task_mmu.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759
  1. #include <linux/mm.h>
  2. #include <linux/vmacache.h>
  3. #include <linux/hugetlb.h>
  4. #include <linux/huge_mm.h>
  5. #include <linux/mount.h>
  6. #include <linux/seq_file.h>
  7. #include <linux/highmem.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/mempolicy.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/swapops.h>
  15. #include <linux/mmu_notifier.h>
  16. #include <linux/page_idle.h>
  17. #include <linux/shmem_fs.h>
  18. #include <asm/elf.h>
  19. #include <asm/uaccess.h>
  20. #include <asm/tlbflush.h>
  21. #include "internal.h"
  22. void task_mem(struct seq_file *m, struct mm_struct *mm)
  23. {
  24. unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
  25. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  26. anon = get_mm_counter(mm, MM_ANONPAGES);
  27. file = get_mm_counter(mm, MM_FILEPAGES);
  28. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  29. /*
  30. * Note: to minimize their overhead, mm maintains hiwater_vm and
  31. * hiwater_rss only when about to *lower* total_vm or rss. Any
  32. * collector of these hiwater stats must therefore get total_vm
  33. * and rss too, which will usually be the higher. Barriers? not
  34. * worth the effort, such snapshots can always be inconsistent.
  35. */
  36. hiwater_vm = total_vm = mm->total_vm;
  37. if (hiwater_vm < mm->hiwater_vm)
  38. hiwater_vm = mm->hiwater_vm;
  39. hiwater_rss = total_rss = anon + file + shmem;
  40. if (hiwater_rss < mm->hiwater_rss)
  41. hiwater_rss = mm->hiwater_rss;
  42. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  43. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  44. swap = get_mm_counter(mm, MM_SWAPENTS);
  45. ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
  46. pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
  47. seq_printf(m,
  48. "VmPeak:\t%8lu kB\n"
  49. "VmSize:\t%8lu kB\n"
  50. "VmLck:\t%8lu kB\n"
  51. "VmPin:\t%8lu kB\n"
  52. "VmHWM:\t%8lu kB\n"
  53. "VmRSS:\t%8lu kB\n"
  54. "RssAnon:\t%8lu kB\n"
  55. "RssFile:\t%8lu kB\n"
  56. "RssShmem:\t%8lu kB\n"
  57. "VmData:\t%8lu kB\n"
  58. "VmStk:\t%8lu kB\n"
  59. "VmExe:\t%8lu kB\n"
  60. "VmLib:\t%8lu kB\n"
  61. "VmPTE:\t%8lu kB\n"
  62. "VmPMD:\t%8lu kB\n"
  63. "VmSwap:\t%8lu kB\n",
  64. hiwater_vm << (PAGE_SHIFT-10),
  65. total_vm << (PAGE_SHIFT-10),
  66. mm->locked_vm << (PAGE_SHIFT-10),
  67. mm->pinned_vm << (PAGE_SHIFT-10),
  68. hiwater_rss << (PAGE_SHIFT-10),
  69. total_rss << (PAGE_SHIFT-10),
  70. anon << (PAGE_SHIFT-10),
  71. file << (PAGE_SHIFT-10),
  72. shmem << (PAGE_SHIFT-10),
  73. mm->data_vm << (PAGE_SHIFT-10),
  74. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  75. ptes >> 10,
  76. pmds >> 10,
  77. swap << (PAGE_SHIFT-10));
  78. hugetlb_report_usage(m, mm);
  79. }
  80. unsigned long task_vsize(struct mm_struct *mm)
  81. {
  82. return PAGE_SIZE * mm->total_vm;
  83. }
  84. unsigned long task_statm(struct mm_struct *mm,
  85. unsigned long *shared, unsigned long *text,
  86. unsigned long *data, unsigned long *resident)
  87. {
  88. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  89. get_mm_counter(mm, MM_SHMEMPAGES);
  90. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  91. >> PAGE_SHIFT;
  92. *data = mm->data_vm + mm->stack_vm;
  93. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  94. return mm->total_vm;
  95. }
  96. #ifdef CONFIG_NUMA
  97. /*
  98. * Save get_task_policy() for show_numa_map().
