intel.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. #include <linux/kernel.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/smp.h>
  5. #include <linux/sched.h>
  6. #include <linux/thread_info.h>
  7. #include <linux/init.h>
  8. #include <linux/uaccess.h>
  9. #include <asm/cpufeature.h>
  10. #include <asm/pgtable.h>
  11. #include <asm/msr.h>
  12. #include <asm/bugs.h>
  13. #include <asm/cpu.h>
  14. #include <asm/intel-family.h>
  15. #include <asm/microcode_intel.h>
  16. #ifdef CONFIG_X86_64
  17. #include <linux/topology.h>
  18. #endif
  19. #include "cpu.h"
  20. #ifdef CONFIG_X86_LOCAL_APIC
  21. #include <asm/mpspec.h>
  22. #include <asm/apic.h>
  23. #endif
  24. /*
  25. * Just in case our CPU detection goes bad, or you have a weird system,
  26. * allow a way to override the automatic disabling of MPX.
  27. */
  28. static int forcempx;
  29. static int __init forcempx_setup(char *__unused)
  30. {
  31. forcempx = 1;
  32. return 1;
  33. }
  34. __setup("intel-skd-046-workaround=disable", forcempx_setup);
  35. void check_mpx_erratum(struct cpuinfo_x86 *c)
  36. {
  37. if (forcempx)
  38. return;
  39. /*
  40. * Turn off the MPX feature on CPUs where SMEP is not
  41. * available or disabled.
  42. *
  43. * Works around Intel Erratum SKD046: "Branch Instructions
  44. * May Initialize MPX Bound Registers Incorrectly".
  45. *
  46. * This might falsely disable MPX on systems without
  47. * SMEP, like Atom processors without SMEP. But there
  48. * is no such hardware known at the moment.
  49. */
  50. if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  51. setup_clear_cpu_cap(X86_FEATURE_MPX);
  52. pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  53. }
  54. }
  55. static void early_init_intel(struct cpuinfo_x86 *c)
  56. {
  57. u64 misc_enable;
  58. /* Unmask CPUID levels if masked: */
  59. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  60. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  61. MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
  62. c->cpuid_level = cpuid_eax(0);
  63. get_cpu_cap(c);
  64. }
  65. }
  66. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  67. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  68. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  69. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
  70. c->microcode = intel_get_microcode_revision();
  71. /*
  72. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  73. *
  74. * A race condition between speculative fetches and invalidating
  75. * a large page. This is worked around in microcode, but we
  76. * need the microcode to have already been loaded... so if it is
  77. * not, recommend a BIOS update and disable large pages.
  78. */
  79. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
  80. c->microcode < 0x20e) {
  81. pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
  82. clear_cpu_cap(c, X86_FEATURE_PSE);
  83. }
  84. #ifdef CONFIG_X86_64
  85. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  86. #else
  87. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  88. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  89. c->x86_cache_alignment = 128;
  90. #endif
  91. /* CPUID workaround for 0F33/0F34 CPU */
  92. if (c->x86 == 0xF && c->x86_model == 0x3
  93. && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
  94. c->x86_phys_bits = 36;
  95. /*
  96. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  97. * with P/T states and does not stop in deep C-states.
  98. *
  99. * It is also reliable across cores and sockets. (but not across
  100. * cabinets - we turn it off in that case explicitly.)
  101. */
  102. if (c->x86_power & (1 << 8)) {
  103. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  104. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  105. if (check_tsc_unstable())
  106. clear_sched_clock_stable();
  107. } else {
  108. clear_sched_clock_stable();
  109. }
  110. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  111. if (c->x86 == 6) {
  112. switch (c->x86_model) {
  113. case 0x27: /* Penwell */
  114. case 0x35: /* Cloverview */
  115. case 0x4a: /* Merrifield */
  116. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  117. break;
  118. default:
  119. break;
  120. }
  121. }
  122. /*
  123. * There is a known erratum on Pentium III and Core Solo
  124. * and Core Duo CPUs.
