. void d_drop(struct dentry *dentry)
  425. {
  426. spin_lock(&dentry->d_lock);
  427. __d_drop(dentry);
  428. spin_unlock(&dentry->d_lock);
  429. }
  430. EXPORT_SYMBOL(d_drop);
  431. static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
  432. {
  433. struct dentry *next;
  434. /*
  435. * Inform d_walk() and shrink_dentry_list() that we are no longer
  436. * attached to the dentry tree
  437. */
  438. dentry->d_flags |= DCACHE_DENTRY_KILLED;
  439. if (unlikely(list_empty(&dentry->d_child)))
  440. return;
  441. __list_del_entry(&dentry->d_child);
  442. /*
  443. * Cursors can move around the list of children. While we'd been
  444. * a normal list member, it didn't matter - ->d_child.next would've
  445. * been updated. However, from now on it won't be and for the
  446. * things like d_walk() it might end up with a nasty surprise.
  447. * Normally d_walk() doesn't care about cursors moving around -
  448. * ->d_lock on parent prevents that and since a cursor has no children
  449. * of its own, we get through it without ever unlocking the parent.
  450. * There is one exception, though - if we ascend from a child that
  451. * gets killed as soon as we unlock it, the next sibling is found
  452. * using the value left in its ->d_child.next. And if _that_
  453. * pointed to a cursor, and cursor got moved (e.g. by lseek())
  454. * before d_walk() regains parent->d_lock, we'll end up skipping
  455. * everything the cursor had been moved past.
  456. *
  457. * Solution: make sure that the pointer left behind in ->d_child.next
  458. * points to something that won't be moving around. I.e. skip the
  459. * cursors.
  460. */
  461. while (dentry->d_child.next != &parent->d_subdirs) {
  462. next = list_entry(dentry->d_child.next, struct dentry, d_child);
  463. if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
  464. break;
  465. dentry->d_child.next = next->d_child.next;
  466. }
  467. }
  468. static void __dentry_kill(struct dentry *dentry)
  469. {
  470. struct dentry *parent = NULL;
  471. bool can_free = true;
  472. if (!IS_ROOT(dentry))
  473. parent = dentry->d_parent;
  474. /*
  475. * The dentry is now unrecoverably dead to the world.
  476. */
  477. lockref_mark_dead(&dentry->d_lockref);
  478. /*
  479. * inform the fs via d_prune that this dentry is about to be
  480. * unhashed and destroyed.
  481. */
  482. if (dentry->d_flags & DCACHE_OP_PRUNE)
  483. dentry->d_op->d_prune(dentry);
  484. if (dentry->d_flags & DCACHE_LRU_LIST) {
  485. if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
  486. d_lru_del(dentry);
  487. }
  488. /* if it was on the hash then remove it */
  489. __d_drop(dentry);
  490. dentry_unlist(dentry, parent);
  491. if (parent)
  492. spin_unlock(&parent->d_lock);
  493. if (dentry->d_inode)
  494. dentry_unlink_inode(dentry);
  495. else
  496. spin_unlock(&dentry->d_lock);
  497. this_cpu_dec(nr_dentry);
  498. if (dentry->d_op && dentry->d_op->d_release)
  499. dentry->d_op->d_release(dentry);
  500. spin_lock(&dentry->d_lock);
  501. if (dentry->d_flags & DCACHE_SHRINK_LIST) {
  502. dentry->d_flags |= DCACHE_MAY_FREE;
  503. can_free = false;
  504. }
  505. spin_unlock(&dentry->d_lock);
  506. if (likely(can_free))
  507. dentry_free(dentry);
  508. }
  509. /*
  510. * Finish off a dentry we've decided to kill.
  511. * dentry->d_lock must be held, returns with it unlocked.
  512. * If ref is non-zero, then decrement the refcount too.
  513. * Returns dentry requiring refcount drop, or NULL if we're done.
  514. */
  515. static struct dentry *dentry_kill(struct dentry *dentry)
  516. __releases(dentry->d_lock)
  517. {
  518. struct inode *inode = dentry->d_inode;
  519. struct dentry *parent = NULL;
  520. if (inode && unlikely(!spin_trylock(&inode->i_lock)))
  521. goto failed;
  522. if (!IS_ROOT(dentry)) {
  523. parent = dentry->d_parent;
  524. if (unlikely(!spin_trylock(&parent->d_lock))) {
  525. if (inode)
  526. spin_unlock(&inode->i_lock);
  527. goto failed;
  528. }
  529. }
  530. __dentry_kill(dentry);
  531. return parent;
  532. failed:
  533. spin_unlock(&dentry->d_lock);
  534. return dentry; /* try again with same dentry */
  535. }
  536. static inline struct dentry *lock_parent(struct dentry *dentry)
  537. {
  538. struct dentry *parent = dentry->d_parent;
  539. if (IS_ROOT(dentry))
  540. return NULL;
  541. if (unlikely(dentry->d_lockref.count < 0))
  542. return NULL;
  543. if (likely(spin_trylock(&parent->d_lock)))
  544. return parent;
  545. rcu_read_lock();
  546. spin_unlock(&dentry->d_lock);
  547. again:
  548. parent = ACCESS_ONCE(dentry->d_parent);
  549. spin_lock(&parent->d_lock);
  550. /*
  551. * We can't blindly lock dentry until we are sure
  552. * that we won't violate the locking order.
  553. * Any changes of dentry->d_parent must have
  554. * been done with parent->d_lock held, so
  555. * spin_lock() above is enough of a barrier
  556. * for checking if it's still our child.
  557. */
  558. if (unlikely(parent != dentry->d_parent)) {
  559. spin_unlock(&parent->d_lock);
  560. goto again;
  561. }
  562. rcu_read_unlock();
  563. if (parent != dentry)
  564. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  565. else
  566. parent = NULL;
  567. return parent;
  568. }
  569. /*
  570. * Try to do a lockless dput(), and return whether that was successful.
  571. *
  572. * If unsuccessful, we return false, having already taken the dentry lock.
  573. *
  574. * The caller needs to hold the RCU read lock, so that the dentry is
  575. * guaranteed to stay around even if the refcount goes down to zero!
  576. */
  577. static inline bool fast_dput(struct dentry *dentry)
  578. {
  579. int ret;
  580. unsigned int d_flags;
  581. /*
  582. * If we have a d_op->d_delete() operation, we sould not
  583. * let the dentry count go to zero, so use "put_or_lock".
  584. */
  585. if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
  586. return lockref_put_or_lock(&dentry->d_lockref);
  587. /*
  588. * .. otherwise, we can try to just decrement the
  589. * lockref optimistically.
  590. */
  591. ret = lockref_put_return(&dentry->d_lockref);
  592. /*
  593. * If the lockref_put_return() failed due to the lock being held
  594. * by somebody else, the fast path has failed. We will need to
  595. * get the lock, and then check the count again.
  596. */
  597. if (unlikely(ret < 0)) {
  598. spin_lock(&dentry->d_lock);
  599. if (dentry->d_lockref.count > 1) {
  600. dentry->d_lockref.count--;
  601. spin_unlock(&dentry->d_lock);
  602. return 1;
  603. }
  604. return 0;
  605. }
  606. /*
  607. * If we weren't the last ref, we're done.
  608. */
  609. if (ret)
  610. return 1;
  611. /*
  612. * Careful, careful. The reference count went down
  613. * to zero, but we don't hold the dentry lock, so
  614. * somebody else could get it again, and do another
  615. * dput(), and we need to not race with that.
  616. *
  617. * However, there is a very special and common case
  618. * where we don't care, because there is nothing to
  619. * do: the dentry is still hashed, it does not have
  620. * a 'delete' op, and it's referenced and already on
  621. * the LRU list.
  622. *
  623. * NOTE! Since we aren't locked, these values are
  624. * not "stable". However, it is sufficient that at
  625. * some point after we dropped the reference the
  626. * dentry was hashed and the flags had the proper
  627. * value. Other dentry users may have re-gotten
  628. * a reference to the dentry and change that, but
  629. * our work is done - we can leave the dentry
  630. * around with a zero refcount.
  631. */
  632. smp_rmb();
  633. d_flags = ACCESS_ONCE(dentry->d_flags);
  634. d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
  635. /* Nothing to do? Dropping the reference was all we needed? */
  636. if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
  637. return 1;
  638. /*
  639. * Not the fast normal case? Get the lock. We've already decremented
  640. * the refcount, but we'll need to re-check the situation after
  641. * getting the lock.
  642. */
  643. spin_lock(&dentry->d_lock);
  644. /*
  645. * Did somebody else grab a reference to it in the meantime, and
  646. * we're no longer the last user after all? Alternatively, somebody
  647. * else could have killed it and marked it dead. Either way, we
  648. * don't need to do anything else.
  649. */
  650. if (dentry->d_lockref.count) {
  651. spin_unlock(&dentry->d_lock);
  652. return 1;
  653. }
  654. /*
  655. * Re-get the reference we optimistically dropped. We hold the
  656. * lock, and we just tested that it was zero, so we can just
  657. * set it to 1.
  658. */
  659. dentry->d_lockref.count = 1;
  660. return 0;
  661. }
  662. /*
  663. * This is dput
  664. *
  665. * This is complicated by the fact that we do not want to put
  666. * dentries that are no longer on any hash chain on the unused
  667. * list: we'd much rather just get rid of them immediately.
  668. *
  669. * However, that implies that we have to traverse the dentry
  670. * tree upwards to the parents which might _also_ now be
  671. * scheduled for deletion (it may have been only waiting for
  672. * its last child to go away).
  673. *
  674. * This tail recursion is done by hand as we don't want to depend
  675. * on the compiler to always get this right (gcc generally doesn't).
  676. * Real recursion would eat up our stack space.
  677. */
  678. /*
  679. * dput - release a dentry
  680. * @dentry: dentry to release
  681. *
  682. * Release a dentry. This will drop the usage count and if appropriate
  683. * call the dentry unlink method as well as removing it from the queues and
  684. * releasing its resources. If the parent dentries were scheduled for release
  685. * they too may now get deleted.
  686. */
  687. void dput(struct dentry *dentry)
  688. {
  689. if (unlikely(!dentry))
  690. return;
  691. repeat:
  692. might_sleep();
  693. rcu_read_lock();
  694. if (likely(fast_dput(dentry))) {
  695. rcu_read_unlock();
  696. return;
  697. }
  698. /* Slow case: now with the dentry lock held */
  699. rcu_read_unlock();
  700. WARN_ON(d_in_lookup(dentry));
  701. /* Unreachable? Get rid of it */
  702. if (unlikely(d_unhashed(dentry)))
  703. goto kill_it;
  704. if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
  705. goto kill_it;
  706. if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
  707. if (dentry->d_op->d_delete(dentry))
  708. goto kill_it;
  709. }
  710. if (!(dentry->d_flags & DCACHE_REFERENCED))
  711. dentry->d_flags |= DCACHE_REFERENCED;
  712. dentry_lru_add(dentry);
  713. dentry->d_lockref.count--;
  714. spin_unlock(&dentry->d_lock);
  715. return;
  716. kill_it:
  717. dentry = dentry_kill(dentry);
  718. if (dentry) {
  719. cond_resched();
  720. goto repeat;
  721. }
  722. }
  723. EXPORT_SYMBOL(dput);
  724. /* This must be called with d_lock held */
  725. static inline void __dget_dlock(struct dentry *dentry)
  726. {
  727. dentry->d_lockref.count++;
  728. }
  729. static inline void __dget(struct dentry *dentry)
  730. {
  731. lockref_get(&dentry->d_lockref);
  732. }
  733. struct dentry *dget_parent(struct dentry *dentry)
  734. {
  735. int gotref;
  736. struct dentry *ret;
  737. /*
  738. * Do optimistic parent lookup without any
  739. * locking.
  740. */
  741. rcu_read_lock();
  742. ret = ACCESS_ONCE(dentry->d_parent);
  743. gotref = lockref_get_not_zero(&ret->d_lockref);
  744. rcu_read_unlock();
  745. if (likely(gotref)) {
  746. if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
  747. return ret;
  748. dput(ret);
  749. }
  750. repeat:
  751. /*
  752. * Don't need rcu_dereference because we re-check it was correct under
  753. * the lock.
  754. */
  755. rcu_read_lock();
  756. ret = dentry->d_parent;
  757. spin_lock(&ret->d_lock);
  758. if (unlikely(ret != dentry->d_parent)) {
  759. spin_unlock(&ret->d_lock);
  760. rcu_read_unlock();
  761. goto repeat;
  762. }
  763. rcu_read_unlock();
  764. BUG_ON(!ret->d_lockref.count);
  765. ret->d_lockref.count++;
  766. spin_unlock(&ret->d_lock);
  767. return ret;
  768. }
  769. EXPORT_SYMBOL(dget_parent);
  770. /**
  771. * d_find_alias - grab a hashed alias of inode
  772. * @inode: inode in question
  773. *
  774. * If inode has a hashed alias, or is a directory and has any alias,
  775. * acquire the reference to alias and return it. Otherwise return NULL.
  776. * Notice that if inode is a directory there can be only one alias and
  777. * it can be unhashed only if it has no children, or if it is the root
  778. * of a filesystem, or if the directory was renamed and d_revalidate
  779. * was the first vfs operation to notice.
  780. *
  781. * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
  782. * any other hashed alias over that one.
