huge_memory.c 93 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/swapops.h>
  18. #include <linux/dax.h>
  19. #include <linux/kthread.h>
  20. #include <linux/khugepaged.h>
  21. #include <linux/freezer.h>
  22. #include <linux/pfn_t.h>
  23. #include <linux/mman.h>
  24. #include <linux/memremap.h>
  25. #include <linux/pagemap.h>
  26. #include <linux/debugfs.h>
  27. #include <linux/migrate.h>
  28. #include <linux/hashtable.h>
  29. #include <linux/userfaultfd_k.h>
  30. #include <linux/page_idle.h>
  31. #include <asm/tlb.h>
  32. #include <asm/pgalloc.h>
  33. #include "internal.h"
  34. enum scan_result {
  35. SCAN_FAIL,
  36. SCAN_SUCCEED,
  37. SCAN_PMD_NULL,
  38. SCAN_EXCEED_NONE_PTE,
  39. SCAN_PTE_NON_PRESENT,
  40. SCAN_PAGE_RO,
  41. SCAN_NO_REFERENCED_PAGE,
  42. SCAN_PAGE_NULL,
  43. SCAN_SCAN_ABORT,
  44. SCAN_PAGE_COUNT,
  45. SCAN_PAGE_LRU,
  46. SCAN_PAGE_LOCK,
  47. SCAN_PAGE_ANON,
  48. SCAN_PAGE_COMPOUND,
  49. SCAN_ANY_PROCESS,
  50. SCAN_VMA_NULL,
  51. SCAN_VMA_CHECK,
  52. SCAN_ADDRESS_RANGE,
  53. SCAN_SWAP_CACHE_PAGE,
  54. SCAN_DEL_PAGE_LRU,
  55. SCAN_ALLOC_HUGE_PAGE_FAIL,
  56. SCAN_CGROUP_CHARGE_FAIL
  57. };
  58. #define CREATE_TRACE_POINTS
  59. #include <trace/events/huge_memory.h>
  60. /*
  61. * By default transparent hugepage support is disabled in order that avoid
  62. * to risk increase the memory footprint of applications without a guaranteed
  63. * benefit. When transparent hugepage support is enabled, is for all mappings,
  64. * and khugepaged scans all mappings.
  65. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  66. * for all hugepage allocations.
  67. */
  68. unsigned long transparent_hugepage_flags __read_mostly =
  69. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  70. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  71. #endif
  72. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  73. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  74. #endif
  75. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  76. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  77. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  78. /* default scan 8*512 pte (or vmas) every 30 second */
  79. static unsigned int khugepaged_pages_to_scan __read_mostly;
  80. static unsigned int khugepaged_pages_collapsed;
  81. static unsigned int khugepaged_full_scans;
  82. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  83. /* during fragmentation poll the hugepage allocator once every minute */
  84. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  85. static unsigned long khugepaged_sleep_expire;
  86. static struct task_struct *khugepaged_thread __read_mostly;
  87. static DEFINE_MUTEX(khugepaged_mutex);
  88. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  89. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  90. /*
  91. * default collapse hugepages if there is at least one pte mapped like
  92. * it would have happened if the vma was large enough during page
  93. * fault.
  94. */
  95. static unsigned int khugepaged_max_ptes_none __read_mostly;
  96. static int khugepaged(void *none);
  97. static int khugepaged_slab_init(void);
  98. static void khugepaged_slab_exit(void);
  99. #define MM_SLOTS_HASH_BITS 10
  100. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  101. static struct kmem_cache *mm_slot_cache __read_mostly;
  102. /**
  103. * struct mm_slot - hash lookup from mm to mm_slot
  104. * @hash: hash collision list
  105. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  106. * @mm: the mm that this information is valid for
  107. */
  108. struct mm_slot {
  109. struct hlist_node hash;
  110. struct list_head mm_node;
  111. struct mm_struct *mm;
  112. };
  113. /**
  114. * struct khugepaged_scan - cursor for scanning
  115. * @mm_head: the head of the mm list to scan
  116. * @mm_slot: the current mm_slot we are scanning
  117. * @address: the next address inside that to be scanned
  118. *
  119. * There is only the one khugepaged_scan instance of this cursor structure.
  120. */
  121. struct khugepaged_scan {
  122. struct list_head mm_head;
  123. struct mm_slot *mm_slot;
  124. unsigned long address;
  125. };
  126. static struct khugepaged_scan khugepaged_scan = {
  127. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  128. };
  129. static struct shrinker deferred_split_shrinker;
  130. static void set_recommended_min_free_kbytes(void)
  131. {
  132. struct zone *zone;
  133. int nr_zones = 0;
  134. unsigned long recommended_min;
  135. for_each_populated_zone(zone)
  136. nr_zones++;
  137. /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
  138. recommended_min = pageblock_nr_pages * nr_zones * 2;
  139. /*
  140. * Make sure that on average at least two pageblocks are almost free
  141. * of another type, one for a migratetype to fall back to and a
  142. * second to avoid subsequent fallbacks of other types There are 3
  143. * MIGRATE_TYPES we care about.
  144. */
  145. recommended_min += pageblock_nr_pages * nr_zones *
  146. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  147. /* don't ever allow to reserve more than 5% of the lowmem */
  148. recommended_min = min(recommended_min,
  149. (unsigned long) nr_free_buffer_pages() / 20);
  150. recommended_min <<= (PAGE_SHIFT-10);
  151. if (recommended_min > min_free_kbytes) {
  152. if (user_min_free_kbytes >= 0)
  153. pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
  154. min_free_kbytes, recommended_min);
  155. min_free_kbytes = recommended_min;
  156. }
  157. setup_per_zone_wmarks();
  158. }
  159. static int start_stop_khugepaged(void)
  160. {
  161. int err = 0;
  162. if (khugepaged_enabled()) {
  163. if (!khugepaged_thread)
  164. khugepaged_thread = kthread_run(khugepaged, NULL,
  165. "khugepaged");
  166. if (IS_ERR(khugepaged_thread)) {
  167. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  168. err = PTR_ERR(khugepaged_thread);
  169. khugepaged_thread = NULL;
  170. goto fail;
  171. }
  172. if (!list_empty(&khugepaged_scan.mm_head))
  173. wake_up_interruptible(&khugepaged_wait);
  174. set_recommended_min_free_kbytes();
  175. } else if (khugepaged_thread) {
  176. kthread_stop(khugepaged_thread);
  177. khugepaged_thread = NULL;
  178. }
  179. fail:
  180. return err;
  181. }
  182. static atomic_t huge_zero_refcount;
  183. struct page *huge_zero_page __read_mostly;
  184. struct page *get_huge_zero_page(void)
  185. {
  186. struct page *zero_page;
  187. retry:
  188. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  189. return READ_ONCE(huge_zero_page);
  190. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  191. HPAGE_PMD_ORDER);
  192. if (!zero_page) {
  193. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  194. return NULL;
  195. }
  196. count_vm_event(THP_ZERO_PAGE_ALLOC);
  197. preempt_disable();
  198. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  199. preempt_enable();
  200. __free_pages(zero_page, compound_order(zero_page));
  201. goto retry;
  202. }
  203. /* We take additional reference here. It will be put back by shrinker */
  204. atomic_set(&huge_zero_refcount, 2);
  205. preempt_enable();
  206. return READ_ONCE(huge_zero_page);
  207. }
  208. void put_huge_zero_page(void)
  209. {
  210. /*
  211. * Counter should never go to zero here. Only shrinker can put
  212. * last reference.
  213. */
  214. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  215. }
  216. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  217. struct shrink_control *sc)
  218. {
  219. /* we can free zero page only if last reference remains */
  220. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  221. }
  222. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  223. struct shrink_control *sc)
  224. {
  225. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  226. struct page *zero_page = xchg(&huge_zero_page, NULL);
  227. BUG_ON(zero_page == NULL);
  228. __free_pages(zero_page, compound_order(zero_page));
  229. return HPAGE_PMD_NR;
  230. }
  231. return 0;
  232. }
  233. static struct shrinker huge_zero_page_shrinker = {
  234. .count_objects = shrink_huge_zero_page_count,
  235. .scan_objects = shrink_huge_zero_page_scan,
  236. .seeks = DEFAULT_SEEKS,
  237. };
  238. #ifdef CONFIG_SYSFS
  239. static ssize_t triple_flag_store(struct kobject *kobj,
  240. struct kobj_attribute *attr,
  241. const char *buf, size_t count,
  242. enum transparent_hugepage_flag enabled,
  243. enum transparent_hugepage_flag deferred,
  244. enum transparent_hugepage_flag req_madv)
  245. {
  246. if (!memcmp("defer", buf,
  247. min(sizeof("defer")-1, count))) {
  248. if (enabled == deferred)
  249. return -EINVAL;
  250. clear_bit(enabled, &transparent_hugepage_flags);
  251. clear_bit(req_madv, &transparent_hugepage_flags);
  252. set_bit(deferred, &transparent_hugepage_flags);
  253. } else if (!memcmp("always", buf,
  254. min(sizeof("always")-1, count))) {
  255. clear_bit(deferred, &transparent_hugepage_flags);
  256. clear_bit(req_madv, &transparent_hugepage_flags);
  257. set_bit(enabled, &transparent_hugepage_flags);
  258. } else if (!memcmp("madvise", buf,
  259. min(sizeof("madvise")-1, count))) {
  260. clear_bit(enabled, &transparent_hugepage_flags);
  261. clear_bit(deferred, &transparent_hugepage_flags);
  262. set_bit(req_madv, &transparent_hugepage_flags);
  263. } else if (!memcmp("never", buf,
  264. min(sizeof("never")-1, count))) {
  265. clear_bit(enabled, &transparent_hugepage_flags);
  266. clear_bit(req_madv, &transparent_hugepage_flags);
  267. clear_bit(deferred, &transparent_hugepage_flags);
  268. } else
  269. return -EINVAL;
  270. return count;
  271. }
  272. static ssize_t enabled_show(struct kobject *kobj,
  273. struct kobj_attribute *attr, char *buf)
  274. {
  275. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  276. return sprintf(buf, "[always] madvise never\n");
  277. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  278. return sprintf(buf, "always [madvise] never\n");
  279. else
  280. return sprintf(buf, "always madvise [never]\n");
  281. }
  282. static ssize_t enabled_store(struct kobject *kobj,
  283. struct kobj_attribute *attr,
  284. const char *buf, size_t count)
  285. {
  286. ssize_t ret;
  287. ret = triple_flag_store(kobj, attr, buf, count,
  288. TRANSPARENT_HUGEPAGE_FLAG,
  289. TRANSPARENT_HUGEPAGE_FLAG,
  290. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  291. if (ret > 0) {
  292. int err;
  293. mutex_lock(&khugepaged_mutex);
  294. err = start_stop_khugepaged();
  295. mutex_unlock(&khugepaged_mutex);
  296. if (err)
  297. ret = err;
  298. }
  299. return ret;
  300. }
  301. static struct kobj_attribute enabled_attr =
  302. __ATTR(enabled, 0644, enabled_show, enabled_store);
  303. static ssize_t single_flag_show(struct kobject *kobj,
  304. struct kobj_attribute *attr, char *buf,
  305. enum transparent_hugepage_flag flag)
  306. {
  307. return sprintf(buf, "%d\n",
  308. !!test_bit(flag, &transparent_hugepage_flags));
  309. }
  310. static ssize_t single_flag_store(struct kobject *kobj,
  311. struct kobj_attribute *attr,
  312. const char *buf, size_t count,
  313. enum transparent_hugepage_flag flag)
  314. {
  315. unsigned long value;
  316. int ret;
  317. ret = kstrtoul(buf, 10, &value);
  318. if (ret < 0)
  319. return ret;
  320. if (value > 1)
  321. return -EINVAL;
  322. if (value)
  323. set_bit(flag, &transparent_hugepage_flags);
  324. else
  325. clear_bit(flag, &transparent_hugepage_flags);
  326. return count;
  327. }
  328. /*
  329. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  330. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  331. * memory just to allocate one more hugepage.
