fork.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <linux/sysctl.h>
  76. #include <linux/kcov.h>
  77. #include <asm/pgtable.h>
  78. #include <asm/pgalloc.h>
  79. #include <linux/uaccess.h>
  80. #include <asm/mmu_context.h>
  81. #include <asm/cacheflush.h>
  82. #include <asm/tlbflush.h>
  83. #include <trace/events/sched.h>
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/task.h>
  86. /*
  87. * Minimum number of threads to boot the kernel
  88. */
  89. #define MIN_THREADS 20
  90. /*
  91. * Maximum number of threads
  92. */
  93. #define MAX_THREADS FUTEX_TID_MASK
  94. /*
  95. * Protected counters by write_lock_irq(&tasklist_lock)
  96. */
  97. unsigned long total_forks; /* Handle normal Linux uptimes. */
  98. int nr_threads; /* The idle threads do not count.. */
  99. int max_threads; /* tunable limit on nr_threads */
  100. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  101. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  102. #ifdef CONFIG_PROVE_RCU
  103. int lockdep_tasklist_lock_is_held(void)
  104. {
  105. return lockdep_is_held(&tasklist_lock);
  106. }
  107. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  108. #endif /* #ifdef CONFIG_PROVE_RCU */
  109. int nr_processes(void)
  110. {
  111. int cpu;
  112. int total = 0;
  113. for_each_possible_cpu(cpu)
  114. total += per_cpu(process_counts, cpu);
  115. return total;
  116. }
  117. void __weak arch_release_task_struct(struct task_struct *tsk)
  118. {
  119. }
  120. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  121. static struct kmem_cache *task_struct_cachep;
  122. static inline struct task_struct *alloc_task_struct_node(int node)
  123. {
  124. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  125. }
  126. static inline void free_task_struct(struct task_struct *tsk)
  127. {
  128. kmem_cache_free(task_struct_cachep, tsk);
  129. }
  130. #endif
  131. void __weak arch_release_thread_stack(unsigned long *stack)
  132. {
  133. }
  134. #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
  135. /*
  136. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  137. * kmemcache based allocator.
  138. */
  139. # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
  140. #ifdef CONFIG_VMAP_STACK
  141. /*
  142. * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
  143. * flush. Try to minimize the number of calls by caching stacks.
  144. */
  145. #define NR_CACHED_STACKS 2
  146. static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
  147. #endif
  148. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
  149. {
  150. #ifdef CONFIG_VMAP_STACK
  151. void *stack;
  152. int i;
  153. local_irq_disable();
  154. for (i = 0; i < NR_CACHED_STACKS; i++) {
  155. struct vm_struct *s = this_cpu_read(cached_stacks[i]);
  156. if (!s)
  157. continue;
  158. this_cpu_write(cached_stacks[i], NULL);
  159. tsk->stack_vm_area = s;
  160. local_irq_enable();
  161. return s->addr;
  162. }
  163. local_irq_enable();
  164. stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
  165. VMALLOC_START, VMALLOC_END,
  166. THREADINFO_GFP | __GFP_HIGHMEM,
  167. PAGE_KERNEL,
  168. 0, node, __builtin_return_address(0));
  169. /*
  170. * We can't call find_vm_area() in interrupt context, and
  171. * free_thread_stack() can be called in interrupt context,
  172. * so cache the vm_struct.
  173. */
  174. if (stack)
  175. tsk->stack_vm_area = find_vm_area(stack);
  176. return stack;
  177. #else
  178. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  179. THREAD_SIZE_ORDER);
  180. return page ? page_address(page) : NULL;
  181. #endif
  182. }
  183. static inline void free_thread_stack(struct task_struct *tsk)
  184. {
  185. #ifdef CONFIG_VMAP_STACK
  186. if (task_stack_vm_area(tsk)) {
  187. unsigned long flags;
  188. int i;
  189. local_irq_save(flags);
  190. for (i = 0; i < NR_CACHED_STACKS; i++) {
  191. if (this_cpu_read(cached_stacks[i]))
  192. continue;
  193. this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
  194. local_irq_restore(flags);
  195. return;
  196. }
  197. local_irq_restore(flags);
  198. vfree_atomic(tsk->stack);
  199. return;
  200. }
  201. #endif
  202. __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
  203. }
  204. # else
  205. static struct kmem_cache *thread_stack_cache;
  206. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
  207. int node)
  208. {
  209. return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
  210. }
  211. static void free_thread_stack(struct task_struct *tsk)
  212. {
  213. kmem_cache_free(thread_stack_cache, tsk->stack);
  214. }
  215. void thread_stack_cache_init(void)
  216. {
  217. thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
  218. THREAD_SIZE, 0, NULL);
  219. BUG_ON(thread_stack_cache == NULL);
  220. }
  221. # endif
  222. #endif
  223. /* SLAB cache for signal_struct structures (tsk->signal) */
  224. static struct kmem_cache *signal_cachep;
  225. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  226. struct kmem_cache *sighand_cachep;
  227. /* SLAB cache for files_struct structures (tsk->files) */
  228. struct kmem_cache *files_cachep;
  229. /* SLAB cache for fs_struct structures (tsk->fs) */
  230. struct kmem_cache *fs_cachep;
  231. /* SLAB cache for vm_area_struct structures */
  232. struct kmem_cache *vm_area_cachep;
  233. /* SLAB cache for mm_struct structures (tsk->mm) */
  234. static struct kmem_cache *mm_cachep;
  235. static void account_kernel_stack(struct task_struct *tsk, int account)
  236. {
  237. void *stack = task_stack_page(tsk);
  238. struct vm_struct *vm = task_stack_vm_area(tsk);
  239. BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
  240. if (vm) {
  241. int i;
  242. BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
  243. for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
  244. mod_zone_page_state(page_zone(vm->pages[i]),
  245. NR_KERNEL_STACK_KB,
  246. PAGE_SIZE / 1024 * account);
  247. }
  248. /* All stack pages belong to the same memcg. */
  249. memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
  250. account * (THREAD_SIZE / 1024));
  251. } else {
  252. /*
  253. * All stack pages are in the same zone and belong to the
  254. * same memcg.
  255. */
  256. struct page *first_page = virt_to_page(stack);
  257. mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
  258. THREAD_SIZE / 1024 * account);
  259. memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
  260. account * (THREAD_SIZE / 1024));
  261. }
  262. }
  263. static void release_task_stack(struct task_struct *tsk)
  264. {
  265. if (WARN_ON(tsk->state != TASK_DEAD))
  266. return; /* Better to leak the stack than to free prematurely */
  267. account_kernel_stack(tsk, -1);
  268. arch_release_thread_stack(tsk->stack);
  269. free_thread_stack(tsk);
  270. tsk->stack = NULL;
  271. #ifdef CONFIG_VMAP_STACK
  272. tsk->stack_vm_area = NULL;
  273. #endif
  274. }
  275. #ifdef CONFIG_THREAD_INFO_IN_TASK
  276. void put_task_stack(struct task_struct *tsk)
  277. {
  278. if (atomic_dec_and_test(&tsk->stack_refcount))
  279. release_task_stack(tsk);
  280. }
  281. #endif
  282. void free_task(struct task_struct *tsk)
  283. {
  284. #ifndef CONFIG_THREAD_INFO_IN_TASK
  285. /*
  286. * The task is finally done with both the stack and thread_info,
  287. * so free both.
  288. */
  289. release_task_stack(tsk);
  290. #else
  291. /*
  292. * If the task had a separate stack allocation, it should be gone
  293. * by now.
  294. */
  295. WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
  296. #endif
  297. rt_mutex_debug_task_free(tsk);
  298. ftrace_graph_exit_task(tsk);
  299. put_seccomp_filter(tsk);
  300. arch_release_task_struct(tsk);
  301. if (tsk->flags & PF_KTHREAD)
  302. free_kthread_struct(tsk);
  303. free_task_struct(tsk);
  304. }
  305. EXPORT_SYMBOL(free_task);
  306. static inline void free_signal_struct(struct signal_struct *sig)
  307. {
  308. taskstats_tgid_free(sig);
  309. sched_autogroup_exit(sig);
  310. /*
  311. * __mmdrop is not safe to call from softirq context on x86 due to
  312. * pgd_dtor so postpone it to the async context
  313. */
  314. if (sig->oom_mm)
  315. mmdrop_async(sig->oom_mm);
  316. kmem_cache_free(signal_cachep, sig);
  317. }
  318. static inline void put_signal_struct(struct signal_struct *sig)
  319. {
  320. if (atomic_dec_and_test(&sig->sigcnt))
  321. free_signal_struct(sig);
  322. }
  323. void __put_task_struct(struct task_struct *tsk)
  324. {
  325. WARN_ON(!tsk->exit_state);
  326. WARN_ON(atomic_read(&tsk->usage));
  327. WARN_ON(tsk == current);
  328. cgroup_free(tsk);
  329. task_numa_free(tsk);
  330. security_task_free(tsk);
  331. exit_creds(tsk);
  332. delayacct_tsk_free(tsk);
  333. put_signal_struct(tsk->signal);
  334. if (!profile_handoff_task(tsk))
  335. free_task(tsk);
  336. }
  337. EXPORT_SYMBOL_GPL(__put_task_struct);
  338. void __init __weak arch_task_cache_init(void) { }
  339. /*
  340. * set_max_threads
  341. */
  342. static void set_max_threads(unsigned int max_threads_suggested)
  343. {
  344. u64 threads;
  345. /*
  346. * The number of threads shall be limited such that the thread
  347. * structures may only consume a small part of the available memory.