  99. */
  100. static void hold_task_mempolicy(struct proc_maps_private *priv)
  101. {
  102. struct task_struct *task = priv->task;
  103. task_lock(task);
  104. priv->task_mempolicy = get_task_policy(task);
  105. mpol_get(priv->task_mempolicy);
  106. task_unlock(task);
  107. }
  108. static void release_task_mempolicy(struct proc_maps_private *priv)
  109. {
  110. mpol_put(priv->task_mempolicy);
  111. }
  112. #else
  113. static void hold_task_mempolicy(struct proc_maps_private *priv)
  114. {
  115. }
  116. static void release_task_mempolicy(struct proc_maps_private *priv)
  117. {
  118. }
  119. #endif
  120. static void vma_stop(struct proc_maps_private *priv)
  121. {
  122. struct mm_struct *mm = priv->mm;
  123. release_task_mempolicy(priv);
  124. up_read(&mm->mmap_sem);
  125. mmput(mm);
  126. }
  127. static struct vm_area_struct *
  128. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  129. {
  130. if (vma == priv->tail_vma)
  131. return NULL;
  132. return vma->vm_next ?: priv->tail_vma;
  133. }
  134. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  135. {
  136. if (m->count < m->size) /* vma is copied successfully */
  137. m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
  138. }
  139. static void *m_start(struct seq_file *m, loff_t *ppos)
  140. {
  141. struct proc_maps_private *priv = m->private;
  142. unsigned long last_addr = m->version;
  143. struct mm_struct *mm;
  144. struct vm_area_struct *vma;
  145. unsigned int pos = *ppos;
  146. /* See m_cache_vma(). Zero at the start or after lseek. */
  147. if (last_addr == -1UL)
  148. return NULL;
  149. priv->task = get_proc_task(priv->inode);
  150. if (!priv->task)
  151. return ERR_PTR(-ESRCH);
  152. mm = priv->mm;
  153. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  154. return NULL;
  155. down_read(&mm->mmap_sem);
  156. hold_task_mempolicy(priv);
  157. priv->tail_vma = get_gate_vma(mm);
  158. if (last_addr) {
  159. vma = find_vma(mm, last_addr);
  160. if (vma && (vma = m_next_vma(priv, vma)))
  161. return vma;
  162. }
  163. m->version = 0;
  164. if (pos < mm->map_count) {
  165. for (vma = mm->mmap; pos; pos--) {
  166. m->version = vma->vm_start;
  167. vma = vma->vm_next;
  168. }
  169. return vma;
  170. }
  171. /* we do not bother to update m->version in this case */
  172. if (pos == mm->map_count && priv->tail_vma)
  173. return priv->tail_vma;
  174. vma_stop(priv);
  175. return NULL;
  176. }
  177. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  178. {
  179. struct proc_maps_private *priv = m->private;
  180. struct vm_area_struct *next;
  181. (*pos)++;
  182. next = m_next_vma(priv, v);
  183. if (!next)
  184. vma_stop(priv);
  185. return next;
  186. }
  187. static void m_stop(struct seq_file *m, void *v)
  188. {
  189. struct proc_maps_private *priv = m->private;
  190. if (!IS_ERR_OR_NULL(v))
  191. vma_stop(priv);
  192. if (priv->task) {
  193. put_task_struct(priv->task);
  194. priv->task = NULL;
  195. }
  196. }
  197. static int proc_maps_open(struct inode *inode, struct file *file,
  198. const struct seq_operations *ops, int psize)
  199. {
  200. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  201. if (!priv)
  202. return -ENOMEM;
  203. priv->inode = inode;
  204. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  205. if (IS_ERR(priv->mm)) {
  206. int err = PTR_ERR(priv->mm);
  207. seq_release_private(inode, file);
  208. return err;
  209. }
  210. return 0;
  211. }
  212. static int proc_map_release(struct inode *inode, struct file *file)
  213. {
  214. struct seq_file *seq = file->private_data;
  215. struct proc_maps_private *priv = seq->private;
  216. if (priv->mm)
  217. mmdrop(priv->mm);
  218. return seq_release_private(inode, file);
  219. }
  220. static int do_maps_open(struct inode *inode, struct file *file,
  221. const struct seq_operations *ops)
  222. {
  223. return proc_maps_open(inode, file, ops,
  224. sizeof(struct proc_maps_private));
  225. }
  226. /*
  227. * Indicate if the VMA is a stack for the given task; for
  228. * /proc/PID/maps that is the stack of the main task.
  229. */
  230. static int is_stack(struct proc_maps_private *priv,
  231. struct vm_area_struct *vma, int is_pid)
  232. {
  233. int stack = 0;
  234. if (is_pid) {
  235. stack = vma->vm_start <= vma->vm_mm->start_stack &&
  236. vma->vm_end >= vma->vm_mm->start_stack;
  237. } else {
  238. struct inode *inode = priv->inode;
  239. struct task_struct *task;
  240. rcu_read_lock();
  241. task = pid_task(proc_pid(inode), PIDTYPE_PID);
  242. if (task)
  243. stack = vma_is_stack_for_task(vma, task);
  244. rcu_read_unlock();
  245. }
  246. return stack;
  247. }
  248. static void
  249. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  250. {
  251. struct mm_struct *mm = vma->vm_mm;
  252. struct file *file = vma->vm_file;
  253. struct proc_maps_private *priv = m->private;
  254. vm_flags_t flags = vma->vm_flags;
  255. unsigned long ino = 0;
  256. unsigned long long pgoff = 0;
  257. unsigned long start, end;
