dm-writecache.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2018 Red Hat. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include <linux/device-mapper.h>
  8. #include <linux/module.h>
  9. #include <linux/init.h>
  10. #include <linux/vmalloc.h>
  11. #include <linux/kthread.h>
  12. #include <linux/dm-io.h>
  13. #include <linux/dm-kcopyd.h>
  14. #include <linux/dax.h>
  15. #include <linux/pfn_t.h>
  16. #include <linux/libnvdimm.h>
  17. #define DM_MSG_PREFIX "writecache"
  18. #define HIGH_WATERMARK 50
  19. #define LOW_WATERMARK 45
  20. #define MAX_WRITEBACK_JOBS 0
  21. #define ENDIO_LATENCY 16
  22. #define WRITEBACK_LATENCY 64
  23. #define AUTOCOMMIT_BLOCKS_SSD 65536
  24. #define AUTOCOMMIT_BLOCKS_PMEM 64
  25. #define AUTOCOMMIT_MSEC 1000
  26. #define BITMAP_GRANULARITY 65536
  27. #if BITMAP_GRANULARITY < PAGE_SIZE
  28. #undef BITMAP_GRANULARITY
  29. #define BITMAP_GRANULARITY PAGE_SIZE
  30. #endif
  31. #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
  32. #define DM_WRITECACHE_HAS_PMEM
  33. #endif
  34. #ifdef DM_WRITECACHE_HAS_PMEM
  35. #define pmem_assign(dest, src) \
  36. do { \
  37. typeof(dest) uniq = (src); \
  38. memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
  39. } while (0)
  40. #else
  41. #define pmem_assign(dest, src) ((dest) = (src))
  42. #endif
  43. #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
  44. #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  45. #endif
  46. #define MEMORY_SUPERBLOCK_MAGIC 0x23489321
  47. #define MEMORY_SUPERBLOCK_VERSION 1
  48. struct wc_memory_entry {
  49. __le64 original_sector;
  50. __le64 seq_count;
  51. };
  52. struct wc_memory_superblock {
  53. union {
  54. struct {
  55. __le32 magic;
  56. __le32 version;
  57. __le32 block_size;
  58. __le32 pad;
  59. __le64 n_blocks;
  60. __le64 seq_count;
  61. };
  62. __le64 padding[8];
  63. };
  64. struct wc_memory_entry entries[0];
  65. };
  66. struct wc_entry {
  67. struct rb_node rb_node;
  68. struct list_head lru;
  69. unsigned short wc_list_contiguous;
  70. bool write_in_progress
  71. #if BITS_PER_LONG == 64
  72. :1
  73. #endif
  74. ;
  75. unsigned long index
  76. #if BITS_PER_LONG == 64
  77. :47
  78. #endif
  79. ;
  80. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  81. uint64_t original_sector;
  82. uint64_t seq_count;
  83. #endif
  84. };
  85. #ifdef DM_WRITECACHE_HAS_PMEM
  86. #define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
  87. #define WC_MODE_FUA(wc) ((wc)->writeback_fua)
  88. #else
  89. #define WC_MODE_PMEM(wc) false
  90. #define WC_MODE_FUA(wc) false
  91. #endif
  92. #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
  93. struct dm_writecache {
  94. struct mutex lock;
  95. struct list_head lru;
  96. union {
  97. struct list_head freelist;
  98. struct {
  99. struct rb_root freetree;
  100. struct wc_entry *current_free;
  101. };
  102. };
  103. struct rb_root tree;
  104. size_t freelist_size;
  105. size_t writeback_size;
  106. size_t freelist_high_watermark;
  107. size_t freelist_low_watermark;
  108. unsigned uncommitted_blocks;
  109. unsigned autocommit_blocks;
  110. unsigned max_writeback_jobs;
  111. int error;
  112. unsigned long autocommit_jiffies;
  113. struct timer_list autocommit_timer;
  114. struct wait_queue_head freelist_wait;
  115. atomic_t bio_in_progress[2];
  116. struct wait_queue_head bio_in_progress_wait[2];
  117. struct dm_target *ti;
  118. struct dm_dev *dev;
  119. struct dm_dev *ssd_dev;
  120. sector_t start_sector;
  121. void *memory_map;
  122. uint64_t memory_map_size;
  123. size_t metadata_sectors;
  124. size_t n_blocks;
  125. uint64_t seq_count;
  126. void *block_start;
  127. struct wc_entry *entries;
  128. unsigned block_size;
  129. unsigned char block_size_bits;
  130. bool pmem_mode:1;
  131. bool writeback_fua:1;
  132. bool overwrote_committed:1;
  133. bool memory_vmapped:1;
  134. bool high_wm_percent_set:1;
  135. bool low_wm_percent_set:1;
  136. bool max_writeback_jobs_set:1;
  137. bool autocommit_blocks_set:1;
  138. bool autocommit_time_set:1;
  139. bool writeback_fua_set:1;
  140. bool flush_on_suspend:1;
  141. unsigned writeback_all;
  142. struct workqueue_struct *writeback_wq;
  143. struct work_struct writeback_work;
  144. struct work_struct flush_work;
  145. struct dm_io_client *dm_io;
  146. raw_spinlock_t endio_list_lock;
  147. struct list_head endio_list;
  148. struct task_struct *endio_thread;
  149. struct task_struct *flush_thread;
  150. struct bio_list flush_list;
  151. struct dm_kcopyd_client *dm_kcopyd;
  152. unsigned long *dirty_bitmap;
  153. unsigned dirty_bitmap_size;
  154. struct bio_set bio_set;
  155. mempool_t copy_pool;
  156. };
  157. #define WB_LIST_INLINE 16
  158. struct writeback_struct {
  159. struct list_head endio_entry;
  160. struct dm_writecache *wc;
  161. struct wc_entry **wc_list;
  162. unsigned wc_list_n;
  163. unsigned page_offset;
  164. struct page *page;
  165. struct wc_entry *wc_list_inline[WB_LIST_INLINE];
  166. struct bio bio;
  167. };
  168. struct copy_struct {
  169. struct list_head endio_entry;
  170. struct dm_writecache *wc;
  171. struct wc_entry *e;
  172. unsigned n_entries;
  173. int error;
  174. };
  175. DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
  176. "A percentage of time allocated for data copying");
  177. static void wc_lock(struct dm_writecache *wc)
  178. {
  179. mutex_lock(&wc->lock);
  180. }
  181. static void wc_unlock(struct dm_writecache *wc)
  182. {
  183. mutex_unlock(&wc->lock);
  184. }
  185. #ifdef DM_WRITECACHE_HAS_PMEM
  186. static int persistent_memory_claim(struct dm_writecache *wc)
  187. {
  188. int r;
  189. loff_t s;
  190. long p, da;
  191. pfn_t pfn;
  192. int id;
  193. struct page **pages;
  194. wc->memory_vmapped = false;
  195. if (!wc->ssd_dev->dax_dev) {
  196. r = -EOPNOTSUPP;
  197. goto err1;
  198. }
  199. s = wc->memory_map_size;
  200. p = s >> PAGE_SHIFT;
  201. if (!p) {
  202. r = -EINVAL;
  203. goto err1;
  204. }
  205. if (p != s >> PAGE_SHIFT) {
  206. r = -EOVERFLOW;
  207. goto err1;
  208. }
  209. id = dax_read_lock();
  210. da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
  211. if (da < 0) {
  212. wc->memory_map = NULL;
  213. r = da;
  214. goto err2;
  215. }
  216. if (!pfn_t_has_page(pfn)) {
  217. wc->memory_map = NULL;
  218. r = -EOPNOTSUPP;
  219. goto err2;
  220. }
  221. if (da != p) {
  222. long i;
  223. wc->memory_map = NULL;
  224. pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
  225. if (!pages) {
  226. r = -ENOMEM;
  227. goto err2;
  228. }
  229. i = 0;
  230. do {
  231. long daa;
  232. daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
  233. NULL, &pfn);
  234. if (daa <= 0) {
  235. r = daa ? daa : -EINVAL;
  236. goto err3;
  237. }
  238. if (!pfn_t_has_page(pfn)) {
  239. r = -EOPNOTSUPP;
  240. goto err3;
  241. }
  242. while (daa-- && i < p) {
  243. pages[i++] = pfn_t_to_page(pfn);
  244. pfn.val++;
  245. }
  246. } while (i < p);
  247. wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
  248. if (!wc->memory_map) {
  249. r = -ENOMEM;
  250. goto err3;
  251. }
  252. kvfree(pages);
  253. wc->memory_vmapped = true;
  254. }
  255. dax_read_unlock(id);
  256. wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
  257. wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
  258. return 0;
  259. err3:
  260. kvfree(pages);
  261. err2:
  262. dax_read_unlock(id);
  263. err1:
  264. return r;
  265. }
  266. #else
  267. static int persistent_memory_claim(struct dm_writecache *wc)
  268. {
  269. BUG();
  270. }
  271. #endif
  272. static void persistent_memory_release(struct dm_writecache *wc)
  273. {
  274. if (wc->memory_vmapped)
  275. vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
  276. }
  277. static struct page *persistent_memory_page(void *addr)
  278. {
  279. if (is_vmalloc_addr(addr))
  280. return vmalloc_to_page(addr);
  281. else
  282. return virt_to_page(addr);
  283. }
  284. static unsigned persistent_memory_page_offset(void *addr)
  285. {
  286. return (unsigned long)addr & (PAGE_SIZE - 1);
  287. }
  288. static void persistent_memory_flush_cache(void *ptr, size_t size)
  289. {
  290. if (is_vmalloc_addr(ptr))
  291. flush_kernel_vmap_range(ptr, size);
  292. }
  293. static void persistent_memory_invalidate_cache(void *ptr, size_t size)
  294. {
  295. if (is_vmalloc_addr(ptr))
  296. invalidate_kernel_vmap_range(ptr, size);
  297. }
  298. static struct wc_memory_superblock *sb(struct dm_writecache *wc)
  299. {
  300. return wc->memory_map;
  301. }
  302. static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
  303. {
  304. if (is_power_of_2(sizeof(struct wc_entry)) && 0)
  305. return &sb(wc)->entries[e - wc->entries];
  306. else
  307. return &sb(wc)->entries[e->index];
  308. }
  309. static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
  310. {
  311. return (char *)wc->block_start + (e->index << wc->block_size_bits);
  312. }
  313. static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
  314. {
  315. return wc->start_sector + wc->metadata_sectors +
  316. ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
  317. }