  348. */
  349. if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
  350. threads = MAX_THREADS;
  351. else
  352. threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
  353. (u64) THREAD_SIZE * 8UL);
  354. if (threads > max_threads_suggested)
  355. threads = max_threads_suggested;
  356. max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
  357. }
  358. #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
  359. /* Initialized by the architecture: */
  360. int arch_task_struct_size __read_mostly;
  361. #endif
  362. void __init fork_init(void)
  363. {
  364. int i;
  365. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  366. #ifndef ARCH_MIN_TASKALIGN
  367. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  368. #endif
  369. /* create a slab on which task_structs can be allocated */
  370. task_struct_cachep = kmem_cache_create("task_struct",
  371. arch_task_struct_size, ARCH_MIN_TASKALIGN,
  372. SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
  373. #endif
  374. /* do the arch specific task caches init */
  375. arch_task_cache_init();
  376. set_max_threads(MAX_THREADS);
  377. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  378. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  379. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  380. init_task.signal->rlim[RLIMIT_NPROC];
  381. for (i = 0; i < UCOUNT_COUNTS; i++) {
  382. init_user_ns.ucount_max[i] = max_threads/2;
  383. }
  384. }
  385. int __weak arch_dup_task_struct(struct task_struct *dst,
  386. struct task_struct *src)
  387. {
  388. *dst = *src;
  389. return 0;
  390. }
  391. void set_task_stack_end_magic(struct task_struct *tsk)
  392. {
  393. unsigned long *stackend;
  394. stackend = end_of_stack(tsk);
  395. *stackend = STACK_END_MAGIC; /* for overflow detection */
  396. }
  397. static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
  398. {
  399. struct task_struct *tsk;
  400. unsigned long *stack;
  401. struct vm_struct *stack_vm_area;
  402. int err;
  403. if (node == NUMA_NO_NODE)
  404. node = tsk_fork_get_node(orig);
  405. tsk = alloc_task_struct_node(node);
  406. if (!tsk)
  407. return NULL;
  408. stack = alloc_thread_stack_node(tsk, node);
  409. if (!stack)
  410. goto free_tsk;
  411. stack_vm_area = task_stack_vm_area(tsk);
  412. err = arch_dup_task_struct(tsk, orig);
  413. /*
  414. * arch_dup_task_struct() clobbers the stack-related fields. Make
  415. * sure they're properly initialized before using any stack-related
  416. * functions again.
  417. */
  418. tsk->stack = stack;
  419. #ifdef CONFIG_VMAP_STACK
  420. tsk->stack_vm_area = stack_vm_area;
  421. #endif
  422. #ifdef CONFIG_THREAD_INFO_IN_TASK
  423. atomic_set(&tsk->stack_refcount, 1);
  424. #endif
  425. if (err)
  426. goto free_stack;
  427. #ifdef CONFIG_SECCOMP
  428. /*
  429. * We must handle setting up seccomp filters once we're under
  430. * the sighand lock in case orig has changed between now and
  431. * then. Until then, filter must be NULL to avoid messing up
  432. * the usage counts on the error path calling free_task.
  433. */
  434. tsk->seccomp.filter = NULL;
  435. #endif
  436. setup_thread_stack(tsk, orig);
  437. clear_user_return_notifier(tsk);
  438. clear_tsk_need_resched(tsk);
  439. set_task_stack_end_magic(tsk);
  440. #ifdef CONFIG_CC_STACKPROTECTOR
  441. tsk->stack_canary = get_random_int();
  442. #endif
  443. /*
  444. * One for us, one for whoever does the "release_task()" (usually
  445. * parent)
  446. */
  447. atomic_set(&tsk->usage, 2);
  448. #ifdef CONFIG_BLK_DEV_IO_TRACE
  449. tsk->btrace_seq = 0;
  450. #endif
  451. tsk->splice_pipe = NULL;
  452. tsk->task_frag.page = NULL;
  453. tsk->wake_q.next = NULL;
  454. account_kernel_stack(tsk, 1);
  455. kcov_task_init(tsk);
  456. return tsk;
  457. free_stack:
  458. free_thread_stack(tsk);
  459. free_tsk:
  460. free_task_struct(tsk);
  461. return NULL;
  462. }
  463. #ifdef CONFIG_MMU
  464. static __latent_entropy int dup_mmap(struct mm_struct *mm,
  465. struct mm_struct *oldmm)
  466. {
  467. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  468. struct rb_node **rb_link, *rb_parent;
  469. int retval;
  470. unsigned long charge;
  471. uprobe_start_dup_mmap();
  472. if (down_write_killable(&oldmm->mmap_sem)) {
  473. retval = -EINTR;
  474. goto fail_uprobe_end;
  475. }
  476. flush_cache_dup_mm(oldmm);
  477. uprobe_dup_mmap(oldmm, mm);
  478. /*
  479. * Not linked in yet - no deadlock potential:
  480. */
  481. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  482. /* No ordering required: file already has been exposed. */
  483. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  484. mm->total_vm = oldmm->total_vm;
  485. mm->data_vm = oldmm->data_vm;
  486. mm->exec_vm = oldmm->exec_vm;
  487. mm->stack_vm = oldmm->stack_vm;
  488. rb_link = &mm->mm_rb.rb_node;
  489. rb_parent = NULL;
  490. pprev = &mm->mmap;
  491. retval = ksm_fork(mm, oldmm);
  492. if (retval)
  493. goto out;
  494. retval = khugepaged_fork(mm, oldmm);
  495. if (retval)
  496. goto out;
  497. prev = NULL;
  498. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  499. struct file *file;
  500. if (mpnt->vm_flags & VM_DONTCOPY) {
  501. vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
  502. continue;
  503. }
  504. charge = 0;
  505. if (mpnt->vm_flags & VM_ACCOUNT) {
  506. unsigned long len = vma_pages(mpnt);
  507. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  508. goto fail_nomem;
  509. charge = len;
  510. }
  511. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  512. if (!tmp)
  513. goto fail_nomem;
  514. *tmp = *mpnt;
  515. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  516. retval = vma_dup_policy(mpnt, tmp);
  517. if (retval)
  518. goto fail_nomem_policy;
  519. tmp->vm_mm = mm;
  520. if (anon_vma_fork(tmp, mpnt))
  521. goto fail_nomem_anon_vma_fork;
  522. tmp->vm_flags &=
  523. ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
  524. tmp->vm_next = tmp->vm_prev = NULL;
  525. tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
  526. file = tmp->vm_file;
  527. if (file) {
  528. struct inode *inode = file_inode(file);
  529. struct address_space *mapping = file->f_mapping;
  530. get_file(file);
  531. if (tmp->vm_flags & VM_DENYWRITE)
  532. atomic_dec(&inode->i_writecount);
  533. i_mmap_lock_write(mapping);
  534. if (tmp->vm_flags & VM_SHARED)
  535. atomic_inc(&mapping->i_mmap_writable);
  536. flush_dcache_mmap_lock(mapping);
  537. /* insert tmp into the share list, just after mpnt */
  538. vma_interval_tree_insert_after(tmp, mpnt,
  539. &mapping->i_mmap);
  540. flush_dcache_mmap_unlock(mapping);
  541. i_mmap_unlock_write(mapping);
  542. }
  543. /*
  544. * Clear hugetlb-related page reserves for children. This only
  545. * affects MAP_PRIVATE mappings. Faults generated by the child
  546. * are not guaranteed to succeed, even if read-only
  547. */
  548. if (is_vm_hugetlb_page(tmp))
  549. reset_vma_resv_huge_pages(tmp);
  550. /*
  551. * Link in the new vma and copy the page table entries.