  125. * " Page with PAT set to WC while associated MTRR is UC
  126. * may consolidate to UC "
  127. * Because of this erratum, it is better to stick with
  128. * setting WC in MTRR rather than using PAT on these CPUs.
  129. *
  130. * Enable PAT WC only on P4, Core 2 or later CPUs.
  131. */
  132. if (c->x86 == 6 && c->x86_model < 15)
  133. clear_cpu_cap(c, X86_FEATURE_PAT);
  134. #ifdef CONFIG_KMEMCHECK
  135. /*
  136. * P4s have a "fast strings" feature which causes single-
  137. * stepping REP instructions to only generate a #DB on
  138. * cache-line boundaries.
  139. *
  140. * Ingo Molnar reported a Pentium D (model 6) and a Xeon
  141. * (model 2) with the same problem.
  142. */
  143. if (c->x86 == 15)
  144. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  145. MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
  146. pr_info("kmemcheck: Disabling fast string operations\n");
  147. #endif
  148. /*
  149. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  150. * clear the fast string and enhanced fast string CPU capabilities.
  151. */
  152. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  153. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  154. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  155. pr_info("Disabled fast string operations\n");
  156. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  157. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  158. }
  159. }
  160. /*
  161. * Intel Quark Core DevMan_001.pdf section 6.4.11
  162. * "The operating system also is required to invalidate (i.e., flush)
  163. * the TLB when any changes are made to any of the page table entries.
  164. * The operating system must reload CR3 to cause the TLB to be flushed"
  165. *
  166. * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
  167. * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
  168. * to be modified.
  169. */
  170. if (c->x86 == 5 && c->x86_model == 9) {
  171. pr_info("Disabling PGE capability bit\n");
  172. setup_clear_cpu_cap(X86_FEATURE_PGE);
  173. }
  174. if (c->cpuid_level >= 0x00000001) {
  175. u32 eax, ebx, ecx, edx;
  176. cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
  177. /*
  178. * If HTT (EDX[28]) is set EBX[16:23] contain the number of
  179. * apicids which are reserved per package. Store the resulting
  180. * shift value for the package management code.
  181. */
  182. if (edx & (1U << 28))
  183. c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
  184. }
  185. check_mpx_erratum(c);
  186. }
  187. #ifdef CONFIG_X86_32
  188. /*
  189. * Early probe support logic for ppro memory erratum #50
  190. *
  191. * This is called before we do cpu ident work
  192. */
  193. int ppro_with_ram_bug(void)
  194. {
  195. /* Uses data from early_cpu_detect now */
  196. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  197. boot_cpu_data.x86 == 6 &&
  198. boot_cpu_data.x86_model == 1 &&
  199. boot_cpu_data.x86_mask < 8) {
  200. pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  201. return 1;
  202. }
  203. return 0;
  204. }
  205. static void intel_smp_check(struct cpuinfo_x86 *c)
  206. {
  207. /* calling is from identify_secondary_cpu() ? */
  208. if (!c->cpu_index)
  209. return;
  210. /*
  211. * Mask B, Pentium, but not Pentium MMX
  212. */
  213. if (c->x86 == 5 &&
  214. c->x86_mask >= 1 && c->x86_mask <= 4 &&
  215. c->x86_model <= 3) {
  216. /*
  217. * Remember we have B step Pentia with bugs
  218. */
  219. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  220. "with B stepping processors.\n");
  221. }
  222. }
  223. static int forcepae;
  224. static int __init forcepae_setup(char *__unused)
  225. {
  226. forcepae = 1;
  227. return 1;
  228. }
  229. __setup("forcepae", forcepae_setup);
  230. static void intel_workarounds(struct cpuinfo_x86 *c)
  231. {
  232. #ifdef CONFIG_X86_F00F_BUG
  233. /*
  234. * All models of Pentium and Pentium with MMX technology CPUs
  235. * have the F0 0F bug, which lets nonprivileged users lock up the
  236. * system. Announce that the fault handler will be checking for it.
