mm.h 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/percpu-refcount.h>
  17. #include <linux/bit_spinlock.h>
  18. #include <linux/shrinker.h>
  19. #include <linux/resource.h>
  20. #include <linux/page_ext.h>
  21. #include <linux/err.h>
  22. #include <linux/page_ref.h>
  23. struct mempolicy;
  24. struct anon_vma;
  25. struct anon_vma_chain;
  26. struct file_ra_state;
  27. struct user_struct;
  28. struct writeback_control;
  29. struct bdi_writeback;
  30. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  31. extern unsigned long max_mapnr;
  32. static inline void set_max_mapnr(unsigned long limit)
  33. {
  34. max_mapnr = limit;
  35. }
  36. #else
  37. static inline void set_max_mapnr(unsigned long limit) { }
  38. #endif
  39. extern unsigned long totalram_pages;
  40. extern void * high_memory;
  41. extern int page_cluster;
  42. #ifdef CONFIG_SYSCTL
  43. extern int sysctl_legacy_va_layout;
  44. #else
  45. #define sysctl_legacy_va_layout 0
  46. #endif
  47. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  48. extern const int mmap_rnd_bits_min;
  49. extern const int mmap_rnd_bits_max;
  50. extern int mmap_rnd_bits __read_mostly;
  51. #endif
  52. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  53. extern const int mmap_rnd_compat_bits_min;
  54. extern const int mmap_rnd_compat_bits_max;
  55. extern int mmap_rnd_compat_bits __read_mostly;
  56. #endif
  57. #include <asm/page.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/processor.h>
  60. #ifndef __pa_symbol
  61. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  62. #endif
  63. #ifndef page_to_virt
  64. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  65. #endif
  66. /*
  67. * To prevent common memory management code establishing
  68. * a zero page mapping on a read fault.
  69. * This macro should be defined within <asm/pgtable.h>.
  70. * s390 does this to prevent multiplexing of hardware bits
  71. * related to the physical page in case of virtualization.
  72. */
  73. #ifndef mm_forbids_zeropage
  74. #define mm_forbids_zeropage(X) (0)
  75. #endif
  76. /*
  77. * Default maximum number of active map areas, this limits the number of vmas
  78. * per mm struct. Users can overwrite this number by sysctl but there is a
  79. * problem.
  80. *
  81. * When a program's coredump is generated as ELF format, a section is created
  82. * per a vma. In ELF, the number of sections is represented in unsigned short.
  83. * This means the number of sections should be smaller than 65535 at coredump.
  84. * Because the kernel adds some informative sections to a image of program at
  85. * generating coredump, we need some margin. The number of extra sections is
  86. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  87. *
  88. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  89. * not a hard limit any more. Although some userspace tools can be surprised by
  90. * that.
  91. */
  92. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  93. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  94. extern int sysctl_max_map_count;
  95. extern unsigned long sysctl_user_reserve_kbytes;
  96. extern unsigned long sysctl_admin_reserve_kbytes;
  97. extern int sysctl_overcommit_memory;
  98. extern int sysctl_overcommit_ratio;
  99. extern unsigned long sysctl_overcommit_kbytes;
  100. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  101. size_t *, loff_t *);
  102. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  103. size_t *, loff_t *);
  104. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  105. /* to align the pointer to the (next) page boundary */
  106. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  107. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  108. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  109. /*
  110. * Linux kernel virtual memory manager primitives.
  111. * The idea being to have a "virtual" mm in the same way
  112. * we have a virtual fs - giving a cleaner interface to the
  113. * mm details, and allowing different kinds of memory mappings
  114. * (from shared memory to executable loading to arbitrary
  115. * mmap() functions).
  116. */
  117. extern struct kmem_cache *vm_area_cachep;
  118. #ifndef CONFIG_MMU
  119. extern struct rb_root nommu_region_tree;
  120. extern struct rw_semaphore nommu_region_sem;
  121. extern unsigned int kobjsize(const void *objp);
  122. #endif
  123. /*
  124. * vm_flags in vm_area_struct, see mm_types.h.
  125. * When changing, update also include/trace/events/mmflags.h
  126. */
  127. #define VM_NONE 0x00000000
  128. #define VM_READ 0x00000001 /* currently active flags */
  129. #define VM_WRITE 0x00000002
  130. #define VM_EXEC 0x00000004
  131. #define VM_SHARED 0x00000008
  132. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  133. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  134. #define VM_MAYWRITE 0x00000020
  135. #define VM_MAYEXEC 0x00000040
  136. #define VM_MAYSHARE 0x00000080
  137. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  138. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  139. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  140. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  141. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  142. #define VM_LOCKED 0x00002000
  143. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  144. /* Used by sys_madvise() */
  145. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  146. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  147. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  148. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  149. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  150. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  151. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  152. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  153. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  154. #define VM_ARCH_2 0x02000000
  155. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  156. #ifdef CONFIG_MEM_SOFT_DIRTY
  157. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  158. #else
  159. # define VM_SOFTDIRTY 0
  160. #endif
  161. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  162. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  163. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  164. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  165. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  166. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  167. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  168. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  169. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  170. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  171. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  172. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  173. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  174. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  175. #if defined(CONFIG_X86)
  176. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  177. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  178. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  179. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  180. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  181. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  182. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  183. #endif
  184. #elif defined(CONFIG_PPC)
  185. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  186. #elif defined(CONFIG_PARISC)
  187. # define VM_GROWSUP VM_ARCH_1
  188. #elif defined(CONFIG_METAG)
  189. # define VM_GROWSUP VM_ARCH_1
  190. #elif defined(CONFIG_IA64)
  191. # define VM_GROWSUP VM_ARCH_1
  192. #elif !defined(CONFIG_MMU)
  193. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  194. #endif
  195. #if defined(CONFIG_X86)
  196. /* MPX specific bounds table or bounds directory */
  197. # define VM_MPX VM_ARCH_2
  198. #endif
  199. #ifndef VM_GROWSUP
  200. # define VM_GROWSUP VM_NONE
  201. #endif
  202. /* Bits set in the VMA until the stack is in its final location */
  203. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  204. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  205. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  206. #endif
  207. #ifdef CONFIG_STACK_GROWSUP
  208. #define VM_STACK VM_GROWSUP
  209. #else
  210. #define VM_STACK VM_GROWSDOWN
  211. #endif
  212. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  213. /*
  214. * Special vmas that are non-mergable, non-mlock()able.
  215. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  216. */
  217. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  218. /* This mask defines which mm->def_flags a process can inherit its parent */
  219. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  220. /* This mask is used to clear all the VMA flags used by mlock */
  221. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  222. /*
  223. * mapping from the currently active vm_flags protection bits (the
  224. * low four bits) to a page protection mask..
  225. */
  226. extern pgprot_t protection_map[16];
  227. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  228. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  229. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  230. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  231. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  232. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  233. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  234. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  235. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  236. /*
  237. * vm_fault is filled by the the pagefault handler and passed to the vma's
  238. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  239. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  240. *
  241. * MM layer fills up gfp_mask for page allocations but fault handler might
  242. * alter it if its implementation requires a different allocation context.
  243. *
  244. * pgoff should be used in favour of virtual_address, if possible.
  245. */
  246. struct vm_fault {
  247. struct vm_area_struct *vma; /* Target VMA */
  248. unsigned int flags; /* FAULT_FLAG_xxx flags */
  249. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  250. pgoff_t pgoff; /* Logical page offset based on vma */
  251. unsigned long address; /* Faulting virtual address */
  252. void __user *virtual_address; /* Faulting virtual address masked by
  253. * PAGE_MASK */
  254. pmd_t *pmd; /* Pointer to pmd entry matching
  255. * the 'address'
  256. */
  257. struct page *cow_page; /* Handler may choose to COW */
  258. struct page *page; /* ->fault handlers should return a
  259. * page here, unless VM_FAULT_NOPAGE
  260. * is set (which is also implied by
  261. * VM_FAULT_ERROR).
  262. */
  263. void *entry; /* ->fault handler can alternatively
  264. * return locked DAX entry. In that
  265. * case handler should return
  266. * VM_FAULT_DAX_LOCKED and fill in
  267. * entry here.
  268. */
  269. /* These three entries are valid only while holding ptl lock */
  270. pte_t *pte; /* Pointer to pte entry matching
  271. * the 'address'. NULL if the page
  272. * table hasn't been allocated.
  273. */
  274. spinlock_t *ptl; /* Page table lock.
  275. * Protects pte page table if 'pte'
  276. * is not NULL, otherwise pmd.
  277. */
  278. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  279. * vm_ops->map_pages() calls
  280. * alloc_set_pte() from atomic context.