  258. dev_t dev = 0;
  259. const char *name = NULL;
  260. if (file) {
  261. struct inode *inode = file_inode(vma->vm_file);
  262. dev = inode->i_sb->s_dev;
  263. ino = inode->i_ino;
  264. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  265. }
  266. /* We don't show the stack guard page in /proc/maps */
  267. start = vma->vm_start;
  268. if (stack_guard_page_start(vma, start))
  269. start += PAGE_SIZE;
  270. end = vma->vm_end;
  271. if (stack_guard_page_end(vma, end))
  272. end -= PAGE_SIZE;
  273. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  274. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  275. start,
  276. end,
  277. flags & VM_READ ? 'r' : '-',
  278. flags & VM_WRITE ? 'w' : '-',
  279. flags & VM_EXEC ? 'x' : '-',
  280. flags & VM_MAYSHARE ? 's' : 'p',
  281. pgoff,
  282. MAJOR(dev), MINOR(dev), ino);
  283. /*
  284. * Print the dentry name for named mappings, and a
  285. * special [heap] marker for the heap:
  286. */
  287. if (file) {
  288. seq_pad(m, ' ');
  289. seq_file_path(m, file, "\n");
  290. goto done;
  291. }
  292. if (vma->vm_ops && vma->vm_ops->name) {
  293. name = vma->vm_ops->name(vma);
  294. if (name)
  295. goto done;
  296. }
  297. name = arch_vma_name(vma);
  298. if (!name) {
  299. if (!mm) {
  300. name = "[vdso]";
  301. goto done;
  302. }
  303. if (vma->vm_start <= mm->brk &&
  304. vma->vm_end >= mm->start_brk) {
  305. name = "[heap]";
  306. goto done;
  307. }
  308. if (is_stack(priv, vma, is_pid))
  309. name = "[stack]";
  310. }
  311. done:
  312. if (name) {
  313. seq_pad(m, ' ');
  314. seq_puts(m, name);
  315. }
  316. seq_putc(m, '\n');
  317. }
  318. static int show_map(struct seq_file *m, void *v, int is_pid)
  319. {
  320. show_map_vma(m, v, is_pid);
  321. m_cache_vma(m, v);
  322. return 0;
  323. }
  324. static int show_pid_map(struct seq_file *m, void *v)
  325. {
  326. return show_map(m, v, 1);
  327. }
  328. static int show_tid_map(struct seq_file *m, void *v)
  329. {
  330. return show_map(m, v, 0);
  331. }
  332. static const struct seq_operations proc_pid_maps_op = {
  333. .start = m_start,
  334. .next = m_next,
  335. .stop = m_stop,
  336. .show = show_pid_map
  337. };
  338. static const struct seq_operations proc_tid_maps_op = {
  339. .start = m_start,
  340. .next = m_next,
  341. .stop = m_stop,
  342. .show = show_tid_map
  343. };
  344. static int pid_maps_open(struct inode *inode, struct file *file)
  345. {
  346. return do_maps_open(inode, file, &proc_pid_maps_op);
  347. }
  348. static int tid_maps_open(struct inode *inode, struct file *file)
  349. {
  350. return do_maps_open(inode, file, &proc_tid_maps_op);
  351. }
  352. const struct file_operations proc_pid_maps_operations = {
  353. .open = pid_maps_open,
  354. .read = seq_read,
  355. .llseek = seq_lseek,
  356. .release = proc_map_release,
  357. };
  358. const struct file_operations proc_tid_maps_operations = {
  359. .open = tid_maps_open,
  360. .read = seq_read,
  361. .llseek = seq_lseek,
  362. .release = proc_map_release,
  363. };
  364. /*
  365. * Proportional Set Size(PSS): my share of RSS.
  366. *
  367. * PSS of a process is the count of pages it has in memory, where each
  368. * page is divided by the number of processes sharing it. So if a
  369. * process has 1000 pages all to itself, and 1000 shared with one other
  370. * process, its PSS will be 1500.
  371. *
  372. * To keep (accumulated) division errors low, we adopt a 64bit
  373. * fixed-point pss counter to minimize division errors. So (pss >>
  374. * PSS_SHIFT) would be the real byte count.
  375. *
  376. * A shift of 12 before division means (assuming 4K page size):
  377. * - 1M 3-user-pages add up to 8KB errors;
  378. * - supports mapcount up to 2^24, or 16M;
  379. * - supports PSS up to 2^52 bytes, or 4PB.
  380. */
  381. #define PSS_SHIFT 12
  382. #ifdef CONFIG_PROC_PAGE_MONITOR
  383. struct mem_size_stats {
  384. unsigned long resident;
  385. unsigned long shared_clean;
  386. unsigned long shared_dirty;
  387. unsigned long private_clean;
  388. unsigned long private_dirty;
  389. unsigned long referenced;
  390. unsigned long anonymous;
  391. unsigned long anonymous_thp;
  392. unsigned long swap;
  393. unsigned long shared_hugetlb;
  394. unsigned long private_hugetlb;
  395. u64 pss;
  396. u64 swap_pss;
  397. bool check_shmem_swap;
  398. };
  399. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  400. bool compound, bool young, bool dirty)
  401. {
  402. int i, nr = compound ? 1 << compound_order(page) : 1;
  403. unsigned long size = nr * PAGE_SIZE;
  404. if (PageAnon(page))
  405. mss->anonymous += size;
  406. mss->resident += size;
  407. /* Accumulate the size in pages that have been accessed. */
  408. if (young || page_is_young(page) || PageReferenced(page))
  409. mss->referenced += size;
  410. /*
  411. * page_count(page) == 1 guarantees the page is mapped exactly once.
  412. * If any subpage of the compound page mapped with PTE it would elevate
  413. * page_count().