  552. */
  553. *pprev = tmp;
  554. pprev = &tmp->vm_next;
  555. tmp->vm_prev = prev;
  556. prev = tmp;
  557. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  558. rb_link = &tmp->vm_rb.rb_right;
  559. rb_parent = &tmp->vm_rb;
  560. mm->map_count++;
  561. retval = copy_page_range(mm, oldmm, mpnt);
  562. if (tmp->vm_ops && tmp->vm_ops->open)
  563. tmp->vm_ops->open(tmp);
  564. if (retval)
  565. goto out;
  566. }
  567. /* a new mm has just been created */
  568. arch_dup_mmap(oldmm, mm);
  569. retval = 0;
  570. out:
  571. up_write(&mm->mmap_sem);
  572. flush_tlb_mm(oldmm);
  573. up_write(&oldmm->mmap_sem);
  574. fail_uprobe_end:
  575. uprobe_end_dup_mmap();
  576. return retval;
  577. fail_nomem_anon_vma_fork:
  578. mpol_put(vma_policy(tmp));
  579. fail_nomem_policy:
  580. kmem_cache_free(vm_area_cachep, tmp);
  581. fail_nomem:
  582. retval = -ENOMEM;
  583. vm_unacct_memory(charge);
  584. goto out;
  585. }
  586. static inline int mm_alloc_pgd(struct mm_struct *mm)
  587. {
  588. mm->pgd = pgd_alloc(mm);
  589. if (unlikely(!mm->pgd))
  590. return -ENOMEM;
  591. return 0;
  592. }
  593. static inline void mm_free_pgd(struct mm_struct *mm)
  594. {
  595. pgd_free(mm, mm->pgd);
  596. }
  597. #else
  598. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  599. {
  600. down_write(&oldmm->mmap_sem);
  601. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  602. up_write(&oldmm->mmap_sem);
  603. return 0;
  604. }
  605. #define mm_alloc_pgd(mm) (0)
  606. #define mm_free_pgd(mm)
  607. #endif /* CONFIG_MMU */
  608. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  609. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  610. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  611. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  612. static int __init coredump_filter_setup(char *s)
  613. {
  614. default_dump_filter =
  615. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  616. MMF_DUMP_FILTER_MASK;
  617. return 1;
  618. }
  619. __setup("coredump_filter=", coredump_filter_setup);
  620. #include <linux/init_task.h>
  621. static void mm_init_aio(struct mm_struct *mm)
  622. {
  623. #ifdef CONFIG_AIO
  624. spin_lock_init(&mm->ioctx_lock);
  625. mm->ioctx_table = NULL;
  626. #endif
  627. }
  628. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  629. {
  630. #ifdef CONFIG_MEMCG
  631. mm->owner = p;
  632. #endif
  633. }
  634. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
  635. struct user_namespace *user_ns)
  636. {
  637. mm->mmap = NULL;
  638. mm->mm_rb = RB_ROOT;
  639. mm->vmacache_seqnum = 0;
  640. atomic_set(&mm->mm_users, 1);
  641. atomic_set(&mm->mm_count, 1);
  642. init_rwsem(&mm->mmap_sem);
  643. INIT_LIST_HEAD(&mm->mmlist);
  644. mm->core_state = NULL;
  645. atomic_long_set(&mm->nr_ptes, 0);
  646. mm_nr_pmds_init(mm);
  647. mm->map_count = 0;
  648. mm->locked_vm = 0;
  649. mm->pinned_vm = 0;
  650. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  651. spin_lock_init(&mm->page_table_lock);
  652. mm_init_cpumask(mm);
  653. mm_init_aio(mm);
  654. mm_init_owner(mm, p);
  655. mmu_notifier_mm_init(mm);
  656. clear_tlb_flush_pending(mm);
  657. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  658. mm->pmd_huge_pte = NULL;
  659. #endif
  660. if (current->mm) {
  661. mm->flags = current->mm->flags & MMF_INIT_MASK;
  662. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  663. } else {
  664. mm->flags = default_dump_filter;
  665. mm->def_flags = 0;
  666. }
  667. if (mm_alloc_pgd(mm))
  668. goto fail_nopgd;
  669. if (init_new_context(p, mm))
  670. goto fail_nocontext;
  671. mm->user_ns = get_user_ns(user_ns);
  672. return mm;
  673. fail_nocontext:
  674. mm_free_pgd(mm);
  675. fail_nopgd:
  676. free_mm(mm);
  677. return NULL;
  678. }
  679. static void check_mm(struct mm_struct *mm)
  680. {
  681. int i;
  682. for (i = 0; i < NR_MM_COUNTERS; i++) {
  683. long x = atomic_long_read(&mm->rss_stat.count[i]);
  684. if (unlikely(x))
  685. printk(KERN_ALERT "BUG: Bad rss-counter state "
  686. "mm:%p idx:%d val:%ld\n", mm, i, x);
  687. }
  688. if (atomic_long_read(&mm->nr_ptes))
  689. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  690. atomic_long_read(&mm->nr_ptes));
  691. if (mm_nr_pmds(mm))
  692. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  693. mm_nr_pmds(mm));
  694. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  695. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  696. #endif
  697. }
  698. /*
  699. * Allocate and initialize an mm_struct.
  700. */
  701. struct mm_struct *mm_alloc(void)
  702. {
  703. struct mm_struct *mm;
  704. mm = allocate_mm();
  705. if (!mm)
  706. return NULL;
  707. memset(mm, 0, sizeof(*mm));
  708. return mm_init(mm, current, current_user_ns());
  709. }
  710. /*
  711. * Called when the last reference to the mm
  712. * is dropped: either by a lazy thread or by
  713. * mmput. Free the page directory and the mm.
  714. */
  715. void __mmdrop(struct mm_struct *mm)
  716. {
  717. BUG_ON(mm == &init_mm);
  718. mm_free_pgd(mm);
  719. destroy_context(mm);
  720. mmu_notifier_mm_destroy(mm);
  721. check_mm(mm);
  722. put_user_ns(mm->user_ns);
  723. free_mm(mm);
  724. }
  725. EXPORT_SYMBOL_GPL(__mmdrop);
  726. static inline void __mmput(struct mm_struct *mm)
  727. {
  728. VM_BUG_ON(atomic_read(&mm->mm_users));
  729. uprobe_clear_state(mm);
  730. exit_aio(mm);
  731. ksm_exit(mm);
  732. khugepaged_exit(mm); /* must run before exit_mmap */
  733. exit_mmap(mm);
  734. mm_put_huge_zero_page(mm);
  735. set_mm_exe_file(mm, NULL);
  736. if (!list_empty(&mm->mmlist)) {
  737. spin_lock(&mmlist_lock);
  738. list_del(&mm->mmlist);
  739. spin_unlock(&mmlist_lock);
  740. }
  741. if (mm->binfmt)
  742. module_put(mm->binfmt->module);
  743. set_bit(MMF_OOM_SKIP, &mm->flags);
  744. mmdrop(mm);
  745. }
  746. /*
  747. * Decrement the use count and release all resources for an mm.
  748. */
  749. void mmput(struct mm_struct *mm)
  750. {
  751. might_sleep();
  752. if (atomic_dec_and_test(&mm->mm_users))
  753. __mmput(mm);
  754. }
  755. EXPORT_SYMBOL_GPL(mmput);
  756. #ifdef CONFIG_MMU
  757. static void mmput_async_fn(struct work_struct *work)
  758. {
  759. struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
  760. __mmput(mm);
  761. }
  762. void mmput_async(struct mm_struct *mm)
  763. {
  764. if (atomic_dec_and_test(&mm->mm_users)) {
  765. INIT_WORK(&mm->async_put_work, mmput_async_fn);
  766. schedule_work(&mm->async_put_work);
  767. }
  768. }
  769. #endif
  770. /**
  771. * set_mm_exe_file - change a reference to the mm's executable file
  772. *
  773. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  774. *
  775. * Main users are mmput() and sys_execve(). Callers prevent concurrent
  776. * invocations: in mmput() nobody alive left, in execve task is single
  777. * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
  778. * mm->exe_file, but does so without using set_mm_exe_file() in order
  779. * to do avoid the need for any locks.
  780. */
  781. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  782. {
  783. struct file *old_exe_file;
  784. /*
  785. * It is safe to dereference the exe_file without RCU as
  786. * this function is only called if nobody else can access
  787. * this mm -- see comment above for justification.
  788. */
  789. old_exe_file = rcu_dereference_raw(mm->exe_file);
  790. if (new_exe_file)
  791. get_file(new_exe_file);
  792. rcu_assign_pointer(mm->exe_file, new_exe_file);
  793. if (old_exe_file)
  794. fput(old_exe_file);
  795. }
  796. /**
  797. * get_mm_exe_file - acquire a reference to the mm's executable file
  798. *
  799. * Returns %NULL if mm has no associated executable file.
  800. * User must release file via fput().
  801. */
  802. struct file *get_mm_exe_file(struct mm_struct *mm)
  803. {
  804. struct file *exe_file;
  805. rcu_read_lock();
  806. exe_file = rcu_dereference(mm->exe_file);
  807. if (exe_file && !get_file_rcu(exe_file))
  808. exe_file = NULL;
  809. rcu_read_unlock();
  810. return exe_file;
  811. }
  812. EXPORT_SYMBOL(get_mm_exe_file);
  813. /**
  814. * get_task_exe_file - acquire a reference to the task's executable file
  815. *
  816. * Returns %NULL if task's mm (if any) has no associated executable file or
  817. * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
  818. * User must release file via fput().