  332. */
  333. static ssize_t defrag_show(struct kobject *kobj,
  334. struct kobj_attribute *attr, char *buf)
  335. {
  336. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  337. return sprintf(buf, "[always] defer madvise never\n");
  338. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  339. return sprintf(buf, "always [defer] madvise never\n");
  340. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  341. return sprintf(buf, "always defer [madvise] never\n");
  342. else
  343. return sprintf(buf, "always defer madvise [never]\n");
  344. }
  345. static ssize_t defrag_store(struct kobject *kobj,
  346. struct kobj_attribute *attr,
  347. const char *buf, size_t count)
  348. {
  349. return triple_flag_store(kobj, attr, buf, count,
  350. TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
  351. TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
  352. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  353. }
  354. static struct kobj_attribute defrag_attr =
  355. __ATTR(defrag, 0644, defrag_show, defrag_store);
  356. static ssize_t use_zero_page_show(struct kobject *kobj,
  357. struct kobj_attribute *attr, char *buf)
  358. {
  359. return single_flag_show(kobj, attr, buf,
  360. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  361. }
  362. static ssize_t use_zero_page_store(struct kobject *kobj,
  363. struct kobj_attribute *attr, const char *buf, size_t count)
  364. {
  365. return single_flag_store(kobj, attr, buf, count,
  366. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  367. }
  368. static struct kobj_attribute use_zero_page_attr =
  369. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  370. #ifdef CONFIG_DEBUG_VM
  371. static ssize_t debug_cow_show(struct kobject *kobj,
  372. struct kobj_attribute *attr, char *buf)
  373. {
  374. return single_flag_show(kobj, attr, buf,
  375. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  376. }
  377. static ssize_t debug_cow_store(struct kobject *kobj,
  378. struct kobj_attribute *attr,
  379. const char *buf, size_t count)
  380. {
  381. return single_flag_store(kobj, attr, buf, count,
  382. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  383. }
  384. static struct kobj_attribute debug_cow_attr =
  385. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  386. #endif /* CONFIG_DEBUG_VM */
  387. static struct attribute *hugepage_attr[] = {
  388. &enabled_attr.attr,
  389. &defrag_attr.attr,
  390. &use_zero_page_attr.attr,
  391. #ifdef CONFIG_DEBUG_VM
  392. &debug_cow_attr.attr,
  393. #endif
  394. NULL,
  395. };
  396. static struct attribute_group hugepage_attr_group = {
  397. .attrs = hugepage_attr,
  398. };
  399. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  400. struct kobj_attribute *attr,
  401. char *buf)
  402. {
  403. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  404. }
  405. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  406. struct kobj_attribute *attr,
  407. const char *buf, size_t count)
  408. {
  409. unsigned long msecs;
  410. int err;
  411. err = kstrtoul(buf, 10, &msecs);
  412. if (err || msecs > UINT_MAX)
  413. return -EINVAL;
  414. khugepaged_scan_sleep_millisecs = msecs;
  415. khugepaged_sleep_expire = 0;
  416. wake_up_interruptible(&khugepaged_wait);
  417. return count;
  418. }
  419. static struct kobj_attribute scan_sleep_millisecs_attr =
  420. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  421. scan_sleep_millisecs_store);
  422. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  423. struct kobj_attribute *attr,
  424. char *buf)
  425. {
  426. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  427. }
  428. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  429. struct kobj_attribute *attr,
  430. const char *buf, size_t count)
  431. {
  432. unsigned long msecs;
  433. int err;
  434. err = kstrtoul(buf, 10, &msecs);
  435. if (err || msecs > UINT_MAX)
  436. return -EINVAL;
  437. khugepaged_alloc_sleep_millisecs = msecs;
  438. khugepaged_sleep_expire = 0;
  439. wake_up_interruptible(&khugepaged_wait);
  440. return count;
  441. }
  442. static struct kobj_attribute alloc_sleep_millisecs_attr =
  443. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  444. alloc_sleep_millisecs_store);
  445. static ssize_t pages_to_scan_show(struct kobject *kobj,
  446. struct kobj_attribute *attr,
  447. char *buf)
  448. {
  449. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  450. }
  451. static ssize_t pages_to_scan_store(struct kobject *kobj,
  452. struct kobj_attribute *attr,
  453. const char *buf, size_t count)
  454. {
  455. int err;
  456. unsigned long pages;
  457. err = kstrtoul(buf, 10, &pages);
  458. if (err || !pages || pages > UINT_MAX)
  459. return -EINVAL;
  460. khugepaged_pages_to_scan = pages;
  461. return count;
  462. }
  463. static struct kobj_attribute pages_to_scan_attr =
  464. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  465. pages_to_scan_store);
  466. static ssize_t pages_collapsed_show(struct kobject *kobj,
  467. struct kobj_attribute *attr,
  468. char *buf)
  469. {
  470. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  471. }
  472. static struct kobj_attribute pages_collapsed_attr =
  473. __ATTR_RO(pages_collapsed);
  474. static ssize_t full_scans_show(struct kobject *kobj,
  475. struct kobj_attribute *attr,
  476. char *buf)
  477. {
  478. return sprintf(buf, "%u\n", khugepaged_full_scans);
  479. }
  480. static struct kobj_attribute full_scans_attr =
  481. __ATTR_RO(full_scans);
  482. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  483. struct kobj_attribute *attr, char *buf)
  484. {
  485. return single_flag_show(kobj, attr, buf,
  486. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  487. }
  488. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  489. struct kobj_attribute *attr,
  490. const char *buf, size_t count)
  491. {
  492. return single_flag_store(kobj, attr, buf, count,
  493. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  494. }
  495. static struct kobj_attribute khugepaged_defrag_attr =
  496. __ATTR(defrag, 0644, khugepaged_defrag_show,
  497. khugepaged_defrag_store);
  498. /*
  499. * max_ptes_none controls if khugepaged should collapse hugepages over
  500. * any unmapped ptes in turn potentially increasing the memory
  501. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  502. * reduce the available free memory in the system as it
  503. * runs. Increasing max_ptes_none will instead potentially reduce the
  504. * free memory in the system during the khugepaged scan.
  505. */
  506. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  507. struct kobj_attribute *attr,
  508. char *buf)
  509. {
  510. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  511. }
  512. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  513. struct kobj_attribute *attr,
  514. const char *buf, size_t count)
  515. {
  516. int err;
  517. unsigned long max_ptes_none;
  518. err = kstrtoul(buf, 10, &max_ptes_none);
  519. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  520. return -EINVAL;
  521. khugepaged_max_ptes_none = max_ptes_none;
  522. return count;
  523. }
  524. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  525. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  526. khugepaged_max_ptes_none_store);
  527. static struct attribute *khugepaged_attr[] = {
  528. &khugepaged_defrag_attr.attr,
  529. &khugepaged_max_ptes_none_attr.attr,
  530. &pages_to_scan_attr.attr,
  531. &pages_collapsed_attr.attr,
  532. &full_scans_attr.attr,
  533. &scan_sleep_millisecs_attr.attr,
  534. &alloc_sleep_millisecs_attr.attr,
  535. NULL,
  536. };
  537. static struct attribute_group khugepaged_attr_group = {
  538. .attrs = khugepaged_attr,
  539. .name = "khugepaged",
  540. };
  541. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  542. {
  543. int err;
  544. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  545. if (unlikely(!*hugepage_kobj)) {
  546. pr_err("failed to create transparent hugepage kobject\n");
  547. return -ENOMEM;
  548. }
  549. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  550. if (err) {
  551. pr_err("failed to register transparent hugepage group\n");
  552. goto delete_obj;
  553. }
  554. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  555. if (err) {
  556. pr_err("failed to register transparent hugepage group\n");
  557. goto remove_hp_group;
  558. }
  559. return 0;
  560. remove_hp_group:
  561. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  562. delete_obj:
  563. kobject_put(*hugepage_kobj);
  564. return err;
  565. }
  566. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  567. {
  568. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  569. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  570. kobject_put(hugepage_kobj);
  571. }
  572. #else
  573. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  574. {
  575. return 0;
  576. }
  577. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  578. {
  579. }
  580. #endif /* CONFIG_SYSFS */
  581. static int __init hugepage_init(void)
  582. {
  583. int err;
  584. struct kobject *hugepage_kobj;
  585. if (!has_transparent_hugepage()) {
  586. transparent_hugepage_flags = 0;
  587. return -EINVAL;
  588. }
  589. khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
  590. khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
  591. /*
  592. * hugepages can't be allocated by the buddy allocator
  593. */
  594. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  595. /*
  596. * we use page->mapping and page->index in second tail page
  597. * as list_head: assuming THP order >= 2
  598. */
  599. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  600. err = hugepage_init_sysfs(&hugepage_kobj);
  601. if (err)
  602. goto err_sysfs;
  603. err = khugepaged_slab_init();
  604. if (err)
  605. goto err_slab;
  606. err = register_shrinker(&huge_zero_page_shrinker);
  607. if (err)
  608. goto err_hzp_shrinker;
  609. err = register_shrinker(&deferred_split_shrinker);
  610. if (err)
  611. goto err_split_shrinker;
  612. /*
  613. * By default disable transparent hugepages on smaller systems,
  614. * where the extra memory used could hurt more than TLB overhead
  615. * is likely to save. The admin can still enable it through /sys.
  616. */
  617. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  618. transparent_hugepage_flags = 0;
  619. return 0;
  620. }
  621. err = start_stop_khugepaged();
  622. if (err)
  623. goto err_khugepaged;
  624. return 0;
  625. err_khugepaged:
  626. unregister_shrinker(&deferred_split_shrinker);
  627. err_split_shrinker:
  628. unregister_shrinker(&huge_zero_page_shrinker);
  629. err_hzp_shrinker:
  630. khugepaged_slab_exit();
  631. err_slab:
  632. hugepage_exit_sysfs(hugepage_kobj);
  633. err_sysfs:
  634. return err;
  635. }
  636. subsys_initcall(hugepage_init);
  637. static int __init setup_transparent_hugepage(char *str)
  638. {
  639. int ret = 0;
  640. if (!str)
  641. goto out;
  642. if (!strcmp(str, "always")) {
  643. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  644. &transparent_hugepage_flags);
  645. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  646. &transparent_hugepage_flags);
  647. ret = 1;
  648. } else if (!strcmp(str, "madvise")) {
  649. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  650. &transparent_hugepage_flags);
  651. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  652. &transparent_hugepage_flags);
  653. ret = 1;
  654. } else if (!strcmp(str, "never")) {
  655. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  656. &transparent_hugepage_flags);
  657. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  658. &transparent_hugepage_flags);
  659. ret = 1;
  660. }
  661. out:
  662. if (!ret)
  663. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  664. return ret;
  665. }
  666. __setup("transparent_hugepage=", setup_transparent_hugepage);
  667. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  668. {
  669. if (likely(vma->vm_flags & VM_WRITE))
  670. pmd = pmd_mkwrite(pmd);
  671. return pmd;
  672. }
  673. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  674. {
  675. return pmd_mkhuge(mk_pmd(page, prot));
  676. }
  677. static inline struct list_head *page_deferred_list(struct page *page)
  678. {
  679. /*
  680. * ->lru in the tail pages is occupied by compound_head.
  681. * Let's use ->mapping + ->index in the second tail page as list_head.
  682. */
  683. return (struct list_head *)&page[2].mapping;
  684. }
  685. void prep_transhuge_page(struct page *page)
  686. {
  687. /*
  688. * we use page->mapping and page->indexlru in second tail page
  689. * as list_head: assuming THP order >= 2
  690. */
  691. INIT_LIST_HEAD(page_deferred_list(page));
  692. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  693. }
  694. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  695. struct vm_area_struct *vma,
  696. unsigned long address, pmd_t *pmd,
  697. struct page *page, gfp_t gfp,
  698. unsigned int flags)
  699. {
  700. struct mem_cgroup *memcg;
  701. pgtable_t pgtable;
  702. spinlock_t *ptl;
  703. unsigned long haddr = address & HPAGE_PMD_MASK;
  704. VM_BUG_ON_PAGE(!PageCompound(page), page);
  705. if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
  706. put_page(page);
  707. count_vm_event(THP_FAULT_FALLBACK);
  708. return VM_FAULT_FALLBACK;
  709. }
  710. pgtable = pte_alloc_one(mm, haddr);
  711. if (unlikely(!pgtable)) {
  712. mem_cgroup_cancel_charge(page, memcg, true);
  713. put_page(page);
  714. return VM_FAULT_OOM;
  715. }
  716. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  717. /*
  718. * The memory barrier inside __SetPageUptodate makes sure that
  719. * clear_huge_page writes become visible before the set_pmd_at()
  720. * write.
  721. */
  722. __SetPageUptodate(page);
  723. ptl = pmd_lock(mm, pmd);
  724. if (unlikely(!pmd_none(*pmd))) {
  725. spin_unlock(ptl);
  726. mem_cgroup_cancel_charge(page, memcg, true);
  727. put_page(page);
  728. pte_free(mm, pgtable);
  729. } else {
  730. pmd_t entry;
  731. /* Deliver the page fault to userland */
  732. if (userfaultfd_missing(vma)) {
  733. int ret;
  734. spin_unlock(ptl);
  735. mem_cgroup_cancel_charge(page, memcg, true);
  736. put_page(page);
  737. pte_free(mm, pgtable);
  738. ret = handle_userfault(vma, address, flags,
  739. VM_UFFD_MISSING);
  740. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  741. return ret;
  742. }
  743. entry = mk_huge_pmd(page, vma->vm_page_prot);
  744. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  745. page_add_new_anon_rmap(page, vma, haddr, true);
  746. mem_cgroup_commit_charge(page, memcg, false, true);
  747. lru_cache_add_active_or_unevictable(page, vma);
  748. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  749. set_pmd_at(mm, haddr, pmd, entry);
  750. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  751. atomic_long_inc(&mm->nr_ptes);
  752. spin_unlock(ptl);
  753. count_vm_event(THP_FAULT_ALLOC);
  754. }
  755. return 0;
  756. }
  757. /*
  758. * If THP is set to always then directly reclaim/compact as necessary
  759. * If set to defer then do no reclaim and defer to khugepaged
  760. * If set to madvise and the VMA is flagged then directly reclaim/compact
  761. */
  762. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  763. {
  764. gfp_t reclaim_flags = 0;
  765. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
  766. (vma->vm_flags & VM_HUGEPAGE))
  767. reclaim_flags = __GFP_DIRECT_RECLAIM;
  768. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  769. reclaim_flags = __GFP_KSWAPD_RECLAIM;
  770. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  771. reclaim_flags = __GFP_DIRECT_RECLAIM;
  772. return GFP_TRANSHUGE | reclaim_flags;
  773. }
  774. /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
  775. static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
  776. {
  777. return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
  778. }
  779. /* Caller must hold page table lock. */
  780. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  781. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  782. struct page *zero_page)
  783. {
  784. pmd_t entry;
  785. if (!pmd_none(*pmd))
  786. return false;
  787. entry = mk_pmd(zero_page, vma->vm_page_prot);
  788. entry = pmd_mkhuge(entry);
  789. if (pgtable)
  790. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  791. set_pmd_at(mm, haddr, pmd, entry);
  792. atomic_long_inc(&mm->nr_ptes);
  793. return true;
  794. }
  795. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  796. unsigned long address, pmd_t *pmd,
  797. unsigned int flags)
  798. {
  799. gfp_t gfp;
  800. struct page *page;
  801. unsigned long haddr = address & HPAGE_PMD_MASK;
  802. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  803. return VM_FAULT_FALLBACK;
  804. if (unlikely(anon_vma_prepare(vma)))
  805. return VM_FAULT_OOM;
  806. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  807. return VM_FAULT_OOM;
  808. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
  809. transparent_hugepage_use_zero_page()) {
  810. spinlock_t *ptl;
  811. pgtable_t pgtable;
  812. struct page *zero_page;
  813. bool set;
  814. int ret;
  815. pgtable = pte_alloc_one(mm, haddr);
  816. if (unlikely(!pgtable))
  817. return VM_FAULT_OOM;
  818. zero_page = get_huge_zero_page();
  819. if (unlikely(!zero_page)) {
  820. pte_free(mm, pgtable);
  821. count_vm_event(THP_FAULT_FALLBACK);
  822. return VM_FAULT_FALLBACK;
  823. }
  824. ptl = pmd_lock(mm, pmd);
  825. ret = 0;
  826. set = false;
  827. if (pmd_none(*pmd)) {
  828. if (userfaultfd_missing(vma)) {
  829. spin_unlock(ptl);
  830. ret = handle_userfault(vma, address, flags,
  831. VM_UFFD_MISSING);
  832. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  833. } else {
  834. set_huge_zero_page(pgtable, mm, vma,
  835. haddr, pmd,
  836. zero_page);
  837. spin_unlock(ptl);
  838. set = true;
  839. }
  840. } else
  841. spin_unlock(ptl);
  842. if (!set) {
  843. pte_free(mm, pgtable);
  844. put_huge_zero_page();
  845. }
  846. return ret;
  847. }
  848. gfp = alloc_hugepage_direct_gfpmask(vma);
  849. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  850. if (unlikely(!page)) {
  851. count_vm_event(THP_FAULT_FALLBACK);
  852. return VM_FAULT_FALLBACK;
  853. }
  854. prep_transhuge_page(page);
  855. return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
  856. flags);
  857. }
  858. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  859. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
  860. {
  861. struct mm_struct *mm = vma->vm_mm;
  862. pmd_t entry;
  863. spinlock_t *ptl;
  864. ptl = pmd_lock(mm, pmd);
  865. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  866. if (pfn_t_devmap(pfn))
  867. entry = pmd_mkdevmap(entry);
  868. if (write) {
  869. entry = pmd_mkyoung(pmd_mkdirty(entry));
  870. entry = maybe_pmd_mkwrite(entry, vma);
  871. }
  872. set_pmd_at(mm, addr, pmd, entry);
  873. update_mmu_cache_pmd(vma, addr, pmd);
  874. spin_unlock(ptl);
  875. }
  876. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  877. pmd_t *pmd, pfn_t pfn, bool write)
  878. {
  879. pgprot_t pgprot = vma->vm_page_prot;
  880. /*
  881. * If we had pmd_special, we could avoid all these restrictions,
  882. * but we need to be consistent with PTEs and architectures that
  883. * can't support a 'special' bit.