  783. */
  784. static struct dentry *__d_find_alias(struct inode *inode)
  785. {
  786. struct dentry *alias, *discon_alias;
  787. again:
  788. discon_alias = NULL;
  789. hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
  790. spin_lock(&alias->d_lock);
  791. if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
  792. if (IS_ROOT(alias) &&
  793. (alias->d_flags & DCACHE_DISCONNECTED)) {
  794. discon_alias = alias;
  795. } else {
  796. __dget_dlock(alias);
  797. spin_unlock(&alias->d_lock);
  798. return alias;
  799. }
  800. }
  801. spin_unlock(&alias->d_lock);
  802. }
  803. if (discon_alias) {
  804. alias = discon_alias;
  805. spin_lock(&alias->d_lock);
  806. if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
  807. __dget_dlock(alias);
  808. spin_unlock(&alias->d_lock);
  809. return alias;
  810. }
  811. spin_unlock(&alias->d_lock);
  812. goto again;
  813. }
  814. return NULL;
  815. }
  816. struct dentry *d_find_alias(struct inode *inode)
  817. {
  818. struct dentry *de = NULL;
  819. if (!hlist_empty(&inode->i_dentry)) {
  820. spin_lock(&inode->i_lock);
  821. de = __d_find_alias(inode);
  822. spin_unlock(&inode->i_lock);
  823. }
  824. return de;
  825. }
  826. EXPORT_SYMBOL(d_find_alias);
  827. /*
  828. * Try to kill dentries associated with this inode.
  829. * WARNING: you must own a reference to inode.
  830. */
  831. void d_prune_aliases(struct inode *inode)
  832. {
  833. struct dentry *dentry;
  834. restart:
  835. spin_lock(&inode->i_lock);
  836. hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
  837. spin_lock(&dentry->d_lock);
  838. if (!dentry->d_lockref.count) {
  839. struct dentry *parent = lock_parent(dentry);
  840. if (likely(!dentry->d_lockref.count)) {
  841. __dentry_kill(dentry);
  842. dput(parent);
  843. goto restart;
  844. }
  845. if (parent)
  846. spin_unlock(&parent->d_lock);
  847. }
  848. spin_unlock(&dentry->d_lock);
  849. }
  850. spin_unlock(&inode->i_lock);
  851. }
  852. EXPORT_SYMBOL(d_prune_aliases);
  853. static void shrink_dentry_list(struct list_head *list)
  854. {
  855. struct dentry *dentry, *parent;
  856. while (!list_empty(list)) {
  857. struct inode *inode;
  858. dentry = list_entry(list->prev, struct dentry, d_lru);
  859. spin_lock(&dentry->d_lock);
  860. parent = lock_parent(dentry);
  861. /*
  862. * The dispose list is isolated and dentries are not accounted
  863. * to the LRU here, so we can simply remove it from the list
  864. * here regardless of whether it is referenced or not.
  865. */
  866. d_shrink_del(dentry);
  867. /*
  868. * We found an inuse dentry which was not removed from
  869. * the LRU because of laziness during lookup. Do not free it.
  870. */
  871. if (dentry->d_lockref.count > 0) {
  872. spin_unlock(&dentry->d_lock);
  873. if (parent)
  874. spin_unlock(&parent->d_lock);
  875. continue;
  876. }
  877. if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
  878. bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
  879. spin_unlock(&dentry->d_lock);
  880. if (parent)
  881. spin_unlock(&parent->d_lock);
  882. if (can_free)
  883. dentry_free(dentry);
  884. continue;
  885. }
  886. inode = dentry->d_inode;
  887. if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
  888. d_shrink_add(dentry, list);
  889. spin_unlock(&dentry->d_lock);
  890. if (parent)
  891. spin_unlock(&parent->d_lock);
  892. continue;
  893. }
  894. __dentry_kill(dentry);
  895. /*
  896. * We need to prune ancestors too. This is necessary to prevent
  897. * quadratic behavior of shrink_dcache_parent(), but is also
  898. * expected to be beneficial in reducing dentry cache
  899. * fragmentation.
  900. */
  901. dentry = parent;
  902. while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
  903. parent = lock_parent(dentry);
  904. if (dentry->d_lockref.count != 1) {
  905. dentry->d_lockref.count--;
  906. spin_unlock(&dentry->d_lock);
  907. if (parent)
  908. spin_unlock(&parent->d_lock);
  909. break;
  910. }
  911. inode = dentry->d_inode; /* can't be NULL */
  912. if (unlikely(!spin_trylock(&inode->i_lock))) {
  913. spin_unlock(&dentry->d_lock);
  914. if (parent)
  915. spin_unlock(&parent->d_lock);
  916. cpu_relax();
  917. continue;
  918. }
  919. __dentry_kill(dentry);
  920. dentry = parent;
  921. }
  922. }
  923. }
  924. static enum lru_status dentry_lru_isolate(struct list_head *item,
  925. struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
  926. {
  927. struct list_head *freeable = arg;
  928. struct dentry *dentry = container_of(item, struct dentry, d_lru);
  929. /*
  930. * we are inverting the lru lock/dentry->d_lock here,
  931. * so use a trylock. If we fail to get the lock, just skip
  932. * it
  933. */
  934. if (!spin_trylock(&dentry->d_lock))
  935. return LRU_SKIP;
  936. /*
  937. * Referenced dentries are still in use. If they have active
  938. * counts, just remove them from the LRU. Otherwise give them
  939. * another pass through the LRU.
  940. */
  941. if (dentry->d_lockref.count) {
  942. d_lru_isolate(lru, dentry);
  943. spin_unlock(&dentry->d_lock);
  944. return LRU_REMOVED;
  945. }
  946. if (dentry->d_flags & DCACHE_REFERENCED) {
  947. dentry->d_flags &= ~DCACHE_REFERENCED;
  948. spin_unlock(&dentry->d_lock);
  949. /*
  950. * The list move itself will be made by the common LRU code. At
  951. * this point, we've dropped the dentry->d_lock but keep the
  952. * lru lock. This is safe to do, since every list movement is
  953. * protected by the lru lock even if both locks are held.
  954. *
  955. * This is guaranteed by the fact that all LRU management
  956. * functions are intermediated by the LRU API calls like
  957. * list_lru_add and list_lru_del. List movement in this file
  958. * only ever occur through this functions or through callbacks
  959. * like this one, that are called from the LRU API.
  960. *
  961. * The only exceptions to this are functions like
  962. * shrink_dentry_list, and code that first checks for the
  963. * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
  964. * operating only with stack provided lists after they are
  965. * properly isolated from the main list. It is thus, always a
  966. * local access.
  967. */
  968. return LRU_ROTATE;
  969. }
  970. d_lru_shrink_move(lru, dentry, freeable);
  971. spin_unlock(&dentry->d_lock);
  972. return LRU_REMOVED;
  973. }
  974. /**
  975. * prune_dcache_sb - shrink the dcache
  976. * @sb: superblock
  977. * @sc: shrink control, passed to list_lru_shrink_walk()
  978. *
  979. * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
  980. * is done when we need more memory and called from the superblock shrinker
  981. * function.
  982. *
  983. * This function may fail to free any resources if all the dentries are in
  984. * use.
  985. */
  986. long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
  987. {
  988. LIST_HEAD(dispose);
  989. long freed;
  990. freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
  991. dentry_lru_isolate, &dispose);
  992. shrink_dentry_list(&dispose);
  993. return freed;
  994. }
  995. static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
  996. struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
  997. {
  998. struct list_head *freeable = arg;
  999. struct dentry *dentry = container_of(item, struct dentry, d_lru);
  1000. /*
  1001. * we are inverting the lru lock/dentry->d_lock here,
  1002. * so use a trylock. If we fail to get the lock, just skip
  1003. * it
  1004. */
  1005. if (!spin_trylock(&dentry->d_lock))
  1006. return LRU_SKIP;
  1007. d_lru_shrink_move(lru, dentry, freeable);
  1008. spin_unlock(&dentry->d_lock);
  1009. return LRU_REMOVED;
  1010. }
  1011. /**
  1012. * shrink_dcache_sb - shrink dcache for a superblock
  1013. * @sb: superblock
  1014. *
  1015. * Shrink the dcache for the specified super block. This is used to free
  1016. * the dcache before unmounting a file system.
  1017. */
  1018. void shrink_dcache_sb(struct super_block *sb)
  1019. {
  1020. long freed;
  1021. do {
  1022. LIST_HEAD(dispose);
  1023. freed = list_lru_walk(&sb->s_dentry_lru,
  1024. dentry_lru_isolate_shrink, &dispose, UINT_MAX);
  1025. this_cpu_sub(nr_dentry_unused, freed);
  1026. shrink_dentry_list(&dispose);
  1027. } while (freed > 0);
  1028. }
  1029. EXPORT_SYMBOL(shrink_dcache_sb);
  1030. /**
  1031. * enum d_walk_ret - action to talke during tree walk
  1032. * @D_WALK_CONTINUE: contrinue walk
  1033. * @D_WALK_QUIT: quit walk
  1034. * @D_WALK_NORETRY: quit when retry is needed
  1035. * @D_WALK_SKIP: skip this dentry and its children
  1036. */
  1037. enum d_walk_ret {
  1038. D_WALK_CONTINUE,
  1039. D_WALK_QUIT,
  1040. D_WALK_NORETRY,
  1041. D_WALK_SKIP,
  1042. };
  1043. /**
  1044. * d_walk - walk the dentry tree
  1045. * @parent: start of walk
  1046. * @data: data passed to @enter() and @finish()
  1047. * @enter: callback when first entering the dentry
  1048. * @finish: callback when successfully finished the walk
  1049. *
  1050. * The @enter() and @finish() callbacks are called with d_lock held.
  1051. */
  1052. static void d_walk(struct dentry *parent, void *data,
  1053. enum d_walk_ret (*enter)(void *, struct dentry *),
  1054. void (*finish)(void *))
  1055. {
  1056. struct dentry *this_parent;
  1057. struct list_head *next;
  1058. unsigned seq = 0;
  1059. enum d_walk_ret ret;
  1060. bool retry = true;
  1061. again:
  1062. read_seqbegin_or_lock(&rename_lock, &seq);
  1063. this_parent = parent;
  1064. spin_lock(&this_parent->d_lock);
  1065. ret = enter(data, this_parent);
  1066. switch (ret) {
  1067. case D_WALK_CONTINUE:
  1068. break;
  1069. case D_WALK_QUIT:
  1070. case D_WALK_SKIP:
  1071. goto out_unlock;
  1072. case D_WALK_NORETRY:
  1073. retry = false;
  1074. break;
  1075. }
  1076. repeat:
  1077. next = this_parent->d_subdirs.next;
  1078. resume:
  1079. while (next != &this_parent->d_subdirs) {
  1080. struct list_head *tmp = next;
  1081. struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
  1082. next = tmp->next;
  1083. if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
  1084. continue;
  1085. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1086. ret = enter(data, dentry);
  1087. switch (ret) {
  1088. case D_WALK_CONTINUE:
  1089. break;
  1090. case D_WALK_QUIT:
  1091. spin_unlock(&dentry->d_lock);
  1092. goto out_unlock;
  1093. case D_WALK_NORETRY:
  1094. retry = false;
  1095. break;
  1096. case D_WALK_SKIP:
  1097. spin_unlock(&dentry->d_lock);
  1098. continue;
  1099. }
  1100. if (!list_empty(&dentry->d_subdirs)) {
  1101. spin_unlock(&this_parent->d_lock);
  1102. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  1103. this_parent = dentry;
  1104. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  1105. goto repeat;
  1106. }
  1107. spin_unlock(&dentry->d_lock);
  1108. }
  1109. /*
  1110. * All done at this level ... ascend and resume the search.
  1111. */
  1112. rcu_read_lock();
  1113. ascend:
  1114. if (this_parent != parent) {
  1115. struct dentry *child = this_parent;
  1116. this_parent = child->d_parent;
  1117. spin_unlock(&child->d_lock);
  1118. spin_lock(&this_parent->d_lock);
  1119. /* might go back up the wrong parent if we have had a rename. */
  1120. if (need_seqretry(&rename_lock, seq))
  1121. goto rename_retry;
  1122. /* go into the first sibling still alive */
  1123. do {
  1124. next = child->d_child.next;
  1125. if (next == &this_parent->d_subdirs)
  1126. goto ascend;
  1127. child = list_entry(next, struct dentry, d_child);
  1128. } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
  1129. rcu_read_unlock();
  1130. goto resume;
  1131. }
  1132. if (need_seqretry(&rename_lock, seq))
  1133. goto rename_retry;
  1134. rcu_read_unlock();
  1135. if (finish)
  1136. finish(data);
  1137. out_unlock:
  1138. spin_unlock(&this_parent->d_lock);
  1139. done_seqretry(&rename_lock, seq);
  1140. return;
  1141. rename_retry:
  1142. spin_unlock(&this_parent->d_lock);
  1143. rcu_read_unlock();
  1144. BUG_ON(seq & 1);
  1145. if (!retry)
  1146. return;
  1147. seq = 1;
  1148. goto again;
  1149. }
  1150. /*
  1151. * Search for at least 1 mount point in the dentry's subdirs.
  1152. * We descend to the next level whenever the d_subdirs
  1153. * list is non-empty and continue searching.
  1154. */
  1155. static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
  1156. {
  1157. int *ret = data;
  1158. if (d_mountpoint(dentry)) {
  1159. *ret = 1;
  1160. return D_WALK_QUIT;
  1161. }
  1162. return D_WALK_CONTINUE;
  1163. }
  1164. /**
  1165. * have_submounts - check for mounts over a dentry
  1166. * @parent: dentry to check.