  237. * The Quark is also family 5, but does not have the same bug.
  238. */
  239. clear_cpu_bug(c, X86_BUG_F00F);
  240. if (c->x86 == 5 && c->x86_model < 9) {
  241. static int f00f_workaround_enabled;
  242. set_cpu_bug(c, X86_BUG_F00F);
  243. if (!f00f_workaround_enabled) {
  244. pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
  245. f00f_workaround_enabled = 1;
  246. }
  247. }
  248. #endif
  249. /*
  250. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  251. * model 3 mask 3
  252. */
  253. if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
  254. clear_cpu_cap(c, X86_FEATURE_SEP);
  255. /*
  256. * PAE CPUID issue: many Pentium M report no PAE but may have a
  257. * functionally usable PAE implementation.
  258. * Forcefully enable PAE if kernel parameter "forcepae" is present.
  259. */
  260. if (forcepae) {
  261. pr_warn("PAE forced!\n");
  262. set_cpu_cap(c, X86_FEATURE_PAE);
  263. add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
  264. }
  265. /*
  266. * P4 Xeon erratum 037 workaround.
  267. * Hardware prefetcher may cause stale data to be loaded into the cache.
  268. */
  269. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
  270. if (msr_set_bit(MSR_IA32_MISC_ENABLE,
  271. MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
  272. pr_info("CPU: C0 stepping P4 Xeon detected.\n");
  273. pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
  274. }
  275. }
  276. /*
  277. * See if we have a good local APIC by checking for buggy Pentia,
  278. * i.e. all B steppings and the C2 stepping of P54C when using their
  279. * integrated APIC (see 11AP erratum in "Pentium Processor
  280. * Specification Update").
  281. */
  282. if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  283. (c->x86_mask < 0x6 || c->x86_mask == 0xb))
  284. set_cpu_bug(c, X86_BUG_11AP);
  285. #ifdef CONFIG_X86_INTEL_USERCOPY
  286. /*
  287. * Set up the preferred alignment for movsl bulk memory moves
  288. */
  289. switch (c->x86) {
  290. case 4: /* 486: untested */
  291. break;
  292. case 5: /* Old Pentia: untested */
  293. break;
  294. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  295. movsl_mask.mask = 7;
  296. break;
  297. case 15: /* P4 is OK down to 8-byte alignment */
  298. movsl_mask.mask = 7;
  299. break;
  300. }
  301. #endif
  302. intel_smp_check(c);
  303. }
  304. #else
  305. static void intel_workarounds(struct cpuinfo_x86 *c)
  306. {
  307. }
  308. #endif
  309. static void srat_detect_node(struct cpuinfo_x86 *c)
  310. {
  311. #ifdef CONFIG_NUMA
  312. unsigned node;
  313. int cpu = smp_processor_id();
  314. /* Don't do the funky fallback heuristics the AMD version employs
  315. for now. */
  316. node = numa_cpu_node(cpu);
  317. if (node == NUMA_NO_NODE || !node_online(node)) {
  318. /* reuse the value from init_cpu_to_node() */
  319. node = cpu_to_node(cpu);
  320. }
  321. numa_set_node(cpu, node);
  322. #endif
  323. }
  324. /*
  325. * find out the number of processor cores on the die
  326. */
  327. static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
  328. {
  329. unsigned int eax, ebx, ecx, edx;
  330. if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
  331. return 1;
  332. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  333. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  334. if (eax & 0x1f)
  335. return (eax >> 26) + 1;
  336. else
  337. return 1;
  338. }
  339. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  340. {
  341. /* Intel VMX MSR indicated features */
  342. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  343. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  344. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  345. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  346. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  347. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  348. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  349. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  350. clear_cpu_cap(c, X86_FEATURE_VNMI);
  351. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  352. clear_cpu_cap(c, X86_FEATURE_EPT);
  353. clear_cpu_cap(c, X86_FEATURE_VPID);
  354. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  355. msr_ctl = vmx_msr_high | vmx_msr_low;
  356. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  357. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  358. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  359. set_cpu_cap(c, X86_FEATURE_VNMI);
  360. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  361. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  362. vmx_msr_low, vmx_msr_high);
  363. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  364. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  365. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  366. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  367. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  368. set_cpu_cap(c, X86_FEATURE_EPT);
  369. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  370. set_cpu_cap(c, X86_FEATURE_VPID);
  371. }
  372. }
  373. static void init_intel_energy_perf(struct cpuinfo_x86 *c)
  374. {
  375. u64 epb;
  376. /*
  377. * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
  378. * (x86_energy_perf_policy(8) is available to change it at run-time.)