  414. */
  415. if (page_count(page) == 1) {
  416. if (dirty || PageDirty(page))
  417. mss->private_dirty += size;
  418. else
  419. mss->private_clean += size;
  420. mss->pss += (u64)size << PSS_SHIFT;
  421. return;
  422. }
  423. for (i = 0; i < nr; i++, page++) {
  424. int mapcount = page_mapcount(page);
  425. if (mapcount >= 2) {
  426. if (dirty || PageDirty(page))
  427. mss->shared_dirty += PAGE_SIZE;
  428. else
  429. mss->shared_clean += PAGE_SIZE;
  430. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  431. } else {
  432. if (dirty || PageDirty(page))
  433. mss->private_dirty += PAGE_SIZE;
  434. else
  435. mss->private_clean += PAGE_SIZE;
  436. mss->pss += PAGE_SIZE << PSS_SHIFT;
  437. }
  438. }
  439. }
  440. #ifdef CONFIG_SHMEM
  441. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  442. struct mm_walk *walk)
  443. {
  444. struct mem_size_stats *mss = walk->private;
  445. mss->swap += shmem_partial_swap_usage(
  446. walk->vma->vm_file->f_mapping, addr, end);
  447. return 0;
  448. }
  449. #endif
  450. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  451. struct mm_walk *walk)
  452. {
  453. struct mem_size_stats *mss = walk->private;
  454. struct vm_area_struct *vma = walk->vma;
  455. struct page *page = NULL;
  456. if (pte_present(*pte)) {
  457. page = vm_normal_page(vma, addr, *pte);
  458. } else if (is_swap_pte(*pte)) {
  459. swp_entry_t swpent = pte_to_swp_entry(*pte);
  460. if (!non_swap_entry(swpent)) {
  461. int mapcount;
  462. mss->swap += PAGE_SIZE;
  463. mapcount = swp_swapcount(swpent);
  464. if (mapcount >= 2) {
  465. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  466. do_div(pss_delta, mapcount);
  467. mss->swap_pss += pss_delta;
  468. } else {
  469. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  470. }
  471. } else if (is_migration_entry(swpent))
  472. page = migration_entry_to_page(swpent);
  473. } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
  474. && pte_none(*pte))) {
  475. page = find_get_entry(vma->vm_file->f_mapping,
  476. linear_page_index(vma, addr));
  477. if (!page)
  478. return;
  479. if (radix_tree_exceptional_entry(page))
  480. mss->swap += PAGE_SIZE;
  481. else
  482. put_page(page);
  483. return;
  484. }
  485. if (!page)
  486. return;
  487. smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
  488. }
  489. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  490. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  491. struct mm_walk *walk)
  492. {
  493. struct mem_size_stats *mss = walk->private;
  494. struct vm_area_struct *vma = walk->vma;
  495. struct page *page;
  496. /* FOLL_DUMP will return -EFAULT on huge zero page */
  497. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  498. if (IS_ERR_OR_NULL(page))
  499. return;
  500. mss->anonymous_thp += HPAGE_PMD_SIZE;
  501. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
  502. }
  503. #else
  504. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  505. struct mm_walk *walk)
  506. {
  507. }
  508. #endif
  509. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  510. struct mm_walk *walk)
  511. {
  512. struct vm_area_struct *vma = walk->vma;
  513. pte_t *pte;
  514. spinlock_t *ptl;
  515. ptl = pmd_trans_huge_lock(pmd, vma);
  516. if (ptl) {
  517. smaps_pmd_entry(pmd, addr, walk);
  518. spin_unlock(ptl);
  519. return 0;
  520. }
  521. if (pmd_trans_unstable(pmd))
  522. return 0;
  523. /*
  524. * The mmap_sem held all the way back in m_start() is what
  525. * keeps khugepaged out of here and from collapsing things
  526. * in here.
  527. */
  528. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  529. for (; addr != end; pte++, addr += PAGE_SIZE)
  530. smaps_pte_entry(pte, addr, walk);
  531. pte_unmap_unlock(pte - 1, ptl);
  532. cond_resched();
  533. return 0;
  534. }
  535. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  536. {
  537. /*
  538. * Don't forget to update Documentation/ on changes.
  539. */
  540. static const char mnemonics[BITS_PER_LONG][2] = {
  541. /*
  542. * In case if we meet a flag we don't know about.
  543. */
  544. [0 ... (BITS_PER_LONG-1)] = "??",
  545. [ilog2(VM_READ)] = "rd",
  546. [ilog2(VM_WRITE)] = "wr",
  547. [ilog2(VM_EXEC)] = "ex",
  548. [ilog2(VM_SHARED)] = "sh",
  549. [ilog2(VM_MAYREAD)] = "mr",
  550. [ilog2(VM_MAYWRITE)] = "mw",
  551. [ilog2(VM_MAYEXEC)] = "me",
  552. [ilog2(VM_MAYSHARE)] = "ms",
  553. [ilog2(VM_GROWSDOWN)] = "gd",
  554. [ilog2(VM_PFNMAP)] = "pf",
  555. [ilog2(VM_DENYWRITE)] = "dw",
  556. #ifdef CONFIG_X86_INTEL_MPX
  557. [ilog2(VM_MPX)] = "mp",
  558. #endif
  559. [ilog2(VM_LOCKED)] = "lo",
  560. [ilog2(VM_IO)] = "io",
  561. [ilog2(VM_SEQ_READ)] = "sr",