  318. static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
  319. {
  320. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  321. return e->original_sector;
  322. #else
  323. return le64_to_cpu(memory_entry(wc, e)->original_sector);
  324. #endif
  325. }
  326. static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
  327. {
  328. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  329. return e->seq_count;
  330. #else
  331. return le64_to_cpu(memory_entry(wc, e)->seq_count);
  332. #endif
  333. }
  334. static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
  335. {
  336. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  337. e->seq_count = -1;
  338. #endif
  339. pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
  340. }
  341. static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
  342. uint64_t original_sector, uint64_t seq_count)
  343. {
  344. struct wc_memory_entry me;
  345. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  346. e->original_sector = original_sector;
  347. e->seq_count = seq_count;
  348. #endif
  349. me.original_sector = cpu_to_le64(original_sector);
  350. me.seq_count = cpu_to_le64(seq_count);
  351. pmem_assign(*memory_entry(wc, e), me);
  352. }
  353. #define writecache_error(wc, err, msg, arg...) \
  354. do { \
  355. if (!cmpxchg(&(wc)->error, 0, err)) \
  356. DMERR(msg, ##arg); \
  357. wake_up(&(wc)->freelist_wait); \
  358. } while (0)
  359. #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
  360. static void writecache_flush_all_metadata(struct dm_writecache *wc)
  361. {
  362. if (!WC_MODE_PMEM(wc))
  363. memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
  364. }
  365. static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
  366. {
  367. if (!WC_MODE_PMEM(wc))
  368. __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
  369. wc->dirty_bitmap);
  370. }
  371. static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
  372. struct io_notify {
  373. struct dm_writecache *wc;
  374. struct completion c;
  375. atomic_t count;
  376. };
  377. static void writecache_notify_io(unsigned long error, void *context)
  378. {
  379. struct io_notify *endio = context;
  380. if (unlikely(error != 0))
  381. writecache_error(endio->wc, -EIO, "error writing metadata");
  382. BUG_ON(atomic_read(&endio->count) <= 0);
  383. if (atomic_dec_and_test(&endio->count))
  384. complete(&endio->c);
  385. }
  386. static void ssd_commit_flushed(struct dm_writecache *wc)
  387. {
  388. struct dm_io_region region;
  389. struct dm_io_request req;
  390. struct io_notify endio = {
  391. wc,
  392. COMPLETION_INITIALIZER_ONSTACK(endio.c),
  393. ATOMIC_INIT(1),
  394. };
  395. unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
  396. unsigned i = 0;
  397. while (1) {
  398. unsigned j;
  399. i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
  400. if (unlikely(i == bitmap_bits))
  401. break;
  402. j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
  403. region.bdev = wc->ssd_dev->bdev;
  404. region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
  405. region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
  406. if (unlikely(region.sector >= wc->metadata_sectors))
  407. break;
  408. if (unlikely(region.sector + region.count > wc->metadata_sectors))
  409. region.count = wc->metadata_sectors - region.sector;
  410. region.sector += wc->start_sector;
  411. atomic_inc(&endio.count);
  412. req.bi_op = REQ_OP_WRITE;
  413. req.bi_op_flags = REQ_SYNC;
  414. req.mem.type = DM_IO_VMA;
  415. req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
  416. req.client = wc->dm_io;
  417. req.notify.fn = writecache_notify_io;
  418. req.notify.context = &endio;
  419. /* writing via async dm-io (implied by notify.fn above) won't return an error */
  420. (void) dm_io(&req, 1, &region, NULL);
  421. i = j;
  422. }
  423. writecache_notify_io(0, &endio);
  424. wait_for_completion_io(&endio.c);
  425. writecache_disk_flush(wc, wc->ssd_dev);
  426. memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
  427. }
  428. static void writecache_commit_flushed(struct dm_writecache *wc)
  429. {
  430. if (WC_MODE_PMEM(wc))
  431. wmb();
  432. else
  433. ssd_commit_flushed(wc);
  434. }
  435. static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
  436. {
  437. int r;
  438. struct dm_io_region region;
  439. struct dm_io_request req;
  440. region.bdev = dev->bdev;
  441. region.sector = 0;
  442. region.count = 0;
  443. req.bi_op = REQ_OP_WRITE;
  444. req.bi_op_flags = REQ_PREFLUSH;
  445. req.mem.type = DM_IO_KMEM;
  446. req.mem.ptr.addr = NULL;
  447. req.client = wc->dm_io;
  448. req.notify.fn = NULL;
  449. r = dm_io(&req, 1, &region, NULL);
  450. if (unlikely(r))
  451. writecache_error(wc, r, "error flushing metadata: %d", r);
  452. }
  453. static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
  454. {
  455. wait_event(wc->bio_in_progress_wait[direction],
  456. !atomic_read(&wc->bio_in_progress[direction]));
  457. }
  458. #define WFE_RETURN_FOLLOWING 1
  459. #define WFE_LOWEST_SEQ 2
  460. static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
  461. uint64_t block, int flags)
  462. {
  463. struct wc_entry *e;
  464. struct rb_node *node = wc->tree.rb_node;
  465. if (unlikely(!node))
  466. return NULL;
  467. while (1) {
  468. e = container_of(node, struct wc_entry, rb_node);
  469. if (read_original_sector(wc, e) == block)
  470. break;
  471. node = (read_original_sector(wc, e) >= block ?
  472. e->rb_node.rb_left : e->rb_node.rb_right);
  473. if (unlikely(!node)) {
  474. if (!(flags & WFE_RETURN_FOLLOWING)) {
  475. return NULL;
  476. }
  477. if (read_original_sector(wc, e) >= block) {
  478. break;
  479. } else {
  480. node = rb_next(&e->rb_node);
  481. if (unlikely(!node)) {
  482. return NULL;
  483. }
  484. e = container_of(node, struct wc_entry, rb_node);
  485. break;
  486. }
  487. }
  488. }
  489. while (1) {
  490. struct wc_entry *e2;
  491. if (flags & WFE_LOWEST_SEQ)
  492. node = rb_prev(&e->rb_node);
  493. else
  494. node = rb_next(&e->rb_node);
  495. if (!node)
  496. return e;
  497. e2 = container_of(node, struct wc_entry, rb_node);
  498. if (read_original_sector(wc, e2) != block)
  499. return e;
  500. e = e2;
  501. }
  502. }
  503. static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
  504. {
  505. struct wc_entry *e;
  506. struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
  507. while (*node) {
  508. e = container_of(*node, struct wc_entry, rb_node);
  509. parent = &e->rb_node;
  510. if (read_original_sector(wc, e) > read_original_sector(wc, ins))
  511. node = &parent->rb_left;
  512. else
  513. node = &parent->rb_right;
  514. }
  515. rb_link_node(&ins->rb_node, parent, node);
  516. rb_insert_color(&ins->rb_node, &wc->tree);
  517. list_add(&ins->lru, &wc->lru);
  518. }
  519. static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
  520. {
  521. list_del(&e->lru);
  522. rb_erase(&e->rb_node, &wc->tree);
  523. }
  524. static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
  525. {
  526. if (WC_MODE_SORT_FREELIST(wc)) {
  527. struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
  528. if (unlikely(!*node))
  529. wc->current_free = e;
  530. while (*node) {
  531. parent = *node;
  532. if (&e->rb_node < *node)
  533. node = &parent->rb_left;
  534. else
  535. node = &parent->rb_right;
  536. }
  537. rb_link_node(&e->rb_node, parent, node);
  538. rb_insert_color(&e->rb_node, &wc->freetree);
  539. } else {
  540. list_add_tail(&e->lru, &wc->freelist);
  541. }
  542. wc->freelist_size++;
  543. }
  544. static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
  545. {
  546. struct wc_entry *e;
  547. if (WC_MODE_SORT_FREELIST(wc)) {
  548. struct rb_node *next;
  549. if (unlikely(!wc->current_free))
  550. return NULL;
  551. e = wc->current_free;
  552. next = rb_next(&e->rb_node);
  553. rb_erase(&e->rb_node, &wc->freetree);
  554. if (unlikely(!next))
  555. next = rb_first(&wc->freetree);
  556. wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
  557. } else {
  558. if (unlikely(list_empty(&wc->freelist)))
  559. return NULL;
  560. e = container_of(wc->freelist.next, struct wc_entry, lru);
  561. list_del(&e->lru);
  562. }
  563. wc->freelist_size--;
  564. if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
  565. queue_work(wc->writeback_wq, &wc->writeback_work);
  566. return e;
  567. }
  568. static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
  569. {
  570. writecache_unlink(wc, e);
  571. writecache_add_to_freelist(wc, e);
  572. clear_seq_count(wc, e);
  573. writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  574. if (unlikely(waitqueue_active(&wc->freelist_wait)))
  575. wake_up(&wc->freelist_wait);
  576. }
  577. static void writecache_wait_on_freelist(struct dm_writecache *wc)
  578. {
  579. DEFINE_WAIT(wait);
  580. prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
  581. wc_unlock(wc);
  582. io_schedule();
  583. finish_wait(&wc->freelist_wait, &wait);
  584. wc_lock(wc);
  585. }
  586. static void writecache_poison_lists(struct dm_writecache *wc)
  587. {
  588. /*
  589. * Catch incorrect access to these values while the device is suspended.