  1167. *
  1168. * Return true if the parent or its subdirectories contain
  1169. * a mount point
  1170. */
  1171. int have_submounts(struct dentry *parent)
  1172. {
  1173. int ret = 0;
  1174. d_walk(parent, &ret, check_mount, NULL);
  1175. return ret;
  1176. }
  1177. EXPORT_SYMBOL(have_submounts);
  1178. /*
  1179. * Called by mount code to set a mountpoint and check if the mountpoint is
  1180. * reachable (e.g. NFS can unhash a directory dentry and then the complete
  1181. * subtree can become unreachable).
  1182. *
  1183. * Only one of d_invalidate() and d_set_mounted() must succeed. For
  1184. * this reason take rename_lock and d_lock on dentry and ancestors.
  1185. */
  1186. int d_set_mounted(struct dentry *dentry)
  1187. {
  1188. struct dentry *p;
  1189. int ret = -ENOENT;
  1190. write_seqlock(&rename_lock);
  1191. for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
  1192. /* Need exclusion wrt. d_invalidate() */
  1193. spin_lock(&p->d_lock);
  1194. if (unlikely(d_unhashed(p))) {
  1195. spin_unlock(&p->d_lock);
  1196. goto out;
  1197. }
  1198. spin_unlock(&p->d_lock);
  1199. }
  1200. spin_lock(&dentry->d_lock);
  1201. if (!d_unlinked(dentry)) {
  1202. dentry->d_flags |= DCACHE_MOUNTED;
  1203. ret = 0;
  1204. }
  1205. spin_unlock(&dentry->d_lock);
  1206. out:
  1207. write_sequnlock(&rename_lock);
  1208. return ret;
  1209. }
  1210. /*
  1211. * Search the dentry child list of the specified parent,
  1212. * and move any unused dentries to the end of the unused
  1213. * list for prune_dcache(). We descend to the next level
  1214. * whenever the d_subdirs list is non-empty and continue
  1215. * searching.
  1216. *
  1217. * It returns zero iff there are no unused children,
  1218. * otherwise it returns the number of children moved to
  1219. * the end of the unused list. This may not be the total
  1220. * number of unused children, because select_parent can
  1221. * drop the lock and return early due to latency
  1222. * constraints.
  1223. */
  1224. struct select_data {
  1225. struct dentry *start;
  1226. struct list_head dispose;
  1227. int found;
  1228. };
  1229. static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
  1230. {
  1231. struct select_data *data = _data;
  1232. enum d_walk_ret ret = D_WALK_CONTINUE;
  1233. if (data->start == dentry)
  1234. goto out;
  1235. if (dentry->d_flags & DCACHE_SHRINK_LIST) {
  1236. data->found++;
  1237. } else {
  1238. if (dentry->d_flags & DCACHE_LRU_LIST)
  1239. d_lru_del(dentry);
  1240. if (!dentry->d_lockref.count) {
  1241. d_shrink_add(dentry, &data->dispose);
  1242. data->found++;
  1243. }
  1244. }
  1245. /*
  1246. * We can return to the caller if we have found some (this
  1247. * ensures forward progress). We'll be coming back to find
  1248. * the rest.
  1249. */
  1250. if (!list_empty(&data->dispose))
  1251. ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
  1252. out:
  1253. return ret;
  1254. }
  1255. /**
  1256. * shrink_dcache_parent - prune dcache
  1257. * @parent: parent of entries to prune
  1258. *
  1259. * Prune the dcache to remove unused children of the parent dentry.
  1260. */
  1261. void shrink_dcache_parent(struct dentry *parent)
  1262. {
  1263. for (;;) {
  1264. struct select_data data;
  1265. INIT_LIST_HEAD(&data.dispose);
  1266. data.start = parent;
  1267. data.found = 0;
  1268. d_walk(parent, &data, select_collect, NULL);
  1269. if (!data.found)
  1270. break;
  1271. shrink_dentry_list(&data.dispose);
  1272. cond_resched();
  1273. }
  1274. }
  1275. EXPORT_SYMBOL(shrink_dcache_parent);
  1276. static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
  1277. {
  1278. /* it has busy descendents; complain about those instead */
  1279. if (!list_empty(&dentry->d_subdirs))
  1280. return D_WALK_CONTINUE;
  1281. /* root with refcount 1 is fine */
  1282. if (dentry == _data && dentry->d_lockref.count == 1)
  1283. return D_WALK_CONTINUE;
  1284. printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
  1285. " still in use (%d) [unmount of %s %s]\n",
  1286. dentry,
  1287. dentry->d_inode ?
  1288. dentry->d_inode->i_ino : 0UL,
  1289. dentry,
  1290. dentry->d_lockref.count,
  1291. dentry->d_sb->s_type->name,
  1292. dentry->d_sb->s_id);
  1293. WARN_ON(1);
  1294. return D_WALK_CONTINUE;
  1295. }
  1296. static void do_one_tree(struct dentry *dentry)
  1297. {
  1298. shrink_dcache_parent(dentry);
  1299. d_walk(dentry, dentry, umount_check, NULL);
  1300. d_drop(dentry);
  1301. dput(dentry);
  1302. }
  1303. /*
  1304. * destroy the dentries attached to a superblock on unmounting
  1305. */
  1306. void shrink_dcache_for_umount(struct super_block *sb)
  1307. {
  1308. struct dentry *dentry;
  1309. WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
  1310. dentry = sb->s_root;
  1311. sb->s_root = NULL;
  1312. do_one_tree(dentry);
  1313. while (!hlist_bl_empty(&sb->s_anon)) {
  1314. dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
  1315. do_one_tree(dentry);
  1316. }
  1317. }
  1318. struct detach_data {
  1319. struct select_data select;
  1320. struct dentry *mountpoint;
  1321. };
  1322. static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
  1323. {
  1324. struct detach_data *data = _data;
  1325. if (d_mountpoint(dentry)) {
  1326. __dget_dlock(dentry);
  1327. data->mountpoint = dentry;
  1328. return D_WALK_QUIT;
  1329. }
  1330. return select_collect(&data->select, dentry);
  1331. }
  1332. static void check_and_drop(void *_data)
  1333. {
  1334. struct detach_data *data = _data;
  1335. if (!data->mountpoint && !data->select.found)
  1336. __d_drop(data->select.start);
  1337. }
  1338. /**
  1339. * d_invalidate - detach submounts, prune dcache, and drop
  1340. * @dentry: dentry to invalidate (aka detach, prune and drop)
  1341. *
  1342. * no dcache lock.
  1343. *
  1344. * The final d_drop is done as an atomic operation relative to
  1345. * rename_lock ensuring there are no races with d_set_mounted. This
  1346. * ensures there are no unhashed dentries on the path to a mountpoint.
  1347. */
  1348. void d_invalidate(struct dentry *dentry)
  1349. {
  1350. /*
  1351. * If it's already been dropped, return OK.
  1352. */
  1353. spin_lock(&dentry->d_lock);
  1354. if (d_unhashed(dentry)) {
  1355. spin_unlock(&dentry->d_lock);
  1356. return;
  1357. }
  1358. spin_unlock(&dentry->d_lock);
  1359. /* Negative dentries can be dropped without further checks */
  1360. if (!dentry->d_inode) {
  1361. d_drop(dentry);
  1362. return;
  1363. }
  1364. for (;;) {
  1365. struct detach_data data;
  1366. data.mountpoint = NULL;
  1367. INIT_LIST_HEAD(&data.select.dispose);
  1368. data.select.start = dentry;
  1369. data.select.found = 0;
  1370. d_walk(dentry, &data, detach_and_collect, check_and_drop);
  1371. if (data.select.found)
  1372. shrink_dentry_list(&data.select.dispose);
  1373. if (data.mountpoint) {
  1374. detach_mounts(data.mountpoint);
  1375. dput(data.mountpoint);
  1376. }
  1377. if (!data.mountpoint && !data.select.found)
  1378. break;
  1379. cond_resched();
  1380. }
  1381. }
  1382. EXPORT_SYMBOL(d_invalidate);
  1383. /**
  1384. * __d_alloc - allocate a dcache entry
  1385. * @sb: filesystem it will belong to
  1386. * @name: qstr of the name
  1387. *
  1388. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1389. * available. On a success the dentry is returned. The name passed in is
  1390. * copied and the copy passed in may be reused after this call.
  1391. */
  1392. struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
  1393. {
  1394. struct dentry *dentry;
  1395. char *dname;
  1396. int err;
  1397. dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
  1398. if (!dentry)
  1399. return NULL;
  1400. /*
  1401. * We guarantee that the inline name is always NUL-terminated.
  1402. * This way the memcpy() done by the name switching in rename
  1403. * will still always have a NUL at the end, even if we might
  1404. * be overwriting an internal NUL character
  1405. */
  1406. dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
  1407. if (unlikely(!name)) {
  1408. static const struct qstr anon = QSTR_INIT("/", 1);
  1409. name = &anon;
  1410. dname = dentry->d_iname;
  1411. } else if (name->len > DNAME_INLINE_LEN-1) {
  1412. size_t size = offsetof(struct external_name, name[1]);
  1413. struct external_name *p = kmalloc(size + name->len,
  1414. GFP_KERNEL_ACCOUNT);
  1415. if (!p) {
  1416. kmem_cache_free(dentry_cache, dentry);
  1417. return NULL;
  1418. }
  1419. atomic_set(&p->u.count, 1);
  1420. dname = p->name;
  1421. if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
  1422. kasan_unpoison_shadow(dname,
  1423. round_up(name->len + 1, sizeof(unsigned long)));
  1424. } else {
  1425. dname = dentry->d_iname;
  1426. }
  1427. dentry->d_name.len = name->len;
  1428. dentry->d_name.hash = name->hash;
  1429. memcpy(dname, name->name, name->len);
  1430. dname[name->len] = 0;
  1431. /* Make sure we always see the terminating NUL character */
  1432. smp_wmb();
  1433. dentry->d_name.name = dname;
  1434. dentry->d_lockref.count = 1;
  1435. dentry->d_flags = 0;
  1436. spin_lock_init(&dentry->d_lock);
  1437. seqcount_init(&dentry->d_seq);
  1438. dentry->d_inode = NULL;
  1439. dentry->d_parent = dentry;
  1440. dentry->d_sb = sb;
  1441. dentry->d_op = NULL;
  1442. dentry->d_fsdata = NULL;
  1443. INIT_HLIST_BL_NODE(&dentry->d_hash);
  1444. INIT_LIST_HEAD(&dentry->d_lru);
  1445. INIT_LIST_HEAD(&dentry->d_subdirs);
  1446. INIT_HLIST_NODE(&dentry->d_u.d_alias);
  1447. INIT_LIST_HEAD(&dentry->d_child);
  1448. d_set_d_op(dentry, dentry->d_sb->s_d_op);
  1449. if (dentry->d_op && dentry->d_op->d_init) {
  1450. err = dentry->d_op->d_init(dentry);
  1451. if (err) {
  1452. if (dname_external(dentry))
  1453. kfree(external_name(dentry));
  1454. kmem_cache_free(dentry_cache, dentry);
  1455. return NULL;
  1456. }
  1457. }
  1458. this_cpu_inc(nr_dentry);
  1459. return dentry;
  1460. }
  1461. /**
  1462. * d_alloc - allocate a dcache entry
  1463. * @parent: parent of entry to allocate
  1464. * @name: qstr of the name
  1465. *
  1466. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1467. * available. On a success the dentry is returned. The name passed in is
  1468. * copied and the copy passed in may be reused after this call.
  1469. */
  1470. struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
  1471. {
  1472. struct dentry *dentry = __d_alloc(parent->d_sb, name);
  1473. if (!dentry)
  1474. return NULL;
  1475. dentry->d_flags |= DCACHE_RCUACCESS;
  1476. spin_lock(&parent->d_lock);
  1477. /*
  1478. * don't need child lock because it is not subject
  1479. * to concurrency here
  1480. */
  1481. __dget_dlock(parent);
  1482. dentry->d_parent = parent;
  1483. list_add(&dentry->d_child, &parent->d_subdirs);
  1484. spin_unlock(&parent->d_lock);
  1485. return dentry;
  1486. }
  1487. EXPORT_SYMBOL(d_alloc);
  1488. struct dentry *d_alloc_cursor(struct dentry * parent)
  1489. {
  1490. struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
  1491. if (dentry) {
  1492. dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
  1493. dentry->d_parent = dget(parent);
  1494. }
  1495. return dentry;
  1496. }
  1497. /**
  1498. * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
  1499. * @sb: the superblock
  1500. * @name: qstr of the name
  1501. *
  1502. * For a filesystem that just pins its dentries in memory and never
  1503. * performs lookups at all, return an unhashed IS_ROOT dentry.