  281. * do_fault_around() pre-allocates
  282. * page table to avoid allocation from
  283. * atomic context.
  284. */
  285. };
  286. /*
  287. * These are the virtual MM functions - opening of an area, closing and
  288. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  289. * to the functions called when a no-page or a wp-page exception occurs.
  290. */
  291. struct vm_operations_struct {
  292. void (*open)(struct vm_area_struct * area);
  293. void (*close)(struct vm_area_struct * area);
  294. int (*mremap)(struct vm_area_struct * area);
  295. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  296. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  297. pmd_t *, unsigned int flags);
  298. void (*map_pages)(struct vm_fault *vmf,
  299. pgoff_t start_pgoff, pgoff_t end_pgoff);
  300. /* notification that a previously read-only page is about to become
  301. * writable, if an error is returned it will cause a SIGBUS */
  302. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  303. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  304. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  305. /* called by access_process_vm when get_user_pages() fails, typically
  306. * for use by special VMAs that can switch between memory and hardware
  307. */
  308. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  309. void *buf, int len, int write);
  310. /* Called by the /proc/PID/maps code to ask the vma whether it
  311. * has a special name. Returning non-NULL will also cause this
  312. * vma to be dumped unconditionally. */
  313. const char *(*name)(struct vm_area_struct *vma);
  314. #ifdef CONFIG_NUMA
  315. /*
  316. * set_policy() op must add a reference to any non-NULL @new mempolicy
  317. * to hold the policy upon return. Caller should pass NULL @new to
  318. * remove a policy and fall back to surrounding context--i.e. do not
  319. * install a MPOL_DEFAULT policy, nor the task or system default
  320. * mempolicy.
  321. */
  322. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  323. /*
  324. * get_policy() op must add reference [mpol_get()] to any policy at
  325. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  326. * in mm/mempolicy.c will do this automatically.
  327. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  328. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  329. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  330. * must return NULL--i.e., do not "fallback" to task or system default
  331. * policy.
  332. */
  333. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  334. unsigned long addr);
  335. #endif
  336. /*
  337. * Called by vm_normal_page() for special PTEs to find the
  338. * page for @addr. This is useful if the default behavior
  339. * (using pte_page()) would not find the correct page.
  340. */
  341. struct page *(*find_special_page)(struct vm_area_struct *vma,
  342. unsigned long addr);
  343. };
  344. struct mmu_gather;
  345. struct inode;
  346. #define page_private(page) ((page)->private)
  347. #define set_page_private(page, v) ((page)->private = (v))
  348. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  349. static inline int pmd_devmap(pmd_t pmd)
  350. {
  351. return 0;
  352. }
  353. #endif
  354. /*
  355. * FIXME: take this include out, include page-flags.h in
  356. * files which need it (119 of them)
  357. */
  358. #include <linux/page-flags.h>
  359. #include <linux/huge_mm.h>
  360. /*
  361. * Methods to modify the page usage count.
  362. *
  363. * What counts for a page usage:
  364. * - cache mapping (page->mapping)
  365. * - private data (page->private)
  366. * - page mapped in a task's page tables, each mapping
  367. * is counted separately
  368. *
  369. * Also, many kernel routines increase the page count before a critical
  370. * routine so they can be sure the page doesn't go away from under them.
  371. */
  372. /*
  373. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  374. */
  375. static inline int put_page_testzero(struct page *page)
  376. {
  377. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  378. return page_ref_dec_and_test(page);
  379. }
  380. /*
  381. * Try to grab a ref unless the page has a refcount of zero, return false if
  382. * that is the case.
  383. * This can be called when MMU is off so it must not access
  384. * any of the virtual mappings.
  385. */
  386. static inline int get_page_unless_zero(struct page *page)
  387. {
  388. return page_ref_add_unless(page, 1, 0);
  389. }
  390. extern int page_is_ram(unsigned long pfn);
  391. enum {
  392. REGION_INTERSECTS,
  393. REGION_DISJOINT,
  394. REGION_MIXED,
  395. };
  396. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  397. unsigned long desc);
  398. /* Support for virtually mapped pages */
  399. struct page *vmalloc_to_page(const void *addr);
  400. unsigned long vmalloc_to_pfn(const void *addr);
  401. /*
  402. * Determine if an address is within the vmalloc range
  403. *
  404. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  405. * is no special casing required.
  406. */
  407. static inline bool is_vmalloc_addr(const void *x)
  408. {
  409. #ifdef CONFIG_MMU
  410. unsigned long addr = (unsigned long)x;
  411. return addr >= VMALLOC_START && addr < VMALLOC_END;
  412. #else
  413. return false;
  414. #endif
  415. }
  416. #ifdef CONFIG_MMU
  417. extern int is_vmalloc_or_module_addr(const void *x);
  418. #else
  419. static inline int is_vmalloc_or_module_addr(const void *x)
  420. {
  421. return 0;
  422. }
  423. #endif
  424. extern void kvfree(const void *addr);
  425. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  426. {
  427. return &page[1].compound_mapcount;
  428. }
  429. static inline int compound_mapcount(struct page *page)
  430. {
  431. VM_BUG_ON_PAGE(!PageCompound(page), page);
  432. page = compound_head(page);
  433. return atomic_read(compound_mapcount_ptr(page)) + 1;
  434. }
  435. /*
  436. * The atomic page->_mapcount, starts from -1: so that transitions
  437. * both from it and to it can be tracked, using atomic_inc_and_test
  438. * and atomic_add_negative(-1).
  439. */
  440. static inline void page_mapcount_reset(struct page *page)
  441. {
  442. atomic_set(&(page)->_mapcount, -1);
  443. }
  444. int __page_mapcount(struct page *page);
  445. static inline int page_mapcount(struct page *page)
  446. {
  447. VM_BUG_ON_PAGE(PageSlab(page), page);
  448. if (unlikely(PageCompound(page)))
  449. return __page_mapcount(page);
  450. return atomic_read(&page->_mapcount) + 1;
  451. }
  452. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  453. int total_mapcount(struct page *page);
  454. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  455. #else
  456. static inline int total_mapcount(struct page *page)
  457. {
  458. return page_mapcount(page);
  459. }
  460. static inline int page_trans_huge_mapcount(struct page *page,
  461. int *total_mapcount)
  462. {
  463. int mapcount = page_mapcount(page);
  464. if (total_mapcount)
  465. *total_mapcount = mapcount;
  466. return mapcount;
  467. }
  468. #endif
  469. static inline struct page *virt_to_head_page(const void *x)
  470. {
  471. struct page *page = virt_to_page(x);
  472. return compound_head(page);
  473. }
  474. void __put_page(struct page *page);
  475. void put_pages_list(struct list_head *pages);
  476. void split_page(struct page *page, unsigned int order);
  477. /*
  478. * Compound pages have a destructor function. Provide a
  479. * prototype for that function and accessor functions.
  480. * These are _only_ valid on the head of a compound page.
  481. */
  482. typedef void compound_page_dtor(struct page *);
  483. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  484. enum compound_dtor_id {
  485. NULL_COMPOUND_DTOR,
  486. COMPOUND_PAGE_DTOR,
  487. #ifdef CONFIG_HUGETLB_PAGE
  488. HUGETLB_PAGE_DTOR,
  489. #endif
  490. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  491. TRANSHUGE_PAGE_DTOR,
  492. #endif
  493. NR_COMPOUND_DTORS,
  494. };
  495. extern compound_page_dtor * const compound_page_dtors[];
  496. static inline void set_compound_page_dtor(struct page *page,
  497. enum compound_dtor_id compound_dtor)
  498. {
  499. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  500. page[1].compound_dtor = compound_dtor;
  501. }
  502. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  503. {
  504. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  505. return compound_page_dtors[page[1].compound_dtor];
  506. }
  507. static inline unsigned int compound_order(struct page *page)
  508. {
  509. if (!PageHead(page))
  510. return 0;
  511. return page[1].compound_order;
  512. }
  513. static inline void set_compound_order(struct page *page, unsigned int order)
  514. {
  515. page[1].compound_order = order;
  516. }
  517. void free_compound_page(struct page *page);
  518. #ifdef CONFIG_MMU
  519. /*
  520. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  521. * servicing faults for write access. In the normal case, do always want
  522. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  523. * that do not have writing enabled, when used by access_process_vm.
  524. */
  525. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  526. {
  527. if (likely(vma->vm_flags & VM_WRITE))
  528. pte = pte_mkwrite(pte);
  529. return pte;
  530. }
  531. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  532. struct page *page);
  533. #endif
  534. /*
  535. * Multiple processes may "see" the same page. E.g. for untouched
  536. * mappings of /dev/null, all processes see the same page full of
  537. * zeroes, and text pages of executables and shared libraries have
  538. * only one copy in memory, at most, normally.