  590. */
  591. memset(&wc->tree, -1, sizeof wc->tree);
  592. wc->lru.next = LIST_POISON1;
  593. wc->lru.prev = LIST_POISON2;
  594. wc->freelist.next = LIST_POISON1;
  595. wc->freelist.prev = LIST_POISON2;
  596. }
  597. static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
  598. {
  599. writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  600. if (WC_MODE_PMEM(wc))
  601. writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
  602. }
  603. static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
  604. {
  605. return read_seq_count(wc, e) < wc->seq_count;
  606. }
  607. static void writecache_flush(struct dm_writecache *wc)
  608. {
  609. struct wc_entry *e, *e2;
  610. bool need_flush_after_free;
  611. wc->uncommitted_blocks = 0;
  612. del_timer(&wc->autocommit_timer);
  613. if (list_empty(&wc->lru))
  614. return;
  615. e = container_of(wc->lru.next, struct wc_entry, lru);
  616. if (writecache_entry_is_committed(wc, e)) {
  617. if (wc->overwrote_committed) {
  618. writecache_wait_for_ios(wc, WRITE);
  619. writecache_disk_flush(wc, wc->ssd_dev);
  620. wc->overwrote_committed = false;
  621. }
  622. return;
  623. }
  624. while (1) {
  625. writecache_flush_entry(wc, e);
  626. if (unlikely(e->lru.next == &wc->lru))
  627. break;
  628. e2 = container_of(e->lru.next, struct wc_entry, lru);
  629. if (writecache_entry_is_committed(wc, e2))
  630. break;
  631. e = e2;
  632. cond_resched();
  633. }
  634. writecache_commit_flushed(wc);
  635. writecache_wait_for_ios(wc, WRITE);
  636. wc->seq_count++;
  637. pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
  638. writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
  639. writecache_commit_flushed(wc);
  640. wc->overwrote_committed = false;
  641. need_flush_after_free = false;
  642. while (1) {
  643. /* Free another committed entry with lower seq-count */
  644. struct rb_node *rb_node = rb_prev(&e->rb_node);
  645. if (rb_node) {
  646. e2 = container_of(rb_node, struct wc_entry, rb_node);
  647. if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
  648. likely(!e2->write_in_progress)) {
  649. writecache_free_entry(wc, e2);
  650. need_flush_after_free = true;
  651. }
  652. }
  653. if (unlikely(e->lru.prev == &wc->lru))
  654. break;
  655. e = container_of(e->lru.prev, struct wc_entry, lru);
  656. cond_resched();
  657. }
  658. if (need_flush_after_free)
  659. writecache_commit_flushed(wc);
  660. }
  661. static void writecache_flush_work(struct work_struct *work)
  662. {
  663. struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
  664. wc_lock(wc);
  665. writecache_flush(wc);
  666. wc_unlock(wc);
  667. }
  668. static void writecache_autocommit_timer(struct timer_list *t)
  669. {
  670. struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
  671. if (!writecache_has_error(wc))
  672. queue_work(wc->writeback_wq, &wc->flush_work);
  673. }
  674. static void writecache_schedule_autocommit(struct dm_writecache *wc)
  675. {
  676. if (!timer_pending(&wc->autocommit_timer))
  677. mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
  678. }
  679. static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
  680. {
  681. struct wc_entry *e;
  682. bool discarded_something = false;
  683. e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
  684. if (unlikely(!e))
  685. return;
  686. while (read_original_sector(wc, e) < end) {
  687. struct rb_node *node = rb_next(&e->rb_node);
  688. if (likely(!e->write_in_progress)) {
  689. if (!discarded_something) {
  690. writecache_wait_for_ios(wc, READ);
  691. writecache_wait_for_ios(wc, WRITE);
  692. discarded_something = true;
  693. }
  694. writecache_free_entry(wc, e);
  695. }
  696. if (!node)
  697. break;
  698. e = container_of(node, struct wc_entry, rb_node);
  699. }
  700. if (discarded_something)
  701. writecache_commit_flushed(wc);
  702. }
  703. static bool writecache_wait_for_writeback(struct dm_writecache *wc)
  704. {
  705. if (wc->writeback_size) {
  706. writecache_wait_on_freelist(wc);
  707. return true;
  708. }
  709. return false;
  710. }
  711. static void writecache_suspend(struct dm_target *ti)
  712. {
  713. struct dm_writecache *wc = ti->private;
  714. bool flush_on_suspend;
  715. del_timer_sync(&wc->autocommit_timer);
  716. wc_lock(wc);
  717. writecache_flush(wc);
  718. flush_on_suspend = wc->flush_on_suspend;
  719. if (flush_on_suspend) {
  720. wc->flush_on_suspend = false;
  721. wc->writeback_all++;
  722. queue_work(wc->writeback_wq, &wc->writeback_work);
  723. }
  724. wc_unlock(wc);
  725. flush_workqueue(wc->writeback_wq);
  726. wc_lock(wc);
  727. if (flush_on_suspend)
  728. wc->writeback_all--;
  729. while (writecache_wait_for_writeback(wc));
  730. if (WC_MODE_PMEM(wc))
  731. persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
  732. writecache_poison_lists(wc);
  733. wc_unlock(wc);
  734. }
  735. static int writecache_alloc_entries(struct dm_writecache *wc)
  736. {
  737. size_t b;
  738. if (wc->entries)
  739. return 0;
  740. wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
  741. if (!wc->entries)
  742. return -ENOMEM;
  743. for (b = 0; b < wc->n_blocks; b++) {
  744. struct wc_entry *e = &wc->entries[b];
  745. e->index = b;
  746. e->write_in_progress = false;
  747. }
  748. return 0;
  749. }
  750. static void writecache_resume(struct dm_target *ti)
  751. {
  752. struct dm_writecache *wc = ti->private;
  753. size_t b;
  754. bool need_flush = false;
  755. __le64 sb_seq_count;
  756. int r;
  757. wc_lock(wc);
  758. if (WC_MODE_PMEM(wc))
  759. persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
  760. wc->tree = RB_ROOT;
  761. INIT_LIST_HEAD(&wc->lru);
  762. if (WC_MODE_SORT_FREELIST(wc)) {
  763. wc->freetree = RB_ROOT;
  764. wc->current_free = NULL;
  765. } else {
  766. INIT_LIST_HEAD(&wc->freelist);
  767. }
  768. wc->freelist_size = 0;
  769. r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
  770. if (r) {
  771. writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
  772. sb_seq_count = cpu_to_le64(0);
  773. }
  774. wc->seq_count = le64_to_cpu(sb_seq_count);
  775. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  776. for (b = 0; b < wc->n_blocks; b++) {
  777. struct wc_entry *e = &wc->entries[b];
  778. struct wc_memory_entry wme;
  779. if (writecache_has_error(wc)) {
  780. e->original_sector = -1;
  781. e->seq_count = -1;
  782. continue;
  783. }
  784. r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  785. if (r) {
  786. writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
  787. (unsigned long)b, r);
  788. e->original_sector = -1;
  789. e->seq_count = -1;
  790. } else {
  791. e->original_sector = le64_to_cpu(wme.original_sector);
  792. e->seq_count = le64_to_cpu(wme.seq_count);
  793. }
  794. }
  795. #endif
  796. for (b = 0; b < wc->n_blocks; b++) {
  797. struct wc_entry *e = &wc->entries[b];
  798. if (!writecache_entry_is_committed(wc, e)) {
  799. if (read_seq_count(wc, e) != -1) {
  800. erase_this:
  801. clear_seq_count(wc, e);
  802. need_flush = true;
  803. }
  804. writecache_add_to_freelist(wc, e);
  805. } else {
  806. struct wc_entry *old;
  807. old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
  808. if (!old) {
  809. writecache_insert_entry(wc, e);
  810. } else {
  811. if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
  812. writecache_error(wc, -EINVAL,
  813. "two identical entries, position %llu, sector %llu, sequence %llu",
  814. (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
  815. (unsigned long long)read_seq_count(wc, e));
  816. }
  817. if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
  818. goto erase_this;
  819. } else {
  820. writecache_free_entry(wc, old);
  821. writecache_insert_entry(wc, e);
  822. need_flush = true;
  823. }
  824. }
  825. }
  826. cond_resched();
  827. }
  828. if (need_flush) {
  829. writecache_flush_all_metadata(wc);
  830. writecache_commit_flushed(wc);
  831. }