  562. [ilog2(VM_RAND_READ)] = "rr",
  563. [ilog2(VM_DONTCOPY)] = "dc",
  564. [ilog2(VM_DONTEXPAND)] = "de",
  565. [ilog2(VM_ACCOUNT)] = "ac",
  566. [ilog2(VM_NORESERVE)] = "nr",
  567. [ilog2(VM_HUGETLB)] = "ht",
  568. [ilog2(VM_ARCH_1)] = "ar",
  569. [ilog2(VM_DONTDUMP)] = "dd",
  570. #ifdef CONFIG_MEM_SOFT_DIRTY
  571. [ilog2(VM_SOFTDIRTY)] = "sd",
  572. #endif
  573. [ilog2(VM_MIXEDMAP)] = "mm",
  574. [ilog2(VM_HUGEPAGE)] = "hg",
  575. [ilog2(VM_NOHUGEPAGE)] = "nh",
  576. [ilog2(VM_MERGEABLE)] = "mg",
  577. [ilog2(VM_UFFD_MISSING)]= "um",
  578. [ilog2(VM_UFFD_WP)] = "uw",
  579. #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
  580. /* These come out via ProtectionKey: */
  581. [ilog2(VM_PKEY_BIT0)] = "",
  582. [ilog2(VM_PKEY_BIT1)] = "",
  583. [ilog2(VM_PKEY_BIT2)] = "",
  584. [ilog2(VM_PKEY_BIT3)] = "",
  585. #endif
  586. };
  587. size_t i;
  588. seq_puts(m, "VmFlags: ");
  589. for (i = 0; i < BITS_PER_LONG; i++) {
  590. if (!mnemonics[i][0])
  591. continue;
  592. if (vma->vm_flags & (1UL << i)) {
  593. seq_printf(m, "%c%c ",
  594. mnemonics[i][0], mnemonics[i][1]);
  595. }
  596. }
  597. seq_putc(m, '\n');
  598. }
  599. #ifdef CONFIG_HUGETLB_PAGE
  600. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  601. unsigned long addr, unsigned long end,
  602. struct mm_walk *walk)
  603. {
  604. struct mem_size_stats *mss = walk->private;
  605. struct vm_area_struct *vma = walk->vma;
  606. struct page *page = NULL;
  607. if (pte_present(*pte)) {
  608. page = vm_normal_page(vma, addr, *pte);
  609. } else if (is_swap_pte(*pte)) {
  610. swp_entry_t swpent = pte_to_swp_entry(*pte);
  611. if (is_migration_entry(swpent))
  612. page = migration_entry_to_page(swpent);
  613. }
  614. if (page) {
  615. int mapcount = page_mapcount(page);
  616. if (mapcount >= 2)
  617. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  618. else
  619. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  620. }
  621. return 0;
  622. }
  623. #endif /* HUGETLB_PAGE */
  624. void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
  625. {
  626. }
  627. static int show_smap(struct seq_file *m, void *v, int is_pid)
  628. {
  629. struct vm_area_struct *vma = v;
  630. struct mem_size_stats mss;
  631. struct mm_walk smaps_walk = {
  632. .pmd_entry = smaps_pte_range,
  633. #ifdef CONFIG_HUGETLB_PAGE
  634. .hugetlb_entry = smaps_hugetlb_range,
  635. #endif
  636. .mm = vma->vm_mm,
  637. .private = &mss,
  638. };
  639. memset(&mss, 0, sizeof mss);
  640. #ifdef CONFIG_SHMEM
  641. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  642. /*
  643. * For shared or readonly shmem mappings we know that all
  644. * swapped out pages belong to the shmem object, and we can
  645. * obtain the swap value much more efficiently. For private
  646. * writable mappings, we might have COW pages that are
  647. * not affected by the parent swapped out pages of the shmem
  648. * object, so we have to distinguish them during the page walk.
  649. * Unless we know that the shmem object (or the part mapped by
  650. * our VMA) has no swapped out pages at all.
  651. */
  652. unsigned long shmem_swapped = shmem_swap_usage(vma);
  653. if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  654. !(vma->vm_flags & VM_WRITE)) {
  655. mss.swap = shmem_swapped;
  656. } else {
  657. mss.check_shmem_swap = true;
  658. smaps_walk.pte_hole = smaps_pte_hole;
  659. }
  660. }
  661. #endif
  662. /* mmap_sem is held in m_start */
  663. walk_page_vma(vma, &smaps_walk);
  664. show_map_vma(m, vma, is_pid);
  665. seq_printf(m,
  666. "Size: %8lu kB\n"
  667. "Rss: %8lu kB\n"
  668. "Pss: %8lu kB\n"
  669. "Shared_Clean: %8lu kB\n"
  670. "Shared_Dirty: %8lu kB\n"
  671. "Private_Clean: %8lu kB\n"
  672. "Private_Dirty: %8lu kB\n"
  673. "Referenced: %8lu kB\n"
  674. "Anonymous: %8lu kB\n"
  675. "AnonHugePages: %8lu kB\n"
  676. "Shared_Hugetlb: %8lu kB\n"
  677. "Private_Hugetlb: %7lu kB\n"
  678. "Swap: %8lu kB\n"
  679. "SwapPss: %8lu kB\n"
  680. "KernelPageSize: %8lu kB\n"
  681. "MMUPageSize: %8lu kB\n"
  682. "Locked: %8lu kB\n",
  683. (vma->vm_end - vma->vm_start) >> 10,
  684. mss.resident >> 10,
  685. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  686. mss.shared_clean >> 10,
  687. mss.shared_dirty >> 10,
  688. mss.private_clean >> 10,
  689. mss.private_dirty >> 10,
  690. mss.referenced >> 10,
  691. mss.anonymous >> 10,
  692. mss.anonymous_thp >> 10,
  693. mss.shared_hugetlb >> 10,
  694. mss.private_hugetlb >> 10,
  695. mss.swap >> 10,
  696. (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
  697. vma_kernel_pagesize(vma) >> 10,
  698. vma_mmu_pagesize(vma) >> 10,
  699. (vma->vm_flags & VM_LOCKED) ?