  1504. */
  1505. struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
  1506. {
  1507. return __d_alloc(sb, name);
  1508. }
  1509. EXPORT_SYMBOL(d_alloc_pseudo);
  1510. struct dentry *d_alloc_name(struct dentry *parent, const char *name)
  1511. {
  1512. struct qstr q;
  1513. q.name = name;
  1514. q.hash_len = hashlen_string(parent, name);
  1515. return d_alloc(parent, &q);
  1516. }
  1517. EXPORT_SYMBOL(d_alloc_name);
  1518. void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
  1519. {
  1520. WARN_ON_ONCE(dentry->d_op);
  1521. WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
  1522. DCACHE_OP_COMPARE |
  1523. DCACHE_OP_REVALIDATE |
  1524. DCACHE_OP_WEAK_REVALIDATE |
  1525. DCACHE_OP_DELETE |
  1526. DCACHE_OP_REAL));
  1527. dentry->d_op = op;
  1528. if (!op)
  1529. return;
  1530. if (op->d_hash)
  1531. dentry->d_flags |= DCACHE_OP_HASH;
  1532. if (op->d_compare)
  1533. dentry->d_flags |= DCACHE_OP_COMPARE;
  1534. if (op->d_revalidate)
  1535. dentry->d_flags |= DCACHE_OP_REVALIDATE;
  1536. if (op->d_weak_revalidate)
  1537. dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
  1538. if (op->d_delete)
  1539. dentry->d_flags |= DCACHE_OP_DELETE;
  1540. if (op->d_prune)
  1541. dentry->d_flags |= DCACHE_OP_PRUNE;
  1542. if (op->d_real)
  1543. dentry->d_flags |= DCACHE_OP_REAL;
  1544. }
  1545. EXPORT_SYMBOL(d_set_d_op);
  1546. /*
  1547. * d_set_fallthru - Mark a dentry as falling through to a lower layer
  1548. * @dentry - The dentry to mark
  1549. *
  1550. * Mark a dentry as falling through to the lower layer (as set with
  1551. * d_pin_lower()). This flag may be recorded on the medium.
  1552. */
  1553. void d_set_fallthru(struct dentry *dentry)
  1554. {
  1555. spin_lock(&dentry->d_lock);
  1556. dentry->d_flags |= DCACHE_FALLTHRU;
  1557. spin_unlock(&dentry->d_lock);
  1558. }
  1559. EXPORT_SYMBOL(d_set_fallthru);
  1560. static unsigned d_flags_for_inode(struct inode *inode)
  1561. {
  1562. unsigned add_flags = DCACHE_REGULAR_TYPE;
  1563. if (!inode)
  1564. return DCACHE_MISS_TYPE;
  1565. if (S_ISDIR(inode->i_mode)) {
  1566. add_flags = DCACHE_DIRECTORY_TYPE;
  1567. if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
  1568. if (unlikely(!inode->i_op->lookup))
  1569. add_flags = DCACHE_AUTODIR_TYPE;
  1570. else
  1571. inode->i_opflags |= IOP_LOOKUP;
  1572. }
  1573. goto type_determined;
  1574. }
  1575. if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
  1576. if (unlikely(inode->i_op->get_link)) {
  1577. add_flags = DCACHE_SYMLINK_TYPE;
  1578. goto type_determined;
  1579. }
  1580. inode->i_opflags |= IOP_NOFOLLOW;
  1581. }
  1582. if (unlikely(!S_ISREG(inode->i_mode)))
  1583. add_flags = DCACHE_SPECIAL_TYPE;
  1584. type_determined:
  1585. if (unlikely(IS_AUTOMOUNT(inode)))
  1586. add_flags |= DCACHE_NEED_AUTOMOUNT;
  1587. return add_flags;
  1588. }
  1589. static void __d_instantiate(struct dentry *dentry, struct inode *inode)
  1590. {
  1591. unsigned add_flags = d_flags_for_inode(inode);
  1592. WARN_ON(d_in_lookup(dentry));
  1593. spin_lock(&dentry->d_lock);
  1594. hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
  1595. raw_write_seqcount_begin(&dentry->d_seq);
  1596. __d_set_inode_and_type(dentry, inode, add_flags);
  1597. raw_write_seqcount_end(&dentry->d_seq);
  1598. fsnotify_update_flags(dentry);
  1599. spin_unlock(&dentry->d_lock);
  1600. }
  1601. /**
  1602. * d_instantiate - fill in inode information for a dentry
  1603. * @entry: dentry to complete
  1604. * @inode: inode to attach to this dentry
  1605. *
  1606. * Fill in inode information in the entry.
  1607. *
  1608. * This turns negative dentries into productive full members
  1609. * of society.
  1610. *
  1611. * NOTE! This assumes that the inode count has been incremented
  1612. * (or otherwise set) by the caller to indicate that it is now
  1613. * in use by the dcache.
  1614. */
  1615. void d_instantiate(struct dentry *entry, struct inode * inode)
  1616. {
  1617. BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
  1618. if (inode) {
  1619. security_d_instantiate(entry, inode);
  1620. spin_lock(&inode->i_lock);
  1621. __d_instantiate(entry, inode);
  1622. spin_unlock(&inode->i_lock);
  1623. }
  1624. }
  1625. EXPORT_SYMBOL(d_instantiate);
  1626. /**
  1627. * d_instantiate_no_diralias - instantiate a non-aliased dentry
  1628. * @entry: dentry to complete
  1629. * @inode: inode to attach to this dentry
  1630. *
  1631. * Fill in inode information in the entry. If a directory alias is found, then
  1632. * return an error (and drop inode). Together with d_materialise_unique() this
  1633. * guarantees that a directory inode may never have more than one alias.
  1634. */
  1635. int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
  1636. {
  1637. BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
  1638. security_d_instantiate(entry, inode);
  1639. spin_lock(&inode->i_lock);
  1640. if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
  1641. spin_unlock(&inode->i_lock);
  1642. iput(inode);
  1643. return -EBUSY;
  1644. }
  1645. __d_instantiate(entry, inode);
  1646. spin_unlock(&inode->i_lock);
  1647. return 0;
  1648. }
  1649. EXPORT_SYMBOL(d_instantiate_no_diralias);
  1650. struct dentry *d_make_root(struct inode *root_inode)
  1651. {
  1652. struct dentry *res = NULL;
  1653. if (root_inode) {
  1654. res = __d_alloc(root_inode->i_sb, NULL);
  1655. if (res)
  1656. d_instantiate(res, root_inode);
  1657. else
  1658. iput(root_inode);
  1659. }
  1660. return res;
  1661. }
  1662. EXPORT_SYMBOL(d_make_root);
  1663. static struct dentry * __d_find_any_alias(struct inode *inode)
  1664. {
  1665. struct dentry *alias;
  1666. if (hlist_empty(&inode->i_dentry))
  1667. return NULL;
  1668. alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
  1669. __dget(alias);
  1670. return alias;
  1671. }
  1672. /**
  1673. * d_find_any_alias - find any alias for a given inode
  1674. * @inode: inode to find an alias for
  1675. *
  1676. * If any aliases exist for the given inode, take and return a
  1677. * reference for one of them. If no aliases exist, return %NULL.
  1678. */
  1679. struct dentry *d_find_any_alias(struct inode *inode)
  1680. {
  1681. struct dentry *de;
  1682. spin_lock(&inode->i_lock);
  1683. de = __d_find_any_alias(inode);
  1684. spin_unlock(&inode->i_lock);
  1685. return de;
  1686. }
  1687. EXPORT_SYMBOL(d_find_any_alias);
  1688. static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
  1689. {
  1690. struct dentry *tmp;
  1691. struct dentry *res;
  1692. unsigned add_flags;
  1693. if (!inode)
  1694. return ERR_PTR(-ESTALE);
  1695. if (IS_ERR(inode))
  1696. return ERR_CAST(inode);
  1697. res = d_find_any_alias(inode);
  1698. if (res)
  1699. goto out_iput;
  1700. tmp = __d_alloc(inode->i_sb, NULL);
  1701. if (!tmp) {
  1702. res = ERR_PTR(-ENOMEM);
  1703. goto out_iput;
  1704. }
  1705. security_d_instantiate(tmp, inode);
  1706. spin_lock(&inode->i_lock);
  1707. res = __d_find_any_alias(inode);
  1708. if (res) {
  1709. spin_unlock(&inode->i_lock);
  1710. dput(tmp);
  1711. goto out_iput;
  1712. }
  1713. /* attach a disconnected dentry */
  1714. add_flags = d_flags_for_inode(inode);
  1715. if (disconnected)
  1716. add_flags |= DCACHE_DISCONNECTED;
  1717. spin_lock(&tmp->d_lock);
  1718. __d_set_inode_and_type(tmp, inode, add_flags);
  1719. hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
  1720. hlist_bl_lock(&tmp->d_sb->s_anon);
  1721. hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
  1722. hlist_bl_unlock(&tmp->d_sb->s_anon);
  1723. spin_unlock(&tmp->d_lock);
  1724. spin_unlock(&inode->i_lock);
  1725. return tmp;
  1726. out_iput:
  1727. iput(inode);
  1728. return res;
  1729. }
  1730. /**
  1731. * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
  1732. * @inode: inode to allocate the dentry for
  1733. *
  1734. * Obtain a dentry for an inode resulting from NFS filehandle conversion or
  1735. * similar open by handle operations. The returned dentry may be anonymous,
  1736. * or may have a full name (if the inode was already in the cache).
  1737. *
  1738. * When called on a directory inode, we must ensure that the inode only ever
  1739. * has one dentry. If a dentry is found, that is returned instead of
  1740. * allocating a new one.
  1741. *
  1742. * On successful return, the reference to the inode has been transferred
  1743. * to the dentry. In case of an error the reference on the inode is released.
  1744. * To make it easier to use in export operations a %NULL or IS_ERR inode may
  1745. * be passed in and the error will be propagated to the return value,
  1746. * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
  1747. */
  1748. struct dentry *d_obtain_alias(struct inode *inode)
  1749. {
  1750. return __d_obtain_alias(inode, 1);
  1751. }
  1752. EXPORT_SYMBOL(d_obtain_alias);
  1753. /**
  1754. * d_obtain_root - find or allocate a dentry for a given inode
  1755. * @inode: inode to allocate the dentry for
  1756. *
  1757. * Obtain an IS_ROOT dentry for the root of a filesystem.
  1758. *
  1759. * We must ensure that directory inodes only ever have one dentry. If a
  1760. * dentry is found, that is returned instead of allocating a new one.
  1761. *
  1762. * On successful return, the reference to the inode has been transferred
  1763. * to the dentry. In case of an error the reference on the inode is
  1764. * released. A %NULL or IS_ERR inode may be passed in and will be the
  1765. * error will be propagate to the return value, with a %NULL @inode
  1766. * replaced by ERR_PTR(-ESTALE).
  1767. */
  1768. struct dentry *d_obtain_root(struct inode *inode)
  1769. {
  1770. return __d_obtain_alias(inode, 0);
  1771. }
  1772. EXPORT_SYMBOL(d_obtain_root);
  1773. /**
  1774. * d_add_ci - lookup or allocate new dentry with case-exact name
  1775. * @inode: the inode case-insensitive lookup has found
  1776. * @dentry: the negative dentry that was passed to the parent's lookup func
  1777. * @name: the case-exact name to be associated with the returned dentry
  1778. *
  1779. * This is to avoid filling the dcache with case-insensitive names to the
  1780. * same inode, only the actual correct case is stored in the dcache for
  1781. * case-insensitive filesystems.
  1782. *
  1783. * For a case-insensitive lookup match and if the the case-exact dentry
  1784. * already exists in in the dcache, use it and return it.
  1785. *
  1786. * If no entry exists with the exact case name, allocate new dentry with
  1787. * the exact case, and return the spliced entry.
  1788. */
  1789. struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
  1790. struct qstr *name)
  1791. {
  1792. struct dentry *found, *res;
  1793. /*
  1794. * First check if a dentry matching the name already exists,
  1795. * if not go ahead and create it now.
  1796. */
  1797. found = d_hash_and_lookup(dentry->d_parent, name);
  1798. if (found) {
  1799. iput(inode);
  1800. return found;
  1801. }
  1802. if (d_in_lookup(dentry)) {
  1803. found = d_alloc_parallel(dentry->d_parent, name,
  1804. dentry->d_wait);
  1805. if (IS_ERR(found) || !d_in_lookup(found)) {
  1806. iput(inode);
  1807. return found;
  1808. }
  1809. } else {
  1810. found = d_alloc(dentry->d_parent, name);
  1811. if (!found) {
  1812. iput(inode);
  1813. return ERR_PTR(-ENOMEM);
  1814. }
  1815. }
  1816. res = d_splice_alias(inode, found);
  1817. if (res) {
  1818. dput(found);
  1819. return res;
  1820. }
  1821. return found;
  1822. }
  1823. EXPORT_SYMBOL(d_add_ci);
  1824. static inline bool d_same_name(const struct dentry *dentry,
  1825. const struct dentry *parent,
  1826. const struct qstr *name)
  1827. {
  1828. if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
  1829. if (dentry->d_name.len != name->len)
  1830. return false;
  1831. return dentry_cmp(dentry, name->name, name->len) == 0;
  1832. }
  1833. return parent->d_op->d_compare(parent, dentry,
  1834. dentry->d_name.len, dentry->d_name.name,
  1835. name) == 0;
  1836. }
  1837. /**
  1838. * __d_lookup_rcu - search for a dentry (racy, store-free)
  1839. * @parent: parent dentry
  1840. * @name: qstr of name we wish to find
  1841. * @seqp: returns d_seq value at the point where the dentry was found
  1842. * Returns: dentry, or NULL
  1843. *
  1844. * __d_lookup_rcu is the dcache lookup function for rcu-walk name
  1845. * resolution (store-free path walking) design described in
  1846. * Documentation/filesystems/path-lookup.txt.
  1847. *
  1848. * This is not to be used outside core vfs.
  1849. *
  1850. * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
  1851. * held, and rcu_read_lock held. The returned dentry must not be stored into
  1852. * without taking d_lock and checking d_seq sequence count against @seq
  1853. * returned here.