  884. */
  885. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  886. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  887. (VM_PFNMAP|VM_MIXEDMAP));
  888. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  889. BUG_ON(!pfn_t_devmap(pfn));
  890. if (addr < vma->vm_start || addr >= vma->vm_end)
  891. return VM_FAULT_SIGBUS;
  892. if (track_pfn_insert(vma, &pgprot, pfn))
  893. return VM_FAULT_SIGBUS;
  894. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  895. return VM_FAULT_NOPAGE;
  896. }
  897. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  898. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  899. pmd_t *pmd)
  900. {
  901. pmd_t _pmd;
  902. /*
  903. * We should set the dirty bit only for FOLL_WRITE but for now
  904. * the dirty bit in the pmd is meaningless. And if the dirty
  905. * bit will become meaningful and we'll only set it with
  906. * FOLL_WRITE, an atomic set_bit will be required on the pmd to
  907. * set the young bit, instead of the current set_pmd_at.
  908. */
  909. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  910. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  911. pmd, _pmd, 1))
  912. update_mmu_cache_pmd(vma, addr, pmd);
  913. }
  914. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  915. pmd_t *pmd, int flags)
  916. {
  917. unsigned long pfn = pmd_pfn(*pmd);
  918. struct mm_struct *mm = vma->vm_mm;
  919. struct dev_pagemap *pgmap;
  920. struct page *page;
  921. assert_spin_locked(pmd_lockptr(mm, pmd));
  922. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  923. return NULL;
  924. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  925. /* pass */;
  926. else
  927. return NULL;
  928. if (flags & FOLL_TOUCH)
  929. touch_pmd(vma, addr, pmd);
  930. /*
  931. * device mapped pages can only be returned if the
  932. * caller will manage the page reference count.
  933. */
  934. if (!(flags & FOLL_GET))
  935. return ERR_PTR(-EEXIST);
  936. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  937. pgmap = get_dev_pagemap(pfn, NULL);
  938. if (!pgmap)
  939. return ERR_PTR(-EFAULT);
  940. page = pfn_to_page(pfn);
  941. get_page(page);
  942. put_dev_pagemap(pgmap);
  943. return page;
  944. }
  945. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  946. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  947. struct vm_area_struct *vma)
  948. {
  949. spinlock_t *dst_ptl, *src_ptl;
  950. struct page *src_page;
  951. pmd_t pmd;
  952. pgtable_t pgtable = NULL;
  953. int ret;
  954. if (!vma_is_dax(vma)) {
  955. ret = -ENOMEM;
  956. pgtable = pte_alloc_one(dst_mm, addr);
  957. if (unlikely(!pgtable))
  958. goto out;
  959. }
  960. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  961. src_ptl = pmd_lockptr(src_mm, src_pmd);
  962. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  963. ret = -EAGAIN;
  964. pmd = *src_pmd;
  965. if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
  966. pte_free(dst_mm, pgtable);
  967. goto out_unlock;
  968. }
  969. /*
  970. * When page table lock is held, the huge zero pmd should not be
  971. * under splitting since we don't split the page itself, only pmd to
  972. * a page table.
  973. */
  974. if (is_huge_zero_pmd(pmd)) {
  975. struct page *zero_page;
  976. /*
  977. * get_huge_zero_page() will never allocate a new page here,
  978. * since we already have a zero page to copy. It just takes a
  979. * reference.
  980. */
  981. zero_page = get_huge_zero_page();
  982. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  983. zero_page);
  984. ret = 0;
  985. goto out_unlock;
  986. }
  987. if (!vma_is_dax(vma)) {
  988. /* thp accounting separate from pmd_devmap accounting */
  989. src_page = pmd_page(pmd);
  990. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  991. get_page(src_page);
  992. page_dup_rmap(src_page, true);
  993. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  994. atomic_long_inc(&dst_mm->nr_ptes);
  995. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  996. }
  997. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  998. pmd = pmd_mkold(pmd_wrprotect(pmd));
  999. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  1000. ret = 0;
  1001. out_unlock:
  1002. spin_unlock(src_ptl);
  1003. spin_unlock(dst_ptl);
  1004. out:
  1005. return ret;
  1006. }
  1007. void huge_pmd_set_accessed(struct mm_struct *mm,
  1008. struct vm_area_struct *vma,
  1009. unsigned long address,
  1010. pmd_t *pmd, pmd_t orig_pmd,
  1011. int dirty)
  1012. {
  1013. spinlock_t *ptl;
  1014. pmd_t entry;
  1015. unsigned long haddr;
  1016. ptl = pmd_lock(mm, pmd);
  1017. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1018. goto unlock;
  1019. entry = pmd_mkyoung(orig_pmd);
  1020. haddr = address & HPAGE_PMD_MASK;
  1021. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  1022. update_mmu_cache_pmd(vma, address, pmd);
  1023. unlock:
  1024. spin_unlock(ptl);
  1025. }
  1026. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  1027. struct vm_area_struct *vma,
  1028. unsigned long address,
  1029. pmd_t *pmd, pmd_t orig_pmd,
  1030. struct page *page,
  1031. unsigned long haddr)
  1032. {
  1033. struct mem_cgroup *memcg;
  1034. spinlock_t *ptl;
  1035. pgtable_t pgtable;
  1036. pmd_t _pmd;
  1037. int ret = 0, i;
  1038. struct page **pages;
  1039. unsigned long mmun_start; /* For mmu_notifiers */
  1040. unsigned long mmun_end; /* For mmu_notifiers */
  1041. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  1042. GFP_KERNEL);
  1043. if (unlikely(!pages)) {
  1044. ret |= VM_FAULT_OOM;
  1045. goto out;
  1046. }
  1047. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1048. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  1049. __GFP_OTHER_NODE,
  1050. vma, address, page_to_nid(page));
  1051. if (unlikely(!pages[i] ||
  1052. mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
  1053. &memcg, false))) {
  1054. if (pages[i])
  1055. put_page(pages[i]);
  1056. while (--i >= 0) {
  1057. memcg = (void *)page_private(pages[i]);
  1058. set_page_private(pages[i], 0);
  1059. mem_cgroup_cancel_charge(pages[i], memcg,
  1060. false);
  1061. put_page(pages[i]);
  1062. }
  1063. kfree(pages);
  1064. ret |= VM_FAULT_OOM;
  1065. goto out;
  1066. }
  1067. set_page_private(pages[i], (unsigned long)memcg);
  1068. }
  1069. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1070. copy_user_highpage(pages[i], page + i,
  1071. haddr + PAGE_SIZE * i, vma);
  1072. __SetPageUptodate(pages[i]);
  1073. cond_resched();
  1074. }
  1075. mmun_start = haddr;
  1076. mmun_end = haddr + HPAGE_PMD_SIZE;
  1077. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1078. ptl = pmd_lock(mm, pmd);
  1079. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1080. goto out_free_pages;
  1081. VM_BUG_ON_PAGE(!PageHead(page), page);
  1082. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1083. /* leave pmd empty until pte is filled */
  1084. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1085. pmd_populate(mm, &_pmd, pgtable);
  1086. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1087. pte_t *pte, entry;
  1088. entry = mk_pte(pages[i], vma->vm_page_prot);
  1089. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1090. memcg = (void *)page_private(pages[i]);
  1091. set_page_private(pages[i], 0);
  1092. page_add_new_anon_rmap(pages[i], vma, haddr, false);
  1093. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1094. lru_cache_add_active_or_unevictable(pages[i], vma);
  1095. pte = pte_offset_map(&_pmd, haddr);
  1096. VM_BUG_ON(!pte_none(*pte));
  1097. set_pte_at(mm, haddr, pte, entry);
  1098. pte_unmap(pte);
  1099. }
  1100. kfree(pages);
  1101. smp_wmb(); /* make pte visible before pmd */
  1102. pmd_populate(mm, pmd, pgtable);
  1103. page_remove_rmap(page, true);
  1104. spin_unlock(ptl);
  1105. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1106. ret |= VM_FAULT_WRITE;
  1107. put_page(page);
  1108. out:
  1109. return ret;
  1110. out_free_pages:
  1111. spin_unlock(ptl);
  1112. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1113. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1114. memcg = (void *)page_private(pages[i]);
  1115. set_page_private(pages[i], 0);
  1116. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1117. put_page(pages[i]);
  1118. }
  1119. kfree(pages);
  1120. goto out;
  1121. }
  1122. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1123. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  1124. {
  1125. spinlock_t *ptl;
  1126. int ret = 0;
  1127. struct page *page = NULL, *new_page;
  1128. struct mem_cgroup *memcg;
  1129. unsigned long haddr;
  1130. unsigned long mmun_start; /* For mmu_notifiers */
  1131. unsigned long mmun_end; /* For mmu_notifiers */
  1132. gfp_t huge_gfp; /* for allocation and charge */
  1133. ptl = pmd_lockptr(mm, pmd);
  1134. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1135. haddr = address & HPAGE_PMD_MASK;
  1136. if (is_huge_zero_pmd(orig_pmd))
  1137. goto alloc;
  1138. spin_lock(ptl);
  1139. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1140. goto out_unlock;
  1141. page = pmd_page(orig_pmd);
  1142. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1143. /*
  1144. * We can only reuse the page if nobody else maps the huge page or it's
  1145. * part.