  539. *
  540. * For the non-reserved pages, page_count(page) denotes a reference count.
  541. * page_count() == 0 means the page is free. page->lru is then used for
  542. * freelist management in the buddy allocator.
  543. * page_count() > 0 means the page has been allocated.
  544. *
  545. * Pages are allocated by the slab allocator in order to provide memory
  546. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  547. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  548. * unless a particular usage is carefully commented. (the responsibility of
  549. * freeing the kmalloc memory is the caller's, of course).
  550. *
  551. * A page may be used by anyone else who does a __get_free_page().
  552. * In this case, page_count still tracks the references, and should only
  553. * be used through the normal accessor functions. The top bits of page->flags
  554. * and page->virtual store page management information, but all other fields
  555. * are unused and could be used privately, carefully. The management of this
  556. * page is the responsibility of the one who allocated it, and those who have
  557. * subsequently been given references to it.
  558. *
  559. * The other pages (we may call them "pagecache pages") are completely
  560. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  561. * The following discussion applies only to them.
  562. *
  563. * A pagecache page contains an opaque `private' member, which belongs to the
  564. * page's address_space. Usually, this is the address of a circular list of
  565. * the page's disk buffers. PG_private must be set to tell the VM to call
  566. * into the filesystem to release these pages.
  567. *
  568. * A page may belong to an inode's memory mapping. In this case, page->mapping
  569. * is the pointer to the inode, and page->index is the file offset of the page,
  570. * in units of PAGE_SIZE.
  571. *
  572. * If pagecache pages are not associated with an inode, they are said to be
  573. * anonymous pages. These may become associated with the swapcache, and in that
  574. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  575. *
  576. * In either case (swapcache or inode backed), the pagecache itself holds one
  577. * reference to the page. Setting PG_private should also increment the
  578. * refcount. The each user mapping also has a reference to the page.
  579. *
  580. * The pagecache pages are stored in a per-mapping radix tree, which is
  581. * rooted at mapping->page_tree, and indexed by offset.
  582. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  583. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  584. *
  585. * All pagecache pages may be subject to I/O:
  586. * - inode pages may need to be read from disk,
  587. * - inode pages which have been modified and are MAP_SHARED may need
  588. * to be written back to the inode on disk,
  589. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  590. * modified may need to be swapped out to swap space and (later) to be read
  591. * back into memory.
  592. */
  593. /*
  594. * The zone field is never updated after free_area_init_core()
  595. * sets it, so none of the operations on it need to be atomic.
  596. */
  597. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  598. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  599. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  600. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  601. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  602. /*
  603. * Define the bit shifts to access each section. For non-existent
  604. * sections we define the shift as 0; that plus a 0 mask ensures
  605. * the compiler will optimise away reference to them.
  606. */
  607. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  608. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  609. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  610. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  611. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  612. #ifdef NODE_NOT_IN_PAGE_FLAGS
  613. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  614. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  615. SECTIONS_PGOFF : ZONES_PGOFF)
  616. #else
  617. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  618. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  619. NODES_PGOFF : ZONES_PGOFF)
  620. #endif
  621. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  622. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  623. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  624. #endif
  625. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  626. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  627. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  628. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  629. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  630. static inline enum zone_type page_zonenum(const struct page *page)
  631. {
  632. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  633. }
  634. #ifdef CONFIG_ZONE_DEVICE
  635. void get_zone_device_page(struct page *page);
  636. void put_zone_device_page(struct page *page);
  637. static inline bool is_zone_device_page(const struct page *page)
  638. {
  639. return page_zonenum(page) == ZONE_DEVICE;
  640. }
  641. #else
  642. static inline void get_zone_device_page(struct page *page)
  643. {
  644. }
  645. static inline void put_zone_device_page(struct page *page)
  646. {
  647. }
  648. static inline bool is_zone_device_page(const struct page *page)
  649. {
  650. return false;
  651. }
  652. #endif
  653. static inline void get_page(struct page *page)
  654. {
  655. page = compound_head(page);
  656. /*
  657. * Getting a normal page or the head of a compound page
  658. * requires to already have an elevated page->_refcount.
  659. */
  660. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  661. page_ref_inc(page);
  662. if (unlikely(is_zone_device_page(page)))
  663. get_zone_device_page(page);
  664. }
  665. static inline void put_page(struct page *page)
  666. {
  667. page = compound_head(page);
  668. if (put_page_testzero(page))
  669. __put_page(page);
  670. if (unlikely(is_zone_device_page(page)))
  671. put_zone_device_page(page);
  672. }
  673. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  674. #define SECTION_IN_PAGE_FLAGS
  675. #endif
  676. /*
  677. * The identification function is mainly used by the buddy allocator for
  678. * determining if two pages could be buddies. We are not really identifying
  679. * the zone since we could be using the section number id if we do not have
  680. * node id available in page flags.
  681. * We only guarantee that it will return the same value for two combinable
  682. * pages in a zone.
  683. */
  684. static inline int page_zone_id(struct page *page)
  685. {
  686. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  687. }
  688. static inline int zone_to_nid(struct zone *zone)
  689. {
  690. #ifdef CONFIG_NUMA
  691. return zone->node;
  692. #else
  693. return 0;
  694. #endif
  695. }
  696. #ifdef NODE_NOT_IN_PAGE_FLAGS
  697. extern int page_to_nid(const struct page *page);
  698. #else
  699. static inline int page_to_nid(const struct page *page)
  700. {
  701. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  702. }
  703. #endif
  704. #ifdef CONFIG_NUMA_BALANCING
  705. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  706. {
  707. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  708. }
  709. static inline int cpupid_to_pid(int cpupid)
  710. {
  711. return cpupid & LAST__PID_MASK;
  712. }
  713. static inline int cpupid_to_cpu(int cpupid)
  714. {
  715. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  716. }
  717. static inline int cpupid_to_nid(int cpupid)
  718. {
  719. return cpu_to_node(cpupid_to_cpu(cpupid));
  720. }
  721. static inline bool cpupid_pid_unset(int cpupid)
  722. {
  723. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  724. }
  725. static inline bool cpupid_cpu_unset(int cpupid)
  726. {
  727. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  728. }
  729. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  730. {
  731. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  732. }
  733. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  734. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  735. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  736. {
  737. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  738. }
  739. static inline int page_cpupid_last(struct page *page)
  740. {
  741. return page->_last_cpupid;
  742. }
  743. static inline void page_cpupid_reset_last(struct page *page)
  744. {
  745. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  746. }
  747. #else
  748. static inline int page_cpupid_last(struct page *page)
  749. {
  750. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  751. }
  752. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  753. static inline void page_cpupid_reset_last(struct page *page)
  754. {
  755. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  756. }
  757. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  758. #else /* !CONFIG_NUMA_BALANCING */
  759. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  760. {
  761. return page_to_nid(page); /* XXX */
  762. }
  763. static inline int page_cpupid_last(struct page *page)
  764. {
  765. return page_to_nid(page); /* XXX */