  379. */
  380. if (!cpu_has(c, X86_FEATURE_EPB))
  381. return;
  382. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  383. if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
  384. return;
  385. pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
  386. pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
  387. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  388. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  389. }
  390. static void intel_bsp_resume(struct cpuinfo_x86 *c)
  391. {
  392. /*
  393. * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
  394. * so reinitialize it properly like during bootup:
  395. */
  396. init_intel_energy_perf(c);
  397. }
  398. static void init_intel(struct cpuinfo_x86 *c)
  399. {
  400. unsigned int l2 = 0;
  401. early_init_intel(c);
  402. intel_workarounds(c);
  403. /*
  404. * Detect the extended topology information if available. This
  405. * will reinitialise the initial_apicid which will be used
  406. * in init_intel_cacheinfo()
  407. */
  408. detect_extended_topology(c);
  409. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  410. /*
  411. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  412. * detection.
  413. */
  414. c->x86_max_cores = intel_num_cpu_cores(c);
  415. #ifdef CONFIG_X86_32
  416. detect_ht(c);
  417. #endif
  418. }
  419. l2 = init_intel_cacheinfo(c);
  420. /* Detect legacy cache sizes if init_intel_cacheinfo did not */
  421. if (l2 == 0) {
  422. cpu_detect_cache_sizes(c);
  423. l2 = c->x86_cache_size;
  424. }
  425. if (c->cpuid_level > 9) {
  426. unsigned eax = cpuid_eax(10);
  427. /* Check for version and the number of counters */
  428. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  429. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  430. }
  431. if (cpu_has(c, X86_FEATURE_XMM2))
  432. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  433. if (boot_cpu_has(X86_FEATURE_DS)) {
  434. unsigned int l1;
  435. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  436. if (!(l1 & (1<<11)))
  437. set_cpu_cap(c, X86_FEATURE_BTS);
  438. if (!(l1 & (1<<12)))
  439. set_cpu_cap(c, X86_FEATURE_PEBS);
  440. }
  441. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
  442. (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
  443. set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
  444. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
  445. ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
  446. set_cpu_bug(c, X86_BUG_MONITOR);
  447. #ifdef CONFIG_X86_64
  448. if (c->x86 == 15)
  449. c->x86_cache_alignment = c->x86_clflush_size * 2;
  450. if (c->x86 == 6)
  451. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  452. #else
  453. /*
  454. * Names for the Pentium II/Celeron processors
  455. * detectable only by also checking the cache size.
  456. * Dixon is NOT a Celeron.