  700. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  701. arch_show_smap(m, vma);
  702. show_smap_vma_flags(m, vma);
  703. m_cache_vma(m, vma);
  704. return 0;
  705. }
  706. static int show_pid_smap(struct seq_file *m, void *v)
  707. {
  708. return show_smap(m, v, 1);
  709. }
  710. static int show_tid_smap(struct seq_file *m, void *v)
  711. {
  712. return show_smap(m, v, 0);
  713. }
  714. static const struct seq_operations proc_pid_smaps_op = {
  715. .start = m_start,
  716. .next = m_next,
  717. .stop = m_stop,
  718. .show = show_pid_smap
  719. };
  720. static const struct seq_operations proc_tid_smaps_op = {
  721. .start = m_start,
  722. .next = m_next,
  723. .stop = m_stop,
  724. .show = show_tid_smap
  725. };
  726. static int pid_smaps_open(struct inode *inode, struct file *file)
  727. {
  728. return do_maps_open(inode, file, &proc_pid_smaps_op);
  729. }
  730. static int tid_smaps_open(struct inode *inode, struct file *file)
  731. {
  732. return do_maps_open(inode, file, &proc_tid_smaps_op);
  733. }
  734. const struct file_operations proc_pid_smaps_operations = {
  735. .open = pid_smaps_open,
  736. .read = seq_read,
  737. .llseek = seq_lseek,
  738. .release = proc_map_release,
  739. };
  740. const struct file_operations proc_tid_smaps_operations = {
  741. .open = tid_smaps_open,
  742. .read = seq_read,
  743. .llseek = seq_lseek,
  744. .release = proc_map_release,
  745. };
  746. enum clear_refs_types {
  747. CLEAR_REFS_ALL = 1,
  748. CLEAR_REFS_ANON,
  749. CLEAR_REFS_MAPPED,
  750. CLEAR_REFS_SOFT_DIRTY,
  751. CLEAR_REFS_MM_HIWATER_RSS,
  752. CLEAR_REFS_LAST,
  753. };
  754. struct clear_refs_private {
  755. enum clear_refs_types type;
  756. };
  757. #ifdef CONFIG_MEM_SOFT_DIRTY
  758. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  759. unsigned long addr, pte_t *pte)
  760. {
  761. /*
  762. * The soft-dirty tracker uses #PF-s to catch writes
  763. * to pages, so write-protect the pte as well. See the
  764. * Documentation/vm/soft-dirty.txt for full description
  765. * of how soft-dirty works.
  766. */
  767. pte_t ptent = *pte;
  768. if (pte_present(ptent)) {
  769. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  770. ptent = pte_wrprotect(ptent);
  771. ptent = pte_clear_soft_dirty(ptent);
  772. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  773. } else if (is_swap_pte(ptent)) {
  774. ptent = pte_swp_clear_soft_dirty(ptent);
  775. set_pte_at(vma->vm_mm, addr, pte, ptent);
  776. }
  777. }
  778. #else
  779. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  780. unsigned long addr, pte_t *pte)
  781. {
  782. }
  783. #endif
  784. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  785. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  786. unsigned long addr, pmd_t *pmdp)
  787. {
  788. pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
  789. pmd = pmd_wrprotect(pmd);
  790. pmd = pmd_clear_soft_dirty(pmd);
  791. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  792. }
  793. #else
  794. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  795. unsigned long addr, pmd_t *pmdp)
  796. {
  797. }
  798. #endif
  799. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  800. unsigned long end, struct mm_walk *walk)
  801. {
  802. struct clear_refs_private *cp = walk->private;
  803. struct vm_area_struct *vma = walk->vma;
  804. pte_t *pte, ptent;
  805. spinlock_t *ptl;
  806. struct page *page;
  807. ptl = pmd_trans_huge_lock(pmd, vma);
  808. if (ptl) {
  809. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  810. clear_soft_dirty_pmd(vma, addr, pmd);
  811. goto out;
  812. }
  813. page = pmd_page(*pmd);
  814. /* Clear accessed and referenced bits. */
  815. pmdp_test_and_clear_young(vma, addr, pmd);
  816. test_and_clear_page_young(page);
  817. ClearPageReferenced(page);
  818. out:
  819. spin_unlock(ptl);
  820. return 0;
  821. }
  822. if (pmd_trans_unstable(pmd))
  823. return 0;
  824. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  825. for (; addr != end; pte++, addr += PAGE_SIZE) {
  826. ptent = *pte;
  827. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  828. clear_soft_dirty(vma, addr, pte);
  829. continue;
  830. }
  831. if (!pte_present(ptent))
  832. continue;
  833. page = vm_normal_page(vma, addr, ptent);
  834. if (!page)
  835. continue;
  836. /* Clear accessed and referenced bits. */
  837. ptep_test_and_clear_young(vma, addr, pte);
  838. test_and_clear_page_young(page);
  839. ClearPageReferenced(page);
  840. }
  841. pte_unmap_unlock(pte - 1, ptl);
  842. cond_resched();
  843. return 0;
  844. }
  845. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  846. struct mm_walk *walk)
  847. {
  848. struct clear_refs_private *cp = walk->private;
  849. struct vm_area_struct *vma = walk->vma;
  850. if (vma->vm_flags & VM_PFNMAP)
  851. return 1;
  852. /*
  853. * Writing 1 to /proc/pid/clear_refs affects all pages.
  854. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  855. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  856. * Writing 4 to /proc/pid/clear_refs affects all pages.