  1146. */
  1147. if (page_trans_huge_mapcount(page, NULL) == 1) {
  1148. pmd_t entry;
  1149. entry = pmd_mkyoung(orig_pmd);
  1150. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1151. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1152. update_mmu_cache_pmd(vma, address, pmd);
  1153. ret |= VM_FAULT_WRITE;
  1154. goto out_unlock;
  1155. }
  1156. get_page(page);
  1157. spin_unlock(ptl);
  1158. alloc:
  1159. if (transparent_hugepage_enabled(vma) &&
  1160. !transparent_hugepage_debug_cow()) {
  1161. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1162. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1163. } else
  1164. new_page = NULL;
  1165. if (likely(new_page)) {
  1166. prep_transhuge_page(new_page);
  1167. } else {
  1168. if (!page) {
  1169. split_huge_pmd(vma, pmd, address);
  1170. ret |= VM_FAULT_FALLBACK;
  1171. } else {
  1172. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1173. pmd, orig_pmd, page, haddr);
  1174. if (ret & VM_FAULT_OOM) {
  1175. split_huge_pmd(vma, pmd, address);
  1176. ret |= VM_FAULT_FALLBACK;
  1177. }
  1178. put_page(page);
  1179. }
  1180. count_vm_event(THP_FAULT_FALLBACK);
  1181. goto out;
  1182. }
  1183. if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
  1184. true))) {
  1185. put_page(new_page);
  1186. if (page) {
  1187. split_huge_pmd(vma, pmd, address);
  1188. put_page(page);
  1189. } else
  1190. split_huge_pmd(vma, pmd, address);
  1191. ret |= VM_FAULT_FALLBACK;
  1192. count_vm_event(THP_FAULT_FALLBACK);
  1193. goto out;
  1194. }
  1195. count_vm_event(THP_FAULT_ALLOC);
  1196. if (!page)
  1197. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1198. else
  1199. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1200. __SetPageUptodate(new_page);
  1201. mmun_start = haddr;
  1202. mmun_end = haddr + HPAGE_PMD_SIZE;
  1203. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1204. spin_lock(ptl);
  1205. if (page)
  1206. put_page(page);
  1207. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1208. spin_unlock(ptl);
  1209. mem_cgroup_cancel_charge(new_page, memcg, true);
  1210. put_page(new_page);
  1211. goto out_mn;
  1212. } else {
  1213. pmd_t entry;
  1214. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1215. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1216. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1217. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1218. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1219. lru_cache_add_active_or_unevictable(new_page, vma);
  1220. set_pmd_at(mm, haddr, pmd, entry);
  1221. update_mmu_cache_pmd(vma, address, pmd);
  1222. if (!page) {
  1223. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1224. put_huge_zero_page();
  1225. } else {
  1226. VM_BUG_ON_PAGE(!PageHead(page), page);
  1227. page_remove_rmap(page, true);
  1228. put_page(page);
  1229. }
  1230. ret |= VM_FAULT_WRITE;
  1231. }
  1232. spin_unlock(ptl);
  1233. out_mn:
  1234. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1235. out:
  1236. return ret;
  1237. out_unlock:
  1238. spin_unlock(ptl);
  1239. return ret;
  1240. }
  1241. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1242. unsigned long addr,
  1243. pmd_t *pmd,
  1244. unsigned int flags)
  1245. {
  1246. struct mm_struct *mm = vma->vm_mm;
  1247. struct page *page = NULL;
  1248. assert_spin_locked(pmd_lockptr(mm, pmd));
  1249. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1250. goto out;
  1251. /* Avoid dumping huge zero page */
  1252. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1253. return ERR_PTR(-EFAULT);
  1254. /* Full NUMA hinting faults to serialise migration in fault paths */
  1255. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1256. goto out;
  1257. page = pmd_page(*pmd);
  1258. VM_BUG_ON_PAGE(!PageHead(page), page);
  1259. if (flags & FOLL_TOUCH)
  1260. touch_pmd(vma, addr, pmd);
  1261. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1262. /*
  1263. * We don't mlock() pte-mapped THPs. This way we can avoid
  1264. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1265. *
  1266. * In most cases the pmd is the only mapping of the page as we
  1267. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1268. * writable private mappings in populate_vma_page_range().
  1269. *
  1270. * The only scenario when we have the page shared here is if we
  1271. * mlocking read-only mapping shared over fork(). We skip
  1272. * mlocking such pages.
  1273. */
  1274. if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
  1275. page->mapping && trylock_page(page)) {
  1276. lru_add_drain();
  1277. if (page->mapping)
  1278. mlock_vma_page(page);
  1279. unlock_page(page);
  1280. }
  1281. }
  1282. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1283. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1284. if (flags & FOLL_GET)
  1285. get_page(page);
  1286. out:
  1287. return page;
  1288. }
  1289. /* NUMA hinting page fault entry point for trans huge pmds */
  1290. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1291. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1292. {
  1293. spinlock_t *ptl;
  1294. struct anon_vma *anon_vma = NULL;
  1295. struct page *page;
  1296. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1297. int page_nid = -1, this_nid = numa_node_id();
  1298. int target_nid, last_cpupid = -1;
  1299. bool page_locked;
  1300. bool migrated = false;
  1301. bool was_writable;
  1302. int flags = 0;
  1303. /* A PROT_NONE fault should not end up here */
  1304. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1305. ptl = pmd_lock(mm, pmdp);
  1306. if (unlikely(!pmd_same(pmd, *pmdp)))
  1307. goto out_unlock;
  1308. /*
  1309. * If there are potential migrations, wait for completion and retry
  1310. * without disrupting NUMA hinting information. Do not relock and
  1311. * check_same as the page may no longer be mapped.
  1312. */
  1313. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1314. page = pmd_page(*pmdp);
  1315. spin_unlock(ptl);
  1316. wait_on_page_locked(page);
  1317. goto out;
  1318. }
  1319. page = pmd_page(pmd);
  1320. BUG_ON(is_huge_zero_page(page));
  1321. page_nid = page_to_nid(page);
  1322. last_cpupid = page_cpupid_last(page);
  1323. count_vm_numa_event(NUMA_HINT_FAULTS);
  1324. if (page_nid == this_nid) {
  1325. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1326. flags |= TNF_FAULT_LOCAL;
  1327. }
  1328. /* See similar comment in do_numa_page for explanation */
  1329. if (!(vma->vm_flags & VM_WRITE))
  1330. flags |= TNF_NO_GROUP;
  1331. /*
  1332. * Acquire the page lock to serialise THP migrations but avoid dropping
  1333. * page_table_lock if at all possible
  1334. */
  1335. page_locked = trylock_page(page);
  1336. target_nid = mpol_misplaced(page, vma, haddr);
  1337. if (target_nid == -1) {
  1338. /* If the page was locked, there are no parallel migrations */
  1339. if (page_locked)
  1340. goto clear_pmdnuma;
  1341. }
  1342. /* Migration could have started since the pmd_trans_migrating check */
  1343. if (!page_locked) {
  1344. spin_unlock(ptl);
  1345. wait_on_page_locked(page);
  1346. page_nid = -1;
  1347. goto out;
  1348. }
  1349. /*
  1350. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1351. * to serialises splits
  1352. */
  1353. get_page(page);
  1354. spin_unlock(ptl);
  1355. anon_vma = page_lock_anon_vma_read(page);
  1356. /* Confirm the PMD did not change while page_table_lock was released */
  1357. spin_lock(ptl);
  1358. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1359. unlock_page(page);
  1360. put_page(page);
  1361. page_nid = -1;
  1362. goto out_unlock;
  1363. }
  1364. /* Bail if we fail to protect against THP splits for any reason */
  1365. if (unlikely(!anon_vma)) {
  1366. put_page(page);
  1367. page_nid = -1;
  1368. goto clear_pmdnuma;
  1369. }
  1370. /*
  1371. * Migrate the THP to the requested node, returns with page unlocked
  1372. * and access rights restored.
  1373. */
  1374. spin_unlock(ptl);
  1375. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1376. pmdp, pmd, addr, page, target_nid);
  1377. if (migrated) {
  1378. flags |= TNF_MIGRATED;
  1379. page_nid = target_nid;
  1380. } else
  1381. flags |= TNF_MIGRATE_FAIL;
  1382. goto out;
  1383. clear_pmdnuma:
  1384. BUG_ON(!PageLocked(page));
  1385. was_writable = pmd_write(pmd);
  1386. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1387. pmd = pmd_mkyoung(pmd);
  1388. if (was_writable)
  1389. pmd = pmd_mkwrite(pmd);
  1390. set_pmd_at(mm, haddr, pmdp, pmd);
  1391. update_mmu_cache_pmd(vma, addr, pmdp);
  1392. unlock_page(page);
  1393. out_unlock:
  1394. spin_unlock(ptl);
  1395. out:
  1396. if (anon_vma)
  1397. page_unlock_anon_vma_read(anon_vma);
  1398. if (page_nid != -1)
  1399. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1400. return 0;
  1401. }
  1402. int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1403. pmd_t *pmd, unsigned long addr, unsigned long next)
  1404. {
  1405. spinlock_t *ptl;
  1406. pmd_t orig_pmd;
  1407. struct page *page;
  1408. struct mm_struct *mm = tlb->mm;
  1409. int ret = 0;
  1410. ptl = pmd_trans_huge_lock(pmd, vma);
  1411. if (!ptl)
  1412. goto out_unlocked;
  1413. orig_pmd = *pmd;
  1414. if (is_huge_zero_pmd(orig_pmd)) {
  1415. ret = 1;
  1416. goto out;
  1417. }
  1418. page = pmd_page(orig_pmd);
  1419. /*
  1420. * If other processes are mapping this page, we couldn't discard
  1421. * the page unless they all do MADV_FREE so let's skip the page.
  1422. */
  1423. if (page_mapcount(page) != 1)
  1424. goto out;
  1425. if (!trylock_page(page))
  1426. goto out;
  1427. /*
  1428. * If user want to discard part-pages of THP, split it so MADV_FREE
  1429. * will deactivate only them.
  1430. */
  1431. if (next - addr != HPAGE_PMD_SIZE) {
  1432. get_page(page);
  1433. spin_unlock(ptl);
  1434. if (split_huge_page(page)) {
  1435. put_page(page);
  1436. unlock_page(page);
  1437. goto out_unlocked;
  1438. }
  1439. put_page(page);
  1440. unlock_page(page);
  1441. ret = 1;
  1442. goto out_unlocked;
  1443. }
  1444. if (PageDirty(page))
  1445. ClearPageDirty(page);
  1446. unlock_page(page);
  1447. if (PageActive(page))
  1448. deactivate_page(page);
  1449. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1450. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1451. tlb->fullmm);
  1452. orig_pmd = pmd_mkold(orig_pmd);
  1453. orig_pmd = pmd_mkclean(orig_pmd);
  1454. set_pmd_at(mm, addr, pmd, orig_pmd);
  1455. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1456. }
  1457. ret = 1;
  1458. out:
  1459. spin_unlock(ptl);
  1460. out_unlocked:
  1461. return ret;
  1462. }
  1463. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1464. pmd_t *pmd, unsigned long addr)
  1465. {
  1466. pmd_t orig_pmd;
  1467. spinlock_t *ptl;
  1468. ptl = __pmd_trans_huge_lock(pmd, vma);
  1469. if (!ptl)
  1470. return 0;
  1471. /*
  1472. * For architectures like ppc64 we look at deposited pgtable
  1473. * when calling pmdp_huge_get_and_clear. So do the
  1474. * pgtable_trans_huge_withdraw after finishing pmdp related
  1475. * operations.
  1476. */
  1477. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1478. tlb->fullmm);
  1479. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1480. if (vma_is_dax(vma)) {
  1481. spin_unlock(ptl);
  1482. if (is_huge_zero_pmd(orig_pmd))
  1483. tlb_remove_page(tlb, pmd_page(orig_pmd));
  1484. } else if (is_huge_zero_pmd(orig_pmd)) {
  1485. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1486. atomic_long_dec(&tlb->mm->nr_ptes);
  1487. spin_unlock(ptl);
  1488. tlb_remove_page(tlb, pmd_page(orig_pmd));
  1489. } else {
  1490. struct page *page = pmd_page(orig_pmd);
  1491. page_remove_rmap(page, true);
  1492. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1493. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1494. VM_BUG_ON_PAGE(!PageHead(page), page);
  1495. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1496. atomic_long_dec(&tlb->mm->nr_ptes);
  1497. spin_unlock(ptl);
  1498. tlb_remove_page(tlb, page);
  1499. }
  1500. return 1;
  1501. }
  1502. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1503. unsigned long new_addr, unsigned long old_end,
  1504. pmd_t *old_pmd, pmd_t *new_pmd)
  1505. {
  1506. spinlock_t *old_ptl, *new_ptl;
  1507. pmd_t pmd;
  1508. struct mm_struct *mm = vma->vm_mm;
  1509. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1510. (new_addr & ~HPAGE_PMD_MASK) ||
  1511. old_end - old_addr < HPAGE_PMD_SIZE)
  1512. return false;
  1513. /*
  1514. * The destination pmd shouldn't be established, free_pgtables()
  1515. * should have release it.
  1516. */
  1517. if (WARN_ON(!pmd_none(*new_pmd))) {
  1518. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1519. return false;
  1520. }
  1521. /*
  1522. * We don't have to worry about the ordering of src and dst
  1523. * ptlocks because exclusive mmap_sem prevents deadlock.
  1524. */
  1525. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1526. if (old_ptl) {
  1527. new_ptl = pmd_lockptr(mm, new_pmd);
  1528. if (new_ptl != old_ptl)
  1529. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1530. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1531. VM_BUG_ON(!pmd_none(*new_pmd));
  1532. if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
  1533. vma_is_anonymous(vma)) {
  1534. pgtable_t pgtable;
  1535. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1536. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1537. }
  1538. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1539. if (new_ptl != old_ptl)
  1540. spin_unlock(new_ptl);
  1541. spin_unlock(old_ptl);
  1542. return true;
  1543. }
  1544. return false;
  1545. }
  1546. /*
  1547. * Returns
  1548. * - 0 if PMD could not be locked
  1549. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1550. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1551. */
  1552. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1553. unsigned long addr, pgprot_t newprot, int prot_numa)
  1554. {
  1555. struct mm_struct *mm = vma->vm_mm;
  1556. spinlock_t *ptl;
  1557. int ret = 0;
  1558. ptl = __pmd_trans_huge_lock(pmd, vma);
  1559. if (ptl) {
  1560. pmd_t entry;
  1561. bool preserve_write = prot_numa && pmd_write(*pmd);
  1562. ret = 1;
  1563. /*
  1564. * Avoid trapping faults against the zero page. The read-only
  1565. * data is likely to be read-cached on the local CPU and
  1566. * local/remote hits to the zero page are not interesting.
  1567. */
  1568. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1569. spin_unlock(ptl);
  1570. return ret;
  1571. }
  1572. if (!prot_numa || !pmd_protnone(*pmd)) {
  1573. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1574. entry = pmd_modify(entry, newprot);
  1575. if (preserve_write)
  1576. entry = pmd_mkwrite(entry);
  1577. ret = HPAGE_PMD_NR;
  1578. set_pmd_at(mm, addr, pmd, entry);
  1579. BUG_ON(!preserve_write && pmd_write(entry));
  1580. }
  1581. spin_unlock(ptl);
  1582. }
  1583. return ret;
  1584. }
  1585. /*
  1586. * Returns true if a given pmd maps a thp, false otherwise.