  1854. *
  1855. * A refcount may be taken on the found dentry with the d_rcu_to_refcount
  1856. * function.
  1857. *
  1858. * Alternatively, __d_lookup_rcu may be called again to look up the child of
  1859. * the returned dentry, so long as its parent's seqlock is checked after the
  1860. * child is looked up. Thus, an interlocking stepping of sequence lock checks
  1861. * is formed, giving integrity down the path walk.
  1862. *
  1863. * NOTE! The caller *has* to check the resulting dentry against the sequence
  1864. * number we've returned before using any of the resulting dentry state!
  1865. */
  1866. struct dentry *__d_lookup_rcu(const struct dentry *parent,
  1867. const struct qstr *name,
  1868. unsigned *seqp)
  1869. {
  1870. u64 hashlen = name->hash_len;
  1871. const unsigned char *str = name->name;
  1872. struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
  1873. struct hlist_bl_node *node;
  1874. struct dentry *dentry;
  1875. /*
  1876. * Note: There is significant duplication with __d_lookup_rcu which is
  1877. * required to prevent single threaded performance regressions
  1878. * especially on architectures where smp_rmb (in seqcounts) are costly.
  1879. * Keep the two functions in sync.
  1880. */
  1881. /*
  1882. * The hash list is protected using RCU.
  1883. *
  1884. * Carefully use d_seq when comparing a candidate dentry, to avoid
  1885. * races with d_move().
  1886. *
  1887. * It is possible that concurrent renames can mess up our list
  1888. * walk here and result in missing our dentry, resulting in the
  1889. * false-negative result. d_lookup() protects against concurrent
  1890. * renames using rename_lock seqlock.
  1891. *
  1892. * See Documentation/filesystems/path-lookup.txt for more details.
  1893. */
  1894. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  1895. unsigned seq;
  1896. seqretry:
  1897. /*
  1898. * The dentry sequence count protects us from concurrent
  1899. * renames, and thus protects parent and name fields.
  1900. *
  1901. * The caller must perform a seqcount check in order
  1902. * to do anything useful with the returned dentry.
  1903. *
  1904. * NOTE! We do a "raw" seqcount_begin here. That means that
  1905. * we don't wait for the sequence count to stabilize if it
  1906. * is in the middle of a sequence change. If we do the slow
  1907. * dentry compare, we will do seqretries until it is stable,
  1908. * and if we end up with a successful lookup, we actually
  1909. * want to exit RCU lookup anyway.
  1910. *
  1911. * Note that raw_seqcount_begin still *does* smp_rmb(), so
  1912. * we are still guaranteed NUL-termination of ->d_name.name.
  1913. */
  1914. seq = raw_seqcount_begin(&dentry->d_seq);
  1915. if (dentry->d_parent != parent)
  1916. continue;
  1917. if (d_unhashed(dentry))
  1918. continue;
  1919. if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
  1920. int tlen;
  1921. const char *tname;
  1922. if (dentry->d_name.hash != hashlen_hash(hashlen))
  1923. continue;
  1924. tlen = dentry->d_name.len;
  1925. tname = dentry->d_name.name;
  1926. /* we want a consistent (name,len) pair */
  1927. if (read_seqcount_retry(&dentry->d_seq, seq)) {
  1928. cpu_relax();
  1929. goto seqretry;
  1930. }
  1931. if (parent->d_op->d_compare(parent, dentry,
  1932. tlen, tname, name) != 0)
  1933. continue;
  1934. } else {
  1935. if (dentry->d_name.hash_len != hashlen)
  1936. continue;
  1937. if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
  1938. continue;
  1939. }
  1940. *seqp = seq;
  1941. return dentry;
  1942. }
  1943. return NULL;
  1944. }
  1945. /**
  1946. * d_lookup - search for a dentry
  1947. * @parent: parent dentry
  1948. * @name: qstr of name we wish to find
  1949. * Returns: dentry, or NULL
  1950. *
  1951. * d_lookup searches the children of the parent dentry for the name in
  1952. * question. If the dentry is found its reference count is incremented and the
  1953. * dentry is returned. The caller must use dput to free the entry when it has
  1954. * finished using it. %NULL is returned if the dentry does not exist.
  1955. */
  1956. struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
  1957. {
  1958. struct dentry *dentry;
  1959. unsigned seq;
  1960. do {
  1961. seq = read_seqbegin(&rename_lock);
  1962. dentry = __d_lookup(parent, name);
  1963. if (dentry)
  1964. break;
  1965. } while (read_seqretry(&rename_lock, seq));
  1966. return dentry;
  1967. }
  1968. EXPORT_SYMBOL(d_lookup);
  1969. /**
  1970. * __d_lookup - search for a dentry (racy)
  1971. * @parent: parent dentry
  1972. * @name: qstr of name we wish to find
  1973. * Returns: dentry, or NULL
  1974. *
  1975. * __d_lookup is like d_lookup, however it may (rarely) return a
  1976. * false-negative result due to unrelated rename activity.
  1977. *
  1978. * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
  1979. * however it must be used carefully, eg. with a following d_lookup in
  1980. * the case of failure.
  1981. *
  1982. * __d_lookup callers must be commented.
  1983. */
  1984. struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
  1985. {
  1986. unsigned int hash = name->hash;
  1987. struct hlist_bl_head *b = d_hash(hash);
  1988. struct hlist_bl_node *node;
  1989. struct dentry *found = NULL;
  1990. struct dentry *dentry;
  1991. /*
  1992. * Note: There is significant duplication with __d_lookup_rcu which is
  1993. * required to prevent single threaded performance regressions
  1994. * especially on architectures where smp_rmb (in seqcounts) are costly.
  1995. * Keep the two functions in sync.
  1996. */
  1997. /*
  1998. * The hash list is protected using RCU.
  1999. *
  2000. * Take d_lock when comparing a candidate dentry, to avoid races
  2001. * with d_move().
  2002. *
  2003. * It is possible that concurrent renames can mess up our list
  2004. * walk here and result in missing our dentry, resulting in the
  2005. * false-negative result. d_lookup() protects against concurrent
  2006. * renames using rename_lock seqlock.
  2007. *
  2008. * See Documentation/filesystems/path-lookup.txt for more details.
  2009. */
  2010. rcu_read_lock();
  2011. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  2012. if (dentry->d_name.hash != hash)
  2013. continue;
  2014. spin_lock(&dentry->d_lock);
  2015. if (dentry->d_parent != parent)
  2016. goto next;
  2017. if (d_unhashed(dentry))
  2018. goto next;
  2019. if (!d_same_name(dentry, parent, name))
  2020. goto next;
  2021. dentry->d_lockref.count++;
  2022. found = dentry;
  2023. spin_unlock(&dentry->d_lock);
  2024. break;
  2025. next:
  2026. spin_unlock(&dentry->d_lock);
  2027. }
  2028. rcu_read_unlock();
  2029. return found;
  2030. }
  2031. /**
  2032. * d_hash_and_lookup - hash the qstr then search for a dentry
  2033. * @dir: Directory to search in
  2034. * @name: qstr of name we wish to find
  2035. *
  2036. * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
  2037. */
  2038. struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
  2039. {
  2040. /*
  2041. * Check for a fs-specific hash function. Note that we must
  2042. * calculate the standard hash first, as the d_op->d_hash()
  2043. * routine may choose to leave the hash value unchanged.
  2044. */
  2045. name->hash = full_name_hash(dir, name->name, name->len);
  2046. if (dir->d_flags & DCACHE_OP_HASH) {
  2047. int err = dir->d_op->d_hash(dir, name);
  2048. if (unlikely(err < 0))
  2049. return ERR_PTR(err);
  2050. }
  2051. return d_lookup(dir, name);
  2052. }
  2053. EXPORT_SYMBOL(d_hash_and_lookup);
  2054. /*
  2055. * When a file is deleted, we have two options:
  2056. * - turn this dentry into a negative dentry
  2057. * - unhash this dentry and free it.
  2058. *
  2059. * Usually, we want to just turn this into
  2060. * a negative dentry, but if anybody else is
  2061. * currently using the dentry or the inode
  2062. * we can't do that and we fall back on removing
  2063. * it from the hash queues and waiting for
  2064. * it to be deleted later when it has no users
  2065. */
  2066. /**
  2067. * d_delete - delete a dentry
  2068. * @dentry: The dentry to delete
  2069. *
  2070. * Turn the dentry into a negative dentry if possible, otherwise
  2071. * remove it from the hash queues so it can be deleted later
  2072. */
  2073. void d_delete(struct dentry * dentry)
  2074. {
  2075. struct inode *inode;
  2076. int isdir = 0;
  2077. /*
  2078. * Are we the only user?
  2079. */
  2080. again:
  2081. spin_lock(&dentry->d_lock);
  2082. inode = dentry->d_inode;
  2083. isdir = S_ISDIR(inode->i_mode);
  2084. if (dentry->d_lockref.count == 1) {
  2085. if (!spin_trylock(&inode->i_lock)) {
  2086. spin_unlock(&dentry->d_lock);
  2087. cpu_relax();
  2088. goto again;
  2089. }
  2090. dentry->d_flags &= ~DCACHE_CANT_MOUNT;
  2091. dentry_unlink_inode(dentry);
  2092. fsnotify_nameremove(dentry, isdir);
  2093. return;
  2094. }
  2095. if (!d_unhashed(dentry))
  2096. __d_drop(dentry);
  2097. spin_unlock(&dentry->d_lock);
  2098. fsnotify_nameremove(dentry, isdir);
  2099. }
  2100. EXPORT_SYMBOL(d_delete);
  2101. static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
  2102. {
  2103. BUG_ON(!d_unhashed(entry));
  2104. hlist_bl_lock(b);
  2105. hlist_bl_add_head_rcu(&entry->d_hash, b);
  2106. hlist_bl_unlock(b);
  2107. }
  2108. static void _d_rehash(struct dentry * entry)
  2109. {
  2110. __d_rehash(entry, d_hash(entry->d_name.hash));
  2111. }
  2112. /**
  2113. * d_rehash - add an entry back to the hash
  2114. * @entry: dentry to add to the hash
  2115. *
  2116. * Adds a dentry to the hash according to its name.
  2117. */
  2118. void d_rehash(struct dentry * entry)
  2119. {
  2120. spin_lock(&entry->d_lock);
  2121. _d_rehash(entry);
  2122. spin_unlock(&entry->d_lock);
  2123. }
  2124. EXPORT_SYMBOL(d_rehash);
  2125. static inline unsigned start_dir_add(struct inode *dir)
  2126. {
  2127. for (;;) {
  2128. unsigned n = dir->i_dir_seq;
  2129. if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
  2130. return n;
  2131. cpu_relax();
  2132. }
  2133. }
  2134. static inline void end_dir_add(struct inode *dir, unsigned n)
  2135. {
  2136. smp_store_release(&dir->i_dir_seq, n + 2);
  2137. }
  2138. static void d_wait_lookup(struct dentry *dentry)
  2139. {
  2140. if (d_in_lookup(dentry)) {
  2141. DECLARE_WAITQUEUE(wait, current);
  2142. add_wait_queue(dentry->d_wait, &wait);
  2143. do {
  2144. set_current_state(TASK_UNINTERRUPTIBLE);
  2145. spin_unlock(&dentry->d_lock);
  2146. schedule();
  2147. spin_lock(&dentry->d_lock);
  2148. } while (d_in_lookup(dentry));
  2149. }
  2150. }
  2151. struct dentry *d_alloc_parallel(struct dentry *parent,
  2152. const struct qstr *name,
  2153. wait_queue_head_t *wq)
  2154. {
  2155. unsigned int hash = name->hash;
  2156. struct hlist_bl_head *b = in_lookup_hash(parent, hash);
  2157. struct hlist_bl_node *node;
  2158. struct dentry *new = d_alloc(parent, name);
  2159. struct dentry *dentry;
  2160. unsigned seq, r_seq, d_seq;
  2161. if (unlikely(!new))
  2162. return ERR_PTR(-ENOMEM);
  2163. retry:
  2164. rcu_read_lock();
  2165. seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
  2166. r_seq = read_seqbegin(&rename_lock);
  2167. dentry = __d_lookup_rcu(parent, name, &d_seq);
  2168. if (unlikely(dentry)) {
  2169. if (!lockref_get_not_dead(&dentry->d_lockref)) {
  2170. rcu_read_unlock();
  2171. goto retry;
  2172. }
  2173. if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
  2174. rcu_read_unlock();
  2175. dput(dentry);
  2176. goto retry;
  2177. }
  2178. rcu_read_unlock();
  2179. dput(new);
  2180. return dentry;
  2181. }
  2182. if (unlikely(read_seqretry(&rename_lock, r_seq))) {
  2183. rcu_read_unlock();
  2184. goto retry;
  2185. }
  2186. hlist_bl_lock(b);
  2187. if (unlikely(parent->d_inode->i_dir_seq != seq)) {
  2188. hlist_bl_unlock(b);
  2189. rcu_read_unlock();
  2190. goto retry;
  2191. }
  2192. /*
  2193. * No changes for the parent since the beginning of d_lookup().
  2194. * Since all removals from the chain happen with hlist_bl_lock(),
  2195. * any potential in-lookup matches are going to stay here until
  2196. * we unlock the chain. All fields are stable in everything
  2197. * we encounter.