  819. */
  820. struct file *get_task_exe_file(struct task_struct *task)
  821. {
  822. struct file *exe_file = NULL;
  823. struct mm_struct *mm;
  824. task_lock(task);
  825. mm = task->mm;
  826. if (mm) {
  827. if (!(task->flags & PF_KTHREAD))
  828. exe_file = get_mm_exe_file(mm);
  829. }
  830. task_unlock(task);
  831. return exe_file;
  832. }
  833. EXPORT_SYMBOL(get_task_exe_file);
  834. /**
  835. * get_task_mm - acquire a reference to the task's mm
  836. *
  837. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  838. * this kernel workthread has transiently adopted a user mm with use_mm,
  839. * to do its AIO) is not set and if so returns a reference to it, after
  840. * bumping up the use count. User must release the mm via mmput()
  841. * after use. Typically used by /proc and ptrace.
  842. */
  843. struct mm_struct *get_task_mm(struct task_struct *task)
  844. {
  845. struct mm_struct *mm;
  846. task_lock(task);
  847. mm = task->mm;
  848. if (mm) {
  849. if (task->flags & PF_KTHREAD)
  850. mm = NULL;
  851. else
  852. atomic_inc(&mm->mm_users);
  853. }
  854. task_unlock(task);
  855. return mm;
  856. }
  857. EXPORT_SYMBOL_GPL(get_task_mm);
  858. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  859. {
  860. struct mm_struct *mm;
  861. int err;
  862. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  863. if (err)
  864. return ERR_PTR(err);
  865. mm = get_task_mm(task);
  866. if (mm && mm != current->mm &&
  867. !ptrace_may_access(task, mode)) {
  868. mmput(mm);
  869. mm = ERR_PTR(-EACCES);
  870. }
  871. mutex_unlock(&task->signal->cred_guard_mutex);
  872. return mm;
  873. }
  874. static void complete_vfork_done(struct task_struct *tsk)
  875. {
  876. struct completion *vfork;
  877. task_lock(tsk);
  878. vfork = tsk->vfork_done;
  879. if (likely(vfork)) {
  880. tsk->vfork_done = NULL;
  881. complete(vfork);
  882. }
  883. task_unlock(tsk);
  884. }
  885. static int wait_for_vfork_done(struct task_struct *child,
  886. struct completion *vfork)
  887. {
  888. int killed;
  889. freezer_do_not_count();
  890. killed = wait_for_completion_killable(vfork);
  891. freezer_count();
  892. if (killed) {
  893. task_lock(child);
  894. child->vfork_done = NULL;
  895. task_unlock(child);
  896. }
  897. put_task_struct(child);
  898. return killed;
  899. }
  900. /* Please note the differences between mmput and mm_release.
  901. * mmput is called whenever we stop holding onto a mm_struct,
  902. * error success whatever.
  903. *
  904. * mm_release is called after a mm_struct has been removed
  905. * from the current process.
  906. *
  907. * This difference is important for error handling, when we
  908. * only half set up a mm_struct for a new process and need to restore
  909. * the old one. Because we mmput the new mm_struct before
  910. * restoring the old one. . .
  911. * Eric Biederman 10 January 1998
  912. */
  913. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  914. {
  915. /* Get rid of any futexes when releasing the mm */
  916. #ifdef CONFIG_FUTEX
  917. if (unlikely(tsk->robust_list)) {
  918. exit_robust_list(tsk);
  919. tsk->robust_list = NULL;
  920. }
  921. #ifdef CONFIG_COMPAT
  922. if (unlikely(tsk->compat_robust_list)) {
  923. compat_exit_robust_list(tsk);
  924. tsk->compat_robust_list = NULL;
  925. }
  926. #endif
  927. if (unlikely(!list_empty(&tsk->pi_state_list)))
  928. exit_pi_state_list(tsk);
  929. #endif
  930. uprobe_free_utask(tsk);
  931. /* Get rid of any cached register state */
  932. deactivate_mm(tsk, mm);
  933. /*
  934. * Signal userspace if we're not exiting with a core dump
  935. * because we want to leave the value intact for debugging
  936. * purposes.
  937. */
  938. if (tsk->clear_child_tid) {
  939. if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
  940. atomic_read(&mm->mm_users) > 1) {
  941. /*
  942. * We don't check the error code - if userspace has
  943. * not set up a proper pointer then tough luck.
  944. */
  945. put_user(0, tsk->clear_child_tid);
  946. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  947. 1, NULL, NULL, 0);
  948. }
  949. tsk->clear_child_tid = NULL;
  950. }
  951. /*
  952. * All done, finally we can wake up parent and return this mm to him.
  953. * Also kthread_stop() uses this completion for synchronization.
  954. */
  955. if (tsk->vfork_done)
  956. complete_vfork_done(tsk);
  957. }
  958. /*
  959. * Allocate a new mm structure and copy contents from the
  960. * mm structure of the passed in task structure.
  961. */
  962. static struct mm_struct *dup_mm(struct task_struct *tsk)
  963. {
  964. struct mm_struct *mm, *oldmm = current->mm;
  965. int err;
  966. mm = allocate_mm();
  967. if (!mm)
  968. goto fail_nomem;
  969. memcpy(mm, oldmm, sizeof(*mm));
  970. if (!mm_init(mm, tsk, mm->user_ns))
  971. goto fail_nomem;
  972. err = dup_mmap(mm, oldmm);
  973. if (err)
  974. goto free_pt;
  975. mm->hiwater_rss = get_mm_rss(mm);
  976. mm->hiwater_vm = mm->total_vm;
  977. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  978. goto free_pt;
  979. return mm;
  980. free_pt:
  981. /* don't put binfmt in mmput, we haven't got module yet */
  982. mm->binfmt = NULL;
  983. mmput(mm);
  984. fail_nomem:
  985. return NULL;
  986. }
  987. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  988. {
  989. struct mm_struct *mm, *oldmm;
  990. int retval;
  991. tsk->min_flt = tsk->maj_flt = 0;
  992. tsk->nvcsw = tsk->nivcsw = 0;
  993. #ifdef CONFIG_DETECT_HUNG_TASK
  994. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  995. #endif
  996. tsk->mm = NULL;
  997. tsk->active_mm = NULL;
  998. /*
  999. * Are we cloning a kernel thread?
  1000. *
  1001. * We need to steal a active VM for that..
  1002. */
  1003. oldmm = current->mm;
  1004. if (!oldmm)
  1005. return 0;
  1006. /* initialize the new vmacache entries */
  1007. vmacache_flush(tsk);
  1008. if (clone_flags & CLONE_VM) {
  1009. atomic_inc(&oldmm->mm_users);
  1010. mm = oldmm;
  1011. goto good_mm;
  1012. }
  1013. retval = -ENOMEM;
  1014. mm = dup_mm(tsk);
  1015. if (!mm)
  1016. goto fail_nomem;
  1017. good_mm:
  1018. tsk->mm = mm;
  1019. tsk->active_mm = mm;
  1020. return 0;
  1021. fail_nomem:
  1022. return retval;
  1023. }
  1024. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  1025. {
  1026. struct fs_struct *fs = current->fs;
  1027. if (clone_flags & CLONE_FS) {
  1028. /* tsk->fs is already what we want */
  1029. spin_lock(&fs->lock);
  1030. if (fs->in_exec) {
  1031. spin_unlock(&fs->lock);
  1032. return -EAGAIN;
  1033. }
  1034. fs->users++;
  1035. spin_unlock(&fs->lock);
  1036. return 0;
  1037. }
  1038. tsk->fs = copy_fs_struct(fs);
  1039. if (!tsk->fs)
  1040. return -ENOMEM;
  1041. return 0;
  1042. }
  1043. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  1044. {
  1045. struct files_struct *oldf, *newf;
  1046. int error = 0;
  1047. /*
  1048. * A background process may not have any files ...