  1587. *
  1588. * Note that if it returns true, this routine returns without unlocking page
  1589. * table lock. So callers must unlock it.
  1590. */
  1591. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1592. {
  1593. spinlock_t *ptl;
  1594. ptl = pmd_lock(vma->vm_mm, pmd);
  1595. if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  1596. return ptl;
  1597. spin_unlock(ptl);
  1598. return NULL;
  1599. }
  1600. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1601. int hugepage_madvise(struct vm_area_struct *vma,
  1602. unsigned long *vm_flags, int advice)
  1603. {
  1604. switch (advice) {
  1605. case MADV_HUGEPAGE:
  1606. #ifdef CONFIG_S390
  1607. /*
  1608. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1609. * can't handle this properly after s390_enable_sie, so we simply
  1610. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1611. */
  1612. if (mm_has_pgste(vma->vm_mm))
  1613. return 0;
  1614. #endif
  1615. /*
  1616. * Be somewhat over-protective like KSM for now!
  1617. */
  1618. if (*vm_flags & VM_NO_THP)
  1619. return -EINVAL;
  1620. *vm_flags &= ~VM_NOHUGEPAGE;
  1621. *vm_flags |= VM_HUGEPAGE;
  1622. /*
  1623. * If the vma become good for khugepaged to scan,
  1624. * register it here without waiting a page fault that
  1625. * may not happen any time soon.
  1626. */
  1627. if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
  1628. return -ENOMEM;
  1629. break;
  1630. case MADV_NOHUGEPAGE:
  1631. /*
  1632. * Be somewhat over-protective like KSM for now!
  1633. */
  1634. if (*vm_flags & VM_NO_THP)
  1635. return -EINVAL;
  1636. *vm_flags &= ~VM_HUGEPAGE;
  1637. *vm_flags |= VM_NOHUGEPAGE;
  1638. /*
  1639. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1640. * this vma even if we leave the mm registered in khugepaged if
  1641. * it got registered before VM_NOHUGEPAGE was set.
  1642. */
  1643. break;
  1644. }
  1645. return 0;
  1646. }
  1647. static int __init khugepaged_slab_init(void)
  1648. {
  1649. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1650. sizeof(struct mm_slot),
  1651. __alignof__(struct mm_slot), 0, NULL);
  1652. if (!mm_slot_cache)
  1653. return -ENOMEM;
  1654. return 0;
  1655. }
  1656. static void __init khugepaged_slab_exit(void)
  1657. {
  1658. kmem_cache_destroy(mm_slot_cache);
  1659. }
  1660. static inline struct mm_slot *alloc_mm_slot(void)
  1661. {
  1662. if (!mm_slot_cache) /* initialization failed */
  1663. return NULL;
  1664. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1665. }
  1666. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1667. {
  1668. kmem_cache_free(mm_slot_cache, mm_slot);
  1669. }
  1670. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1671. {
  1672. struct mm_slot *mm_slot;
  1673. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1674. if (mm == mm_slot->mm)
  1675. return mm_slot;
  1676. return NULL;
  1677. }
  1678. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1679. struct mm_slot *mm_slot)
  1680. {
  1681. mm_slot->mm = mm;
  1682. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1683. }
  1684. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1685. {
  1686. return atomic_read(&mm->mm_users) == 0;
  1687. }
  1688. int __khugepaged_enter(struct mm_struct *mm)
  1689. {
  1690. struct mm_slot *mm_slot;
  1691. int wakeup;
  1692. mm_slot = alloc_mm_slot();
  1693. if (!mm_slot)
  1694. return -ENOMEM;
  1695. /* __khugepaged_exit() must not run from under us */
  1696. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  1697. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1698. free_mm_slot(mm_slot);
  1699. return 0;
  1700. }
  1701. spin_lock(&khugepaged_mm_lock);
  1702. insert_to_mm_slots_hash(mm, mm_slot);
  1703. /*
  1704. * Insert just behind the scanning cursor, to let the area settle
  1705. * down a little.
  1706. */
  1707. wakeup = list_empty(&khugepaged_scan.mm_head);
  1708. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1709. spin_unlock(&khugepaged_mm_lock);
  1710. atomic_inc(&mm->mm_count);
  1711. if (wakeup)
  1712. wake_up_interruptible(&khugepaged_wait);
  1713. return 0;
  1714. }
  1715. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  1716. unsigned long vm_flags)
  1717. {
  1718. unsigned long hstart, hend;
  1719. if (!vma->anon_vma)
  1720. /*
  1721. * Not yet faulted in so we will register later in the
  1722. * page fault if needed.
  1723. */
  1724. return 0;
  1725. if (vma->vm_ops || (vm_flags & VM_NO_THP))
  1726. /* khugepaged not yet working on file or special mappings */
  1727. return 0;
  1728. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1729. hend = vma->vm_end & HPAGE_PMD_MASK;
  1730. if (hstart < hend)
  1731. return khugepaged_enter(vma, vm_flags);
  1732. return 0;
  1733. }
  1734. void __khugepaged_exit(struct mm_struct *mm)
  1735. {
  1736. struct mm_slot *mm_slot;
  1737. int free = 0;
  1738. spin_lock(&khugepaged_mm_lock);
  1739. mm_slot = get_mm_slot(mm);
  1740. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1741. hash_del(&mm_slot->hash);
  1742. list_del(&mm_slot->mm_node);
  1743. free = 1;
  1744. }
  1745. spin_unlock(&khugepaged_mm_lock);
  1746. if (free) {
  1747. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1748. free_mm_slot(mm_slot);
  1749. mmdrop(mm);
  1750. } else if (mm_slot) {
  1751. /*
  1752. * This is required to serialize against
  1753. * khugepaged_test_exit() (which is guaranteed to run
  1754. * under mmap sem read mode). Stop here (after we
  1755. * return all pagetables will be destroyed) until
  1756. * khugepaged has finished working on the pagetables
  1757. * under the mmap_sem.
  1758. */
  1759. down_write(&mm->mmap_sem);
  1760. up_write(&mm->mmap_sem);
  1761. }
  1762. }
  1763. static void release_pte_page(struct page *page)
  1764. {
  1765. /* 0 stands for page_is_file_cache(page) == false */
  1766. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1767. unlock_page(page);
  1768. putback_lru_page(page);
  1769. }
  1770. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1771. {
  1772. while (--_pte >= pte) {
  1773. pte_t pteval = *_pte;
  1774. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  1775. release_pte_page(pte_page(pteval));
  1776. }
  1777. }
  1778. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1779. unsigned long address,
  1780. pte_t *pte)
  1781. {
  1782. struct page *page = NULL;
  1783. pte_t *_pte;
  1784. int none_or_zero = 0, result = 0;
  1785. bool referenced = false, writable = false;
  1786. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1787. _pte++, address += PAGE_SIZE) {
  1788. pte_t pteval = *_pte;
  1789. if (pte_none(pteval) || (pte_present(pteval) &&
  1790. is_zero_pfn(pte_pfn(pteval)))) {
  1791. if (!userfaultfd_armed(vma) &&
  1792. ++none_or_zero <= khugepaged_max_ptes_none) {
  1793. continue;
  1794. } else {
  1795. result = SCAN_EXCEED_NONE_PTE;
  1796. goto out;
  1797. }
  1798. }
  1799. if (!pte_present(pteval)) {
  1800. result = SCAN_PTE_NON_PRESENT;
  1801. goto out;
  1802. }
  1803. page = vm_normal_page(vma, address, pteval);
  1804. if (unlikely(!page)) {
  1805. result = SCAN_PAGE_NULL;
  1806. goto out;
  1807. }
  1808. VM_BUG_ON_PAGE(PageCompound(page), page);
  1809. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1810. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1811. /*
  1812. * We can do it before isolate_lru_page because the
  1813. * page can't be freed from under us. NOTE: PG_lock
  1814. * is needed to serialize against split_huge_page
  1815. * when invoked from the VM.
  1816. */
  1817. if (!trylock_page(page)) {
  1818. result = SCAN_PAGE_LOCK;
  1819. goto out;
  1820. }
  1821. /*
  1822. * cannot use mapcount: can't collapse if there's a gup pin.
  1823. * The page must only be referenced by the scanned process
  1824. * and page swap cache.
  1825. */
  1826. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1827. unlock_page(page);
  1828. result = SCAN_PAGE_COUNT;
  1829. goto out;
  1830. }
  1831. if (pte_write(pteval)) {
  1832. writable = true;
  1833. } else {
  1834. if (PageSwapCache(page) &&
  1835. !reuse_swap_page(page, NULL)) {
  1836. unlock_page(page);
  1837. result = SCAN_SWAP_CACHE_PAGE;
  1838. goto out;
  1839. }
  1840. /*
  1841. * Page is not in the swap cache. It can be collapsed
  1842. * into a THP.
  1843. */
  1844. }
  1845. /*
  1846. * Isolate the page to avoid collapsing an hugepage
  1847. * currently in use by the VM.
  1848. */
  1849. if (isolate_lru_page(page)) {
  1850. unlock_page(page);
  1851. result = SCAN_DEL_PAGE_LRU;
  1852. goto out;
  1853. }
  1854. /* 0 stands for page_is_file_cache(page) == false */
  1855. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1856. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1857. VM_BUG_ON_PAGE(PageLRU(page), page);
  1858. /* If there is no mapped pte young don't collapse the page */
  1859. if (pte_young(pteval) ||
  1860. page_is_young(page) || PageReferenced(page) ||
  1861. mmu_notifier_test_young(vma->vm_mm, address))
  1862. referenced = true;
  1863. }
  1864. if (likely(writable)) {
  1865. if (likely(referenced)) {
  1866. result = SCAN_SUCCEED;
  1867. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1868. referenced, writable, result);
  1869. return 1;
  1870. }
  1871. } else {
  1872. result = SCAN_PAGE_RO;
  1873. }
  1874. out:
  1875. release_pte_pages(pte, _pte);
  1876. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1877. referenced, writable, result);
  1878. return 0;
  1879. }
  1880. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1881. struct vm_area_struct *vma,
  1882. unsigned long address,
  1883. spinlock_t *ptl)
  1884. {
  1885. pte_t *_pte;
  1886. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1887. pte_t pteval = *_pte;
  1888. struct page *src_page;
  1889. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1890. clear_user_highpage(page, address);
  1891. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1892. if (is_zero_pfn(pte_pfn(pteval))) {
  1893. /*
  1894. * ptl mostly unnecessary.
  1895. */
  1896. spin_lock(ptl);
  1897. /*
  1898. * paravirt calls inside pte_clear here are
  1899. * superfluous.
  1900. */
  1901. pte_clear(vma->vm_mm, address, _pte);
  1902. spin_unlock(ptl);
  1903. }
  1904. } else {
  1905. src_page = pte_page(pteval);
  1906. copy_user_highpage(page, src_page, address, vma);
  1907. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1908. release_pte_page(src_page);
  1909. /*
  1910. * ptl mostly unnecessary, but preempt has to
  1911. * be disabled to update the per-cpu stats
  1912. * inside page_remove_rmap().
  1913. */
  1914. spin_lock(ptl);
  1915. /*
  1916. * paravirt calls inside pte_clear here are
  1917. * superfluous.
  1918. */
  1919. pte_clear(vma->vm_mm, address, _pte);
  1920. page_remove_rmap(src_page, false);
  1921. spin_unlock(ptl);
  1922. free_page_and_swap_cache(src_page);
  1923. }
  1924. address += PAGE_SIZE;
  1925. page++;
  1926. }
  1927. }
  1928. static void khugepaged_alloc_sleep(void)
  1929. {
  1930. DEFINE_WAIT(wait);
  1931. add_wait_queue(&khugepaged_wait, &wait);
  1932. freezable_schedule_timeout_interruptible(
  1933. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1934. remove_wait_queue(&khugepaged_wait, &wait);
  1935. }
  1936. static int khugepaged_node_load[MAX_NUMNODES];
  1937. static bool khugepaged_scan_abort(int nid)
  1938. {
  1939. int i;
  1940. /*
  1941. * If zone_reclaim_mode is disabled, then no extra effort is made to
  1942. * allocate memory locally.
  1943. */
  1944. if (!zone_reclaim_mode)
  1945. return false;
  1946. /* If there is a count for this node already, it must be acceptable */
  1947. if (khugepaged_node_load[nid])
  1948. return false;
  1949. for (i = 0; i < MAX_NUMNODES; i++) {
  1950. if (!khugepaged_node_load[i])
  1951. continue;
  1952. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  1953. return true;
  1954. }
  1955. return false;
  1956. }
  1957. #ifdef CONFIG_NUMA
  1958. static int khugepaged_find_target_node(void)
  1959. {
  1960. static int last_khugepaged_target_node = NUMA_NO_NODE;
  1961. int nid, target_node = 0, max_value = 0;
  1962. /* find first node with max normal pages hit */
  1963. for (nid = 0; nid < MAX_NUMNODES; nid++)
  1964. if (khugepaged_node_load[nid] > max_value) {
  1965. max_value = khugepaged_node_load[nid];
  1966. target_node = nid;
  1967. }
  1968. /* do some balance if several nodes have the same hit record */
  1969. if (target_node <= last_khugepaged_target_node)
  1970. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  1971. nid++)
  1972. if (max_value == khugepaged_node_load[nid]) {
  1973. target_node = nid;
  1974. break;
  1975. }
  1976. last_khugepaged_target_node = target_node;
  1977. return target_node;
  1978. }
  1979. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1980. {
  1981. if (IS_ERR(*hpage)) {
  1982. if (!*wait)
  1983. return false;
  1984. *wait = false;
  1985. *hpage = NULL;
  1986. khugepaged_alloc_sleep();
  1987. } else if (*hpage) {
  1988. put_page(*hpage);
  1989. *hpage = NULL;
  1990. }
  1991. return true;
  1992. }
  1993. static struct page *
  1994. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  1995. unsigned long address, int node)
  1996. {
  1997. VM_BUG_ON_PAGE(*hpage, *hpage);
  1998. /*
  1999. * Before allocating the hugepage, release the mmap_sem read lock.