  832. wc_unlock(wc);
  833. }
  834. static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
  835. {
  836. if (argc != 1)
  837. return -EINVAL;
  838. wc_lock(wc);
  839. if (dm_suspended(wc->ti)) {
  840. wc_unlock(wc);
  841. return -EBUSY;
  842. }
  843. if (writecache_has_error(wc)) {
  844. wc_unlock(wc);
  845. return -EIO;
  846. }
  847. writecache_flush(wc);
  848. wc->writeback_all++;
  849. queue_work(wc->writeback_wq, &wc->writeback_work);
  850. wc_unlock(wc);
  851. flush_workqueue(wc->writeback_wq);
  852. wc_lock(wc);
  853. wc->writeback_all--;
  854. if (writecache_has_error(wc)) {
  855. wc_unlock(wc);
  856. return -EIO;
  857. }
  858. wc_unlock(wc);
  859. return 0;
  860. }
  861. static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
  862. {
  863. if (argc != 1)
  864. return -EINVAL;
  865. wc_lock(wc);
  866. wc->flush_on_suspend = true;
  867. wc_unlock(wc);
  868. return 0;
  869. }
  870. static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
  871. char *result, unsigned maxlen)
  872. {
  873. int r = -EINVAL;
  874. struct dm_writecache *wc = ti->private;
  875. if (!strcasecmp(argv[0], "flush"))
  876. r = process_flush_mesg(argc, argv, wc);
  877. else if (!strcasecmp(argv[0], "flush_on_suspend"))
  878. r = process_flush_on_suspend_mesg(argc, argv, wc);
  879. else
  880. DMERR("unrecognised message received: %s", argv[0]);
  881. return r;
  882. }
  883. static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
  884. {
  885. void *buf;
  886. unsigned long flags;
  887. unsigned size;
  888. int rw = bio_data_dir(bio);
  889. unsigned remaining_size = wc->block_size;
  890. do {
  891. struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
  892. buf = bvec_kmap_irq(&bv, &flags);
  893. size = bv.bv_len;
  894. if (unlikely(size > remaining_size))
  895. size = remaining_size;
  896. if (rw == READ) {
  897. int r;
  898. r = memcpy_mcsafe(buf, data, size);
  899. flush_dcache_page(bio_page(bio));
  900. if (unlikely(r)) {
  901. writecache_error(wc, r, "hardware memory error when reading data: %d", r);
  902. bio->bi_status = BLK_STS_IOERR;
  903. }
  904. } else {
  905. flush_dcache_page(bio_page(bio));
  906. memcpy_flushcache(data, buf, size);
  907. }
  908. bvec_kunmap_irq(buf, &flags);
  909. data = (char *)data + size;
  910. remaining_size -= size;
  911. bio_advance(bio, size);
  912. } while (unlikely(remaining_size));
  913. }
  914. static int writecache_flush_thread(void *data)
  915. {
  916. struct dm_writecache *wc = data;
  917. while (1) {
  918. struct bio *bio;
  919. wc_lock(wc);
  920. bio = bio_list_pop(&wc->flush_list);
  921. if (!bio) {
  922. set_current_state(TASK_INTERRUPTIBLE);
  923. wc_unlock(wc);
  924. if (unlikely(kthread_should_stop())) {
  925. set_current_state(TASK_RUNNING);
  926. break;
  927. }
  928. schedule();
  929. continue;
  930. }
  931. if (bio_op(bio) == REQ_OP_DISCARD) {
  932. writecache_discard(wc, bio->bi_iter.bi_sector,
  933. bio_end_sector(bio));
  934. wc_unlock(wc);
  935. bio_set_dev(bio, wc->dev->bdev);
  936. generic_make_request(bio);
  937. } else {
  938. writecache_flush(wc);
  939. wc_unlock(wc);
  940. if (writecache_has_error(wc))
  941. bio->bi_status = BLK_STS_IOERR;
  942. bio_endio(bio);
  943. }
  944. }
  945. return 0;
  946. }
  947. static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
  948. {
  949. if (bio_list_empty(&wc->flush_list))
  950. wake_up_process(wc->flush_thread);
  951. bio_list_add(&wc->flush_list, bio);
  952. }
  953. static int writecache_map(struct dm_target *ti, struct bio *bio)
  954. {
  955. struct wc_entry *e;
  956. struct dm_writecache *wc = ti->private;
  957. bio->bi_private = NULL;
  958. wc_lock(wc);
  959. if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
  960. if (writecache_has_error(wc))
  961. goto unlock_error;
  962. if (WC_MODE_PMEM(wc)) {
  963. writecache_flush(wc);
  964. if (writecache_has_error(wc))
  965. goto unlock_error;
  966. goto unlock_submit;
  967. } else {
  968. writecache_offload_bio(wc, bio);
  969. goto unlock_return;
  970. }
  971. }
  972. bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
  973. if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
  974. (wc->block_size / 512 - 1)) != 0)) {
  975. DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
  976. (unsigned long long)bio->bi_iter.bi_sector,
  977. bio->bi_iter.bi_size, wc->block_size);
  978. goto unlock_error;
  979. }
  980. if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
  981. if (writecache_has_error(wc))
  982. goto unlock_error;
  983. if (WC_MODE_PMEM(wc)) {
  984. writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
  985. goto unlock_remap_origin;
  986. } else {
  987. writecache_offload_bio(wc, bio);
  988. goto unlock_return;
  989. }
  990. }
  991. if (bio_data_dir(bio) == READ) {
  992. read_next_block:
  993. e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
  994. if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
  995. if (WC_MODE_PMEM(wc)) {
  996. bio_copy_block(wc, bio, memory_data(wc, e));
  997. if (bio->bi_iter.bi_size)
  998. goto read_next_block;
  999. goto unlock_submit;
  1000. } else {
  1001. dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
  1002. bio_set_dev(bio, wc->ssd_dev->bdev);
  1003. bio->bi_iter.bi_sector = cache_sector(wc, e);
  1004. if (!writecache_entry_is_committed(wc, e))
  1005. writecache_wait_for_ios(wc, WRITE);
  1006. goto unlock_remap;
  1007. }
  1008. } else {
  1009. if (e) {
  1010. sector_t next_boundary =
  1011. read_original_sector(wc, e) - bio->bi_iter.bi_sector;
  1012. if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
  1013. dm_accept_partial_bio(bio, next_boundary);
  1014. }
  1015. }
  1016. goto unlock_remap_origin;
  1017. }
  1018. } else {
  1019. do {
  1020. if (writecache_has_error(wc))
  1021. goto unlock_error;
  1022. e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
  1023. if (e) {
  1024. if (!writecache_entry_is_committed(wc, e))
  1025. goto bio_copy;
  1026. if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
  1027. wc->overwrote_committed = true;
  1028. goto bio_copy;
  1029. }
  1030. }
  1031. e = writecache_pop_from_freelist(wc);
  1032. if (unlikely(!e)) {
  1033. writecache_wait_on_freelist(wc);
  1034. continue;
  1035. }
  1036. write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
  1037. writecache_insert_entry(wc, e);
  1038. wc->uncommitted_blocks++;
  1039. bio_copy:
  1040. if (WC_MODE_PMEM(wc)) {
  1041. bio_copy_block(wc, bio, memory_data(wc, e));
  1042. } else {
  1043. dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
  1044. bio_set_dev(bio, wc->ssd_dev->bdev);
  1045. bio->bi_iter.bi_sector = cache_sector(wc, e);
  1046. if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
  1047. wc->uncommitted_blocks = 0;
  1048. queue_work(wc->writeback_wq, &wc->flush_work);
  1049. } else {
  1050. writecache_schedule_autocommit(wc);
  1051. }
  1052. goto unlock_remap;
  1053. }
  1054. } while (bio->bi_iter.bi_size);
  1055. if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks))
  1056. writecache_flush(wc);
  1057. else
  1058. writecache_schedule_autocommit(wc);
  1059. goto unlock_submit;
  1060. }
  1061. unlock_remap_origin:
  1062. bio_set_dev(bio, wc->dev->bdev);
  1063. wc_unlock(wc);
  1064. return DM_MAPIO_REMAPPED;
  1065. unlock_remap:
  1066. /* make sure that writecache_end_io decrements bio_in_progress: */
  1067. bio->bi_private = (void *)1;
  1068. atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
  1069. wc_unlock(wc);
  1070. return DM_MAPIO_REMAPPED;
  1071. unlock_submit:
  1072. wc_unlock(wc);
  1073. bio_endio(bio);
  1074. return DM_MAPIO_SUBMITTED;
  1075. unlock_return:
  1076. wc_unlock(wc);
  1077. return DM_MAPIO_SUBMITTED;
  1078. unlock_error:
  1079. wc_unlock(wc);
  1080. bio_io_error(bio);
  1081. return DM_MAPIO_SUBMITTED;
  1082. }
  1083. static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
  1084. {