  1049. */
  1050. oldf = current->files;
  1051. if (!oldf)
  1052. goto out;
  1053. if (clone_flags & CLONE_FILES) {
  1054. atomic_inc(&oldf->count);
  1055. goto out;
  1056. }
  1057. newf = dup_fd(oldf, &error);
  1058. if (!newf)
  1059. goto out;
  1060. tsk->files = newf;
  1061. error = 0;
  1062. out:
  1063. return error;
  1064. }
  1065. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  1066. {
  1067. #ifdef CONFIG_BLOCK
  1068. struct io_context *ioc = current->io_context;
  1069. struct io_context *new_ioc;
  1070. if (!ioc)
  1071. return 0;
  1072. /*
  1073. * Share io context with parent, if CLONE_IO is set
  1074. */
  1075. if (clone_flags & CLONE_IO) {
  1076. ioc_task_link(ioc);
  1077. tsk->io_context = ioc;
  1078. } else if (ioprio_valid(ioc->ioprio)) {
  1079. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  1080. if (unlikely(!new_ioc))
  1081. return -ENOMEM;
  1082. new_ioc->ioprio = ioc->ioprio;
  1083. put_io_context(new_ioc);
  1084. }
  1085. #endif
  1086. return 0;
  1087. }
  1088. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  1089. {
  1090. struct sighand_struct *sig;
  1091. if (clone_flags & CLONE_SIGHAND) {
  1092. atomic_inc(&current->sighand->count);
  1093. return 0;
  1094. }
  1095. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  1096. rcu_assign_pointer(tsk->sighand, sig);
  1097. if (!sig)
  1098. return -ENOMEM;
  1099. atomic_set(&sig->count, 1);
  1100. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  1101. return 0;
  1102. }
  1103. void __cleanup_sighand(struct sighand_struct *sighand)
  1104. {
  1105. if (atomic_dec_and_test(&sighand->count)) {
  1106. signalfd_cleanup(sighand);
  1107. /*
  1108. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  1109. * without an RCU grace period, see __lock_task_sighand().
  1110. */
  1111. kmem_cache_free(sighand_cachep, sighand);
  1112. }
  1113. }
  1114. #ifdef CONFIG_POSIX_TIMERS
  1115. /*
  1116. * Initialize POSIX timer handling for a thread group.
  1117. */
  1118. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  1119. {
  1120. unsigned long cpu_limit;
  1121. cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  1122. if (cpu_limit != RLIM_INFINITY) {
  1123. sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
  1124. sig->cputimer.running = true;
  1125. }
  1126. /* The timer lists. */
  1127. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  1128. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  1129. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  1130. }
  1131. #else
  1132. static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
  1133. #endif
  1134. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  1135. {
  1136. struct signal_struct *sig;
  1137. if (clone_flags & CLONE_THREAD)
  1138. return 0;
  1139. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  1140. tsk->signal = sig;
  1141. if (!sig)
  1142. return -ENOMEM;
  1143. sig->nr_threads = 1;
  1144. atomic_set(&sig->live, 1);
  1145. atomic_set(&sig->sigcnt, 1);
  1146. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  1147. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  1148. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  1149. init_waitqueue_head(&sig->wait_chldexit);
  1150. sig->curr_target = tsk;
  1151. init_sigpending(&sig->shared_pending);
  1152. seqlock_init(&sig->stats_lock);
  1153. prev_cputime_init(&sig->prev_cputime);
  1154. #ifdef CONFIG_POSIX_TIMERS
  1155. INIT_LIST_HEAD(&sig->posix_timers);
  1156. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1157. sig->real_timer.function = it_real_fn;
  1158. #endif
  1159. task_lock(current->group_leader);
  1160. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  1161. task_unlock(current->group_leader);
  1162. posix_cpu_timers_init_group(sig);
  1163. tty_audit_fork(sig);
  1164. sched_autogroup_fork(sig);
  1165. sig->oom_score_adj = current->signal->oom_score_adj;
  1166. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  1167. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  1168. current->signal->is_child_subreaper;
  1169. mutex_init(&sig->cred_guard_mutex);
  1170. return 0;
  1171. }
  1172. static void copy_seccomp(struct task_struct *p)
  1173. {
  1174. #ifdef CONFIG_SECCOMP
  1175. /*
  1176. * Must be called with sighand->lock held, which is common to
  1177. * all threads in the group. Holding cred_guard_mutex is not
  1178. * needed because this new task is not yet running and cannot
  1179. * be racing exec.
  1180. */
  1181. assert_spin_locked(&current->sighand->siglock);
  1182. /* Ref-count the new filter user, and assign it. */
  1183. get_seccomp_filter(current);
  1184. p->seccomp = current->seccomp;
  1185. /*
  1186. * Explicitly enable no_new_privs here in case it got set
  1187. * between the task_struct being duplicated and holding the
  1188. * sighand lock. The seccomp state and nnp must be in sync.
  1189. */
  1190. if (task_no_new_privs(current))
  1191. task_set_no_new_privs(p);
  1192. /*
  1193. * If the parent gained a seccomp mode after copying thread
  1194. * flags and between before we held the sighand lock, we have
  1195. * to manually enable the seccomp thread flag here.
  1196. */
  1197. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1198. set_tsk_thread_flag(p, TIF_SECCOMP);
  1199. #endif
  1200. }
  1201. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1202. {
  1203. current->clear_child_tid = tidptr;
  1204. return task_pid_vnr(current);
  1205. }
  1206. static void rt_mutex_init_task(struct task_struct *p)
  1207. {
  1208. raw_spin_lock_init(&p->pi_lock);
  1209. #ifdef CONFIG_RT_MUTEXES
  1210. p->pi_waiters = RB_ROOT;
  1211. p->pi_waiters_leftmost = NULL;
  1212. p->pi_blocked_on = NULL;
  1213. #endif
  1214. }
  1215. #ifdef CONFIG_POSIX_TIMERS
  1216. /*
  1217. * Initialize POSIX timer handling for a single task.
  1218. */
  1219. static void posix_cpu_timers_init(struct task_struct *tsk)
  1220. {
  1221. tsk->cputime_expires.prof_exp = 0;
  1222. tsk->cputime_expires.virt_exp = 0;
  1223. tsk->cputime_expires.sched_exp = 0;
  1224. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1225. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1226. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1227. }
  1228. #else
  1229. static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
  1230. #endif
  1231. static inline void
  1232. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1233. {
  1234. task->pids[type].pid = pid;
  1235. }
  1236. /*
  1237. * This creates a new process as a copy of the old one,
  1238. * but does not actually start it yet.
  1239. *
  1240. * It copies the registers, and all the appropriate
  1241. * parts of the process environment (as per the clone
  1242. * flags). The actual kick-off is left to the caller.
  1243. */
  1244. static __latent_entropy struct task_struct *copy_process(
  1245. unsigned long clone_flags,
  1246. unsigned long stack_start,
  1247. unsigned long stack_size,
  1248. int __user *child_tidptr,
  1249. struct pid *pid,
  1250. int trace,
  1251. unsigned long tls,
  1252. int node)
  1253. {
  1254. int retval;
  1255. struct task_struct *p;
  1256. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1257. return ERR_PTR(-EINVAL);
  1258. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1259. return ERR_PTR(-EINVAL);
  1260. /*
  1261. * Thread groups must share signals as well, and detached threads
  1262. * can only be started up within the thread group.
  1263. */
  1264. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1265. return ERR_PTR(-EINVAL);
  1266. /*
  1267. * Shared signal handlers imply shared VM. By way of the above,
  1268. * thread groups also imply shared VM. Blocking this case allows
  1269. * for various simplifications in other code.
  1270. */
  1271. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1272. return ERR_PTR(-EINVAL);
  1273. /*
  1274. * Siblings of global init remain as zombies on exit since they are
  1275. * not reaped by their parent (swapper). To solve this and to avoid
  1276. * multi-rooted process trees, prevent global and container-inits
  1277. * from creating siblings.
  1278. */
  1279. if ((clone_flags & CLONE_PARENT) &&
  1280. current->signal->flags & SIGNAL_UNKILLABLE)
  1281. return ERR_PTR(-EINVAL);
  1282. /*
  1283. * If the new process will be in a different pid or user namespace
  1284. * do not allow it to share a thread group with the forking task.
  1285. */
  1286. if (clone_flags & CLONE_THREAD) {
  1287. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1288. (task_active_pid_ns(current) !=
  1289. current->nsproxy->pid_ns_for_children))
  1290. return ERR_PTR(-EINVAL);
  1291. }
  1292. retval = security_task_create(clone_flags);
  1293. if (retval)
  1294. goto fork_out;
  1295. retval = -ENOMEM;
  1296. p = dup_task_struct(current, node);
  1297. if (!p)
  1298. goto fork_out;
  1299. ftrace_graph_init_task(p);
  1300. rt_mutex_init_task(p);
  1301. #ifdef CONFIG_PROVE_LOCKING
  1302. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1303. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1304. #endif
  1305. retval = -EAGAIN;
  1306. if (atomic_read(&p->real_cred->user->processes) >=
  1307. task_rlimit(p, RLIMIT_NPROC)) {
  1308. if (p->real_cred->user != INIT_USER &&
  1309. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1310. goto bad_fork_free;
  1311. }
  1312. current->flags &= ~PF_NPROC_EXCEEDED;
  1313. retval = copy_creds(p, clone_flags);
  1314. if (retval < 0)
  1315. goto bad_fork_free;
  1316. /*
  1317. * If multiple threads are within copy_process(), then this check
  1318. * triggers too late. This doesn't hurt, the check is only there
  1319. * to stop root fork bombs.