  857. */
  858. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  859. return 1;
  860. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  861. return 1;
  862. return 0;
  863. }
  864. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  865. size_t count, loff_t *ppos)
  866. {
  867. struct task_struct *task;
  868. char buffer[PROC_NUMBUF];
  869. struct mm_struct *mm;
  870. struct vm_area_struct *vma;
  871. enum clear_refs_types type;
  872. int itype;
  873. int rv;
  874. memset(buffer, 0, sizeof(buffer));
  875. if (count > sizeof(buffer) - 1)
  876. count = sizeof(buffer) - 1;
  877. if (copy_from_user(buffer, buf, count))
  878. return -EFAULT;
  879. rv = kstrtoint(strstrip(buffer), 10, &itype);
  880. if (rv < 0)
  881. return rv;
  882. type = (enum clear_refs_types)itype;
  883. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  884. return -EINVAL;
  885. task = get_proc_task(file_inode(file));
  886. if (!task)
  887. return -ESRCH;
  888. mm = get_task_mm(task);
  889. if (mm) {
  890. struct clear_refs_private cp = {
  891. .type = type,
  892. };
  893. struct mm_walk clear_refs_walk = {
  894. .pmd_entry = clear_refs_pte_range,
  895. .test_walk = clear_refs_test_walk,
  896. .mm = mm,
  897. .private = &cp,
  898. };
  899. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  900. if (down_write_killable(&mm->mmap_sem)) {
  901. count = -EINTR;
  902. goto out_mm;
  903. }
  904. /*
  905. * Writing 5 to /proc/pid/clear_refs resets the peak
  906. * resident set size to this mm's current rss value.
  907. */
  908. reset_mm_hiwater_rss(mm);
  909. up_write(&mm->mmap_sem);
  910. goto out_mm;
  911. }
  912. down_read(&mm->mmap_sem);
  913. if (type == CLEAR_REFS_SOFT_DIRTY) {
  914. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  915. if (!(vma->vm_flags & VM_SOFTDIRTY))
  916. continue;
  917. up_read(&mm->mmap_sem);
  918. if (down_write_killable(&mm->mmap_sem)) {
  919. count = -EINTR;
  920. goto out_mm;
  921. }
  922. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  923. vma->vm_flags &= ~VM_SOFTDIRTY;
  924. vma_set_page_prot(vma);
  925. }
  926. downgrade_write(&mm->mmap_sem);
  927. break;
  928. }
  929. mmu_notifier_invalidate_range_start(mm, 0, -1);
  930. }
  931. walk_page_range(0, ~0UL, &clear_refs_walk);
  932. if (type == CLEAR_REFS_SOFT_DIRTY)
  933. mmu_notifier_invalidate_range_end(mm, 0, -1);
  934. flush_tlb_mm(mm);
  935. up_read(&mm->mmap_sem);
  936. out_mm:
  937. mmput(mm);
  938. }
  939. put_task_struct(task);
  940. return count;
  941. }
  942. const struct file_operations proc_clear_refs_operations = {
  943. .write = clear_refs_write,
  944. .llseek = noop_llseek,
  945. };
  946. typedef struct {
  947. u64 pme;
  948. } pagemap_entry_t;
  949. struct pagemapread {
  950. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  951. pagemap_entry_t *buffer;
  952. bool show_pfn;
  953. };
  954. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  955. #define PAGEMAP_WALK_MASK (PMD_MASK)
  956. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  957. #define PM_PFRAME_BITS 55
  958. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  959. #define PM_SOFT_DIRTY BIT_ULL(55)
  960. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  961. #define PM_FILE BIT_ULL(61)
  962. #define PM_SWAP BIT_ULL(62)
  963. #define PM_PRESENT BIT_ULL(63)
  964. #define PM_END_OF_BUFFER 1
  965. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  966. {
  967. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  968. }
  969. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  970. struct pagemapread *pm)
  971. {
  972. pm->buffer[pm->pos++] = *pme;
  973. if (pm->pos >= pm->len)
  974. return PM_END_OF_BUFFER;
  975. return 0;
  976. }
  977. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  978. struct mm_walk *walk)
  979. {
  980. struct pagemapread *pm = walk->private;
  981. unsigned long addr = start;
  982. int err = 0;
  983. while (addr < end) {
  984. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  985. pagemap_entry_t pme = make_pme(0, 0);
  986. /* End of address space hole, which we mark as non-present. */
  987. unsigned long hole_end;
  988. if (vma)
  989. hole_end = min(end, vma->vm_start);
  990. else
  991. hole_end = end;
  992. for (; addr < hole_end; addr += PAGE_SIZE) {
  993. err = add_to_pagemap(addr, &pme, pm);
  994. if (err)
  995. goto out;
  996. }
  997. if (!vma)
  998. break;
  999. /* Addresses in the VMA. */
  1000. if (vma->vm_flags & VM_SOFTDIRTY)
  1001. pme = make_pme(0, PM_SOFT_DIRTY);
  1002. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1003. err = add_to_pagemap(addr, &pme, pm);
  1004. if (err)
  1005. goto out;
  1006. }
  1007. }
  1008. out:
  1009. return err;
  1010. }
  1011. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1012. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1013. {
  1014. u64 frame = 0, flags = 0;
  1015. struct page *page = NULL;
  1016. if (pte_present(pte)) {
  1017. if (pm->show_pfn)
  1018. frame = pte_pfn(pte);
  1019. flags |= PM_PRESENT;
  1020. page = vm_normal_page(vma, addr, pte);
  1021. if (pte_soft_dirty(pte))
  1022. flags |= PM_SOFT_DIRTY;
  1023. } else if (is_swap_pte(pte)) {
  1024. swp_entry_t entry;
  1025. if (pte_swp_soft_dirty(pte))
  1026. flags |= PM_SOFT_DIRTY;
  1027. entry = pte_to_swp_entry(pte);
  1028. frame = swp_type(entry) |
  1029. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1030. flags |= PM_SWAP;
  1031. if (is_migration_entry(entry))
  1032. page = migration_entry_to_page(entry);
  1033. }
  1034. if (page && !PageAnon(page))
  1035. flags |= PM_FILE;
  1036. if (page && page_mapcount(page) == 1)
  1037. flags |= PM_MMAP_EXCLUSIVE;
  1038. if (vma->vm_flags & VM_SOFTDIRTY)
  1039. flags |= PM_SOFT_DIRTY;
  1040. return make_pme(frame, flags);
  1041. }
  1042. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1043. struct mm_walk *walk)
  1044. {
  1045. struct vm_area_struct *vma = walk->vma;
  1046. struct pagemapread *pm = walk->private;
  1047. spinlock_t *ptl;
  1048. pte_t *pte, *orig_pte;
  1049. int err = 0;
  1050. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1051. ptl = pmd_trans_huge_lock(pmdp, vma);
  1052. if (ptl) {
  1053. u64 flags = 0, frame = 0;
  1054. pmd_t pmd = *pmdp;
  1055. if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
  1056. flags |= PM_SOFT_DIRTY;
  1057. /*
  1058. * Currently pmd for thp is always present because thp
  1059. * can not be swapped-out, migrated, or HWPOISONed
  1060. * (split in such cases instead.)