  1085. struct dm_writecache *wc = ti->private;
  1086. if (bio->bi_private != NULL) {
  1087. int dir = bio_data_dir(bio);
  1088. if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
  1089. if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
  1090. wake_up(&wc->bio_in_progress_wait[dir]);
  1091. }
  1092. return 0;
  1093. }
  1094. static int writecache_iterate_devices(struct dm_target *ti,
  1095. iterate_devices_callout_fn fn, void *data)
  1096. {
  1097. struct dm_writecache *wc = ti->private;
  1098. return fn(ti, wc->dev, 0, ti->len, data);
  1099. }
  1100. static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
  1101. {
  1102. struct dm_writecache *wc = ti->private;
  1103. if (limits->logical_block_size < wc->block_size)
  1104. limits->logical_block_size = wc->block_size;
  1105. if (limits->physical_block_size < wc->block_size)
  1106. limits->physical_block_size = wc->block_size;
  1107. if (limits->io_min < wc->block_size)
  1108. limits->io_min = wc->block_size;
  1109. }
  1110. static void writecache_writeback_endio(struct bio *bio)
  1111. {
  1112. struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
  1113. struct dm_writecache *wc = wb->wc;
  1114. unsigned long flags;
  1115. raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
  1116. if (unlikely(list_empty(&wc->endio_list)))
  1117. wake_up_process(wc->endio_thread);
  1118. list_add_tail(&wb->endio_entry, &wc->endio_list);
  1119. raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
  1120. }
  1121. static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
  1122. {
  1123. struct copy_struct *c = ptr;
  1124. struct dm_writecache *wc = c->wc;
  1125. c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
  1126. raw_spin_lock_irq(&wc->endio_list_lock);
  1127. if (unlikely(list_empty(&wc->endio_list)))
  1128. wake_up_process(wc->endio_thread);
  1129. list_add_tail(&c->endio_entry, &wc->endio_list);
  1130. raw_spin_unlock_irq(&wc->endio_list_lock);
  1131. }
  1132. static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
  1133. {
  1134. unsigned i;
  1135. struct writeback_struct *wb;
  1136. struct wc_entry *e;
  1137. unsigned long n_walked = 0;
  1138. do {
  1139. wb = list_entry(list->next, struct writeback_struct, endio_entry);
  1140. list_del(&wb->endio_entry);
  1141. if (unlikely(wb->bio.bi_status != BLK_STS_OK))
  1142. writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
  1143. "write error %d", wb->bio.bi_status);
  1144. i = 0;
  1145. do {
  1146. e = wb->wc_list[i];
  1147. BUG_ON(!e->write_in_progress);
  1148. e->write_in_progress = false;
  1149. INIT_LIST_HEAD(&e->lru);
  1150. if (!writecache_has_error(wc))
  1151. writecache_free_entry(wc, e);
  1152. BUG_ON(!wc->writeback_size);
  1153. wc->writeback_size--;
  1154. n_walked++;
  1155. if (unlikely(n_walked >= ENDIO_LATENCY)) {
  1156. writecache_commit_flushed(wc);
  1157. wc_unlock(wc);
  1158. wc_lock(wc);
  1159. n_walked = 0;
  1160. }
  1161. } while (++i < wb->wc_list_n);
  1162. if (wb->wc_list != wb->wc_list_inline)
  1163. kfree(wb->wc_list);
  1164. bio_put(&wb->bio);
  1165. } while (!list_empty(list));
  1166. }
  1167. static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
  1168. {
  1169. struct copy_struct *c;
  1170. struct wc_entry *e;
  1171. do {
  1172. c = list_entry(list->next, struct copy_struct, endio_entry);
  1173. list_del(&c->endio_entry);
  1174. if (unlikely(c->error))
  1175. writecache_error(wc, c->error, "copy error");
  1176. e = c->e;
  1177. do {
  1178. BUG_ON(!e->write_in_progress);
  1179. e->write_in_progress = false;
  1180. INIT_LIST_HEAD(&e->lru);
  1181. if (!writecache_has_error(wc))
  1182. writecache_free_entry(wc, e);
  1183. BUG_ON(!wc->writeback_size);
  1184. wc->writeback_size--;
  1185. e++;
  1186. } while (--c->n_entries);
  1187. mempool_free(c, &wc->copy_pool);
  1188. } while (!list_empty(list));
  1189. }
  1190. static int writecache_endio_thread(void *data)
  1191. {
  1192. struct dm_writecache *wc = data;
  1193. while (1) {
  1194. struct list_head list;
  1195. raw_spin_lock_irq(&wc->endio_list_lock);
  1196. if (!list_empty(&wc->endio_list))
  1197. goto pop_from_list;
  1198. set_current_state(TASK_INTERRUPTIBLE);
  1199. raw_spin_unlock_irq(&wc->endio_list_lock);
  1200. if (unlikely(kthread_should_stop())) {
  1201. set_current_state(TASK_RUNNING);
  1202. break;
  1203. }
  1204. schedule();
  1205. continue;
  1206. pop_from_list:
  1207. list = wc->endio_list;
  1208. list.next->prev = list.prev->next = &list;
  1209. INIT_LIST_HEAD(&wc->endio_list);
  1210. raw_spin_unlock_irq(&wc->endio_list_lock);
  1211. if (!WC_MODE_FUA(wc))
  1212. writecache_disk_flush(wc, wc->dev);
  1213. wc_lock(wc);
  1214. if (WC_MODE_PMEM(wc)) {
  1215. __writecache_endio_pmem(wc, &list);
  1216. } else {
  1217. __writecache_endio_ssd(wc, &list);
  1218. writecache_wait_for_ios(wc, READ);
  1219. }
  1220. writecache_commit_flushed(wc);
  1221. wc_unlock(wc);
  1222. }
  1223. return 0;
  1224. }
  1225. static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
  1226. {
  1227. struct dm_writecache *wc = wb->wc;
  1228. unsigned block_size = wc->block_size;
  1229. void *address = memory_data(wc, e);
  1230. persistent_memory_flush_cache(address, block_size);
  1231. return bio_add_page(&wb->bio, persistent_memory_page(address),
  1232. block_size, persistent_memory_page_offset(address)) != 0;
  1233. }
  1234. struct writeback_list {
  1235. struct list_head list;
  1236. size_t size;
  1237. };
  1238. static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
  1239. {
  1240. if (unlikely(wc->max_writeback_jobs)) {
  1241. if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
  1242. wc_lock(wc);
  1243. while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
  1244. writecache_wait_on_freelist(wc);
  1245. wc_unlock(wc);
  1246. }
  1247. }
  1248. cond_resched();
  1249. }
  1250. static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
  1251. {
  1252. struct wc_entry *e, *f;
  1253. struct bio *bio;
  1254. struct writeback_struct *wb;
  1255. unsigned max_pages;
  1256. while (wbl->size) {
  1257. wbl->size--;
  1258. e = container_of(wbl->list.prev, struct wc_entry, lru);
  1259. list_del(&e->lru);
  1260. max_pages = e->wc_list_contiguous;
  1261. bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
  1262. wb = container_of(bio, struct writeback_struct, bio);
  1263. wb->wc = wc;
  1264. wb->bio.bi_end_io = writecache_writeback_endio;
  1265. bio_set_dev(&wb->bio, wc->dev->bdev);
  1266. wb->bio.bi_iter.bi_sector = read_original_sector(wc, e);
  1267. wb->page_offset = PAGE_SIZE;
  1268. if (max_pages <= WB_LIST_INLINE ||
  1269. unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
  1270. GFP_NOIO | __GFP_NORETRY |
  1271. __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
  1272. wb->wc_list = wb->wc_list_inline;
  1273. max_pages = WB_LIST_INLINE;
  1274. }
  1275. BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
  1276. wb->wc_list[0] = e;
  1277. wb->wc_list_n = 1;
  1278. while (wbl->size && wb->wc_list_n < max_pages) {
  1279. f = container_of(wbl->list.prev, struct wc_entry, lru);
  1280. if (read_original_sector(wc, f) !=
  1281. read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
  1282. break;
  1283. if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
  1284. break;
  1285. wbl->size--;
  1286. list_del(&f->lru);
  1287. wb->wc_list[wb->wc_list_n++] = f;
  1288. e = f;
  1289. }
  1290. bio_set_op_attrs(&wb->bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
  1291. if (writecache_has_error(wc)) {
  1292. bio->bi_status = BLK_STS_IOERR;
  1293. bio_endio(&wb->bio);
  1294. } else {
  1295. submit_bio(&wb->bio);
  1296. }
  1297. __writeback_throttle(wc, wbl);
  1298. }
  1299. }
  1300. static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
  1301. {
  1302. struct wc_entry *e, *f;
  1303. struct dm_io_region from, to;
  1304. struct copy_struct *c;
  1305. while (wbl->size) {