  1320. */
  1321. retval = -EAGAIN;
  1322. if (nr_threads >= max_threads)
  1323. goto bad_fork_cleanup_count;
  1324. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1325. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
  1326. p->flags |= PF_FORKNOEXEC;
  1327. INIT_LIST_HEAD(&p->children);
  1328. INIT_LIST_HEAD(&p->sibling);
  1329. rcu_copy_process(p);
  1330. p->vfork_done = NULL;
  1331. spin_lock_init(&p->alloc_lock);
  1332. init_sigpending(&p->pending);
  1333. p->utime = p->stime = p->gtime = 0;
  1334. #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
  1335. p->utimescaled = p->stimescaled = 0;
  1336. #endif
  1337. prev_cputime_init(&p->prev_cputime);
  1338. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1339. seqcount_init(&p->vtime_seqcount);
  1340. p->vtime_snap = 0;
  1341. p->vtime_snap_whence = VTIME_INACTIVE;
  1342. #endif
  1343. #if defined(SPLIT_RSS_COUNTING)
  1344. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1345. #endif
  1346. p->default_timer_slack_ns = current->timer_slack_ns;
  1347. task_io_accounting_init(&p->ioac);
  1348. acct_clear_integrals(p);
  1349. posix_cpu_timers_init(p);
  1350. p->start_time = ktime_get_ns();
  1351. p->real_start_time = ktime_get_boot_ns();
  1352. p->io_context = NULL;
  1353. p->audit_context = NULL;
  1354. cgroup_fork(p);
  1355. #ifdef CONFIG_NUMA
  1356. p->mempolicy = mpol_dup(p->mempolicy);
  1357. if (IS_ERR(p->mempolicy)) {
  1358. retval = PTR_ERR(p->mempolicy);
  1359. p->mempolicy = NULL;
  1360. goto bad_fork_cleanup_threadgroup_lock;
  1361. }
  1362. #endif
  1363. #ifdef CONFIG_CPUSETS
  1364. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1365. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1366. seqcount_init(&p->mems_allowed_seq);
  1367. #endif
  1368. #ifdef CONFIG_TRACE_IRQFLAGS
  1369. p->irq_events = 0;
  1370. p->hardirqs_enabled = 0;
  1371. p->hardirq_enable_ip = 0;
  1372. p->hardirq_enable_event = 0;
  1373. p->hardirq_disable_ip = _THIS_IP_;
  1374. p->hardirq_disable_event = 0;
  1375. p->softirqs_enabled = 1;
  1376. p->softirq_enable_ip = _THIS_IP_;
  1377. p->softirq_enable_event = 0;
  1378. p->softirq_disable_ip = 0;
  1379. p->softirq_disable_event = 0;
  1380. p->hardirq_context = 0;
  1381. p->softirq_context = 0;
  1382. #endif
  1383. p->pagefault_disabled = 0;
  1384. #ifdef CONFIG_LOCKDEP
  1385. p->lockdep_depth = 0; /* no locks held yet */
  1386. p->curr_chain_key = 0;
  1387. p->lockdep_recursion = 0;
  1388. #endif
  1389. #ifdef CONFIG_DEBUG_MUTEXES
  1390. p->blocked_on = NULL; /* not blocked yet */
  1391. #endif
  1392. #ifdef CONFIG_BCACHE
  1393. p->sequential_io = 0;
  1394. p->sequential_io_avg = 0;
  1395. #endif
  1396. /* Perform scheduler related setup. Assign this task to a CPU. */
  1397. retval = sched_fork(clone_flags, p);
  1398. if (retval)
  1399. goto bad_fork_cleanup_policy;
  1400. retval = perf_event_init_task(p);
  1401. if (retval)
  1402. goto bad_fork_cleanup_policy;
  1403. retval = audit_alloc(p);
  1404. if (retval)
  1405. goto bad_fork_cleanup_perf;
  1406. /* copy all the process information */
  1407. shm_init_task(p);
  1408. retval = copy_semundo(clone_flags, p);
  1409. if (retval)
  1410. goto bad_fork_cleanup_audit;
  1411. retval = copy_files(clone_flags, p);
  1412. if (retval)
  1413. goto bad_fork_cleanup_semundo;
  1414. retval = copy_fs(clone_flags, p);
  1415. if (retval)
  1416. goto bad_fork_cleanup_files;
  1417. retval = copy_sighand(clone_flags, p);
  1418. if (retval)
  1419. goto bad_fork_cleanup_fs;
  1420. retval = copy_signal(clone_flags, p);
  1421. if (retval)
  1422. goto bad_fork_cleanup_sighand;
  1423. retval = copy_mm(clone_flags, p);
  1424. if (retval)
  1425. goto bad_fork_cleanup_signal;
  1426. retval = copy_namespaces(clone_flags, p);
  1427. if (retval)
  1428. goto bad_fork_cleanup_mm;
  1429. retval = copy_io(clone_flags, p);
  1430. if (retval)
  1431. goto bad_fork_cleanup_namespaces;
  1432. retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
  1433. if (retval)
  1434. goto bad_fork_cleanup_io;
  1435. if (pid != &init_struct_pid) {
  1436. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1437. if (IS_ERR(pid)) {
  1438. retval = PTR_ERR(pid);
  1439. goto bad_fork_cleanup_thread;
  1440. }
  1441. }
  1442. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1443. /*
  1444. * Clear TID on mm_release()?
  1445. */
  1446. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1447. #ifdef CONFIG_BLOCK
  1448. p->plug = NULL;
  1449. #endif
  1450. #ifdef CONFIG_FUTEX
  1451. p->robust_list = NULL;
  1452. #ifdef CONFIG_COMPAT
  1453. p->compat_robust_list = NULL;
  1454. #endif
  1455. INIT_LIST_HEAD(&p->pi_state_list);
  1456. p->pi_state_cache = NULL;
  1457. #endif
  1458. /*
  1459. * sigaltstack should be cleared when sharing the same VM
  1460. */
  1461. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1462. sas_ss_reset(p);
  1463. /*
  1464. * Syscall tracing and stepping should be turned off in the
  1465. * child regardless of CLONE_PTRACE.
  1466. */
  1467. user_disable_single_step(p);
  1468. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1469. #ifdef TIF_SYSCALL_EMU
  1470. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1471. #endif
  1472. clear_all_latency_tracing(p);
  1473. /* ok, now we should be set up.. */
  1474. p->pid = pid_nr(pid);
  1475. if (clone_flags & CLONE_THREAD) {
  1476. p->exit_signal = -1;
  1477. p->group_leader = current->group_leader;
  1478. p->tgid = current->tgid;
  1479. } else {
  1480. if (clone_flags & CLONE_PARENT)
  1481. p->exit_signal = current->group_leader->exit_signal;
  1482. else
  1483. p->exit_signal = (clone_flags & CSIGNAL);
  1484. p->group_leader = p;
  1485. p->tgid = p->pid;
  1486. }
  1487. p->nr_dirtied = 0;
  1488. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1489. p->dirty_paused_when = 0;
  1490. p->pdeath_signal = 0;
  1491. INIT_LIST_HEAD(&p->thread_group);
  1492. p->task_works = NULL;
  1493. threadgroup_change_begin(current);
  1494. /*
  1495. * Ensure that the cgroup subsystem policies allow the new process to be
  1496. * forked. It should be noted the the new process's css_set can be changed
  1497. * between here and cgroup_post_fork() if an organisation operation is in
  1498. * progress.
  1499. */
  1500. retval = cgroup_can_fork(p);
  1501. if (retval)
  1502. goto bad_fork_free_pid;
  1503. /*
  1504. * Make it visible to the rest of the system, but dont wake it up yet.
  1505. * Need tasklist lock for parent etc handling!
  1506. */
  1507. write_lock_irq(&tasklist_lock);
  1508. /* CLONE_PARENT re-uses the old parent */
  1509. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1510. p->real_parent = current->real_parent;
  1511. p->parent_exec_id = current->parent_exec_id;
  1512. } else {
  1513. p->real_parent = current;
  1514. p->parent_exec_id = current->self_exec_id;
  1515. }
  1516. spin_lock(&current->sighand->siglock);
  1517. /*
  1518. * Copy seccomp details explicitly here, in case they were changed
  1519. * before holding sighand lock.
  1520. */
  1521. copy_seccomp(p);
  1522. /*
  1523. * Process group and session signals need to be delivered to just the
  1524. * parent before the fork or both the parent and the child after the
  1525. * fork. Restart if a signal comes in before we add the new process to
  1526. * it's process group.