  2000. * The allocation can take potentially a long time if it involves
  2001. * sync compaction, and we do not need to hold the mmap_sem during
  2002. * that. We will recheck the vma after taking it again in write mode.
  2003. */
  2004. up_read(&mm->mmap_sem);
  2005. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  2006. if (unlikely(!*hpage)) {
  2007. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2008. *hpage = ERR_PTR(-ENOMEM);
  2009. return NULL;
  2010. }
  2011. prep_transhuge_page(*hpage);
  2012. count_vm_event(THP_COLLAPSE_ALLOC);
  2013. return *hpage;
  2014. }
  2015. #else
  2016. static int khugepaged_find_target_node(void)
  2017. {
  2018. return 0;
  2019. }
  2020. static inline struct page *alloc_khugepaged_hugepage(void)
  2021. {
  2022. struct page *page;
  2023. page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
  2024. HPAGE_PMD_ORDER);
  2025. if (page)
  2026. prep_transhuge_page(page);
  2027. return page;
  2028. }
  2029. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2030. {
  2031. struct page *hpage;
  2032. do {
  2033. hpage = alloc_khugepaged_hugepage();
  2034. if (!hpage) {
  2035. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2036. if (!*wait)
  2037. return NULL;
  2038. *wait = false;
  2039. khugepaged_alloc_sleep();
  2040. } else
  2041. count_vm_event(THP_COLLAPSE_ALLOC);
  2042. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2043. return hpage;
  2044. }
  2045. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2046. {
  2047. if (!*hpage)
  2048. *hpage = khugepaged_alloc_hugepage(wait);
  2049. if (unlikely(!*hpage))
  2050. return false;
  2051. return true;
  2052. }
  2053. static struct page *
  2054. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2055. unsigned long address, int node)
  2056. {
  2057. up_read(&mm->mmap_sem);
  2058. VM_BUG_ON(!*hpage);
  2059. return *hpage;
  2060. }
  2061. #endif
  2062. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2063. {
  2064. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2065. (vma->vm_flags & VM_NOHUGEPAGE))
  2066. return false;
  2067. if (!vma->anon_vma || vma->vm_ops)
  2068. return false;
  2069. if (is_vma_temporary_stack(vma))
  2070. return false;
  2071. return !(vma->vm_flags & VM_NO_THP);
  2072. }
  2073. static void collapse_huge_page(struct mm_struct *mm,
  2074. unsigned long address,
  2075. struct page **hpage,
  2076. struct vm_area_struct *vma,
  2077. int node)
  2078. {
  2079. pmd_t *pmd, _pmd;
  2080. pte_t *pte;
  2081. pgtable_t pgtable;
  2082. struct page *new_page;
  2083. spinlock_t *pmd_ptl, *pte_ptl;
  2084. int isolated = 0, result = 0;
  2085. unsigned long hstart, hend;
  2086. struct mem_cgroup *memcg;
  2087. unsigned long mmun_start; /* For mmu_notifiers */
  2088. unsigned long mmun_end; /* For mmu_notifiers */
  2089. gfp_t gfp;
  2090. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2091. /* Only allocate from the target node */
  2092. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
  2093. /* release the mmap_sem read lock. */
  2094. new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
  2095. if (!new_page) {
  2096. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  2097. goto out_nolock;
  2098. }
  2099. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  2100. result = SCAN_CGROUP_CHARGE_FAIL;
  2101. goto out_nolock;
  2102. }
  2103. /*
  2104. * Prevent all access to pagetables with the exception of
  2105. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2106. * handled by the anon_vma lock + PG_lock.
  2107. */
  2108. down_write(&mm->mmap_sem);
  2109. if (unlikely(khugepaged_test_exit(mm))) {
  2110. result = SCAN_ANY_PROCESS;
  2111. goto out;
  2112. }
  2113. vma = find_vma(mm, address);
  2114. if (!vma) {
  2115. result = SCAN_VMA_NULL;
  2116. goto out;
  2117. }
  2118. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2119. hend = vma->vm_end & HPAGE_PMD_MASK;
  2120. if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
  2121. result = SCAN_ADDRESS_RANGE;
  2122. goto out;
  2123. }
  2124. if (!hugepage_vma_check(vma)) {
  2125. result = SCAN_VMA_CHECK;
  2126. goto out;
  2127. }
  2128. pmd = mm_find_pmd(mm, address);
  2129. if (!pmd) {
  2130. result = SCAN_PMD_NULL;
  2131. goto out;
  2132. }
  2133. anon_vma_lock_write(vma->anon_vma);
  2134. pte = pte_offset_map(pmd, address);
  2135. pte_ptl = pte_lockptr(mm, pmd);
  2136. mmun_start = address;
  2137. mmun_end = address + HPAGE_PMD_SIZE;
  2138. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2139. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2140. /*
  2141. * After this gup_fast can't run anymore. This also removes
  2142. * any huge TLB entry from the CPU so we won't allow
  2143. * huge and small TLB entries for the same virtual address
  2144. * to avoid the risk of CPU bugs in that area.
  2145. */
  2146. _pmd = pmdp_collapse_flush(vma, address, pmd);
  2147. spin_unlock(pmd_ptl);
  2148. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2149. spin_lock(pte_ptl);
  2150. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2151. spin_unlock(pte_ptl);
  2152. if (unlikely(!isolated)) {
  2153. pte_unmap(pte);
  2154. spin_lock(pmd_ptl);
  2155. BUG_ON(!pmd_none(*pmd));
  2156. /*
  2157. * We can only use set_pmd_at when establishing
  2158. * hugepmds and never for establishing regular pmds that
  2159. * points to regular pagetables. Use pmd_populate for that
  2160. */
  2161. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2162. spin_unlock(pmd_ptl);
  2163. anon_vma_unlock_write(vma->anon_vma);
  2164. result = SCAN_FAIL;
  2165. goto out;
  2166. }
  2167. /*
  2168. * All pages are isolated and locked so anon_vma rmap
  2169. * can't run anymore.
  2170. */
  2171. anon_vma_unlock_write(vma->anon_vma);
  2172. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2173. pte_unmap(pte);
  2174. __SetPageUptodate(new_page);
  2175. pgtable = pmd_pgtable(_pmd);
  2176. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2177. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2178. /*
  2179. * spin_lock() below is not the equivalent of smp_wmb(), so
  2180. * this is needed to avoid the copy_huge_page writes to become
  2181. * visible after the set_pmd_at() write.
  2182. */
  2183. smp_wmb();
  2184. spin_lock(pmd_ptl);
  2185. BUG_ON(!pmd_none(*pmd));
  2186. page_add_new_anon_rmap(new_page, vma, address, true);
  2187. mem_cgroup_commit_charge(new_page, memcg, false, true);
  2188. lru_cache_add_active_or_unevictable(new_page, vma);
  2189. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2190. set_pmd_at(mm, address, pmd, _pmd);
  2191. update_mmu_cache_pmd(vma, address, pmd);
  2192. spin_unlock(pmd_ptl);
  2193. *hpage = NULL;
  2194. khugepaged_pages_collapsed++;
  2195. result = SCAN_SUCCEED;
  2196. out_up_write:
  2197. up_write(&mm->mmap_sem);
  2198. trace_mm_collapse_huge_page(mm, isolated, result);
  2199. return;
  2200. out_nolock:
  2201. trace_mm_collapse_huge_page(mm, isolated, result);
  2202. return;
  2203. out:
  2204. mem_cgroup_cancel_charge(new_page, memcg, true);
  2205. goto out_up_write;
  2206. }
  2207. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2208. struct vm_area_struct *vma,
  2209. unsigned long address,
  2210. struct page **hpage)
  2211. {
  2212. pmd_t *pmd;
  2213. pte_t *pte, *_pte;
  2214. int ret = 0, none_or_zero = 0, result = 0;
  2215. struct page *page = NULL;
  2216. unsigned long _address;
  2217. spinlock_t *ptl;
  2218. int node = NUMA_NO_NODE;
  2219. bool writable = false, referenced = false;
  2220. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2221. pmd = mm_find_pmd(mm, address);
  2222. if (!pmd) {
  2223. result = SCAN_PMD_NULL;
  2224. goto out;
  2225. }
  2226. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2227. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2228. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2229. _pte++, _address += PAGE_SIZE) {
  2230. pte_t pteval = *_pte;
  2231. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2232. if (!userfaultfd_armed(vma) &&
  2233. ++none_or_zero <= khugepaged_max_ptes_none) {
  2234. continue;
  2235. } else {
  2236. result = SCAN_EXCEED_NONE_PTE;
  2237. goto out_unmap;
  2238. }
  2239. }
  2240. if (!pte_present(pteval)) {
  2241. result = SCAN_PTE_NON_PRESENT;
  2242. goto out_unmap;
  2243. }
  2244. if (pte_write(pteval))
  2245. writable = true;
  2246. page = vm_normal_page(vma, _address, pteval);
  2247. if (unlikely(!page)) {
  2248. result = SCAN_PAGE_NULL;
  2249. goto out_unmap;
  2250. }
  2251. /* TODO: teach khugepaged to collapse THP mapped with pte */
  2252. if (PageCompound(page)) {
  2253. result = SCAN_PAGE_COMPOUND;
  2254. goto out_unmap;
  2255. }
  2256. /*
  2257. * Record which node the original page is from and save this
  2258. * information to khugepaged_node_load[].
  2259. * Khupaged will allocate hugepage from the node has the max
  2260. * hit record.
  2261. */
  2262. node = page_to_nid(page);
  2263. if (khugepaged_scan_abort(node)) {
  2264. result = SCAN_SCAN_ABORT;
  2265. goto out_unmap;
  2266. }
  2267. khugepaged_node_load[node]++;
  2268. if (!PageLRU(page)) {
  2269. result = SCAN_PAGE_LRU;
  2270. goto out_unmap;
  2271. }
  2272. if (PageLocked(page)) {
  2273. result = SCAN_PAGE_LOCK;
  2274. goto out_unmap;
  2275. }
  2276. if (!PageAnon(page)) {
  2277. result = SCAN_PAGE_ANON;
  2278. goto out_unmap;
  2279. }
  2280. /*
  2281. * cannot use mapcount: can't collapse if there's a gup pin.
  2282. * The page must only be referenced by the scanned process
  2283. * and page swap cache.
  2284. */
  2285. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  2286. result = SCAN_PAGE_COUNT;
  2287. goto out_unmap;
  2288. }
  2289. if (pte_young(pteval) ||
  2290. page_is_young(page) || PageReferenced(page) ||
  2291. mmu_notifier_test_young(vma->vm_mm, address))
  2292. referenced = true;
  2293. }
  2294. if (writable) {
  2295. if (referenced) {
  2296. result = SCAN_SUCCEED;
  2297. ret = 1;
  2298. } else {
  2299. result = SCAN_NO_REFERENCED_PAGE;
  2300. }
  2301. } else {
  2302. result = SCAN_PAGE_RO;
  2303. }
  2304. out_unmap:
  2305. pte_unmap_unlock(pte, ptl);
  2306. if (ret) {
  2307. node = khugepaged_find_target_node();
  2308. /* collapse_huge_page will return with the mmap_sem released */
  2309. collapse_huge_page(mm, address, hpage, vma, node);
  2310. }
  2311. out:
  2312. trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
  2313. none_or_zero, result);
  2314. return ret;
  2315. }
  2316. static void collect_mm_slot(struct mm_slot *mm_slot)
  2317. {
  2318. struct mm_struct *mm = mm_slot->mm;
  2319. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2320. if (khugepaged_test_exit(mm)) {
  2321. /* free mm_slot */
  2322. hash_del(&mm_slot->hash);
  2323. list_del(&mm_slot->mm_node);
  2324. /*
  2325. * Not strictly needed because the mm exited already.
  2326. *
  2327. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2328. */
  2329. /* khugepaged_mm_lock actually not necessary for the below */
  2330. free_mm_slot(mm_slot);
  2331. mmdrop(mm);
  2332. }
  2333. }
  2334. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2335. struct page **hpage)
  2336. __releases(&khugepaged_mm_lock)
  2337. __acquires(&khugepaged_mm_lock)
  2338. {
  2339. struct mm_slot *mm_slot;
  2340. struct mm_struct *mm;
  2341. struct vm_area_struct *vma;
  2342. int progress = 0;
  2343. VM_BUG_ON(!pages);
  2344. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2345. if (khugepaged_scan.mm_slot)
  2346. mm_slot = khugepaged_scan.mm_slot;
  2347. else {
  2348. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2349. struct mm_slot, mm_node);
  2350. khugepaged_scan.address = 0;
  2351. khugepaged_scan.mm_slot = mm_slot;
  2352. }
  2353. spin_unlock(&khugepaged_mm_lock);
  2354. mm = mm_slot->mm;
  2355. down_read(&mm->mmap_sem);
  2356. if (unlikely(khugepaged_test_exit(mm)))
  2357. vma = NULL;
  2358. else
  2359. vma = find_vma(mm, khugepaged_scan.address);
  2360. progress++;
  2361. for (; vma; vma = vma->vm_next) {
  2362. unsigned long hstart, hend;
  2363. cond_resched();
  2364. if (unlikely(khugepaged_test_exit(mm))) {
  2365. progress++;
  2366. break;
  2367. }
  2368. if (!hugepage_vma_check(vma)) {
  2369. skip:
  2370. progress++;
  2371. continue;
  2372. }
  2373. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2374. hend = vma->vm_end & HPAGE_PMD_MASK;
  2375. if (hstart >= hend)
  2376. goto skip;
  2377. if (khugepaged_scan.address > hend)
  2378. goto skip;
  2379. if (khugepaged_scan.address < hstart)
  2380. khugepaged_scan.address = hstart;
  2381. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2382. while (khugepaged_scan.address < hend) {
  2383. int ret;
  2384. cond_resched();
  2385. if (unlikely(khugepaged_test_exit(mm)))
  2386. goto breakouterloop;
  2387. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2388. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2389. hend);
  2390. ret = khugepaged_scan_pmd(mm, vma,
  2391. khugepaged_scan.address,
  2392. hpage);
  2393. /* move to next address */
  2394. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2395. progress += HPAGE_PMD_NR;
  2396. if (ret)
  2397. /* we released mmap_sem so break loop */
  2398. goto breakouterloop_mmap_sem;
  2399. if (progress >= pages)
  2400. goto breakouterloop;
  2401. }
  2402. }
  2403. breakouterloop:
  2404. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2405. breakouterloop_mmap_sem:
  2406. spin_lock(&khugepaged_mm_lock);
  2407. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2408. /*
  2409. * Release the current mm_slot if this mm is about to die, or
  2410. * if we scanned all vmas of this mm.