  1306. unsigned n_sectors;
  1307. wbl->size--;
  1308. e = container_of(wbl->list.prev, struct wc_entry, lru);
  1309. list_del(&e->lru);
  1310. n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
  1311. from.bdev = wc->ssd_dev->bdev;
  1312. from.sector = cache_sector(wc, e);
  1313. from.count = n_sectors;
  1314. to.bdev = wc->dev->bdev;
  1315. to.sector = read_original_sector(wc, e);
  1316. to.count = n_sectors;
  1317. c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
  1318. c->wc = wc;
  1319. c->e = e;
  1320. c->n_entries = e->wc_list_contiguous;
  1321. while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
  1322. wbl->size--;
  1323. f = container_of(wbl->list.prev, struct wc_entry, lru);
  1324. BUG_ON(f != e + 1);
  1325. list_del(&f->lru);
  1326. e = f;
  1327. }
  1328. dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
  1329. __writeback_throttle(wc, wbl);
  1330. }
  1331. }
  1332. static void writecache_writeback(struct work_struct *work)
  1333. {
  1334. struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
  1335. struct blk_plug plug;
  1336. struct wc_entry *e, *f, *g;
  1337. struct rb_node *node, *next_node;
  1338. struct list_head skipped;
  1339. struct writeback_list wbl;
  1340. unsigned long n_walked;
  1341. wc_lock(wc);
  1342. restart:
  1343. if (writecache_has_error(wc)) {
  1344. wc_unlock(wc);
  1345. return;
  1346. }
  1347. if (unlikely(wc->writeback_all)) {
  1348. if (writecache_wait_for_writeback(wc))
  1349. goto restart;
  1350. }
  1351. if (wc->overwrote_committed) {
  1352. writecache_wait_for_ios(wc, WRITE);
  1353. }
  1354. n_walked = 0;
  1355. INIT_LIST_HEAD(&skipped);
  1356. INIT_LIST_HEAD(&wbl.list);
  1357. wbl.size = 0;
  1358. while (!list_empty(&wc->lru) &&
  1359. (wc->writeback_all ||
  1360. wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
  1361. n_walked++;
  1362. if (unlikely(n_walked > WRITEBACK_LATENCY) &&
  1363. likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
  1364. queue_work(wc->writeback_wq, &wc->writeback_work);
  1365. break;
  1366. }
  1367. e = container_of(wc->lru.prev, struct wc_entry, lru);
  1368. BUG_ON(e->write_in_progress);
  1369. if (unlikely(!writecache_entry_is_committed(wc, e))) {
  1370. writecache_flush(wc);
  1371. }
  1372. node = rb_prev(&e->rb_node);
  1373. if (node) {
  1374. f = container_of(node, struct wc_entry, rb_node);
  1375. if (unlikely(read_original_sector(wc, f) ==
  1376. read_original_sector(wc, e))) {
  1377. BUG_ON(!f->write_in_progress);
  1378. list_del(&e->lru);
  1379. list_add(&e->lru, &skipped);
  1380. cond_resched();
  1381. continue;
  1382. }
  1383. }
  1384. wc->writeback_size++;
  1385. list_del(&e->lru);
  1386. list_add(&e->lru, &wbl.list);
  1387. wbl.size++;
  1388. e->write_in_progress = true;
  1389. e->wc_list_contiguous = 1;
  1390. f = e;
  1391. while (1) {
  1392. next_node = rb_next(&f->rb_node);
  1393. if (unlikely(!next_node))
  1394. break;
  1395. g = container_of(next_node, struct wc_entry, rb_node);
  1396. if (read_original_sector(wc, g) ==
  1397. read_original_sector(wc, f)) {
  1398. f = g;
  1399. continue;
  1400. }
  1401. if (read_original_sector(wc, g) !=
  1402. read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
  1403. break;
  1404. if (unlikely(g->write_in_progress))
  1405. break;
  1406. if (unlikely(!writecache_entry_is_committed(wc, g)))
  1407. break;
  1408. if (!WC_MODE_PMEM(wc)) {
  1409. if (g != f + 1)
  1410. break;
  1411. }
  1412. n_walked++;
  1413. //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
  1414. // break;
  1415. wc->writeback_size++;
  1416. list_del(&g->lru);
  1417. list_add(&g->lru, &wbl.list);
  1418. wbl.size++;
  1419. g->write_in_progress = true;
  1420. g->wc_list_contiguous = BIO_MAX_PAGES;
  1421. f = g;
  1422. e->wc_list_contiguous++;
  1423. if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES))
  1424. break;
  1425. }
  1426. cond_resched();
  1427. }
  1428. if (!list_empty(&skipped)) {
  1429. list_splice_tail(&skipped, &wc->lru);
  1430. /*
  1431. * If we didn't do any progress, we must wait until some
  1432. * writeback finishes to avoid burning CPU in a loop
  1433. */
  1434. if (unlikely(!wbl.size))
  1435. writecache_wait_for_writeback(wc);
  1436. }
  1437. wc_unlock(wc);
  1438. blk_start_plug(&plug);
  1439. if (WC_MODE_PMEM(wc))
  1440. __writecache_writeback_pmem(wc, &wbl);
  1441. else
  1442. __writecache_writeback_ssd(wc, &wbl);
  1443. blk_finish_plug(&plug);
  1444. if (unlikely(wc->writeback_all)) {
  1445. wc_lock(wc);
  1446. while (writecache_wait_for_writeback(wc));
  1447. wc_unlock(wc);
  1448. }
  1449. }
  1450. static int calculate_memory_size(uint64_t device_size, unsigned block_size,
  1451. size_t *n_blocks_p, size_t *n_metadata_blocks_p)
  1452. {
  1453. uint64_t n_blocks, offset;
  1454. struct wc_entry e;
  1455. n_blocks = device_size;
  1456. do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
  1457. while (1) {
  1458. if (!n_blocks)
  1459. return -ENOSPC;
  1460. /* Verify the following entries[n_blocks] won't overflow */
  1461. if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
  1462. sizeof(struct wc_memory_entry)))
  1463. return -EFBIG;
  1464. offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
  1465. offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
  1466. if (offset + n_blocks * block_size <= device_size)
  1467. break;
  1468. n_blocks--;
  1469. }
  1470. /* check if the bit field overflows */
  1471. e.index = n_blocks;
  1472. if (e.index != n_blocks)
  1473. return -EFBIG;
  1474. if (n_blocks_p)
  1475. *n_blocks_p = n_blocks;
  1476. if (n_metadata_blocks_p)
  1477. *n_metadata_blocks_p = offset >> __ffs(block_size);
  1478. return 0;
  1479. }
  1480. static int init_memory(struct dm_writecache *wc)
  1481. {
  1482. size_t b;
  1483. int r;
  1484. r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
  1485. if (r)
  1486. return r;
  1487. r = writecache_alloc_entries(wc);
  1488. if (r)
  1489. return r;
  1490. for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
  1491. pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
  1492. pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
  1493. pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
  1494. pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
  1495. pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
  1496. for (b = 0; b < wc->n_blocks; b++)
  1497. write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
  1498. writecache_flush_all_metadata(wc);
  1499. writecache_commit_flushed(wc);
  1500. pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
  1501. writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
  1502. writecache_commit_flushed(wc);
  1503. return 0;
  1504. }
  1505. static void writecache_dtr(struct dm_target *ti)
  1506. {
  1507. struct dm_writecache *wc = ti->private;
  1508. if (!wc)
  1509. return;
  1510. if (wc->endio_thread)
  1511. kthread_stop(wc->endio_thread);
  1512. if (wc->flush_thread)
  1513. kthread_stop(wc->flush_thread);
  1514. bioset_exit(&wc->bio_set);
  1515. mempool_exit(&wc->copy_pool);
  1516. if (wc->writeback_wq)
  1517. destroy_workqueue(wc->writeback_wq);
  1518. if (wc->dev)
  1519. dm_put_device(ti, wc->dev);
  1520. if (wc->ssd_dev)
  1521. dm_put_device(ti, wc->ssd_dev);
  1522. if (wc->entries)
  1523. vfree(wc->entries);
  1524. if (wc->memory_map) {
  1525. if (WC_MODE_PMEM(wc))
  1526. persistent_memory_release(wc);
  1527. else
  1528. vfree(wc->memory_map);
  1529. }
  1530. if (wc->dm_kcopyd)
  1531. dm_kcopyd_client_destroy(wc->dm_kcopyd);
  1532. if (wc->dm_io)
  1533. dm_io_client_destroy(wc->dm_io);
  1534. if (wc->dirty_bitmap)
  1535. vfree(wc->dirty_bitmap);
  1536. kfree(wc);
  1537. }
  1538. static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1539. {
  1540. struct dm_writecache *wc;
  1541. struct dm_arg_set as;
  1542. const char *string;
  1543. unsigned opt_params;