  1527. * A fatal signal pending means that current will exit, so the new
  1528. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1529. */
  1530. recalc_sigpending();
  1531. if (signal_pending(current)) {
  1532. spin_unlock(&current->sighand->siglock);
  1533. write_unlock_irq(&tasklist_lock);
  1534. retval = -ERESTARTNOINTR;
  1535. goto bad_fork_cancel_cgroup;
  1536. }
  1537. if (likely(p->pid)) {
  1538. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1539. init_task_pid(p, PIDTYPE_PID, pid);
  1540. if (thread_group_leader(p)) {
  1541. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1542. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1543. if (is_child_reaper(pid)) {
  1544. ns_of_pid(pid)->child_reaper = p;
  1545. p->signal->flags |= SIGNAL_UNKILLABLE;
  1546. }
  1547. p->signal->leader_pid = pid;
  1548. p->signal->tty = tty_kref_get(current->signal->tty);
  1549. list_add_tail(&p->sibling, &p->real_parent->children);
  1550. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1551. attach_pid(p, PIDTYPE_PGID);
  1552. attach_pid(p, PIDTYPE_SID);
  1553. __this_cpu_inc(process_counts);
  1554. } else {
  1555. current->signal->nr_threads++;
  1556. atomic_inc(&current->signal->live);
  1557. atomic_inc(&current->signal->sigcnt);
  1558. list_add_tail_rcu(&p->thread_group,
  1559. &p->group_leader->thread_group);
  1560. list_add_tail_rcu(&p->thread_node,
  1561. &p->signal->thread_head);
  1562. }
  1563. attach_pid(p, PIDTYPE_PID);
  1564. nr_threads++;
  1565. }
  1566. total_forks++;
  1567. spin_unlock(&current->sighand->siglock);
  1568. syscall_tracepoint_update(p);
  1569. write_unlock_irq(&tasklist_lock);
  1570. proc_fork_connector(p);
  1571. cgroup_post_fork(p);
  1572. threadgroup_change_end(current);
  1573. perf_event_fork(p);
  1574. trace_task_newtask(p, clone_flags);
  1575. uprobe_copy_process(p, clone_flags);
  1576. return p;
  1577. bad_fork_cancel_cgroup:
  1578. cgroup_cancel_fork(p);
  1579. bad_fork_free_pid:
  1580. threadgroup_change_end(current);
  1581. if (pid != &init_struct_pid)
  1582. free_pid(pid);
  1583. bad_fork_cleanup_thread:
  1584. exit_thread(p);
  1585. bad_fork_cleanup_io:
  1586. if (p->io_context)
  1587. exit_io_context(p);
  1588. bad_fork_cleanup_namespaces:
  1589. exit_task_namespaces(p);
  1590. bad_fork_cleanup_mm:
  1591. if (p->mm)
  1592. mmput(p->mm);
  1593. bad_fork_cleanup_signal:
  1594. if (!(clone_flags & CLONE_THREAD))
  1595. free_signal_struct(p->signal);
  1596. bad_fork_cleanup_sighand:
  1597. __cleanup_sighand(p->sighand);
  1598. bad_fork_cleanup_fs:
  1599. exit_fs(p); /* blocking */
  1600. bad_fork_cleanup_files:
  1601. exit_files(p); /* blocking */
  1602. bad_fork_cleanup_semundo:
  1603. exit_sem(p);
  1604. bad_fork_cleanup_audit:
  1605. audit_free(p);
  1606. bad_fork_cleanup_perf:
  1607. perf_event_free_task(p);
  1608. bad_fork_cleanup_policy:
  1609. #ifdef CONFIG_NUMA
  1610. mpol_put(p->mempolicy);
  1611. bad_fork_cleanup_threadgroup_lock:
  1612. #endif
  1613. delayacct_tsk_free(p);
  1614. bad_fork_cleanup_count:
  1615. atomic_dec(&p->cred->user->processes);
  1616. exit_creds(p);
  1617. bad_fork_free:
  1618. p->state = TASK_DEAD;
  1619. put_task_stack(p);
  1620. free_task(p);
  1621. fork_out:
  1622. return ERR_PTR(retval);
  1623. }
  1624. static inline void init_idle_pids(struct pid_link *links)
  1625. {
  1626. enum pid_type type;
  1627. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1628. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1629. links[type].pid = &init_struct_pid;
  1630. }
  1631. }
  1632. struct task_struct *fork_idle(int cpu)
  1633. {
  1634. struct task_struct *task;
  1635. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
  1636. cpu_to_node(cpu));
  1637. if (!IS_ERR(task)) {
  1638. init_idle_pids(task->pids);
  1639. init_idle(task, cpu);
  1640. }
  1641. return task;
  1642. }
  1643. /*
  1644. * Ok, this is the main fork-routine.
  1645. *
  1646. * It copies the process, and if successful kick-starts
  1647. * it and waits for it to finish using the VM if required.
  1648. */
  1649. long _do_fork(unsigned long clone_flags,
  1650. unsigned long stack_start,
  1651. unsigned long stack_size,
  1652. int __user *parent_tidptr,
  1653. int __user *child_tidptr,
  1654. unsigned long tls)
  1655. {
  1656. struct task_struct *p;
  1657. int trace = 0;
  1658. long nr;
  1659. /*
  1660. * Determine whether and which event to report to ptracer. When
  1661. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1662. * requested, no event is reported; otherwise, report if the event
  1663. * for the type of forking is enabled.
  1664. */
  1665. if (!(clone_flags & CLONE_UNTRACED)) {
  1666. if (clone_flags & CLONE_VFORK)
  1667. trace = PTRACE_EVENT_VFORK;
  1668. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1669. trace = PTRACE_EVENT_CLONE;
  1670. else
  1671. trace = PTRACE_EVENT_FORK;
  1672. if (likely(!ptrace_event_enabled(current, trace)))
  1673. trace = 0;
  1674. }
  1675. p = copy_process(clone_flags, stack_start, stack_size,
  1676. child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
  1677. add_latent_entropy();
  1678. /*
  1679. * Do this prior waking up the new thread - the thread pointer
  1680. * might get invalid after that point, if the thread exits quickly.
  1681. */
  1682. if (!IS_ERR(p)) {
  1683. struct completion vfork;
  1684. struct pid *pid;
  1685. trace_sched_process_fork(current, p);
  1686. pid = get_task_pid(p, PIDTYPE_PID);
  1687. nr = pid_vnr(pid);
  1688. if (clone_flags & CLONE_PARENT_SETTID)
  1689. put_user(nr, parent_tidptr);
  1690. if (clone_flags & CLONE_VFORK) {
  1691. p->vfork_done = &vfork;
  1692. init_completion(&vfork);
  1693. get_task_struct(p);
  1694. }
  1695. wake_up_new_task(p);
  1696. /* forking complete and child started to run, tell ptracer */
  1697. if (unlikely(trace))
  1698. ptrace_event_pid(trace, pid);
  1699. if (clone_flags & CLONE_VFORK) {
  1700. if (!wait_for_vfork_done(p, &vfork))
  1701. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1702. }
  1703. put_pid(pid);
  1704. } else {
  1705. nr = PTR_ERR(p);
  1706. }
  1707. return nr;
  1708. }
  1709. #ifndef CONFIG_HAVE_COPY_THREAD_TLS
  1710. /* For compatibility with architectures that call do_fork directly rather than
  1711. * using the syscall entry points below. */
  1712. long do_fork(unsigned long clone_flags,
  1713. unsigned long stack_start,
  1714. unsigned long stack_size,
  1715. int __user *parent_tidptr,
  1716. int __user *child_tidptr)
  1717. {
  1718. return _do_fork(clone_flags, stack_start, stack_size,
  1719. parent_tidptr, child_tidptr, 0);
  1720. }
  1721. #endif
  1722. /*
  1723. * Create a kernel thread.
  1724. */
  1725. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1726. {
  1727. return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1728. (unsigned long)arg, NULL, NULL, 0);
  1729. }
  1730. #ifdef __ARCH_WANT_SYS_FORK
  1731. SYSCALL_DEFINE0(fork)
  1732. {
  1733. #ifdef CONFIG_MMU
  1734. return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
  1735. #else
  1736. /* can not support in nommu mode */
  1737. return -EINVAL;
  1738. #endif
  1739. }
  1740. #endif
  1741. #ifdef __ARCH_WANT_SYS_VFORK
  1742. SYSCALL_DEFINE0(vfork)
  1743. {
  1744. return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1745. 0, NULL, NULL, 0);
  1746. }
  1747. #endif
  1748. #ifdef __ARCH_WANT_SYS_CLONE
  1749. #ifdef CONFIG_CLONE_BACKWARDS
  1750. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1751. int __user *, parent_tidptr,
  1752. unsigned long, tls,
  1753. int __user *, child_tidptr)
  1754. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1755. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1756. int __user *, parent_tidptr,
  1757. int __user *, child_tidptr,
  1758. unsigned long, tls)
  1759. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1760. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1761. int, stack_size,
  1762. int __user *, parent_tidptr,
  1763. int __user *, child_tidptr,
  1764. unsigned long, tls)
  1765. #else
  1766. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1767. int __user *, parent_tidptr,
  1768. int __user *, child_tidptr,
  1769. unsigned long, tls)
  1770. #endif
  1771. {
  1772. return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
  1773. }
  1774. #endif
  1775. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1776. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1777. #endif
  1778. static void sighand_ctor(void *data)
  1779. {
  1780. struct sighand_struct *sighand = data;
  1781. spin_lock_init(&sighand->siglock);
  1782. init_waitqueue_head(&sighand->signalfd_wqh);
  1783. }
  1784. void __init proc_caches_init(void)
  1785. {
  1786. sighand_cachep = kmem_cache_create("sighand_cache",
  1787. sizeof(struct sighand_struct), 0,
  1788. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1789. SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
  1790. signal_cachep = kmem_cache_create("signal_cache",
  1791. sizeof(struct signal_struct), 0,
  1792. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1793. NULL);
  1794. files_cachep = kmem_cache_create("files_cache",
  1795. sizeof(struct files_struct), 0,
  1796. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1797. NULL);
  1798. fs_cachep = kmem_cache_create("fs_cache",
  1799. sizeof(struct fs_struct), 0,
  1800. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1801. NULL);
  1802. /*
  1803. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1804. * whole struct cpumask for the OFFSTACK case. We could change
  1805. * this to *only* allocate as much of it as required by the
  1806. * maximum number of CPU's we can ever have. The cpumask_allocation
  1807. * is at the end of the structure, exactly for that reason.