  766. }
  767. static inline int cpupid_to_nid(int cpupid)
  768. {
  769. return -1;
  770. }
  771. static inline int cpupid_to_pid(int cpupid)
  772. {
  773. return -1;
  774. }
  775. static inline int cpupid_to_cpu(int cpupid)
  776. {
  777. return -1;
  778. }
  779. static inline int cpu_pid_to_cpupid(int nid, int pid)
  780. {
  781. return -1;
  782. }
  783. static inline bool cpupid_pid_unset(int cpupid)
  784. {
  785. return 1;
  786. }
  787. static inline void page_cpupid_reset_last(struct page *page)
  788. {
  789. }
  790. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  791. {
  792. return false;
  793. }
  794. #endif /* CONFIG_NUMA_BALANCING */
  795. static inline struct zone *page_zone(const struct page *page)
  796. {
  797. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  798. }
  799. static inline pg_data_t *page_pgdat(const struct page *page)
  800. {
  801. return NODE_DATA(page_to_nid(page));
  802. }
  803. #ifdef SECTION_IN_PAGE_FLAGS
  804. static inline void set_page_section(struct page *page, unsigned long section)
  805. {
  806. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  807. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  808. }
  809. static inline unsigned long page_to_section(const struct page *page)
  810. {
  811. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  812. }
  813. #endif
  814. static inline void set_page_zone(struct page *page, enum zone_type zone)
  815. {
  816. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  817. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  818. }
  819. static inline void set_page_node(struct page *page, unsigned long node)
  820. {
  821. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  822. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  823. }
  824. static inline void set_page_links(struct page *page, enum zone_type zone,
  825. unsigned long node, unsigned long pfn)
  826. {
  827. set_page_zone(page, zone);
  828. set_page_node(page, node);
  829. #ifdef SECTION_IN_PAGE_FLAGS
  830. set_page_section(page, pfn_to_section_nr(pfn));
  831. #endif
  832. }
  833. #ifdef CONFIG_MEMCG
  834. static inline struct mem_cgroup *page_memcg(struct page *page)
  835. {
  836. return page->mem_cgroup;
  837. }
  838. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  839. {
  840. WARN_ON_ONCE(!rcu_read_lock_held());
  841. return READ_ONCE(page->mem_cgroup);
  842. }
  843. #else
  844. static inline struct mem_cgroup *page_memcg(struct page *page)
  845. {
  846. return NULL;
  847. }
  848. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  849. {
  850. WARN_ON_ONCE(!rcu_read_lock_held());
  851. return NULL;
  852. }
  853. #endif
  854. /*
  855. * Some inline functions in vmstat.h depend on page_zone()
  856. */
  857. #include <linux/vmstat.h>
  858. static __always_inline void *lowmem_page_address(const struct page *page)
  859. {
  860. return page_to_virt(page);
  861. }
  862. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  863. #define HASHED_PAGE_VIRTUAL
  864. #endif
  865. #if defined(WANT_PAGE_VIRTUAL)
  866. static inline void *page_address(const struct page *page)
  867. {
  868. return page->virtual;
  869. }
  870. static inline void set_page_address(struct page *page, void *address)
  871. {
  872. page->virtual = address;
  873. }
  874. #define page_address_init() do { } while(0)
  875. #endif
  876. #if defined(HASHED_PAGE_VIRTUAL)
  877. void *page_address(const struct page *page);
  878. void set_page_address(struct page *page, void *virtual);
  879. void page_address_init(void);
  880. #endif
  881. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  882. #define page_address(page) lowmem_page_address(page)
  883. #define set_page_address(page, address) do { } while(0)
  884. #define page_address_init() do { } while(0)
  885. #endif
  886. extern void *page_rmapping(struct page *page);
  887. extern struct anon_vma *page_anon_vma(struct page *page);
  888. extern struct address_space *page_mapping(struct page *page);
  889. extern struct address_space *__page_file_mapping(struct page *);
  890. static inline
  891. struct address_space *page_file_mapping(struct page *page)
  892. {
  893. if (unlikely(PageSwapCache(page)))
  894. return __page_file_mapping(page);
  895. return page->mapping;
  896. }
  897. extern pgoff_t __page_file_index(struct page *page);
  898. /*
  899. * Return the pagecache index of the passed page. Regular pagecache pages
  900. * use ->index whereas swapcache pages use swp_offset(->private)
  901. */
  902. static inline pgoff_t page_index(struct page *page)
  903. {
  904. if (unlikely(PageSwapCache(page)))
  905. return __page_file_index(page);
  906. return page->index;
  907. }
  908. bool page_mapped(struct page *page);
  909. struct address_space *page_mapping(struct page *page);
  910. /*
  911. * Return true only if the page has been allocated with
  912. * ALLOC_NO_WATERMARKS and the low watermark was not
  913. * met implying that the system is under some pressure.
  914. */
  915. static inline bool page_is_pfmemalloc(struct page *page)
  916. {
  917. /*
  918. * Page index cannot be this large so this must be
  919. * a pfmemalloc page.
  920. */
  921. return page->index == -1UL;
  922. }
  923. /*
  924. * Only to be called by the page allocator on a freshly allocated
  925. * page.
  926. */
  927. static inline void set_page_pfmemalloc(struct page *page)
  928. {
  929. page->index = -1UL;
  930. }
  931. static inline void clear_page_pfmemalloc(struct page *page)
  932. {
  933. page->index = 0;
  934. }
  935. /*
  936. * Different kinds of faults, as returned by handle_mm_fault().
  937. * Used to decide whether a process gets delivered SIGBUS or
  938. * just gets major/minor fault counters bumped up.
  939. */
  940. #define VM_FAULT_OOM 0x0001
  941. #define VM_FAULT_SIGBUS 0x0002
  942. #define VM_FAULT_MAJOR 0x0004
  943. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  944. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  945. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  946. #define VM_FAULT_SIGSEGV 0x0040
  947. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  948. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  949. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  950. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  951. #define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
  952. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  953. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  954. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  955. VM_FAULT_FALLBACK)
  956. /* Encode hstate index for a hwpoisoned large page */
  957. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  958. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  959. /*
  960. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  961. */
  962. extern void pagefault_out_of_memory(void);
  963. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  964. /*
  965. * Flags passed to show_mem() and show_free_areas() to suppress output in
  966. * various contexts.
  967. */
  968. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  969. extern void show_free_areas(unsigned int flags);
  970. extern bool skip_free_areas_node(unsigned int flags, int nid);
  971. int shmem_zero_setup(struct vm_area_struct *);
  972. #ifdef CONFIG_SHMEM
  973. bool shmem_mapping(struct address_space *mapping);
  974. #else
  975. static inline bool shmem_mapping(struct address_space *mapping)
  976. {
  977. return false;
  978. }
  979. #endif
  980. extern bool can_do_mlock(void);
  981. extern int user_shm_lock(size_t, struct user_struct *);
  982. extern void user_shm_unlock(size_t, struct user_struct *);
  983. /*
  984. * Parameter block passed down to zap_pte_range in exceptional cases.
  985. */
  986. struct zap_details {
  987. struct address_space *check_mapping; /* Check page->mapping if set */
  988. pgoff_t first_index; /* Lowest page->index to unmap */
  989. pgoff_t last_index; /* Highest page->index to unmap */
  990. bool ignore_dirty; /* Ignore dirty pages */
  991. bool check_swap_entries; /* Check also swap entries */
  992. };
  993. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  994. pte_t pte);
  995. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  996. pmd_t pmd);
  997. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  998. unsigned long size);
  999. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1000. unsigned long size, struct zap_details *);
  1001. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1002. unsigned long start, unsigned long end);
  1003. /**
  1004. * mm_walk - callbacks for walk_page_range
  1005. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1006. * this handler is required to be able to handle
  1007. * pmd_trans_huge() pmds. They may simply choose to
  1008. * split_huge_page() instead of handling it explicitly.
  1009. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1010. * @pte_hole: if set, called for each hole at all levels
  1011. * @hugetlb_entry: if set, called for each hugetlb entry
  1012. * @test_walk: caller specific callback function to determine whether
  1013. * we walk over the current vma or not. Returning 0
  1014. * value means "do page table walk over the current vma,"
  1015. * and a negative one means "abort current page table walk
  1016. * right now." 1 means "skip the current vma."