  1544. size_t offset, data_size;
  1545. int i, r;
  1546. char dummy;
  1547. int high_wm_percent = HIGH_WATERMARK;
  1548. int low_wm_percent = LOW_WATERMARK;
  1549. uint64_t x;
  1550. struct wc_memory_superblock s;
  1551. static struct dm_arg _args[] = {
  1552. {0, 10, "Invalid number of feature args"},
  1553. };
  1554. as.argc = argc;
  1555. as.argv = argv;
  1556. wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
  1557. if (!wc) {
  1558. ti->error = "Cannot allocate writecache structure";
  1559. r = -ENOMEM;
  1560. goto bad;
  1561. }
  1562. ti->private = wc;
  1563. wc->ti = ti;
  1564. mutex_init(&wc->lock);
  1565. writecache_poison_lists(wc);
  1566. init_waitqueue_head(&wc->freelist_wait);
  1567. timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
  1568. for (i = 0; i < 2; i++) {
  1569. atomic_set(&wc->bio_in_progress[i], 0);
  1570. init_waitqueue_head(&wc->bio_in_progress_wait[i]);
  1571. }
  1572. wc->dm_io = dm_io_client_create();
  1573. if (IS_ERR(wc->dm_io)) {
  1574. r = PTR_ERR(wc->dm_io);
  1575. ti->error = "Unable to allocate dm-io client";
  1576. wc->dm_io = NULL;
  1577. goto bad;
  1578. }
  1579. wc->writeback_wq = alloc_workqueue("writecache-writeabck", WQ_MEM_RECLAIM, 1);
  1580. if (!wc->writeback_wq) {
  1581. r = -ENOMEM;
  1582. ti->error = "Could not allocate writeback workqueue";
  1583. goto bad;
  1584. }
  1585. INIT_WORK(&wc->writeback_work, writecache_writeback);
  1586. INIT_WORK(&wc->flush_work, writecache_flush_work);
  1587. raw_spin_lock_init(&wc->endio_list_lock);
  1588. INIT_LIST_HEAD(&wc->endio_list);
  1589. wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
  1590. if (IS_ERR(wc->endio_thread)) {
  1591. r = PTR_ERR(wc->endio_thread);
  1592. wc->endio_thread = NULL;
  1593. ti->error = "Couldn't spawn endio thread";
  1594. goto bad;
  1595. }
  1596. wake_up_process(wc->endio_thread);
  1597. /*
  1598. * Parse the mode (pmem or ssd)
  1599. */
  1600. string = dm_shift_arg(&as);
  1601. if (!string)
  1602. goto bad_arguments;
  1603. if (!strcasecmp(string, "s")) {
  1604. wc->pmem_mode = false;
  1605. } else if (!strcasecmp(string, "p")) {
  1606. #ifdef DM_WRITECACHE_HAS_PMEM
  1607. wc->pmem_mode = true;
  1608. wc->writeback_fua = true;
  1609. #else
  1610. /*
  1611. * If the architecture doesn't support persistent memory or
  1612. * the kernel doesn't support any DAX drivers, this driver can
  1613. * only be used in SSD-only mode.
  1614. */
  1615. r = -EOPNOTSUPP;
  1616. ti->error = "Persistent memory or DAX not supported on this system";
  1617. goto bad;
  1618. #endif
  1619. } else {
  1620. goto bad_arguments;
  1621. }
  1622. if (WC_MODE_PMEM(wc)) {
  1623. r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
  1624. offsetof(struct writeback_struct, bio),
  1625. BIOSET_NEED_BVECS);
  1626. if (r) {
  1627. ti->error = "Could not allocate bio set";
  1628. goto bad;
  1629. }
  1630. } else {
  1631. r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
  1632. if (r) {
  1633. ti->error = "Could not allocate mempool";
  1634. goto bad;
  1635. }
  1636. }
  1637. /*
  1638. * Parse the origin data device
  1639. */
  1640. string = dm_shift_arg(&as);
  1641. if (!string)
  1642. goto bad_arguments;
  1643. r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
  1644. if (r) {
  1645. ti->error = "Origin data device lookup failed";
  1646. goto bad;
  1647. }
  1648. /*
  1649. * Parse cache data device (be it pmem or ssd)
  1650. */
  1651. string = dm_shift_arg(&as);
  1652. if (!string)
  1653. goto bad_arguments;
  1654. r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
  1655. if (r) {
  1656. ti->error = "Cache data device lookup failed";
  1657. goto bad;
  1658. }
  1659. wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
  1660. /*
  1661. * Parse the cache block size
  1662. */
  1663. string = dm_shift_arg(&as);
  1664. if (!string)
  1665. goto bad_arguments;
  1666. if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
  1667. wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
  1668. (wc->block_size & (wc->block_size - 1))) {
  1669. r = -EINVAL;
  1670. ti->error = "Invalid block size";
  1671. goto bad;
  1672. }
  1673. wc->block_size_bits = __ffs(wc->block_size);
  1674. wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
  1675. wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
  1676. wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
  1677. /*
  1678. * Parse optional arguments
  1679. */
  1680. r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
  1681. if (r)
  1682. goto bad;
  1683. while (opt_params) {
  1684. string = dm_shift_arg(&as), opt_params--;
  1685. if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
  1686. unsigned long long start_sector;
  1687. string = dm_shift_arg(&as), opt_params--;
  1688. if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
  1689. goto invalid_optional;
  1690. wc->start_sector = start_sector;
  1691. if (wc->start_sector != start_sector ||
  1692. wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
  1693. goto invalid_optional;
  1694. } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
  1695. string = dm_shift_arg(&as), opt_params--;
  1696. if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
  1697. goto invalid_optional;
  1698. if (high_wm_percent < 0 || high_wm_percent > 100)
  1699. goto invalid_optional;
  1700. wc->high_wm_percent_set = true;
  1701. } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
  1702. string = dm_shift_arg(&as), opt_params--;
  1703. if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
  1704. goto invalid_optional;
  1705. if (low_wm_percent < 0 || low_wm_percent > 100)
  1706. goto invalid_optional;
  1707. wc->low_wm_percent_set = true;
  1708. } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
  1709. string = dm_shift_arg(&as), opt_params--;
  1710. if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
  1711. goto invalid_optional;
  1712. wc->max_writeback_jobs_set = true;
  1713. } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
  1714. string = dm_shift_arg(&as), opt_params--;
  1715. if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
  1716. goto invalid_optional;
  1717. wc->autocommit_blocks_set = true;
  1718. } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
  1719. unsigned autocommit_msecs;
  1720. string = dm_shift_arg(&as), opt_params--;
  1721. if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
  1722. goto invalid_optional;
  1723. if (autocommit_msecs > 3600000)
  1724. goto invalid_optional;
  1725. wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
  1726. wc->autocommit_time_set = true;
  1727. } else if (!strcasecmp(string, "fua")) {
  1728. if (WC_MODE_PMEM(wc)) {
  1729. wc->writeback_fua = true;
  1730. wc->writeback_fua_set = true;
  1731. } else goto invalid_optional;
  1732. } else if (!strcasecmp(string, "nofua")) {
  1733. if (WC_MODE_PMEM(wc)) {
  1734. wc->writeback_fua = false;
  1735. wc->writeback_fua_set = true;
  1736. } else goto invalid_optional;
  1737. } else {
  1738. invalid_optional:
  1739. r = -EINVAL;
  1740. ti->error = "Invalid optional argument";
  1741. goto bad;
  1742. }
  1743. }
  1744. if (high_wm_percent < low_wm_percent) {
  1745. r = -EINVAL;
  1746. ti->error = "High watermark must be greater than or equal to low watermark";
  1747. goto bad;
  1748. }
  1749. if (WC_MODE_PMEM(wc)) {
  1750. r = persistent_memory_claim(wc);
  1751. if (r) {
  1752. ti->error = "Unable to map persistent memory for cache";
  1753. goto bad;
  1754. }
  1755. } else {
  1756. struct dm_io_region region;
  1757. struct dm_io_request req;
  1758. size_t n_blocks, n_metadata_blocks;
  1759. uint64_t n_bitmap_bits;
  1760. wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
  1761. bio_list_init(&wc->flush_list);
  1762. wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
  1763. if (IS_ERR(wc->flush_thread)) {
  1764. r = PTR_ERR(wc->flush_thread);
  1765. wc->flush_thread = NULL;