  2198. */
  2199. hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
  2200. if (dentry->d_name.hash != hash)
  2201. continue;
  2202. if (dentry->d_parent != parent)
  2203. continue;
  2204. if (!d_same_name(dentry, parent, name))
  2205. continue;
  2206. hlist_bl_unlock(b);
  2207. /* now we can try to grab a reference */
  2208. if (!lockref_get_not_dead(&dentry->d_lockref)) {
  2209. rcu_read_unlock();
  2210. goto retry;
  2211. }
  2212. rcu_read_unlock();
  2213. /*
  2214. * somebody is likely to be still doing lookup for it;
  2215. * wait for them to finish
  2216. */
  2217. spin_lock(&dentry->d_lock);
  2218. d_wait_lookup(dentry);
  2219. /*
  2220. * it's not in-lookup anymore; in principle we should repeat
  2221. * everything from dcache lookup, but it's likely to be what
  2222. * d_lookup() would've found anyway. If it is, just return it;
  2223. * otherwise we really have to repeat the whole thing.
  2224. */
  2225. if (unlikely(dentry->d_name.hash != hash))
  2226. goto mismatch;
  2227. if (unlikely(dentry->d_parent != parent))
  2228. goto mismatch;
  2229. if (unlikely(d_unhashed(dentry)))
  2230. goto mismatch;
  2231. if (unlikely(!d_same_name(dentry, parent, name)))
  2232. goto mismatch;
  2233. /* OK, it *is* a hashed match; return it */
  2234. spin_unlock(&dentry->d_lock);
  2235. dput(new);
  2236. return dentry;
  2237. }
  2238. rcu_read_unlock();
  2239. /* we can't take ->d_lock here; it's OK, though. */
  2240. new->d_flags |= DCACHE_PAR_LOOKUP;
  2241. new->d_wait = wq;
  2242. hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
  2243. hlist_bl_unlock(b);
  2244. return new;
  2245. mismatch:
  2246. spin_unlock(&dentry->d_lock);
  2247. dput(dentry);
  2248. goto retry;
  2249. }
  2250. EXPORT_SYMBOL(d_alloc_parallel);
  2251. void __d_lookup_done(struct dentry *dentry)
  2252. {
  2253. struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
  2254. dentry->d_name.hash);
  2255. hlist_bl_lock(b);
  2256. dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
  2257. __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
  2258. wake_up_all(dentry->d_wait);
  2259. dentry->d_wait = NULL;
  2260. hlist_bl_unlock(b);
  2261. INIT_HLIST_NODE(&dentry->d_u.d_alias);
  2262. INIT_LIST_HEAD(&dentry->d_lru);
  2263. }
  2264. EXPORT_SYMBOL(__d_lookup_done);
  2265. /* inode->i_lock held if inode is non-NULL */
  2266. static inline void __d_add(struct dentry *dentry, struct inode *inode)
  2267. {
  2268. struct inode *dir = NULL;
  2269. unsigned n;
  2270. spin_lock(&dentry->d_lock);
  2271. if (unlikely(d_in_lookup(dentry))) {
  2272. dir = dentry->d_parent->d_inode;
  2273. n = start_dir_add(dir);
  2274. __d_lookup_done(dentry);
  2275. }
  2276. if (inode) {
  2277. unsigned add_flags = d_flags_for_inode(inode);
  2278. hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
  2279. raw_write_seqcount_begin(&dentry->d_seq);
  2280. __d_set_inode_and_type(dentry, inode, add_flags);
  2281. raw_write_seqcount_end(&dentry->d_seq);
  2282. fsnotify_update_flags(dentry);
  2283. }
  2284. _d_rehash(dentry);
  2285. if (dir)
  2286. end_dir_add(dir, n);
  2287. spin_unlock(&dentry->d_lock);
  2288. if (inode)
  2289. spin_unlock(&inode->i_lock);
  2290. }
  2291. /**
  2292. * d_add - add dentry to hash queues
  2293. * @entry: dentry to add
  2294. * @inode: The inode to attach to this dentry
  2295. *
  2296. * This adds the entry to the hash queues and initializes @inode.
  2297. * The entry was actually filled in earlier during d_alloc().
  2298. */
  2299. void d_add(struct dentry *entry, struct inode *inode)
  2300. {
  2301. if (inode) {
  2302. security_d_instantiate(entry, inode);
  2303. spin_lock(&inode->i_lock);
  2304. }
  2305. __d_add(entry, inode);
  2306. }
  2307. EXPORT_SYMBOL(d_add);
  2308. /**
  2309. * d_exact_alias - find and hash an exact unhashed alias
  2310. * @entry: dentry to add
  2311. * @inode: The inode to go with this dentry
  2312. *
  2313. * If an unhashed dentry with the same name/parent and desired
  2314. * inode already exists, hash and return it. Otherwise, return
  2315. * NULL.
  2316. *
  2317. * Parent directory should be locked.
  2318. */
  2319. struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
  2320. {
  2321. struct dentry *alias;
  2322. unsigned int hash = entry->d_name.hash;
  2323. spin_lock(&inode->i_lock);
  2324. hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
  2325. /*
  2326. * Don't need alias->d_lock here, because aliases with
  2327. * d_parent == entry->d_parent are not subject to name or
  2328. * parent changes, because the parent inode i_mutex is held.
  2329. */
  2330. if (alias->d_name.hash != hash)
  2331. continue;
  2332. if (alias->d_parent != entry->d_parent)
  2333. continue;
  2334. if (!d_same_name(alias, entry->d_parent, &entry->d_name))
  2335. continue;
  2336. spin_lock(&alias->d_lock);
  2337. if (!d_unhashed(alias)) {
  2338. spin_unlock(&alias->d_lock);
  2339. alias = NULL;
  2340. } else {
  2341. __dget_dlock(alias);
  2342. _d_rehash(alias);
  2343. spin_unlock(&alias->d_lock);
  2344. }
  2345. spin_unlock(&inode->i_lock);
  2346. return alias;
  2347. }
  2348. spin_unlock(&inode->i_lock);
  2349. return NULL;
  2350. }
  2351. EXPORT_SYMBOL(d_exact_alias);
  2352. /**
  2353. * dentry_update_name_case - update case insensitive dentry with a new name
  2354. * @dentry: dentry to be updated
  2355. * @name: new name
  2356. *
  2357. * Update a case insensitive dentry with new case of name.
  2358. *
  2359. * dentry must have been returned by d_lookup with name @name. Old and new
  2360. * name lengths must match (ie. no d_compare which allows mismatched name
  2361. * lengths).
  2362. *
  2363. * Parent inode i_mutex must be held over d_lookup and into this call (to
  2364. * keep renames and concurrent inserts, and readdir(2) away).
  2365. */
  2366. void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
  2367. {
  2368. BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
  2369. BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
  2370. spin_lock(&dentry->d_lock);
  2371. write_seqcount_begin(&dentry->d_seq);
  2372. memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
  2373. write_seqcount_end(&dentry->d_seq);
  2374. spin_unlock(&dentry->d_lock);
  2375. }
  2376. EXPORT_SYMBOL(dentry_update_name_case);
  2377. static void swap_names(struct dentry *dentry, struct dentry *target)
  2378. {
  2379. if (unlikely(dname_external(target))) {
  2380. if (unlikely(dname_external(dentry))) {
  2381. /*
  2382. * Both external: swap the pointers
  2383. */
  2384. swap(target->d_name.name, dentry->d_name.name);
  2385. } else {
  2386. /*
  2387. * dentry:internal, target:external. Steal target's
  2388. * storage and make target internal.
  2389. */
  2390. memcpy(target->d_iname, dentry->d_name.name,
  2391. dentry->d_name.len + 1);
  2392. dentry->d_name.name = target->d_name.name;
  2393. target->d_name.name = target->d_iname;
  2394. }
  2395. } else {
  2396. if (unlikely(dname_external(dentry))) {
  2397. /*
  2398. * dentry:external, target:internal. Give dentry's
  2399. * storage to target and make dentry internal
  2400. */
  2401. memcpy(dentry->d_iname, target->d_name.name,
  2402. target->d_name.len + 1);
  2403. target->d_name.name = dentry->d_name.name;
  2404. dentry->d_name.name = dentry->d_iname;
  2405. } else {
  2406. /*
  2407. * Both are internal.
  2408. */
  2409. unsigned int i;
  2410. BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
  2411. kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
  2412. kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
  2413. for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
  2414. swap(((long *) &dentry->d_iname)[i],
  2415. ((long *) &target->d_iname)[i]);
  2416. }
  2417. }
  2418. }
  2419. swap(dentry->d_name.hash_len, target->d_name.hash_len);
  2420. }
  2421. static void copy_name(struct dentry *dentry, struct dentry *target)
  2422. {
  2423. struct external_name *old_name = NULL;
  2424. if (unlikely(dname_external(dentry)))
  2425. old_name = external_name(dentry);
  2426. if (unlikely(dname_external(target))) {
  2427. atomic_inc(&external_name(target)->u.count);
  2428. dentry->d_name = target->d_name;
  2429. } else {
  2430. memcpy(dentry->d_iname, target->d_name.name,
  2431. target->d_name.len + 1);
  2432. dentry->d_name.name = dentry->d_iname;
  2433. dentry->d_name.hash_len = target->d_name.hash_len;
  2434. }
  2435. if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
  2436. kfree_rcu(old_name, u.head);
  2437. }
  2438. static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
  2439. {
  2440. /*
  2441. * XXXX: do we really need to take target->d_lock?
  2442. */
  2443. if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
  2444. spin_lock(&target->d_parent->d_lock);
  2445. else {
  2446. if (d_ancestor(dentry->d_parent, target->d_parent)) {
  2447. spin_lock(&dentry->d_parent->d_lock);
  2448. spin_lock_nested(&target->d_parent->d_lock,
  2449. DENTRY_D_LOCK_NESTED);
  2450. } else {
  2451. spin_lock(&target->d_parent->d_lock);
  2452. spin_lock_nested(&dentry->d_parent->d_lock,
  2453. DENTRY_D_LOCK_NESTED);
  2454. }
  2455. }
  2456. if (target < dentry) {
  2457. spin_lock_nested(&target->d_lock, 2);
  2458. spin_lock_nested(&dentry->d_lock, 3);
  2459. } else {
  2460. spin_lock_nested(&dentry->d_lock, 2);
  2461. spin_lock_nested(&target->d_lock, 3);
  2462. }
  2463. }
  2464. static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
  2465. {
  2466. if (target->d_parent != dentry->d_parent)
  2467. spin_unlock(&dentry->d_parent->d_lock);
  2468. if (target->d_parent != target)
  2469. spin_unlock(&target->d_parent->d_lock);
  2470. spin_unlock(&target->d_lock);
  2471. spin_unlock(&dentry->d_lock);
  2472. }
  2473. /*
  2474. * When switching names, the actual string doesn't strictly have to
  2475. * be preserved in the target - because we're dropping the target
  2476. * anyway. As such, we can just do a simple memcpy() to copy over
  2477. * the new name before we switch, unless we are going to rehash
  2478. * it. Note that if we *do* unhash the target, we are not allowed
  2479. * to rehash it without giving it a new name/hash key - whether
  2480. * we swap or overwrite the names here, resulting name won't match
  2481. * the reality in filesystem; it's only there for d_path() purposes.
  2482. * Note that all of this is happening under rename_lock, so the
  2483. * any hash lookup seeing it in the middle of manipulations will
  2484. * be discarded anyway. So we do not care what happens to the hash
  2485. * key in that case.
  2486. */
  2487. /*
  2488. * __d_move - move a dentry
  2489. * @dentry: entry to move
  2490. * @target: new dentry
  2491. * @exchange: exchange the two dentries
  2492. *
  2493. * Update the dcache to reflect the move of a file name. Negative
  2494. * dcache entries should not be moved in this way. Caller must hold
  2495. * rename_lock, the i_mutex of the source and target directories,
  2496. * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
  2497. */
  2498. static void __d_move(struct dentry *dentry, struct dentry *target,
  2499. bool exchange)
  2500. {
  2501. struct inode *dir = NULL;
  2502. unsigned n;
  2503. if (!dentry->d_inode)
  2504. printk(KERN_WARNING "VFS: moving negative dcache entry\n");
  2505. BUG_ON(d_ancestor(dentry, target));
  2506. BUG_ON(d_ancestor(target, dentry));
  2507. dentry_lock_for_move(dentry, target);
  2508. if (unlikely(d_in_lookup(target))) {
  2509. dir = target->d_parent->d_inode;
  2510. n = start_dir_add(dir);
  2511. __d_lookup_done(target);
  2512. }
  2513. write_seqcount_begin(&dentry->d_seq);
  2514. write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
  2515. /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
  2516. /*
  2517. * Move the dentry to the target hash queue. Don't bother checking
  2518. * for the same hash queue because of how unlikely it is.
  2519. */
  2520. __d_drop(dentry);
  2521. __d_rehash(dentry, d_hash(target->d_name.hash));
  2522. /*
  2523. * Unhash the target (d_delete() is not usable here). If exchanging
  2524. * the two dentries, then rehash onto the other's hash queue.