  1017. * @mm: mm_struct representing the target process of page table walk
  1018. * @vma: vma currently walked (NULL if walking outside vmas)
  1019. * @private: private data for callbacks' usage
  1020. *
  1021. * (see the comment on walk_page_range() for more details)
  1022. */
  1023. struct mm_walk {
  1024. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1025. unsigned long next, struct mm_walk *walk);
  1026. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1027. unsigned long next, struct mm_walk *walk);
  1028. int (*pte_hole)(unsigned long addr, unsigned long next,
  1029. struct mm_walk *walk);
  1030. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1031. unsigned long addr, unsigned long next,
  1032. struct mm_walk *walk);
  1033. int (*test_walk)(unsigned long addr, unsigned long next,
  1034. struct mm_walk *walk);
  1035. struct mm_struct *mm;
  1036. struct vm_area_struct *vma;
  1037. void *private;
  1038. };
  1039. int walk_page_range(unsigned long addr, unsigned long end,
  1040. struct mm_walk *walk);
  1041. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1042. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1043. unsigned long end, unsigned long floor, unsigned long ceiling);
  1044. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1045. struct vm_area_struct *vma);
  1046. void unmap_mapping_range(struct address_space *mapping,
  1047. loff_t const holebegin, loff_t const holelen, int even_cows);
  1048. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1049. unsigned long *pfn);
  1050. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1051. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1052. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1053. void *buf, int len, int write);
  1054. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1055. loff_t const holebegin, loff_t const holelen)
  1056. {
  1057. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1058. }
  1059. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1060. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1061. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1062. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1063. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1064. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1065. int invalidate_inode_page(struct page *page);
  1066. #ifdef CONFIG_MMU
  1067. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1068. unsigned int flags);
  1069. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1070. unsigned long address, unsigned int fault_flags,
  1071. bool *unlocked);
  1072. #else
  1073. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1074. unsigned long address, unsigned int flags)
  1075. {
  1076. /* should never happen if there's no MMU */
  1077. BUG();
  1078. return VM_FAULT_SIGBUS;
  1079. }
  1080. static inline int fixup_user_fault(struct task_struct *tsk,
  1081. struct mm_struct *mm, unsigned long address,
  1082. unsigned int fault_flags, bool *unlocked)
  1083. {
  1084. /* should never happen if there's no MMU */
  1085. BUG();
  1086. return -EFAULT;
  1087. }
  1088. #endif
  1089. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
  1090. unsigned int gup_flags);
  1091. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1092. void *buf, int len, unsigned int gup_flags);
  1093. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1094. unsigned long start, unsigned long nr_pages,
  1095. unsigned int gup_flags, struct page **pages,
  1096. struct vm_area_struct **vmas, int *locked);
  1097. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1098. unsigned int gup_flags, struct page **pages,
  1099. struct vm_area_struct **vmas);
  1100. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1101. unsigned int gup_flags, struct page **pages, int *locked);
  1102. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1103. struct page **pages, unsigned int gup_flags);
  1104. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1105. struct page **pages);
  1106. /* Container for pinned pfns / pages */
  1107. struct frame_vector {
  1108. unsigned int nr_allocated; /* Number of frames we have space for */
  1109. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1110. bool got_ref; /* Did we pin pages by getting page ref? */
  1111. bool is_pfns; /* Does array contain pages or pfns? */
  1112. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1113. * pfns_vector_pages() or pfns_vector_pfns()
  1114. * for access */
  1115. };
  1116. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1117. void frame_vector_destroy(struct frame_vector *vec);
  1118. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1119. unsigned int gup_flags, struct frame_vector *vec);
  1120. void put_vaddr_frames(struct frame_vector *vec);
  1121. int frame_vector_to_pages(struct frame_vector *vec);
  1122. void frame_vector_to_pfns(struct frame_vector *vec);
  1123. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1124. {
  1125. return vec->nr_frames;
  1126. }
  1127. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1128. {
  1129. if (vec->is_pfns) {
  1130. int err = frame_vector_to_pages(vec);
  1131. if (err)
  1132. return ERR_PTR(err);
  1133. }
  1134. return (struct page **)(vec->ptrs);
  1135. }
  1136. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1137. {
  1138. if (!vec->is_pfns)
  1139. frame_vector_to_pfns(vec);
  1140. return (unsigned long *)(vec->ptrs);
  1141. }
  1142. struct kvec;
  1143. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1144. struct page **pages);
  1145. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1146. struct page *get_dump_page(unsigned long addr);
  1147. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1148. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1149. unsigned int length);
  1150. int __set_page_dirty_nobuffers(struct page *page);
  1151. int __set_page_dirty_no_writeback(struct page *page);
  1152. int redirty_page_for_writepage(struct writeback_control *wbc,
  1153. struct page *page);
  1154. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1155. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1156. struct bdi_writeback *wb);
  1157. int set_page_dirty(struct page *page);
  1158. int set_page_dirty_lock(struct page *page);
  1159. void cancel_dirty_page(struct page *page);
  1160. int clear_page_dirty_for_io(struct page *page);
  1161. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1162. /* Is the vma a continuation of the stack vma above it? */
  1163. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1164. {
  1165. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1166. }
  1167. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1168. {
  1169. return !vma->vm_ops;
  1170. }
  1171. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1172. unsigned long addr)
  1173. {
  1174. return (vma->vm_flags & VM_GROWSDOWN) &&
  1175. (vma->vm_start == addr) &&
  1176. !vma_growsdown(vma->vm_prev, addr);
  1177. }
  1178. /* Is the vma a continuation of the stack vma below it? */
  1179. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1180. {
  1181. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1182. }
  1183. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1184. unsigned long addr)
  1185. {
  1186. return (vma->vm_flags & VM_GROWSUP) &&
  1187. (vma->vm_end == addr) &&
  1188. !vma_growsup(vma->vm_next, addr);
  1189. }
  1190. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1191. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1192. unsigned long old_addr, struct vm_area_struct *new_vma,
  1193. unsigned long new_addr, unsigned long len,
  1194. bool need_rmap_locks);
  1195. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1196. unsigned long end, pgprot_t newprot,
  1197. int dirty_accountable, int prot_numa);
  1198. extern int mprotect_fixup(struct vm_area_struct *vma,
  1199. struct vm_area_struct **pprev, unsigned long start,
  1200. unsigned long end, unsigned long newflags);
  1201. /*
  1202. * doesn't attempt to fault and will return short.
  1203. */
  1204. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1205. struct page **pages);
  1206. /*
  1207. * per-process(per-mm_struct) statistics.
  1208. */
  1209. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1210. {
  1211. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1212. #ifdef SPLIT_RSS_COUNTING
  1213. /*
  1214. * counter is updated in asynchronous manner and may go to minus.
  1215. * But it's never be expected number for users.
  1216. */
  1217. if (val < 0)
  1218. val = 0;
  1219. #endif
  1220. return (unsigned long)val;
  1221. }
  1222. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1223. {
  1224. atomic_long_add(value, &mm->rss_stat.count[member]);
  1225. }
  1226. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1227. {
  1228. atomic_long_inc(&mm->rss_stat.count[member]);
  1229. }
  1230. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1231. {
  1232. atomic_long_dec(&mm->rss_stat.count[member]);
  1233. }
  1234. /* Optimized variant when page is already known not to be PageAnon */
  1235. static inline int mm_counter_file(struct page *page)
  1236. {
  1237. if (PageSwapBacked(page))
  1238. return MM_SHMEMPAGES;
  1239. return MM_FILEPAGES;
  1240. }
  1241. static inline int mm_counter(struct page *page)
  1242. {
  1243. if (PageAnon(page))
  1244. return MM_ANONPAGES;
  1245. return mm_counter_file(page);
  1246. }
  1247. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1248. {
  1249. return get_mm_counter(mm, MM_FILEPAGES) +
  1250. get_mm_counter(mm, MM_ANONPAGES) +
  1251. get_mm_counter(mm, MM_SHMEMPAGES);
  1252. }
  1253. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1254. {
  1255. return max(mm->hiwater_rss, get_mm_rss(mm));
  1256. }
  1257. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1258. {
  1259. return max(mm->hiwater_vm, mm->total_vm);
  1260. }
  1261. static inline void update_hiwater_rss(struct mm_struct *mm)
  1262. {
  1263. unsigned long _rss = get_mm_rss(mm);
  1264. if ((mm)->hiwater_rss < _rss)
  1265. (mm)->hiwater_rss = _rss;
  1266. }
  1267. static inline void update_hiwater_vm(struct mm_struct *mm)
  1268. {
  1269. if (mm->hiwater_vm < mm->total_vm)
  1270. mm->hiwater_vm = mm->total_vm;
  1271. }
  1272. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1273. {
  1274. mm->hiwater_rss = get_mm_rss(mm);
  1275. }
  1276. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1277. struct mm_struct *mm)
  1278. {
  1279. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1280. if (*maxrss < hiwater_rss)
  1281. *maxrss = hiwater_rss;
  1282. }
  1283. #if defined(SPLIT_RSS_COUNTING)
  1284. void sync_mm_rss(struct mm_struct *mm);
  1285. #else
  1286. static inline void sync_mm_rss(struct mm_struct *mm)
  1287. {
  1288. }
  1289. #endif
  1290. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1291. static inline int pte_devmap(pte_t pte)
  1292. {
  1293. return 0;
  1294. }
  1295. #endif
  1296. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1297. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1298. spinlock_t **ptl);
  1299. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1300. spinlock_t **ptl)
  1301. {
  1302. pte_t *ptep;
  1303. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1304. return ptep;
  1305. }
  1306. #ifdef __PAGETABLE_PUD_FOLDED
  1307. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1308. unsigned long address)
  1309. {
  1310. return 0;
  1311. }
  1312. #else
  1313. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1314. #endif
  1315. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1316. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1317. unsigned long address)
  1318. {
  1319. return 0;
  1320. }
  1321. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1322. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1323. {
  1324. return 0;
  1325. }
  1326. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1327. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1328. #else
  1329. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1330. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1331. {
  1332. atomic_long_set(&mm->nr_pmds, 0);
  1333. }
  1334. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1335. {
  1336. return atomic_long_read(&mm->nr_pmds);
  1337. }
  1338. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1339. {
  1340. atomic_long_inc(&mm->nr_pmds);
  1341. }
  1342. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1343. {
  1344. atomic_long_dec(&mm->nr_pmds);
  1345. }
  1346. #endif
  1347. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1348. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1349. /*
  1350. * The following ifdef needed to get the 4level-fixup.h header to work.