  1766. ti->error = "Couldn't spawn endio thread";
  1767. goto bad;
  1768. }
  1769. wake_up_process(wc->flush_thread);
  1770. r = calculate_memory_size(wc->memory_map_size, wc->block_size,
  1771. &n_blocks, &n_metadata_blocks);
  1772. if (r) {
  1773. ti->error = "Invalid device size";
  1774. goto bad;
  1775. }
  1776. n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
  1777. BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
  1778. /* this is limitation of test_bit functions */
  1779. if (n_bitmap_bits > 1U << 31) {
  1780. r = -EFBIG;
  1781. ti->error = "Invalid device size";
  1782. goto bad;
  1783. }
  1784. wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
  1785. if (!wc->memory_map) {
  1786. r = -ENOMEM;
  1787. ti->error = "Unable to allocate memory for metadata";
  1788. goto bad;
  1789. }
  1790. wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
  1791. if (IS_ERR(wc->dm_kcopyd)) {
  1792. r = PTR_ERR(wc->dm_kcopyd);
  1793. ti->error = "Unable to allocate dm-kcopyd client";
  1794. wc->dm_kcopyd = NULL;
  1795. goto bad;
  1796. }
  1797. wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
  1798. wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
  1799. BITS_PER_LONG * sizeof(unsigned long);
  1800. wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
  1801. if (!wc->dirty_bitmap) {
  1802. r = -ENOMEM;
  1803. ti->error = "Unable to allocate dirty bitmap";
  1804. goto bad;
  1805. }
  1806. region.bdev = wc->ssd_dev->bdev;
  1807. region.sector = wc->start_sector;
  1808. region.count = wc->metadata_sectors;
  1809. req.bi_op = REQ_OP_READ;
  1810. req.bi_op_flags = REQ_SYNC;
  1811. req.mem.type = DM_IO_VMA;
  1812. req.mem.ptr.vma = (char *)wc->memory_map;
  1813. req.client = wc->dm_io;
  1814. req.notify.fn = NULL;
  1815. r = dm_io(&req, 1, &region, NULL);
  1816. if (r) {
  1817. ti->error = "Unable to read metadata";
  1818. goto bad;
  1819. }
  1820. }
  1821. r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
  1822. if (r) {
  1823. ti->error = "Hardware memory error when reading superblock";
  1824. goto bad;
  1825. }
  1826. if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
  1827. r = init_memory(wc);
  1828. if (r) {
  1829. ti->error = "Unable to initialize device";
  1830. goto bad;
  1831. }
  1832. r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
  1833. if (r) {
  1834. ti->error = "Hardware memory error when reading superblock";
  1835. goto bad;
  1836. }
  1837. }
  1838. if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
  1839. ti->error = "Invalid magic in the superblock";
  1840. r = -EINVAL;
  1841. goto bad;
  1842. }
  1843. if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
  1844. ti->error = "Invalid version in the superblock";
  1845. r = -EINVAL;
  1846. goto bad;
  1847. }
  1848. if (le32_to_cpu(s.block_size) != wc->block_size) {
  1849. ti->error = "Block size does not match superblock";
  1850. r = -EINVAL;
  1851. goto bad;
  1852. }
  1853. wc->n_blocks = le64_to_cpu(s.n_blocks);
  1854. offset = wc->n_blocks * sizeof(struct wc_memory_entry);
  1855. if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
  1856. overflow:
  1857. ti->error = "Overflow in size calculation";
  1858. r = -EINVAL;
  1859. goto bad;
  1860. }
  1861. offset += sizeof(struct wc_memory_superblock);
  1862. if (offset < sizeof(struct wc_memory_superblock))
  1863. goto overflow;
  1864. offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
  1865. data_size = wc->n_blocks * (size_t)wc->block_size;
  1866. if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
  1867. (offset + data_size < offset))
  1868. goto overflow;
  1869. if (offset + data_size > wc->memory_map_size) {
  1870. ti->error = "Memory area is too small";
  1871. r = -EINVAL;
  1872. goto bad;
  1873. }
  1874. wc->metadata_sectors = offset >> SECTOR_SHIFT;
  1875. wc->block_start = (char *)sb(wc) + offset;
  1876. x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
  1877. x += 50;
  1878. do_div(x, 100);
  1879. wc->freelist_high_watermark = x;
  1880. x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
  1881. x += 50;
  1882. do_div(x, 100);
  1883. wc->freelist_low_watermark = x;
  1884. r = writecache_alloc_entries(wc);
  1885. if (r) {
  1886. ti->error = "Cannot allocate memory";
  1887. goto bad;
  1888. }
  1889. ti->num_flush_bios = 1;
  1890. ti->flush_supported = true;
  1891. ti->num_discard_bios = 1;
  1892. if (WC_MODE_PMEM(wc))
  1893. persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
  1894. return 0;
  1895. bad_arguments:
  1896. r = -EINVAL;
  1897. ti->error = "Bad arguments";
  1898. bad:
  1899. writecache_dtr(ti);
  1900. return r;
  1901. }
  1902. static void writecache_status(struct dm_target *ti, status_type_t type,
  1903. unsigned status_flags, char *result, unsigned maxlen)
  1904. {
  1905. struct dm_writecache *wc = ti->private;
  1906. unsigned extra_args;
  1907. unsigned sz = 0;
  1908. uint64_t x;
  1909. switch (type) {
  1910. case STATUSTYPE_INFO:
  1911. DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
  1912. (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
  1913. (unsigned long long)wc->writeback_size);
  1914. break;
  1915. case STATUSTYPE_TABLE:
  1916. DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
  1917. wc->dev->name, wc->ssd_dev->name, wc->block_size);
  1918. extra_args = 0;
  1919. if (wc->start_sector)
  1920. extra_args += 2;
  1921. if (wc->high_wm_percent_set)
  1922. extra_args += 2;
  1923. if (wc->low_wm_percent_set)
  1924. extra_args += 2;
  1925. if (wc->max_writeback_jobs_set)
  1926. extra_args += 2;
  1927. if (wc->autocommit_blocks_set)
  1928. extra_args += 2;
  1929. if (wc->autocommit_time_set)
  1930. extra_args += 2;
  1931. if (wc->writeback_fua_set)
  1932. extra_args++;
  1933. DMEMIT("%u", extra_args);
  1934. if (wc->start_sector)
  1935. DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
  1936. if (wc->high_wm_percent_set) {
  1937. x = (uint64_t)wc->freelist_high_watermark * 100;
  1938. x += wc->n_blocks / 2;
  1939. do_div(x, (size_t)wc->n_blocks);
  1940. DMEMIT(" high_watermark %u", 100 - (unsigned)x);
  1941. }
  1942. if (wc->low_wm_percent_set) {
  1943. x = (uint64_t)wc->freelist_low_watermark * 100;
  1944. x += wc->n_blocks / 2;
  1945. do_div(x, (size_t)wc->n_blocks);
  1946. DMEMIT(" low_watermark %u", 100 - (unsigned)x);
  1947. }
  1948. if (wc->max_writeback_jobs_set)
  1949. DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
  1950. if (wc->autocommit_blocks_set)
  1951. DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
  1952. if (wc->autocommit_time_set)
  1953. DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
  1954. if (wc->writeback_fua_set)
  1955. DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
  1956. break;
  1957. }
  1958. }
  1959. static struct target_type writecache_target = {
  1960. .name = "writecache",
  1961. .version = {1, 1, 1},
  1962. .module = THIS_MODULE,
  1963. .ctr = writecache_ctr,
  1964. .dtr = writecache_dtr,
  1965. .status = writecache_status,
  1966. .postsuspend = writecache_suspend,
  1967. .resume = writecache_resume,
  1968. .message = writecache_message,
  1969. .map = writecache_map,
  1970. .end_io = writecache_end_io,
  1971. .iterate_devices = writecache_iterate_devices,
  1972. .io_hints = writecache_io_hints,
  1973. };
  1974. static int __init dm_writecache_init(void)
  1975. {
  1976. int r;
  1977. r = dm_register_target(&writecache_target);
  1978. if (r < 0) {
  1979. DMERR("register failed %d", r);
  1980. return r;
  1981. }
  1982. return 0;
  1983. }
  1984. static void __exit dm_writecache_exit(void)
  1985. {
  1986. dm_unregister_target(&writecache_target);
  1987. }
  1988. module_init(dm_writecache_init);
  1989. module_exit(dm_writecache_exit);
  1990. MODULE_DESCRIPTION(DM_NAME " writecache target");
  1991. MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
  1992. MODULE_LICENSE("GPL");