  2411. */
  2412. if (khugepaged_test_exit(mm) || !vma) {
  2413. /*
  2414. * Make sure that if mm_users is reaching zero while
  2415. * khugepaged runs here, khugepaged_exit will find
  2416. * mm_slot not pointing to the exiting mm.
  2417. */
  2418. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2419. khugepaged_scan.mm_slot = list_entry(
  2420. mm_slot->mm_node.next,
  2421. struct mm_slot, mm_node);
  2422. khugepaged_scan.address = 0;
  2423. } else {
  2424. khugepaged_scan.mm_slot = NULL;
  2425. khugepaged_full_scans++;
  2426. }
  2427. collect_mm_slot(mm_slot);
  2428. }
  2429. return progress;
  2430. }
  2431. static int khugepaged_has_work(void)
  2432. {
  2433. return !list_empty(&khugepaged_scan.mm_head) &&
  2434. khugepaged_enabled();
  2435. }
  2436. static int khugepaged_wait_event(void)
  2437. {
  2438. return !list_empty(&khugepaged_scan.mm_head) ||
  2439. kthread_should_stop();
  2440. }
  2441. static void khugepaged_do_scan(void)
  2442. {
  2443. struct page *hpage = NULL;
  2444. unsigned int progress = 0, pass_through_head = 0;
  2445. unsigned int pages = khugepaged_pages_to_scan;
  2446. bool wait = true;
  2447. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2448. while (progress < pages) {
  2449. if (!khugepaged_prealloc_page(&hpage, &wait))
  2450. break;
  2451. cond_resched();
  2452. if (unlikely(kthread_should_stop() || try_to_freeze()))
  2453. break;
  2454. spin_lock(&khugepaged_mm_lock);
  2455. if (!khugepaged_scan.mm_slot)
  2456. pass_through_head++;
  2457. if (khugepaged_has_work() &&
  2458. pass_through_head < 2)
  2459. progress += khugepaged_scan_mm_slot(pages - progress,
  2460. &hpage);
  2461. else
  2462. progress = pages;
  2463. spin_unlock(&khugepaged_mm_lock);
  2464. }
  2465. if (!IS_ERR_OR_NULL(hpage))
  2466. put_page(hpage);
  2467. }
  2468. static bool khugepaged_should_wakeup(void)
  2469. {
  2470. return kthread_should_stop() ||
  2471. time_after_eq(jiffies, khugepaged_sleep_expire);
  2472. }
  2473. static void khugepaged_wait_work(void)
  2474. {
  2475. if (khugepaged_has_work()) {
  2476. const unsigned long scan_sleep_jiffies =
  2477. msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
  2478. if (!scan_sleep_jiffies)
  2479. return;
  2480. khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
  2481. wait_event_freezable_timeout(khugepaged_wait,
  2482. khugepaged_should_wakeup(),
  2483. scan_sleep_jiffies);
  2484. return;
  2485. }
  2486. if (khugepaged_enabled())
  2487. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2488. }
  2489. static int khugepaged(void *none)
  2490. {
  2491. struct mm_slot *mm_slot;
  2492. set_freezable();
  2493. set_user_nice(current, MAX_NICE);
  2494. while (!kthread_should_stop()) {
  2495. khugepaged_do_scan();
  2496. khugepaged_wait_work();
  2497. }
  2498. spin_lock(&khugepaged_mm_lock);
  2499. mm_slot = khugepaged_scan.mm_slot;
  2500. khugepaged_scan.mm_slot = NULL;
  2501. if (mm_slot)
  2502. collect_mm_slot(mm_slot);
  2503. spin_unlock(&khugepaged_mm_lock);
  2504. return 0;
  2505. }
  2506. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2507. unsigned long haddr, pmd_t *pmd)
  2508. {
  2509. struct mm_struct *mm = vma->vm_mm;
  2510. pgtable_t pgtable;
  2511. pmd_t _pmd;
  2512. int i;
  2513. /* leave pmd empty until pte is filled */
  2514. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2515. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2516. pmd_populate(mm, &_pmd, pgtable);
  2517. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2518. pte_t *pte, entry;
  2519. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2520. entry = pte_mkspecial(entry);
  2521. pte = pte_offset_map(&_pmd, haddr);
  2522. VM_BUG_ON(!pte_none(*pte));
  2523. set_pte_at(mm, haddr, pte, entry);
  2524. pte_unmap(pte);
  2525. }
  2526. smp_wmb(); /* make pte visible before pmd */
  2527. pmd_populate(mm, pmd, pgtable);
  2528. put_huge_zero_page();
  2529. }
  2530. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  2531. unsigned long haddr, bool freeze)
  2532. {
  2533. struct mm_struct *mm = vma->vm_mm;
  2534. struct page *page;
  2535. pgtable_t pgtable;
  2536. pmd_t _pmd;
  2537. bool young, write, dirty;
  2538. unsigned long addr;
  2539. int i;
  2540. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  2541. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  2542. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  2543. VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
  2544. count_vm_event(THP_SPLIT_PMD);
  2545. if (vma_is_dax(vma)) {
  2546. pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2547. if (is_huge_zero_pmd(_pmd))
  2548. put_huge_zero_page();
  2549. return;
  2550. } else if (is_huge_zero_pmd(*pmd)) {
  2551. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  2552. }
  2553. page = pmd_page(*pmd);
  2554. VM_BUG_ON_PAGE(!page_count(page), page);
  2555. page_ref_add(page, HPAGE_PMD_NR - 1);
  2556. write = pmd_write(*pmd);
  2557. young = pmd_young(*pmd);
  2558. dirty = pmd_dirty(*pmd);
  2559. pmdp_huge_split_prepare(vma, haddr, pmd);
  2560. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2561. pmd_populate(mm, &_pmd, pgtable);
  2562. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  2563. pte_t entry, *pte;
  2564. /*
  2565. * Note that NUMA hinting access restrictions are not
  2566. * transferred to avoid any possibility of altering
  2567. * permissions across VMAs.
  2568. */
  2569. if (freeze) {
  2570. swp_entry_t swp_entry;
  2571. swp_entry = make_migration_entry(page + i, write);
  2572. entry = swp_entry_to_pte(swp_entry);
  2573. } else {
  2574. entry = mk_pte(page + i, vma->vm_page_prot);
  2575. entry = maybe_mkwrite(entry, vma);
  2576. if (!write)
  2577. entry = pte_wrprotect(entry);
  2578. if (!young)
  2579. entry = pte_mkold(entry);
  2580. }
  2581. if (dirty)
  2582. SetPageDirty(page + i);
  2583. pte = pte_offset_map(&_pmd, addr);
  2584. BUG_ON(!pte_none(*pte));
  2585. set_pte_at(mm, addr, pte, entry);
  2586. atomic_inc(&page[i]._mapcount);
  2587. pte_unmap(pte);
  2588. }
  2589. /*
  2590. * Set PG_double_map before dropping compound_mapcount to avoid
  2591. * false-negative page_mapped().
  2592. */
  2593. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  2594. for (i = 0; i < HPAGE_PMD_NR; i++)
  2595. atomic_inc(&page[i]._mapcount);
  2596. }
  2597. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  2598. /* Last compound_mapcount is gone. */
  2599. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  2600. if (TestClearPageDoubleMap(page)) {
  2601. /* No need in mapcount reference anymore */
  2602. for (i = 0; i < HPAGE_PMD_NR; i++)
  2603. atomic_dec(&page[i]._mapcount);
  2604. }
  2605. }
  2606. smp_wmb(); /* make pte visible before pmd */
  2607. /*
  2608. * Up to this point the pmd is present and huge and userland has the
  2609. * whole access to the hugepage during the split (which happens in
  2610. * place). If we overwrite the pmd with the not-huge version pointing
  2611. * to the pte here (which of course we could if all CPUs were bug
  2612. * free), userland could trigger a small page size TLB miss on the
  2613. * small sized TLB while the hugepage TLB entry is still established in
  2614. * the huge TLB. Some CPU doesn't like that.
  2615. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  2616. * 383 on page 93. Intel should be safe but is also warns that it's
  2617. * only safe if the permission and cache attributes of the two entries
  2618. * loaded in the two TLB is identical (which should be the case here).
  2619. * But it is generally safer to never allow small and huge TLB entries
  2620. * for the same virtual address to be loaded simultaneously. So instead
  2621. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  2622. * current pmd notpresent (atomically because here the pmd_trans_huge
  2623. * and pmd_trans_splitting must remain set at all times on the pmd
  2624. * until the split is complete for this pmd), then we flush the SMP TLB
  2625. * and finally we write the non-huge version of the pmd entry with
  2626. * pmd_populate.
  2627. */
  2628. pmdp_invalidate(vma, haddr, pmd);
  2629. pmd_populate(mm, pmd, pgtable);
  2630. if (freeze) {
  2631. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2632. page_remove_rmap(page + i, false);
  2633. put_page(page + i);
  2634. }
  2635. }
  2636. }
  2637. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  2638. unsigned long address, bool freeze)
  2639. {
  2640. spinlock_t *ptl;
  2641. struct mm_struct *mm = vma->vm_mm;
  2642. unsigned long haddr = address & HPAGE_PMD_MASK;
  2643. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2644. ptl = pmd_lock(mm, pmd);
  2645. if (pmd_trans_huge(*pmd)) {
  2646. struct page *page = pmd_page(*pmd);
  2647. if (PageMlocked(page))
  2648. clear_page_mlock(page);
  2649. } else if (!pmd_devmap(*pmd))
  2650. goto out;
  2651. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  2652. out:
  2653. spin_unlock(ptl);
  2654. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2655. }
  2656. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  2657. bool freeze, struct page *page)
  2658. {
  2659. pgd_t *pgd;
  2660. pud_t *pud;
  2661. pmd_t *pmd;
  2662. pgd = pgd_offset(vma->vm_mm, address);
  2663. if (!pgd_present(*pgd))
  2664. return;
  2665. pud = pud_offset(pgd, address);
  2666. if (!pud_present(*pud))
  2667. return;
  2668. pmd = pmd_offset(pud, address);
  2669. if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
  2670. return;
  2671. /*
  2672. * If caller asks to setup a migration entries, we need a page to check
  2673. * pmd against. Otherwise we can end up replacing wrong page.
  2674. */
  2675. VM_BUG_ON(freeze && !page);
  2676. if (page && page != pmd_page(*pmd))
  2677. return;
  2678. /*
  2679. * Caller holds the mmap_sem write mode or the anon_vma lock,
  2680. * so a huge pmd cannot materialize from under us (khugepaged
  2681. * holds both the mmap_sem write mode and the anon_vma lock
  2682. * write mode).
  2683. */
  2684. __split_huge_pmd(vma, pmd, address, freeze);
  2685. }
  2686. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2687. unsigned long start,
  2688. unsigned long end,
  2689. long adjust_next)
  2690. {
  2691. /*
  2692. * If the new start address isn't hpage aligned and it could
  2693. * previously contain an hugepage: check if we need to split
  2694. * an huge pmd.
  2695. */
  2696. if (start & ~HPAGE_PMD_MASK &&
  2697. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2698. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2699. split_huge_pmd_address(vma, start, false, NULL);
  2700. /*
  2701. * If the new end address isn't hpage aligned and it could
  2702. * previously contain an hugepage: check if we need to split
  2703. * an huge pmd.
  2704. */
  2705. if (end & ~HPAGE_PMD_MASK &&
  2706. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2707. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2708. split_huge_pmd_address(vma, end, false, NULL);
  2709. /*
  2710. * If we're also updating the vma->vm_next->vm_start, if the new
  2711. * vm_next->vm_start isn't page aligned and it could previously
  2712. * contain an hugepage: check if we need to split an huge pmd.