  1351. * Remove it when 4level-fixup.h has been removed.
  1352. */
  1353. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1354. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1355. {
  1356. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1357. NULL: pud_offset(pgd, address);
  1358. }
  1359. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1360. {
  1361. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1362. NULL: pmd_offset(pud, address);
  1363. }
  1364. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1365. #if USE_SPLIT_PTE_PTLOCKS
  1366. #if ALLOC_SPLIT_PTLOCKS
  1367. void __init ptlock_cache_init(void);
  1368. extern bool ptlock_alloc(struct page *page);
  1369. extern void ptlock_free(struct page *page);
  1370. static inline spinlock_t *ptlock_ptr(struct page *page)
  1371. {
  1372. return page->ptl;
  1373. }
  1374. #else /* ALLOC_SPLIT_PTLOCKS */
  1375. static inline void ptlock_cache_init(void)
  1376. {
  1377. }
  1378. static inline bool ptlock_alloc(struct page *page)
  1379. {
  1380. return true;
  1381. }
  1382. static inline void ptlock_free(struct page *page)
  1383. {
  1384. }
  1385. static inline spinlock_t *ptlock_ptr(struct page *page)
  1386. {
  1387. return &page->ptl;
  1388. }
  1389. #endif /* ALLOC_SPLIT_PTLOCKS */
  1390. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1391. {
  1392. return ptlock_ptr(pmd_page(*pmd));
  1393. }
  1394. static inline bool ptlock_init(struct page *page)
  1395. {
  1396. /*
  1397. * prep_new_page() initialize page->private (and therefore page->ptl)
  1398. * with 0. Make sure nobody took it in use in between.
  1399. *
  1400. * It can happen if arch try to use slab for page table allocation:
  1401. * slab code uses page->slab_cache, which share storage with page->ptl.
  1402. */
  1403. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1404. if (!ptlock_alloc(page))
  1405. return false;
  1406. spin_lock_init(ptlock_ptr(page));
  1407. return true;
  1408. }
  1409. /* Reset page->mapping so free_pages_check won't complain. */
  1410. static inline void pte_lock_deinit(struct page *page)
  1411. {
  1412. page->mapping = NULL;
  1413. ptlock_free(page);
  1414. }
  1415. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1416. /*
  1417. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1418. */
  1419. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1420. {
  1421. return &mm->page_table_lock;
  1422. }
  1423. static inline void ptlock_cache_init(void) {}
  1424. static inline bool ptlock_init(struct page *page) { return true; }
  1425. static inline void pte_lock_deinit(struct page *page) {}
  1426. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1427. static inline void pgtable_init(void)
  1428. {
  1429. ptlock_cache_init();
  1430. pgtable_cache_init();
  1431. }
  1432. static inline bool pgtable_page_ctor(struct page *page)
  1433. {
  1434. if (!ptlock_init(page))
  1435. return false;
  1436. inc_zone_page_state(page, NR_PAGETABLE);
  1437. return true;
  1438. }
  1439. static inline void pgtable_page_dtor(struct page *page)
  1440. {
  1441. pte_lock_deinit(page);
  1442. dec_zone_page_state(page, NR_PAGETABLE);
  1443. }
  1444. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1445. ({ \
  1446. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1447. pte_t *__pte = pte_offset_map(pmd, address); \
  1448. *(ptlp) = __ptl; \
  1449. spin_lock(__ptl); \
  1450. __pte; \
  1451. })
  1452. #define pte_unmap_unlock(pte, ptl) do { \
  1453. spin_unlock(ptl); \
  1454. pte_unmap(pte); \
  1455. } while (0)
  1456. #define pte_alloc(mm, pmd, address) \
  1457. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1458. #define pte_alloc_map(mm, pmd, address) \
  1459. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1460. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1461. (pte_alloc(mm, pmd, address) ? \
  1462. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1463. #define pte_alloc_kernel(pmd, address) \
  1464. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1465. NULL: pte_offset_kernel(pmd, address))
  1466. #if USE_SPLIT_PMD_PTLOCKS
  1467. static struct page *pmd_to_page(pmd_t *pmd)
  1468. {
  1469. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1470. return virt_to_page((void *)((unsigned long) pmd & mask));
  1471. }
  1472. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1473. {
  1474. return ptlock_ptr(pmd_to_page(pmd));
  1475. }
  1476. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1477. {
  1478. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1479. page->pmd_huge_pte = NULL;
  1480. #endif
  1481. return ptlock_init(page);
  1482. }
  1483. static inline void pgtable_pmd_page_dtor(struct page *page)
  1484. {
  1485. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1486. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1487. #endif
  1488. ptlock_free(page);
  1489. }
  1490. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1491. #else
  1492. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1493. {
  1494. return &mm->page_table_lock;
  1495. }
  1496. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1497. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1498. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1499. #endif
  1500. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1501. {
  1502. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1503. spin_lock(ptl);
  1504. return ptl;
  1505. }
  1506. extern void free_area_init(unsigned long * zones_size);
  1507. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1508. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1509. extern void free_initmem(void);
  1510. /*
  1511. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1512. * into the buddy system. The freed pages will be poisoned with pattern
  1513. * "poison" if it's within range [0, UCHAR_MAX].
  1514. * Return pages freed into the buddy system.
  1515. */
  1516. extern unsigned long free_reserved_area(void *start, void *end,
  1517. int poison, char *s);
  1518. #ifdef CONFIG_HIGHMEM
  1519. /*
  1520. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1521. * and totalram_pages.
  1522. */
  1523. extern void free_highmem_page(struct page *page);
  1524. #endif
  1525. extern void adjust_managed_page_count(struct page *page, long count);
  1526. extern void mem_init_print_info(const char *str);
  1527. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1528. /* Free the reserved page into the buddy system, so it gets managed. */
  1529. static inline void __free_reserved_page(struct page *page)
  1530. {
  1531. ClearPageReserved(page);
  1532. init_page_count(page);
  1533. __free_page(page);
  1534. }
  1535. static inline void free_reserved_page(struct page *page)
  1536. {
  1537. __free_reserved_page(page);
  1538. adjust_managed_page_count(page, 1);
  1539. }
  1540. static inline void mark_page_reserved(struct page *page)
  1541. {
  1542. SetPageReserved(page);
  1543. adjust_managed_page_count(page, -1);
  1544. }
  1545. /*
  1546. * Default method to free all the __init memory into the buddy system.
  1547. * The freed pages will be poisoned with pattern "poison" if it's within
  1548. * range [0, UCHAR_MAX].
  1549. * Return pages freed into the buddy system.
  1550. */
  1551. static inline unsigned long free_initmem_default(int poison)
  1552. {
  1553. extern char __init_begin[], __init_end[];
  1554. return free_reserved_area(&__init_begin, &__init_end,
  1555. poison, "unused kernel");
  1556. }
  1557. static inline unsigned long get_num_physpages(void)
  1558. {
  1559. int nid;
  1560. unsigned long phys_pages = 0;
  1561. for_each_online_node(nid)
  1562. phys_pages += node_present_pages(nid);
  1563. return phys_pages;
  1564. }
  1565. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1566. /*
  1567. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1568. * zones, allocate the backing mem_map and account for memory holes in a more
  1569. * architecture independent manner. This is a substitute for creating the
  1570. * zone_sizes[] and zholes_size[] arrays and passing them to
  1571. * free_area_init_node()
  1572. *
  1573. * An architecture is expected to register range of page frames backed by
  1574. * physical memory with memblock_add[_node]() before calling
  1575. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1576. * usage, an architecture is expected to do something like
  1577. *
  1578. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1579. * max_highmem_pfn};
  1580. * for_each_valid_physical_page_range()
  1581. * memblock_add_node(base, size, nid)
  1582. * free_area_init_nodes(max_zone_pfns);
  1583. *
  1584. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1585. * registered physical page range. Similarly
  1586. * sparse_memory_present_with_active_regions() calls memory_present() for
  1587. * each range when SPARSEMEM is enabled.