  457. */
  458. if (c->x86 == 6) {
  459. char *p = NULL;
  460. switch (c->x86_model) {
  461. case 5:
  462. if (l2 == 0)
  463. p = "Celeron (Covington)";
  464. else if (l2 == 256)
  465. p = "Mobile Pentium II (Dixon)";
  466. break;
  467. case 6:
  468. if (l2 == 128)
  469. p = "Celeron (Mendocino)";
  470. else if (c->x86_mask == 0 || c->x86_mask == 5)
  471. p = "Celeron-A";
  472. break;
  473. case 8:
  474. if (l2 == 128)
  475. p = "Celeron (Coppermine)";
  476. break;
  477. }
  478. if (p)
  479. strcpy(c->x86_model_id, p);
  480. }
  481. if (c->x86 == 15)
  482. set_cpu_cap(c, X86_FEATURE_P4);
  483. if (c->x86 == 6)
  484. set_cpu_cap(c, X86_FEATURE_P3);
  485. #endif
  486. /* Work around errata */
  487. srat_detect_node(c);
  488. if (cpu_has(c, X86_FEATURE_VMX))
  489. detect_vmx_virtcap(c);
  490. init_intel_energy_perf(c);
  491. }
  492. #ifdef CONFIG_X86_32
  493. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  494. {
  495. /*
  496. * Intel PIII Tualatin. This comes in two flavours.
  497. * One has 256kb of cache, the other 512. We have no way
  498. * to determine which, so we use a boottime override
  499. * for the 512kb model, and assume 256 otherwise.
  500. */
  501. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  502. size = 256;
  503. /*
  504. * Intel Quark SoC X1000 contains a 4-way set associative
  505. * 16K cache with a 16 byte cache line and 256 lines per tag
  506. */
  507. if ((c->x86 == 5) && (c->x86_model == 9))
  508. size = 16;
  509. return size;
  510. }
  511. #endif
  512. #define TLB_INST_4K 0x01
  513. #define TLB_INST_4M 0x02
  514. #define TLB_INST_2M_4M 0x03
  515. #define TLB_INST_ALL 0x05
  516. #define TLB_INST_1G 0x06
  517. #define TLB_DATA_4K 0x11
  518. #define TLB_DATA_4M 0x12
  519. #define TLB_DATA_2M_4M 0x13
  520. #define TLB_DATA_4K_4M 0x14
  521. #define TLB_DATA_1G 0x16
  522. #define TLB_DATA0_4K 0x21
  523. #define TLB_DATA0_4M 0x22
  524. #define TLB_DATA0_2M_4M 0x23
  525. #define STLB_4K 0x41
  526. #define STLB_4K_2M 0x42
  527. static const struct _tlb_table intel_tlb_table[] = {
  528. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  529. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  530. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  531. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  532. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  533. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  534. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  535. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  536. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  537. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  538. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  539. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  540. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  541. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  542. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  543. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  544. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  545. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  546. { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
  547. { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
  548. { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  549. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  550. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  551. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  552. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  553. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  554. { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
  555. { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
  556. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  557. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  558. { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
  559. { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
  560. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  561. { 0x00, 0, 0 }
  562. };
  563. static void intel_tlb_lookup(const unsigned char desc)
  564. {
  565. unsigned char k;
  566. if (desc == 0)
  567. return;
  568. /* look up this descriptor in the table */
  569. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  570. intel_tlb_table[k].descriptor != 0; k++)
  571. ;
  572. if (intel_tlb_table[k].tlb_type == 0)
  573. return;
  574. switch (intel_tlb_table[k].tlb_type) {
  575. case STLB_4K:
  576. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  577. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  578. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  579. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  580. break;
  581. case STLB_4K_2M:
  582. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  583. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  584. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  585. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  586. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  587. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  588. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  589. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  590. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  591. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  592. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  593. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  594. break;
  595. case TLB_INST_ALL:
  596. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  597. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  598. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  599. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  600. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  601. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  602. break;
  603. case TLB_INST_4K:
  604. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  605. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  606. break;
  607. case TLB_INST_4M:
  608. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  609. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  610. break;
  611. case TLB_INST_2M_4M:
  612. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  613. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  614. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  615. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  616. break;
  617. case TLB_DATA_4K:
  618. case TLB_DATA0_4K:
  619. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  620. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  621. break;
  622. case TLB_DATA_4M:
  623. case TLB_DATA0_4M:
  624. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  625. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  626. break;
  627. case TLB_DATA_2M_4M:
  628. case TLB_DATA0_2M_4M:
  629. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  630. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  631. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  632. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  633. break;
  634. case TLB_DATA_4K_4M:
  635. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  636. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  637. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  638. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  639. break;
  640. case TLB_DATA_1G:
  641. if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
  642. tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
  643. break;
  644. }
  645. }
  646. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  647. {
  648. int i, j, n;
  649. unsigned int regs[4];
  650. unsigned char *desc = (unsigned char *)regs;
  651. if (c->cpuid_level < 2)
  652. return;
  653. /* Number of times to iterate */
  654. n = cpuid_eax(2) & 0xFF;
  655. for (i = 0 ; i < n ; i++) {
  656. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  657. /* If bit 31 is set, this is an unknown format */
  658. for (j = 0 ; j < 3 ; j++)
  659. if (regs[j] & (1 << 31))
  660. regs[j] = 0;
  661. /* Byte 0 is level count, not a descriptor */
  662. for (j = 1 ; j < 16 ; j++)
  663. intel_tlb_lookup(desc[j]);
  664. }
  665. }
  666. static const struct cpu_dev intel_cpu_dev = {
  667. .c_vendor = "Intel",
  668. .c_ident = { "GenuineIntel" },
  669. #ifdef CONFIG_X86_32
  670. .legacy_models = {
  671. { .family = 4, .model_names =
  672. {
  673. [0] = "486 DX-25/33",
  674. [1] = "486 DX-50",
  675. [2] = "486 SX",
  676. [3] = "486 DX/2",
  677. [4] = "486 SL",
  678. [5] = "486 SX/2",
  679. [7] = "486 DX/2-WB",
  680. [8] = "486 DX/4",
  681. [9] = "486 DX/4-WB"
  682. }
  683. },
  684. { .family = 5, .model_names =
  685. {
  686. [0] = "Pentium 60/66 A-step",
  687. [1] = "Pentium 60/66",
  688. [2] = "Pentium 75 - 200",
  689. [3] = "OverDrive PODP5V83",
  690. [4] = "Pentium MMX",
  691. [7] = "Mobile Pentium 75 - 200",
  692. [8] = "Mobile Pentium MMX",
  693. [9] = "Quark SoC X1000",
  694. }
  695. },
  696. { .family = 6, .model_names =
  697. {
  698. [0] = "Pentium Pro A-step",
  699. [1] = "Pentium Pro",
  700. [3] = "Pentium II (Klamath)",
  701. [4] = "Pentium II (Deschutes)",
  702. [5] = "Pentium II (Deschutes)",
  703. [6] = "Mobile Pentium II",
  704. [7] = "Pentium III (Katmai)",
  705. [8] = "Pentium III (Coppermine)",
  706. [10] = "Pentium III (Cascades)",
  707. [11] = "Pentium III (Tualatin)",
  708. }
  709. },
  710. { .family = 15, .model_names =
  711. {
  712. [0] = "Pentium 4 (Unknown)",
  713. [1] = "Pentium 4 (Willamette)",
  714. [2] = "Pentium 4 (Northwood)",
  715. [4] = "Pentium 4 (Foster)",
  716. [5] = "Pentium 4 (Foster)",
  717. }
  718. },
  719. },
  720. .legacy_cache_size = intel_size_cache,
  721. #endif
  722. .c_detect_tlb = intel_detect_tlb,
  723. .c_early_init = early_init_intel,
  724. .c_init = init_intel,
  725. .c_bsp_resume = intel_bsp_resume,
  726. .c_x86_vendor = X86_VENDOR_INTEL,
  727. };
  728. cpu_dev_register(intel_cpu_dev);