  2525. */
  2526. __d_drop(target);
  2527. if (exchange) {
  2528. __d_rehash(target, d_hash(dentry->d_name.hash));
  2529. }
  2530. /* Switch the names.. */
  2531. if (exchange)
  2532. swap_names(dentry, target);
  2533. else
  2534. copy_name(dentry, target);
  2535. /* ... and switch them in the tree */
  2536. if (IS_ROOT(dentry)) {
  2537. /* splicing a tree */
  2538. dentry->d_flags |= DCACHE_RCUACCESS;
  2539. dentry->d_parent = target->d_parent;
  2540. target->d_parent = target;
  2541. list_del_init(&target->d_child);
  2542. list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
  2543. } else {
  2544. /* swapping two dentries */
  2545. swap(dentry->d_parent, target->d_parent);
  2546. list_move(&target->d_child, &target->d_parent->d_subdirs);
  2547. list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
  2548. if (exchange)
  2549. fsnotify_update_flags(target);
  2550. fsnotify_update_flags(dentry);
  2551. }
  2552. write_seqcount_end(&target->d_seq);
  2553. write_seqcount_end(&dentry->d_seq);
  2554. if (dir)
  2555. end_dir_add(dir, n);
  2556. dentry_unlock_for_move(dentry, target);
  2557. }
  2558. /*
  2559. * d_move - move a dentry
  2560. * @dentry: entry to move
  2561. * @target: new dentry
  2562. *
  2563. * Update the dcache to reflect the move of a file name. Negative
  2564. * dcache entries should not be moved in this way. See the locking
  2565. * requirements for __d_move.
  2566. */
  2567. void d_move(struct dentry *dentry, struct dentry *target)
  2568. {
  2569. write_seqlock(&rename_lock);
  2570. __d_move(dentry, target, false);
  2571. write_sequnlock(&rename_lock);
  2572. }
  2573. EXPORT_SYMBOL(d_move);
  2574. /*
  2575. * d_exchange - exchange two dentries
  2576. * @dentry1: first dentry
  2577. * @dentry2: second dentry
  2578. */
  2579. void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
  2580. {
  2581. write_seqlock(&rename_lock);
  2582. WARN_ON(!dentry1->d_inode);
  2583. WARN_ON(!dentry2->d_inode);
  2584. WARN_ON(IS_ROOT(dentry1));
  2585. WARN_ON(IS_ROOT(dentry2));
  2586. __d_move(dentry1, dentry2, true);
  2587. write_sequnlock(&rename_lock);
  2588. }
  2589. /**
  2590. * d_ancestor - search for an ancestor
  2591. * @p1: ancestor dentry
  2592. * @p2: child dentry
  2593. *
  2594. * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
  2595. * an ancestor of p2, else NULL.
  2596. */
  2597. struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
  2598. {
  2599. struct dentry *p;
  2600. for (p = p2; !IS_ROOT(p); p = p->d_parent) {
  2601. if (p->d_parent == p1)
  2602. return p;
  2603. }
  2604. return NULL;
  2605. }
  2606. /*
  2607. * This helper attempts to cope with remotely renamed directories
  2608. *
  2609. * It assumes that the caller is already holding
  2610. * dentry->d_parent->d_inode->i_mutex, and rename_lock
  2611. *
  2612. * Note: If ever the locking in lock_rename() changes, then please
  2613. * remember to update this too...
  2614. */
  2615. static int __d_unalias(struct inode *inode,
  2616. struct dentry *dentry, struct dentry *alias)
  2617. {
  2618. struct mutex *m1 = NULL;
  2619. struct rw_semaphore *m2 = NULL;
  2620. int ret = -ESTALE;
  2621. /* If alias and dentry share a parent, then no extra locks required */
  2622. if (alias->d_parent == dentry->d_parent)
  2623. goto out_unalias;
  2624. /* See lock_rename() */
  2625. if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
  2626. goto out_err;
  2627. m1 = &dentry->d_sb->s_vfs_rename_mutex;
  2628. if (!inode_trylock_shared(alias->d_parent->d_inode))
  2629. goto out_err;
  2630. m2 = &alias->d_parent->d_inode->i_rwsem;
  2631. out_unalias:
  2632. __d_move(alias, dentry, false);
  2633. ret = 0;
  2634. out_err:
  2635. if (m2)
  2636. up_read(m2);
  2637. if (m1)
  2638. mutex_unlock(m1);
  2639. return ret;
  2640. }
  2641. /**
  2642. * d_splice_alias - splice a disconnected dentry into the tree if one exists
  2643. * @inode: the inode which may have a disconnected dentry
  2644. * @dentry: a negative dentry which we want to point to the inode.
  2645. *
  2646. * If inode is a directory and has an IS_ROOT alias, then d_move that in
  2647. * place of the given dentry and return it, else simply d_add the inode
  2648. * to the dentry and return NULL.
  2649. *
  2650. * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
  2651. * we should error out: directories can't have multiple aliases.
  2652. *
  2653. * This is needed in the lookup routine of any filesystem that is exportable
  2654. * (via knfsd) so that we can build dcache paths to directories effectively.
  2655. *
  2656. * If a dentry was found and moved, then it is returned. Otherwise NULL
  2657. * is returned. This matches the expected return value of ->lookup.
  2658. *
  2659. * Cluster filesystems may call this function with a negative, hashed dentry.
  2660. * In that case, we know that the inode will be a regular file, and also this
  2661. * will only occur during atomic_open. So we need to check for the dentry
  2662. * being already hashed only in the final case.
  2663. */
  2664. struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
  2665. {
  2666. if (IS_ERR(inode))
  2667. return ERR_CAST(inode);
  2668. BUG_ON(!d_unhashed(dentry));
  2669. if (!inode)
  2670. goto out;
  2671. security_d_instantiate(dentry, inode);
  2672. spin_lock(&inode->i_lock);
  2673. if (S_ISDIR(inode->i_mode)) {
  2674. struct dentry *new = __d_find_any_alias(inode);
  2675. if (unlikely(new)) {
  2676. /* The reference to new ensures it remains an alias */
  2677. spin_unlock(&inode->i_lock);
  2678. write_seqlock(&rename_lock);
  2679. if (unlikely(d_ancestor(new, dentry))) {
  2680. write_sequnlock(&rename_lock);
  2681. dput(new);
  2682. new = ERR_PTR(-ELOOP);
  2683. pr_warn_ratelimited(
  2684. "VFS: Lookup of '%s' in %s %s"
  2685. " would have caused loop\n",
  2686. dentry->d_name.name,
  2687. inode->i_sb->s_type->name,
  2688. inode->i_sb->s_id);
  2689. } else if (!IS_ROOT(new)) {
  2690. int err = __d_unalias(inode, dentry, new);
  2691. write_sequnlock(&rename_lock);
  2692. if (err) {
  2693. dput(new);
  2694. new = ERR_PTR(err);
  2695. }
  2696. } else {
  2697. __d_move(new, dentry, false);
  2698. write_sequnlock(&rename_lock);
  2699. }
  2700. iput(inode);
  2701. return new;
  2702. }
  2703. }
  2704. out:
  2705. __d_add(dentry, inode);
  2706. return NULL;
  2707. }
  2708. EXPORT_SYMBOL(d_splice_alias);
  2709. static int prepend(char **buffer, int *buflen, const char *str, int namelen)
  2710. {
  2711. *buflen -= namelen;
  2712. if (*buflen < 0)
  2713. return -ENAMETOOLONG;
  2714. *buffer -= namelen;
  2715. memcpy(*buffer, str, namelen);
  2716. return 0;
  2717. }
  2718. /**
  2719. * prepend_name - prepend a pathname in front of current buffer pointer
  2720. * @buffer: buffer pointer
  2721. * @buflen: allocated length of the buffer
  2722. * @name: name string and length qstr structure
  2723. *
  2724. * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
  2725. * make sure that either the old or the new name pointer and length are
  2726. * fetched. However, there may be mismatch between length and pointer.
  2727. * The length cannot be trusted, we need to copy it byte-by-byte until
  2728. * the length is reached or a null byte is found. It also prepends "/" at
  2729. * the beginning of the name. The sequence number check at the caller will
  2730. * retry it again when a d_move() does happen. So any garbage in the buffer
  2731. * due to mismatched pointer and length will be discarded.
  2732. *
  2733. * Data dependency barrier is needed to make sure that we see that terminating
  2734. * NUL. Alpha strikes again, film at 11...
  2735. */
  2736. static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
  2737. {
  2738. const char *dname = ACCESS_ONCE(name->name);
  2739. u32 dlen = ACCESS_ONCE(name->len);
  2740. char *p;
  2741. smp_read_barrier_depends();
  2742. *buflen -= dlen + 1;
  2743. if (*buflen < 0)
  2744. return -ENAMETOOLONG;
  2745. p = *buffer -= dlen + 1;
  2746. *p++ = '/';
  2747. while (dlen--) {
  2748. char c = *dname++;
  2749. if (!c)
  2750. break;
  2751. *p++ = c;
  2752. }
  2753. return 0;
  2754. }
  2755. /**
  2756. * prepend_path - Prepend path string to a buffer
  2757. * @path: the dentry/vfsmount to report
  2758. * @root: root vfsmnt/dentry
  2759. * @buffer: pointer to the end of the buffer
  2760. * @buflen: pointer to buffer length
  2761. *
  2762. * The function will first try to write out the pathname without taking any
  2763. * lock other than the RCU read lock to make sure that dentries won't go away.
  2764. * It only checks the sequence number of the global rename_lock as any change
  2765. * in the dentry's d_seq will be preceded by changes in the rename_lock
  2766. * sequence number. If the sequence number had been changed, it will restart
  2767. * the whole pathname back-tracing sequence again by taking the rename_lock.
  2768. * In this case, there is no need to take the RCU read lock as the recursive
  2769. * parent pointer references will keep the dentry chain alive as long as no
  2770. * rename operation is performed.
  2771. */
  2772. static int prepend_path(const struct path *path,
  2773. const struct path *root,
  2774. char **buffer, int *buflen)
  2775. {
  2776. struct dentry *dentry;
  2777. struct vfsmount *vfsmnt;
  2778. struct mount *mnt;
  2779. int error = 0;
  2780. unsigned seq, m_seq = 0;
  2781. char *bptr;
  2782. int blen;
  2783. rcu_read_lock();
  2784. restart_mnt:
  2785. read_seqbegin_or_lock(&mount_lock, &m_seq);
  2786. seq = 0;
  2787. rcu_read_lock();
  2788. restart:
  2789. bptr = *buffer;
  2790. blen = *buflen;
  2791. error = 0;
  2792. dentry = path->dentry;
  2793. vfsmnt = path->mnt;
  2794. mnt = real_mount(vfsmnt);
  2795. read_seqbegin_or_lock(&rename_lock, &seq);
  2796. while (dentry != root->dentry || vfsmnt != root->mnt) {
  2797. struct dentry * parent;
  2798. if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
  2799. struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
  2800. /* Escaped? */
  2801. if (dentry != vfsmnt->mnt_root) {
  2802. bptr = *buffer;
  2803. blen = *buflen;
  2804. error = 3;
  2805. break;
  2806. }
  2807. /* Global root? */
  2808. if (mnt != parent) {
  2809. dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
  2810. mnt = parent;
  2811. vfsmnt = &mnt->mnt;
  2812. continue;
  2813. }
  2814. if (!error)
  2815. error = is_mounted(vfsmnt) ? 1 : 2;
  2816. break;
  2817. }
  2818. parent = dentry->d_parent;
  2819. prefetch(parent);
  2820. error = prepend_name(&bptr, &blen, &dentry->d_name);
  2821. if (error)
  2822. break;
  2823. dentry = parent;
  2824. }
  2825. if (!(seq & 1))
  2826. rcu_read_unlock();
  2827. if (need_seqretry(&rename_lock, seq)) {
  2828. seq = 1;
  2829. goto restart;
  2830. }
  2831. done_seqretry(&rename_lock, seq);
  2832. if (!(m_seq & 1))
  2833. rcu_read_unlock();
  2834. if (need_seqretry(&mount_lock, m_seq)) {
  2835. m_seq = 1;
  2836. goto restart_mnt;
  2837. }
  2838. done_seqretry(&mount_lock, m_seq);
  2839. if (error >= 0 && bptr == *buffer) {
  2840. if (--blen < 0)
  2841. error = -ENAMETOOLONG;
  2842. else
  2843. *--bptr = '/';
  2844. }
  2845. *buffer = bptr;
  2846. *buflen = blen;
  2847. return error;
  2848. }
  2849. /**
  2850. * __d_path - return the path of a dentry
  2851. * @path: the dentry/vfsmount to report
  2852. * @root: root vfsmnt/dentry
  2853. * @buf: buffer to return value in
  2854. * @buflen: buffer length
  2855. *
  2856. * Convert a dentry into an ASCII path name.
  2857. *
  2858. * Returns a pointer into the buffer or an error code if the
  2859. * path was too long.
  2860. *
  2861. * "buflen" should be positive.
  2862. *
  2863. * If the path is not reachable from the supplied root, return %NULL.
  2864. */
  2865. char *__d_path(const struct path *path,
  2866. const struct path *root,
  2867. char *buf, int buflen)
  2868. {
  2869. char *res = buf + buflen;
  2870. int error;
  2871. prepend(&res, &buflen, "\0", 1);
  2872. error = prepend_path(path, root, &res, &buflen);
  2873. if (error < 0)
  2874. return ERR_PTR(error);
  2875. if (error > 0)
  2876. return NULL;
  2877. return res;
  2878. }
  2879. char *d_absolute_path(const struct path *path,
  2880. char *buf, int buflen)
  2881. {
  2882. struct path root = {};
  2883. char *res = buf + buflen;
  2884. int error;
  2885. prepend(&res, &buflen, "\0", 1);
  2886. error = prepend_path(path, &root, &res, &buflen);
  2887. if (error > 1)
  2888. error = -EINVAL;
  2889. if (error < 0)
  2890. return ERR_PTR(error);
  2891. return res;
  2892. }
  2893. /*
  2894. * same as __d_path but appends "(deleted)" for unlinked files.