  2713. */
  2714. if (adjust_next > 0) {
  2715. struct vm_area_struct *next = vma->vm_next;
  2716. unsigned long nstart = next->vm_start;
  2717. nstart += adjust_next << PAGE_SHIFT;
  2718. if (nstart & ~HPAGE_PMD_MASK &&
  2719. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2720. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2721. split_huge_pmd_address(next, nstart, false, NULL);
  2722. }
  2723. }
  2724. static void freeze_page(struct page *page)
  2725. {
  2726. enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
  2727. TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
  2728. int i, ret;
  2729. VM_BUG_ON_PAGE(!PageHead(page), page);
  2730. /* We only need TTU_SPLIT_HUGE_PMD once */
  2731. ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
  2732. for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
  2733. /* Cut short if the page is unmapped */
  2734. if (page_count(page) == 1)
  2735. return;
  2736. ret = try_to_unmap(page + i, ttu_flags);
  2737. }
  2738. VM_BUG_ON(ret);
  2739. }
  2740. static void unfreeze_page(struct page *page)
  2741. {
  2742. int i;
  2743. for (i = 0; i < HPAGE_PMD_NR; i++)
  2744. remove_migration_ptes(page + i, page + i, true);
  2745. }
  2746. static void __split_huge_page_tail(struct page *head, int tail,
  2747. struct lruvec *lruvec, struct list_head *list)
  2748. {
  2749. struct page *page_tail = head + tail;
  2750. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2751. VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
  2752. /*
  2753. * tail_page->_refcount is zero and not changing from under us. But
  2754. * get_page_unless_zero() may be running from under us on the
  2755. * tail_page. If we used atomic_set() below instead of atomic_inc(), we
  2756. * would then run atomic_set() concurrently with
  2757. * get_page_unless_zero(), and atomic_set() is implemented in C not
  2758. * using locked ops. spin_unlock on x86 sometime uses locked ops
  2759. * because of PPro errata 66, 92, so unless somebody can guarantee
  2760. * atomic_set() here would be safe on all archs (and not only on x86),
  2761. * it's safer to use atomic_inc().
  2762. */
  2763. page_ref_inc(page_tail);
  2764. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2765. page_tail->flags |= (head->flags &
  2766. ((1L << PG_referenced) |
  2767. (1L << PG_swapbacked) |
  2768. (1L << PG_mlocked) |
  2769. (1L << PG_uptodate) |
  2770. (1L << PG_active) |
  2771. (1L << PG_locked) |
  2772. (1L << PG_unevictable) |
  2773. (1L << PG_dirty)));
  2774. /*
  2775. * After clearing PageTail the gup refcount can be released.
  2776. * Page flags also must be visible before we make the page non-compound.
  2777. */
  2778. smp_wmb();
  2779. clear_compound_head(page_tail);
  2780. if (page_is_young(head))
  2781. set_page_young(page_tail);
  2782. if (page_is_idle(head))
  2783. set_page_idle(page_tail);
  2784. /* ->mapping in first tail page is compound_mapcount */
  2785. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2786. page_tail);
  2787. page_tail->mapping = head->mapping;
  2788. page_tail->index = head->index + tail;
  2789. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2790. lru_add_page_tail(head, page_tail, lruvec, list);
  2791. }
  2792. static void __split_huge_page(struct page *page, struct list_head *list)
  2793. {
  2794. struct page *head = compound_head(page);
  2795. struct zone *zone = page_zone(head);
  2796. struct lruvec *lruvec;
  2797. int i;
  2798. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2799. spin_lock_irq(&zone->lru_lock);
  2800. lruvec = mem_cgroup_page_lruvec(head, zone);
  2801. /* complete memcg works before add pages to LRU */
  2802. mem_cgroup_split_huge_fixup(head);
  2803. for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
  2804. __split_huge_page_tail(head, i, lruvec, list);
  2805. ClearPageCompound(head);
  2806. spin_unlock_irq(&zone->lru_lock);
  2807. unfreeze_page(head);
  2808. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2809. struct page *subpage = head + i;
  2810. if (subpage == page)
  2811. continue;
  2812. unlock_page(subpage);
  2813. /*
  2814. * Subpages may be freed if there wasn't any mapping
  2815. * like if add_to_swap() is running on a lru page that
  2816. * had its mapping zapped. And freeing these pages
  2817. * requires taking the lru_lock so we do the put_page
  2818. * of the tail pages after the split is complete.
  2819. */
  2820. put_page(subpage);
  2821. }
  2822. }
  2823. int total_mapcount(struct page *page)
  2824. {
  2825. int i, ret;
  2826. VM_BUG_ON_PAGE(PageTail(page), page);
  2827. if (likely(!PageCompound(page)))
  2828. return atomic_read(&page->_mapcount) + 1;
  2829. ret = compound_mapcount(page);
  2830. if (PageHuge(page))
  2831. return ret;
  2832. for (i = 0; i < HPAGE_PMD_NR; i++)
  2833. ret += atomic_read(&page[i]._mapcount) + 1;
  2834. if (PageDoubleMap(page))
  2835. ret -= HPAGE_PMD_NR;
  2836. return ret;
  2837. }
  2838. /*
  2839. * This calculates accurately how many mappings a transparent hugepage
  2840. * has (unlike page_mapcount() which isn't fully accurate). This full
  2841. * accuracy is primarily needed to know if copy-on-write faults can
  2842. * reuse the page and change the mapping to read-write instead of
  2843. * copying them. At the same time this returns the total_mapcount too.
  2844. *
  2845. * The function returns the highest mapcount any one of the subpages
  2846. * has. If the return value is one, even if different processes are
  2847. * mapping different subpages of the transparent hugepage, they can
  2848. * all reuse it, because each process is reusing a different subpage.
  2849. *
  2850. * The total_mapcount is instead counting all virtual mappings of the
  2851. * subpages. If the total_mapcount is equal to "one", it tells the
  2852. * caller all mappings belong to the same "mm" and in turn the
  2853. * anon_vma of the transparent hugepage can become the vma->anon_vma
  2854. * local one as no other process may be mapping any of the subpages.
  2855. *
  2856. * It would be more accurate to replace page_mapcount() with
  2857. * page_trans_huge_mapcount(), however we only use
  2858. * page_trans_huge_mapcount() in the copy-on-write faults where we
  2859. * need full accuracy to avoid breaking page pinning, because
  2860. * page_trans_huge_mapcount() is slower than page_mapcount().
  2861. */
  2862. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  2863. {
  2864. int i, ret, _total_mapcount, mapcount;
  2865. /* hugetlbfs shouldn't call it */
  2866. VM_BUG_ON_PAGE(PageHuge(page), page);
  2867. if (likely(!PageTransCompound(page))) {
  2868. mapcount = atomic_read(&page->_mapcount) + 1;
  2869. if (total_mapcount)
  2870. *total_mapcount = mapcount;
  2871. return mapcount;
  2872. }
  2873. page = compound_head(page);
  2874. _total_mapcount = ret = 0;
  2875. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2876. mapcount = atomic_read(&page[i]._mapcount) + 1;
  2877. ret = max(ret, mapcount);
  2878. _total_mapcount += mapcount;
  2879. }
  2880. if (PageDoubleMap(page)) {
  2881. ret -= 1;
  2882. _total_mapcount -= HPAGE_PMD_NR;
  2883. }
  2884. mapcount = compound_mapcount(page);
  2885. ret += mapcount;
  2886. _total_mapcount += mapcount;
  2887. if (total_mapcount)
  2888. *total_mapcount = _total_mapcount;
  2889. return ret;
  2890. }
  2891. /*
  2892. * This function splits huge page into normal pages. @page can point to any
  2893. * subpage of huge page to split. Split doesn't change the position of @page.
  2894. *
  2895. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2896. * The huge page must be locked.
  2897. *
  2898. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2899. *
  2900. * Both head page and tail pages will inherit mapping, flags, and so on from
  2901. * the hugepage.
  2902. *
  2903. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2904. * they are not mapped.
  2905. *
  2906. * Returns 0 if the hugepage is split successfully.
  2907. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2908. * us.
  2909. */
  2910. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2911. {
  2912. struct page *head = compound_head(page);
  2913. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2914. struct anon_vma *anon_vma;
  2915. int count, mapcount, ret;
  2916. bool mlocked;
  2917. unsigned long flags;
  2918. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2919. VM_BUG_ON_PAGE(!PageAnon(page), page);
  2920. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2921. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  2922. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2923. /*
  2924. * The caller does not necessarily hold an mmap_sem that would prevent
  2925. * the anon_vma disappearing so we first we take a reference to it
  2926. * and then lock the anon_vma for write. This is similar to
  2927. * page_lock_anon_vma_read except the write lock is taken to serialise
  2928. * against parallel split or collapse operations.
  2929. */
  2930. anon_vma = page_get_anon_vma(head);
  2931. if (!anon_vma) {
  2932. ret = -EBUSY;
  2933. goto out;
  2934. }
  2935. anon_vma_lock_write(anon_vma);
  2936. /*
  2937. * Racy check if we can split the page, before freeze_page() will
  2938. * split PMDs
  2939. */
  2940. if (total_mapcount(head) != page_count(head) - 1) {
  2941. ret = -EBUSY;
  2942. goto out_unlock;
  2943. }
  2944. mlocked = PageMlocked(page);
  2945. freeze_page(head);
  2946. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2947. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2948. if (mlocked)
  2949. lru_add_drain();
  2950. /* Prevent deferred_split_scan() touching ->_refcount */
  2951. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2952. count = page_count(head);
  2953. mapcount = total_mapcount(head);
  2954. if (!mapcount && count == 1) {
  2955. if (!list_empty(page_deferred_list(head))) {
  2956. pgdata->split_queue_len--;
  2957. list_del(page_deferred_list(head));
  2958. }
  2959. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2960. __split_huge_page(page, list);
  2961. ret = 0;
  2962. } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  2963. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2964. pr_alert("total_mapcount: %u, page_count(): %u\n",
  2965. mapcount, count);
  2966. if (PageTail(page))
  2967. dump_page(head, NULL);
  2968. dump_page(page, "total_mapcount(head) > 0");
  2969. BUG();
  2970. } else {
  2971. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2972. unfreeze_page(head);
  2973. ret = -EBUSY;
  2974. }
  2975. out_unlock:
  2976. anon_vma_unlock_write(anon_vma);
  2977. put_anon_vma(anon_vma);
  2978. out:
  2979. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2980. return ret;
  2981. }
  2982. void free_transhuge_page(struct page *page)
  2983. {
  2984. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2985. unsigned long flags;
  2986. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2987. if (!list_empty(page_deferred_list(page))) {
  2988. pgdata->split_queue_len--;
  2989. list_del(page_deferred_list(page));
  2990. }
  2991. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2992. free_compound_page(page);
  2993. }
  2994. void deferred_split_huge_page(struct page *page)
  2995. {
  2996. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2997. unsigned long flags;
  2998. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2999. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3000. if (list_empty(page_deferred_list(page))) {
  3001. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  3002. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  3003. pgdata->split_queue_len++;
  3004. }
  3005. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3006. }
  3007. static unsigned long deferred_split_count(struct shrinker *shrink,
  3008. struct shrink_control *sc)
  3009. {
  3010. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  3011. return ACCESS_ONCE(pgdata->split_queue_len);
  3012. }
  3013. static unsigned long deferred_split_scan(struct shrinker *shrink,
  3014. struct shrink_control *sc)
  3015. {
  3016. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  3017. unsigned long flags;
  3018. LIST_HEAD(list), *pos, *next;
  3019. struct page *page;
  3020. int split = 0;
  3021. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3022. /* Take pin on all head pages to avoid freeing them under us */
  3023. list_for_each_safe(pos, next, &pgdata->split_queue) {
  3024. page = list_entry((void *)pos, struct page, mapping);
  3025. page = compound_head(page);
  3026. if (get_page_unless_zero(page)) {
  3027. list_move(page_deferred_list(page), &list);
  3028. } else {
  3029. /* We lost race with put_compound_page() */
  3030. list_del_init(page_deferred_list(page));
  3031. pgdata->split_queue_len--;
  3032. }
  3033. if (!--sc->nr_to_scan)
  3034. break;
  3035. }
  3036. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3037. list_for_each_safe(pos, next, &list) {
  3038. page = list_entry((void *)pos, struct page, mapping);
  3039. lock_page(page);
  3040. /* split_huge_page() removes page from list on success */
  3041. if (!split_huge_page(page))
  3042. split++;
  3043. unlock_page(page);
  3044. put_page(page);
  3045. }
  3046. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3047. list_splice_tail(&list, &pgdata->split_queue);
  3048. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3049. /*
  3050. * Stop shrinker if we didn't split any page, but the queue is empty.
  3051. * This can happen if pages were freed under us.
  3052. */
  3053. if (!split && list_empty(&pgdata->split_queue))
  3054. return SHRINK_STOP;
  3055. return split;
  3056. }
  3057. static struct shrinker deferred_split_shrinker = {
  3058. .count_objects = deferred_split_count,
  3059. .scan_objects = deferred_split_scan,
  3060. .seeks = DEFAULT_SEEKS,
  3061. .flags = SHRINKER_NUMA_AWARE,
  3062. };
  3063. #ifdef CONFIG_DEBUG_FS
  3064. static int split_huge_pages_set(void *data, u64 val)
  3065. {
  3066. struct zone *zone;
  3067. struct page *page;
  3068. unsigned long pfn, max_zone_pfn;
  3069. unsigned long total = 0, split = 0;
  3070. if (val != 1)
  3071. return -EINVAL;
  3072. for_each_populated_zone(zone) {
  3073. max_zone_pfn = zone_end_pfn(zone);
  3074. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  3075. if (!pfn_valid(pfn))
  3076. continue;
  3077. page = pfn_to_page(pfn);
  3078. if (!get_page_unless_zero(page))
  3079. continue;
  3080. if (zone != page_zone(page))
  3081. goto next;
  3082. if (!PageHead(page) || !PageAnon(page) ||
  3083. PageHuge(page))
  3084. goto next;
  3085. total++;
  3086. lock_page(page);
  3087. if (!split_huge_page(page))
  3088. split++;
  3089. unlock_page(page);
  3090. next:
  3091. put_page(page);
  3092. }
  3093. }
  3094. pr_info("%lu of %lu THP split\n", split, total);
  3095. return 0;
  3096. }
  3097. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  3098. "%llu\n");
  3099. static int __init split_huge_pages_debugfs(void)
  3100. {
  3101. void *ret;
  3102. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  3103. &split_huge_pages_fops);
  3104. if (!ret)
  3105. pr_warn("Failed to create split_huge_pages in debugfs");
  3106. return 0;
  3107. }
  3108. late_initcall(split_huge_pages_debugfs);
  3109. #endif