  1808. */
  1809. mm_cachep = kmem_cache_create("mm_struct",
  1810. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1811. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1812. NULL);
  1813. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
  1814. mmap_init();
  1815. nsproxy_cache_init();
  1816. }
  1817. /*
  1818. * Check constraints on flags passed to the unshare system call.
  1819. */
  1820. static int check_unshare_flags(unsigned long unshare_flags)
  1821. {
  1822. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1823. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1824. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1825. CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
  1826. return -EINVAL;
  1827. /*
  1828. * Not implemented, but pretend it works if there is nothing
  1829. * to unshare. Note that unsharing the address space or the
  1830. * signal handlers also need to unshare the signal queues (aka
  1831. * CLONE_THREAD).
  1832. */
  1833. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1834. if (!thread_group_empty(current))
  1835. return -EINVAL;
  1836. }
  1837. if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
  1838. if (atomic_read(&current->sighand->count) > 1)
  1839. return -EINVAL;
  1840. }
  1841. if (unshare_flags & CLONE_VM) {
  1842. if (!current_is_single_threaded())
  1843. return -EINVAL;
  1844. }
  1845. return 0;
  1846. }
  1847. /*
  1848. * Unshare the filesystem structure if it is being shared
  1849. */
  1850. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1851. {
  1852. struct fs_struct *fs = current->fs;
  1853. if (!(unshare_flags & CLONE_FS) || !fs)
  1854. return 0;
  1855. /* don't need lock here; in the worst case we'll do useless copy */
  1856. if (fs->users == 1)
  1857. return 0;
  1858. *new_fsp = copy_fs_struct(fs);
  1859. if (!*new_fsp)
  1860. return -ENOMEM;
  1861. return 0;
  1862. }
  1863. /*
  1864. * Unshare file descriptor table if it is being shared
  1865. */
  1866. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1867. {
  1868. struct files_struct *fd = current->files;
  1869. int error = 0;
  1870. if ((unshare_flags & CLONE_FILES) &&
  1871. (fd && atomic_read(&fd->count) > 1)) {
  1872. *new_fdp = dup_fd(fd, &error);
  1873. if (!*new_fdp)
  1874. return error;
  1875. }
  1876. return 0;
  1877. }
  1878. /*
  1879. * unshare allows a process to 'unshare' part of the process
  1880. * context which was originally shared using clone. copy_*
  1881. * functions used by do_fork() cannot be used here directly
  1882. * because they modify an inactive task_struct that is being
  1883. * constructed. Here we are modifying the current, active,
  1884. * task_struct.
  1885. */
  1886. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1887. {
  1888. struct fs_struct *fs, *new_fs = NULL;
  1889. struct files_struct *fd, *new_fd = NULL;
  1890. struct cred *new_cred = NULL;
  1891. struct nsproxy *new_nsproxy = NULL;
  1892. int do_sysvsem = 0;
  1893. int err;
  1894. /*
  1895. * If unsharing a user namespace must also unshare the thread group
  1896. * and unshare the filesystem root and working directories.
  1897. */
  1898. if (unshare_flags & CLONE_NEWUSER)
  1899. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1900. /*
  1901. * If unsharing vm, must also unshare signal handlers.
  1902. */
  1903. if (unshare_flags & CLONE_VM)
  1904. unshare_flags |= CLONE_SIGHAND;
  1905. /*
  1906. * If unsharing a signal handlers, must also unshare the signal queues.
  1907. */
  1908. if (unshare_flags & CLONE_SIGHAND)
  1909. unshare_flags |= CLONE_THREAD;
  1910. /*
  1911. * If unsharing namespace, must also unshare filesystem information.
  1912. */
  1913. if (unshare_flags & CLONE_NEWNS)
  1914. unshare_flags |= CLONE_FS;
  1915. err = check_unshare_flags(unshare_flags);
  1916. if (err)
  1917. goto bad_unshare_out;
  1918. /*
  1919. * CLONE_NEWIPC must also detach from the undolist: after switching
  1920. * to a new ipc namespace, the semaphore arrays from the old
  1921. * namespace are unreachable.
  1922. */
  1923. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1924. do_sysvsem = 1;
  1925. err = unshare_fs(unshare_flags, &new_fs);
  1926. if (err)
  1927. goto bad_unshare_out;
  1928. err = unshare_fd(unshare_flags, &new_fd);
  1929. if (err)
  1930. goto bad_unshare_cleanup_fs;
  1931. err = unshare_userns(unshare_flags, &new_cred);
  1932. if (err)
  1933. goto bad_unshare_cleanup_fd;
  1934. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1935. new_cred, new_fs);
  1936. if (err)
  1937. goto bad_unshare_cleanup_cred;
  1938. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1939. if (do_sysvsem) {
  1940. /*
  1941. * CLONE_SYSVSEM is equivalent to sys_exit().
  1942. */
  1943. exit_sem(current);
  1944. }
  1945. if (unshare_flags & CLONE_NEWIPC) {
  1946. /* Orphan segments in old ns (see sem above). */
  1947. exit_shm(current);
  1948. shm_init_task(current);
  1949. }
  1950. if (new_nsproxy)
  1951. switch_task_namespaces(current, new_nsproxy);
  1952. task_lock(current);
  1953. if (new_fs) {
  1954. fs = current->fs;
  1955. spin_lock(&fs->lock);
  1956. current->fs = new_fs;
  1957. if (--fs->users)
  1958. new_fs = NULL;
  1959. else
  1960. new_fs = fs;
  1961. spin_unlock(&fs->lock);
  1962. }
  1963. if (new_fd) {
  1964. fd = current->files;
  1965. current->files = new_fd;
  1966. new_fd = fd;
  1967. }
  1968. task_unlock(current);
  1969. if (new_cred) {
  1970. /* Install the new user namespace */
  1971. commit_creds(new_cred);
  1972. new_cred = NULL;
  1973. }
  1974. }
  1975. bad_unshare_cleanup_cred:
  1976. if (new_cred)
  1977. put_cred(new_cred);
  1978. bad_unshare_cleanup_fd:
  1979. if (new_fd)
  1980. put_files_struct(new_fd);
  1981. bad_unshare_cleanup_fs:
  1982. if (new_fs)
  1983. free_fs_struct(new_fs);
  1984. bad_unshare_out:
  1985. return err;
  1986. }
  1987. /*
  1988. * Helper to unshare the files of the current task.
  1989. * We don't want to expose copy_files internals to
  1990. * the exec layer of the kernel.
  1991. */
  1992. int unshare_files(struct files_struct **displaced)
  1993. {
  1994. struct task_struct *task = current;
  1995. struct files_struct *copy = NULL;
  1996. int error;
  1997. error = unshare_fd(CLONE_FILES, &copy);
  1998. if (error || !copy) {
  1999. *displaced = NULL;
  2000. return error;
  2001. }
  2002. *displaced = task->files;
  2003. task_lock(task);
  2004. task->files = copy;
  2005. task_unlock(task);
  2006. return 0;
  2007. }
  2008. int sysctl_max_threads(struct ctl_table *table, int write,
  2009. void __user *buffer, size_t *lenp, loff_t *ppos)
  2010. {
  2011. struct ctl_table t;
  2012. int ret;
  2013. int threads = max_threads;
  2014. int min = MIN_THREADS;
  2015. int max = MAX_THREADS;
  2016. t = *table;
  2017. t.data = &threads;
  2018. t.extra1 = &min;
  2019. t.extra2 = &max;
  2020. ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  2021. if (ret || !write)
  2022. return ret;
  2023. set_max_threads(threads);
  2024. return 0;
  2025. }