  1588. *
  1589. * See mm/page_alloc.c for more information on each function exposed by
  1590. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1591. */
  1592. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1593. unsigned long node_map_pfn_alignment(void);
  1594. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1595. unsigned long end_pfn);
  1596. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1597. unsigned long end_pfn);
  1598. extern void get_pfn_range_for_nid(unsigned int nid,
  1599. unsigned long *start_pfn, unsigned long *end_pfn);
  1600. extern unsigned long find_min_pfn_with_active_regions(void);
  1601. extern void free_bootmem_with_active_regions(int nid,
  1602. unsigned long max_low_pfn);
  1603. extern void sparse_memory_present_with_active_regions(int nid);
  1604. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1605. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1606. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1607. static inline int __early_pfn_to_nid(unsigned long pfn,
  1608. struct mminit_pfnnid_cache *state)
  1609. {
  1610. return 0;
  1611. }
  1612. #else
  1613. /* please see mm/page_alloc.c */
  1614. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1615. /* there is a per-arch backend function. */
  1616. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1617. struct mminit_pfnnid_cache *state);
  1618. #endif
  1619. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1620. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1621. unsigned long, enum memmap_context);
  1622. extern void setup_per_zone_wmarks(void);
  1623. extern int __meminit init_per_zone_wmark_min(void);
  1624. extern void mem_init(void);
  1625. extern void __init mmap_init(void);
  1626. extern void show_mem(unsigned int flags);
  1627. extern long si_mem_available(void);
  1628. extern void si_meminfo(struct sysinfo * val);
  1629. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1630. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1631. extern unsigned long arch_reserved_kernel_pages(void);
  1632. #endif
  1633. extern __printf(2, 3)
  1634. void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
  1635. extern void setup_per_cpu_pageset(void);
  1636. extern void zone_pcp_update(struct zone *zone);
  1637. extern void zone_pcp_reset(struct zone *zone);
  1638. /* page_alloc.c */
  1639. extern int min_free_kbytes;
  1640. extern int watermark_scale_factor;
  1641. /* nommu.c */
  1642. extern atomic_long_t mmap_pages_allocated;
  1643. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1644. /* interval_tree.c */
  1645. void vma_interval_tree_insert(struct vm_area_struct *node,
  1646. struct rb_root *root);
  1647. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1648. struct vm_area_struct *prev,
  1649. struct rb_root *root);
  1650. void vma_interval_tree_remove(struct vm_area_struct *node,
  1651. struct rb_root *root);
  1652. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1653. unsigned long start, unsigned long last);
  1654. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1655. unsigned long start, unsigned long last);
  1656. #define vma_interval_tree_foreach(vma, root, start, last) \
  1657. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1658. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1659. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1660. struct rb_root *root);
  1661. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1662. struct rb_root *root);
  1663. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1664. struct rb_root *root, unsigned long start, unsigned long last);
  1665. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1666. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1667. #ifdef CONFIG_DEBUG_VM_RB
  1668. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1669. #endif
  1670. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1671. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1672. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1673. /* mmap.c */
  1674. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1675. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1676. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1677. struct vm_area_struct *expand);
  1678. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1679. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1680. {
  1681. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1682. }
  1683. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1684. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1685. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1686. struct mempolicy *, struct vm_userfaultfd_ctx);
  1687. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1688. extern int split_vma(struct mm_struct *,
  1689. struct vm_area_struct *, unsigned long addr, int new_below);
  1690. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1691. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1692. struct rb_node **, struct rb_node *);
  1693. extern void unlink_file_vma(struct vm_area_struct *);
  1694. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1695. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1696. bool *need_rmap_locks);
  1697. extern void exit_mmap(struct mm_struct *);
  1698. static inline int check_data_rlimit(unsigned long rlim,
  1699. unsigned long new,
  1700. unsigned long start,
  1701. unsigned long end_data,
  1702. unsigned long start_data)
  1703. {
  1704. if (rlim < RLIM_INFINITY) {
  1705. if (((new - start) + (end_data - start_data)) > rlim)
  1706. return -ENOSPC;
  1707. }
  1708. return 0;
  1709. }
  1710. extern int mm_take_all_locks(struct mm_struct *mm);
  1711. extern void mm_drop_all_locks(struct mm_struct *mm);
  1712. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1713. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1714. extern struct file *get_task_exe_file(struct task_struct *task);
  1715. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1716. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1717. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1718. const struct vm_special_mapping *sm);
  1719. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1720. unsigned long addr, unsigned long len,
  1721. unsigned long flags,
  1722. const struct vm_special_mapping *spec);
  1723. /* This is an obsolete alternative to _install_special_mapping. */
  1724. extern int install_special_mapping(struct mm_struct *mm,
  1725. unsigned long addr, unsigned long len,
  1726. unsigned long flags, struct page **pages);
  1727. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1728. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1729. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1730. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1731. unsigned long len, unsigned long prot, unsigned long flags,
  1732. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
  1733. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1734. static inline unsigned long
  1735. do_mmap_pgoff(struct file *file, unsigned long addr,
  1736. unsigned long len, unsigned long prot, unsigned long flags,
  1737. unsigned long pgoff, unsigned long *populate)
  1738. {
  1739. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
  1740. }
  1741. #ifdef CONFIG_MMU
  1742. extern int __mm_populate(unsigned long addr, unsigned long len,
  1743. int ignore_errors);
  1744. static inline void mm_populate(unsigned long addr, unsigned long len)
  1745. {
  1746. /* Ignore errors */
  1747. (void) __mm_populate(addr, len, 1);
  1748. }
  1749. #else
  1750. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1751. #endif
  1752. /* These take the mm semaphore themselves */
  1753. extern int __must_check vm_brk(unsigned long, unsigned long);
  1754. extern int vm_munmap(unsigned long, size_t);
  1755. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1756. unsigned long, unsigned long,
  1757. unsigned long, unsigned long);
  1758. struct vm_unmapped_area_info {
  1759. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1760. unsigned long flags;
  1761. unsigned long length;
  1762. unsigned long low_limit;
  1763. unsigned long high_limit;
  1764. unsigned long align_mask;
  1765. unsigned long align_offset;
  1766. };
  1767. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1768. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1769. /*
  1770. * Search for an unmapped address range.
  1771. *
  1772. * We are looking for a range that:
  1773. * - does not intersect with any VMA;
  1774. * - is contained within the [low_limit, high_limit) interval;
  1775. * - is at least the desired size.
  1776. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1777. */
  1778. static inline unsigned long
  1779. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1780. {
  1781. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1782. return unmapped_area_topdown(info);
  1783. else
  1784. return unmapped_area(info);
  1785. }
  1786. /* truncate.c */
  1787. extern void truncate_inode_pages(struct address_space *, loff_t);
  1788. extern void truncate_inode_pages_range(struct address_space *,
  1789. loff_t lstart, loff_t lend);
  1790. extern void truncate_inode_pages_final(struct address_space *);
  1791. /* generic vm_area_ops exported for stackable file systems */
  1792. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1793. extern void filemap_map_pages(struct vm_fault *vmf,
  1794. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1795. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1796. /* mm/page-writeback.c */
  1797. int write_one_page(struct page *page, int wait);
  1798. void task_dirty_inc(struct task_struct *tsk);
  1799. /* readahead.c */
  1800. #define VM_MAX_READAHEAD 128 /* kbytes */
  1801. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1802. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1803. pgoff_t offset, unsigned long nr_to_read);
  1804. void page_cache_sync_readahead(struct address_space *mapping,
  1805. struct file_ra_state *ra,
  1806. struct file *filp,
  1807. pgoff_t offset,
  1808. unsigned long size);
  1809. void page_cache_async_readahead(struct address_space *mapping,
  1810. struct file_ra_state *ra,
  1811. struct file *filp,
  1812. struct page *pg,
  1813. pgoff_t offset,
  1814. unsigned long size);
  1815. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1816. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1817. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1818. extern int expand_downwards(struct vm_area_struct *vma,
  1819. unsigned long address);
  1820. #if VM_GROWSUP
  1821. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1822. #else
  1823. #define expand_upwards(vma, address) (0)
  1824. #endif