  2895. */
  2896. static int path_with_deleted(const struct path *path,
  2897. const struct path *root,
  2898. char **buf, int *buflen)
  2899. {
  2900. prepend(buf, buflen, "\0", 1);
  2901. if (d_unlinked(path->dentry)) {
  2902. int error = prepend(buf, buflen, " (deleted)", 10);
  2903. if (error)
  2904. return error;
  2905. }
  2906. return prepend_path(path, root, buf, buflen);
  2907. }
  2908. static int prepend_unreachable(char **buffer, int *buflen)
  2909. {
  2910. return prepend(buffer, buflen, "(unreachable)", 13);
  2911. }
  2912. static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
  2913. {
  2914. unsigned seq;
  2915. do {
  2916. seq = read_seqcount_begin(&fs->seq);
  2917. *root = fs->root;
  2918. } while (read_seqcount_retry(&fs->seq, seq));
  2919. }
  2920. /**
  2921. * d_path - return the path of a dentry
  2922. * @path: path to report
  2923. * @buf: buffer to return value in
  2924. * @buflen: buffer length
  2925. *
  2926. * Convert a dentry into an ASCII path name. If the entry has been deleted
  2927. * the string " (deleted)" is appended. Note that this is ambiguous.
  2928. *
  2929. * Returns a pointer into the buffer or an error code if the path was
  2930. * too long. Note: Callers should use the returned pointer, not the passed
  2931. * in buffer, to use the name! The implementation often starts at an offset
  2932. * into the buffer, and may leave 0 bytes at the start.
  2933. *
  2934. * "buflen" should be positive.
  2935. */
  2936. char *d_path(const struct path *path, char *buf, int buflen)
  2937. {
  2938. char *res = buf + buflen;
  2939. struct path root;
  2940. int error;
  2941. /*
  2942. * We have various synthetic filesystems that never get mounted. On
  2943. * these filesystems dentries are never used for lookup purposes, and
  2944. * thus don't need to be hashed. They also don't need a name until a
  2945. * user wants to identify the object in /proc/pid/fd/. The little hack
  2946. * below allows us to generate a name for these objects on demand:
  2947. *
  2948. * Some pseudo inodes are mountable. When they are mounted
  2949. * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
  2950. * and instead have d_path return the mounted path.
  2951. */
  2952. if (path->dentry->d_op && path->dentry->d_op->d_dname &&
  2953. (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
  2954. return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
  2955. rcu_read_lock();
  2956. get_fs_root_rcu(current->fs, &root);
  2957. error = path_with_deleted(path, &root, &res, &buflen);
  2958. rcu_read_unlock();
  2959. if (error < 0)
  2960. res = ERR_PTR(error);
  2961. return res;
  2962. }
  2963. EXPORT_SYMBOL(d_path);
  2964. /*
  2965. * Helper function for dentry_operations.d_dname() members
  2966. */
  2967. char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
  2968. const char *fmt, ...)
  2969. {
  2970. va_list args;
  2971. char temp[64];
  2972. int sz;
  2973. va_start(args, fmt);
  2974. sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
  2975. va_end(args);
  2976. if (sz > sizeof(temp) || sz > buflen)
  2977. return ERR_PTR(-ENAMETOOLONG);
  2978. buffer += buflen - sz;
  2979. return memcpy(buffer, temp, sz);
  2980. }
  2981. char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
  2982. {
  2983. char *end = buffer + buflen;
  2984. /* these dentries are never renamed, so d_lock is not needed */
  2985. if (prepend(&end, &buflen, " (deleted)", 11) ||
  2986. prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
  2987. prepend(&end, &buflen, "/", 1))
  2988. end = ERR_PTR(-ENAMETOOLONG);
  2989. return end;
  2990. }
  2991. EXPORT_SYMBOL(simple_dname);
  2992. /*
  2993. * Write full pathname from the root of the filesystem into the buffer.
  2994. */
  2995. static char *__dentry_path(struct dentry *d, char *buf, int buflen)
  2996. {
  2997. struct dentry *dentry;
  2998. char *end, *retval;
  2999. int len, seq = 0;
  3000. int error = 0;
  3001. if (buflen < 2)
  3002. goto Elong;
  3003. rcu_read_lock();
  3004. restart:
  3005. dentry = d;
  3006. end = buf + buflen;
  3007. len = buflen;
  3008. prepend(&end, &len, "\0", 1);
  3009. /* Get '/' right */
  3010. retval = end-1;
  3011. *retval = '/';
  3012. read_seqbegin_or_lock(&rename_lock, &seq);
  3013. while (!IS_ROOT(dentry)) {
  3014. struct dentry *parent = dentry->d_parent;
  3015. prefetch(parent);
  3016. error = prepend_name(&end, &len, &dentry->d_name);
  3017. if (error)
  3018. break;
  3019. retval = end;
  3020. dentry = parent;
  3021. }
  3022. if (!(seq & 1))
  3023. rcu_read_unlock();
  3024. if (need_seqretry(&rename_lock, seq)) {
  3025. seq = 1;
  3026. goto restart;
  3027. }
  3028. done_seqretry(&rename_lock, seq);
  3029. if (error)
  3030. goto Elong;
  3031. return retval;
  3032. Elong:
  3033. return ERR_PTR(-ENAMETOOLONG);
  3034. }
  3035. char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
  3036. {
  3037. return __dentry_path(dentry, buf, buflen);
  3038. }
  3039. EXPORT_SYMBOL(dentry_path_raw);
  3040. char *dentry_path(struct dentry *dentry, char *buf, int buflen)
  3041. {
  3042. char *p = NULL;
  3043. char *retval;
  3044. if (d_unlinked(dentry)) {
  3045. p = buf + buflen;
  3046. if (prepend(&p, &buflen, "//deleted", 10) != 0)
  3047. goto Elong;
  3048. buflen++;
  3049. }
  3050. retval = __dentry_path(dentry, buf, buflen);
  3051. if (!IS_ERR(retval) && p)
  3052. *p = '/'; /* restore '/' overriden with '\0' */
  3053. return retval;
  3054. Elong:
  3055. return ERR_PTR(-ENAMETOOLONG);
  3056. }
  3057. static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
  3058. struct path *pwd)
  3059. {
  3060. unsigned seq;
  3061. do {
  3062. seq = read_seqcount_begin(&fs->seq);
  3063. *root = fs->root;
  3064. *pwd = fs->pwd;
  3065. } while (read_seqcount_retry(&fs->seq, seq));
  3066. }
  3067. /*
  3068. * NOTE! The user-level library version returns a
  3069. * character pointer. The kernel system call just
  3070. * returns the length of the buffer filled (which
  3071. * includes the ending '\0' character), or a negative
  3072. * error value. So libc would do something like
  3073. *
  3074. * char *getcwd(char * buf, size_t size)
  3075. * {
  3076. * int retval;
  3077. *
  3078. * retval = sys_getcwd(buf, size);
  3079. * if (retval >= 0)
  3080. * return buf;
  3081. * errno = -retval;
  3082. * return NULL;
  3083. * }
  3084. */
  3085. SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
  3086. {
  3087. int error;
  3088. struct path pwd, root;
  3089. char *page = __getname();
  3090. if (!page)
  3091. return -ENOMEM;
  3092. rcu_read_lock();
  3093. get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
  3094. error = -ENOENT;
  3095. if (!d_unlinked(pwd.dentry)) {
  3096. unsigned long len;
  3097. char *cwd = page + PATH_MAX;
  3098. int buflen = PATH_MAX;
  3099. prepend(&cwd, &buflen, "\0", 1);
  3100. error = prepend_path(&pwd, &root, &cwd, &buflen);
  3101. rcu_read_unlock();
  3102. if (error < 0)
  3103. goto out;
  3104. /* Unreachable from current root */
  3105. if (error > 0) {
  3106. error = prepend_unreachable(&cwd, &buflen);
  3107. if (error)
  3108. goto out;
  3109. }
  3110. error = -ERANGE;
  3111. len = PATH_MAX + page - cwd;
  3112. if (len <= size) {
  3113. error = len;
  3114. if (copy_to_user(buf, cwd, len))
  3115. error = -EFAULT;
  3116. }
  3117. } else {
  3118. rcu_read_unlock();
  3119. }
  3120. out:
  3121. __putname(page);
  3122. return error;
  3123. }
  3124. /*
  3125. * Test whether new_dentry is a subdirectory of old_dentry.
  3126. *
  3127. * Trivially implemented using the dcache structure
  3128. */
  3129. /**
  3130. * is_subdir - is new dentry a subdirectory of old_dentry
  3131. * @new_dentry: new dentry
  3132. * @old_dentry: old dentry
  3133. *
  3134. * Returns true if new_dentry is a subdirectory of the parent (at any depth).
  3135. * Returns false otherwise.
  3136. * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
  3137. */
  3138. bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
  3139. {
  3140. bool result;
  3141. unsigned seq;
  3142. if (new_dentry == old_dentry)
  3143. return true;
  3144. do {
  3145. /* for restarting inner loop in case of seq retry */
  3146. seq = read_seqbegin(&rename_lock);
  3147. /*
  3148. * Need rcu_readlock to protect against the d_parent trashing
  3149. * due to d_move
  3150. */
  3151. rcu_read_lock();
  3152. if (d_ancestor(old_dentry, new_dentry))
  3153. result = true;
  3154. else
  3155. result = false;
  3156. rcu_read_unlock();
  3157. } while (read_seqretry(&rename_lock, seq));
  3158. return result;
  3159. }
  3160. static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
  3161. {
  3162. struct dentry *root = data;
  3163. if (dentry != root) {
  3164. if (d_unhashed(dentry) || !dentry->d_inode)
  3165. return D_WALK_SKIP;
  3166. if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
  3167. dentry->d_flags |= DCACHE_GENOCIDE;
  3168. dentry->d_lockref.count--;
  3169. }
  3170. }
  3171. return D_WALK_CONTINUE;
  3172. }
  3173. void d_genocide(struct dentry *parent)
  3174. {
  3175. d_walk(parent, parent, d_genocide_kill, NULL);
  3176. }
  3177. void d_tmpfile(struct dentry *dentry, struct inode *inode)
  3178. {
  3179. inode_dec_link_count(inode);
  3180. BUG_ON(dentry->d_name.name != dentry->d_iname ||
  3181. !hlist_unhashed(&dentry->d_u.d_alias) ||
  3182. !d_unlinked(dentry));
  3183. spin_lock(&dentry->d_parent->d_lock);
  3184. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  3185. dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
  3186. (unsigned long long)inode->i_ino);
  3187. spin_unlock(&dentry->d_lock);
  3188. spin_unlock(&dentry->d_parent->d_lock);
  3189. d_instantiate(dentry, inode);
  3190. }
  3191. EXPORT_SYMBOL(d_tmpfile);
  3192. static __initdata unsigned long dhash_entries;
  3193. static int __init set_dhash_entries(char *str)
  3194. {
  3195. if (!str)
  3196. return 0;
  3197. dhash_entries = simple_strtoul(str, &str, 0);
  3198. return 1;
  3199. }
  3200. __setup("dhash_entries=", set_dhash_entries);
  3201. static void __init dcache_init_early(void)
  3202. {
  3203. unsigned int loop;
  3204. /* If hashes are distributed across NUMA nodes, defer
  3205. * hash allocation until vmalloc space is available.
  3206. */
  3207. if (hashdist)
  3208. return;
  3209. dentry_hashtable =
  3210. alloc_large_system_hash("Dentry cache",
  3211. sizeof(struct hlist_bl_head),
  3212. dhash_entries,
  3213. 13,
  3214. HASH_EARLY,
  3215. &d_hash_shift,
  3216. &d_hash_mask,
  3217. 0,
  3218. 0);
  3219. for (loop = 0; loop < (1U << d_hash_shift); loop++)
  3220. INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
  3221. }
  3222. static void __init dcache_init(void)
  3223. {
  3224. unsigned int loop;
  3225. /*
  3226. * A constructor could be added for stable state like the lists,
  3227. * but it is probably not worth it because of the cache nature
  3228. * of the dcache.
  3229. */
  3230. dentry_cache = KMEM_CACHE(dentry,
  3231. SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
  3232. /* Hash may have been set up in dcache_init_early */
  3233. if (!hashdist)
  3234. return;
  3235. dentry_hashtable =
  3236. alloc_large_system_hash("Dentry cache",
  3237. sizeof(struct hlist_bl_head),
  3238. dhash_entries,
  3239. 13,
  3240. 0,
  3241. &d_hash_shift,
  3242. &d_hash_mask,
  3243. 0,
  3244. 0);
  3245. for (loop = 0; loop < (1U << d_hash_shift); loop++)
  3246. INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
  3247. }
  3248. /* SLAB cache for __getname() consumers */
  3249. struct kmem_cache *names_cachep __read_mostly;
  3250. EXPORT_SYMBOL(names_cachep);
  3251. EXPORT_SYMBOL(d_genocide);
  3252. void __init vfs_caches_init_early(void)
  3253. {
  3254. dcache_init_early();
  3255. inode_init_early();
  3256. }
  3257. void __init vfs_caches_init(void)
  3258. {
  3259. names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
  3260. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  3261. dcache_init();
  3262. inode_init();
  3263. files_init();
  3264. files_maxfiles_init();
  3265. mnt_init();
  3266. bdev_cache_init();
  3267. chrdev_init();
  3268. }