  1825. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1826. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1827. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1828. struct vm_area_struct **pprev);
  1829. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1830. NULL if none. Assume start_addr < end_addr. */
  1831. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1832. {
  1833. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1834. if (vma && end_addr <= vma->vm_start)
  1835. vma = NULL;
  1836. return vma;
  1837. }
  1838. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1839. {
  1840. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1841. }
  1842. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1843. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1844. unsigned long vm_start, unsigned long vm_end)
  1845. {
  1846. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1847. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1848. vma = NULL;
  1849. return vma;
  1850. }
  1851. #ifdef CONFIG_MMU
  1852. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1853. void vma_set_page_prot(struct vm_area_struct *vma);
  1854. #else
  1855. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1856. {
  1857. return __pgprot(0);
  1858. }
  1859. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1860. {
  1861. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1862. }
  1863. #endif
  1864. #ifdef CONFIG_NUMA_BALANCING
  1865. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1866. unsigned long start, unsigned long end);
  1867. #endif
  1868. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1869. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1870. unsigned long pfn, unsigned long size, pgprot_t);
  1871. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1872. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1873. unsigned long pfn);
  1874. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1875. unsigned long pfn, pgprot_t pgprot);
  1876. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1877. pfn_t pfn);
  1878. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1879. struct page *follow_page_mask(struct vm_area_struct *vma,
  1880. unsigned long address, unsigned int foll_flags,
  1881. unsigned int *page_mask);
  1882. static inline struct page *follow_page(struct vm_area_struct *vma,
  1883. unsigned long address, unsigned int foll_flags)
  1884. {
  1885. unsigned int unused_page_mask;
  1886. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1887. }
  1888. #define FOLL_WRITE 0x01 /* check pte is writable */
  1889. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1890. #define FOLL_GET 0x04 /* do get_page on page */
  1891. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1892. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1893. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1894. * and return without waiting upon it */
  1895. #define FOLL_POPULATE 0x40 /* fault in page */
  1896. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1897. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1898. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1899. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1900. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1901. #define FOLL_MLOCK 0x1000 /* lock present pages */
  1902. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  1903. #define FOLL_COW 0x4000 /* internal GUP flag */
  1904. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1905. void *data);
  1906. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1907. unsigned long size, pte_fn_t fn, void *data);
  1908. #ifdef CONFIG_PAGE_POISONING
  1909. extern bool page_poisoning_enabled(void);
  1910. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  1911. extern bool page_is_poisoned(struct page *page);
  1912. #else
  1913. static inline bool page_poisoning_enabled(void) { return false; }
  1914. static inline void kernel_poison_pages(struct page *page, int numpages,
  1915. int enable) { }
  1916. static inline bool page_is_poisoned(struct page *page) { return false; }
  1917. #endif
  1918. #ifdef CONFIG_DEBUG_PAGEALLOC
  1919. extern bool _debug_pagealloc_enabled;
  1920. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1921. static inline bool debug_pagealloc_enabled(void)
  1922. {
  1923. return _debug_pagealloc_enabled;
  1924. }
  1925. static inline void
  1926. kernel_map_pages(struct page *page, int numpages, int enable)
  1927. {
  1928. if (!debug_pagealloc_enabled())
  1929. return;
  1930. __kernel_map_pages(page, numpages, enable);
  1931. }
  1932. #ifdef CONFIG_HIBERNATION
  1933. extern bool kernel_page_present(struct page *page);
  1934. #endif /* CONFIG_HIBERNATION */
  1935. #else /* CONFIG_DEBUG_PAGEALLOC */
  1936. static inline void
  1937. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1938. #ifdef CONFIG_HIBERNATION
  1939. static inline bool kernel_page_present(struct page *page) { return true; }
  1940. #endif /* CONFIG_HIBERNATION */
  1941. static inline bool debug_pagealloc_enabled(void)
  1942. {
  1943. return false;
  1944. }
  1945. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1946. #ifdef __HAVE_ARCH_GATE_AREA
  1947. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1948. extern int in_gate_area_no_mm(unsigned long addr);
  1949. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1950. #else
  1951. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1952. {
  1953. return NULL;
  1954. }
  1955. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1956. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1957. {
  1958. return 0;
  1959. }
  1960. #endif /* __HAVE_ARCH_GATE_AREA */
  1961. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  1962. #ifdef CONFIG_SYSCTL
  1963. extern int sysctl_drop_caches;
  1964. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1965. void __user *, size_t *, loff_t *);
  1966. #endif
  1967. void drop_slab(void);
  1968. void drop_slab_node(int nid);
  1969. #ifndef CONFIG_MMU
  1970. #define randomize_va_space 0
  1971. #else
  1972. extern int randomize_va_space;
  1973. #endif
  1974. const char * arch_vma_name(struct vm_area_struct *vma);
  1975. void print_vma_addr(char *prefix, unsigned long rip);
  1976. void sparse_mem_maps_populate_node(struct page **map_map,
  1977. unsigned long pnum_begin,
  1978. unsigned long pnum_end,
  1979. unsigned long map_count,
  1980. int nodeid);
  1981. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1982. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1983. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1984. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1985. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1986. void *vmemmap_alloc_block(unsigned long size, int node);
  1987. struct vmem_altmap;
  1988. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  1989. struct vmem_altmap *altmap);
  1990. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  1991. {
  1992. return __vmemmap_alloc_block_buf(size, node, NULL);
  1993. }
  1994. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1995. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1996. int node);
  1997. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1998. void vmemmap_populate_print_last(void);
  1999. #ifdef CONFIG_MEMORY_HOTPLUG
  2000. void vmemmap_free(unsigned long start, unsigned long end);
  2001. #endif
  2002. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2003. unsigned long size);
  2004. enum mf_flags {
  2005. MF_COUNT_INCREASED = 1 << 0,
  2006. MF_ACTION_REQUIRED = 1 << 1,
  2007. MF_MUST_KILL = 1 << 2,
  2008. MF_SOFT_OFFLINE = 1 << 3,
  2009. };
  2010. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  2011. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  2012. extern int unpoison_memory(unsigned long pfn);
  2013. extern int get_hwpoison_page(struct page *page);
  2014. #define put_hwpoison_page(page) put_page(page)
  2015. extern int sysctl_memory_failure_early_kill;
  2016. extern int sysctl_memory_failure_recovery;
  2017. extern void shake_page(struct page *p, int access);
  2018. extern atomic_long_t num_poisoned_pages;
  2019. extern int soft_offline_page(struct page *page, int flags);
  2020. /*
  2021. * Error handlers for various types of pages.
  2022. */
  2023. enum mf_result {
  2024. MF_IGNORED, /* Error: cannot be handled */
  2025. MF_FAILED, /* Error: handling failed */
  2026. MF_DELAYED, /* Will be handled later */
  2027. MF_RECOVERED, /* Successfully recovered */
  2028. };
  2029. enum mf_action_page_type {
  2030. MF_MSG_KERNEL,
  2031. MF_MSG_KERNEL_HIGH_ORDER,
  2032. MF_MSG_SLAB,
  2033. MF_MSG_DIFFERENT_COMPOUND,
  2034. MF_MSG_POISONED_HUGE,
  2035. MF_MSG_HUGE,
  2036. MF_MSG_FREE_HUGE,
  2037. MF_MSG_UNMAP_FAILED,
  2038. MF_MSG_DIRTY_SWAPCACHE,
  2039. MF_MSG_CLEAN_SWAPCACHE,
  2040. MF_MSG_DIRTY_MLOCKED_LRU,
  2041. MF_MSG_CLEAN_MLOCKED_LRU,
  2042. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2043. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2044. MF_MSG_DIRTY_LRU,
  2045. MF_MSG_CLEAN_LRU,
  2046. MF_MSG_TRUNCATED_LRU,
  2047. MF_MSG_BUDDY,
  2048. MF_MSG_BUDDY_2ND,
  2049. MF_MSG_UNKNOWN,
  2050. };
  2051. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2052. extern void clear_huge_page(struct page *page,
  2053. unsigned long addr,
  2054. unsigned int pages_per_huge_page);
  2055. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2056. unsigned long addr, struct vm_area_struct *vma,
  2057. unsigned int pages_per_huge_page);
  2058. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2059. extern struct page_ext_operations debug_guardpage_ops;
  2060. extern struct page_ext_operations page_poisoning_ops;
  2061. #ifdef CONFIG_DEBUG_PAGEALLOC
  2062. extern unsigned int _debug_guardpage_minorder;
  2063. extern bool _debug_guardpage_enabled;
  2064. static inline unsigned int debug_guardpage_minorder(void)
  2065. {
  2066. return _debug_guardpage_minorder;
  2067. }
  2068. static inline bool debug_guardpage_enabled(void)
  2069. {
  2070. return _debug_guardpage_enabled;
  2071. }
  2072. static inline bool page_is_guard(struct page *page)
  2073. {
  2074. struct page_ext *page_ext;
  2075. if (!debug_guardpage_enabled())
  2076. return false;
  2077. page_ext = lookup_page_ext(page);
  2078. if (unlikely(!page_ext))
  2079. return false;
  2080. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2081. }
  2082. #else
  2083. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2084. static inline bool debug_guardpage_enabled(void) { return false; }
  2085. static inline bool page_is_guard(struct page *page) { return false; }
  2086. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2087. #if MAX_NUMNODES > 1
  2088. void __init setup_nr_node_ids(void);
  2089. #else
  2090. static inline void setup_nr_node_ids(void) {}
  2091. #endif
  2092. #endif /* __KERNEL__ */
  2093. #endif /* _LINUX_MM_H */