  1061. * This if-check is just to prepare for future implementation.
  1062. */
  1063. if (pmd_present(pmd)) {
  1064. struct page *page = pmd_page(pmd);
  1065. if (page_mapcount(page) == 1)
  1066. flags |= PM_MMAP_EXCLUSIVE;
  1067. flags |= PM_PRESENT;
  1068. if (pm->show_pfn)
  1069. frame = pmd_pfn(pmd) +
  1070. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1071. }
  1072. for (; addr != end; addr += PAGE_SIZE) {
  1073. pagemap_entry_t pme = make_pme(frame, flags);
  1074. err = add_to_pagemap(addr, &pme, pm);
  1075. if (err)
  1076. break;
  1077. if (pm->show_pfn && (flags & PM_PRESENT))
  1078. frame++;
  1079. }
  1080. spin_unlock(ptl);
  1081. return err;
  1082. }
  1083. if (pmd_trans_unstable(pmdp))
  1084. return 0;
  1085. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1086. /*
  1087. * We can assume that @vma always points to a valid one and @end never
  1088. * goes beyond vma->vm_end.
  1089. */
  1090. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1091. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1092. pagemap_entry_t pme;
  1093. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1094. err = add_to_pagemap(addr, &pme, pm);
  1095. if (err)
  1096. break;
  1097. }
  1098. pte_unmap_unlock(orig_pte, ptl);
  1099. cond_resched();
  1100. return err;
  1101. }
  1102. #ifdef CONFIG_HUGETLB_PAGE
  1103. /* This function walks within one hugetlb entry in the single call */
  1104. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1105. unsigned long addr, unsigned long end,
  1106. struct mm_walk *walk)
  1107. {
  1108. struct pagemapread *pm = walk->private;
  1109. struct vm_area_struct *vma = walk->vma;
  1110. u64 flags = 0, frame = 0;
  1111. int err = 0;
  1112. pte_t pte;
  1113. if (vma->vm_flags & VM_SOFTDIRTY)
  1114. flags |= PM_SOFT_DIRTY;
  1115. pte = huge_ptep_get(ptep);
  1116. if (pte_present(pte)) {
  1117. struct page *page = pte_page(pte);
  1118. if (!PageAnon(page))
  1119. flags |= PM_FILE;
  1120. if (page_mapcount(page) == 1)
  1121. flags |= PM_MMAP_EXCLUSIVE;
  1122. flags |= PM_PRESENT;
  1123. if (pm->show_pfn)
  1124. frame = pte_pfn(pte) +
  1125. ((addr & ~hmask) >> PAGE_SHIFT);
  1126. }
  1127. for (; addr != end; addr += PAGE_SIZE) {
  1128. pagemap_entry_t pme = make_pme(frame, flags);
  1129. err = add_to_pagemap(addr, &pme, pm);
  1130. if (err)
  1131. return err;
  1132. if (pm->show_pfn && (flags & PM_PRESENT))
  1133. frame++;
  1134. }
  1135. cond_resched();
  1136. return err;
  1137. }
  1138. #endif /* HUGETLB_PAGE */
  1139. /*
  1140. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1141. *
  1142. * For each page in the address space, this file contains one 64-bit entry
  1143. * consisting of the following:
  1144. *
  1145. * Bits 0-54 page frame number (PFN) if present
  1146. * Bits 0-4 swap type if swapped
  1147. * Bits 5-54 swap offset if swapped
  1148. * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
  1149. * Bit 56 page exclusively mapped
  1150. * Bits 57-60 zero
  1151. * Bit 61 page is file-page or shared-anon
  1152. * Bit 62 page swapped
  1153. * Bit 63 page present
  1154. *
  1155. * If the page is not present but in swap, then the PFN contains an
  1156. * encoding of the swap file number and the page's offset into the
  1157. * swap. Unmapped pages return a null PFN. This allows determining
  1158. * precisely which pages are mapped (or in swap) and comparing mapped
  1159. * pages between processes.
  1160. *
  1161. * Efficient users of this interface will use /proc/pid/maps to
  1162. * determine which areas of memory are actually mapped and llseek to
  1163. * skip over unmapped regions.
  1164. */
  1165. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1166. size_t count, loff_t *ppos)
  1167. {
  1168. struct mm_struct *mm = file->private_data;
  1169. struct pagemapread pm;
  1170. struct mm_walk pagemap_walk = {};
  1171. unsigned long src;
  1172. unsigned long svpfn;
  1173. unsigned long start_vaddr;
  1174. unsigned long end_vaddr;
  1175. int ret = 0, copied = 0;
  1176. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  1177. goto out;
  1178. ret = -EINVAL;
  1179. /* file position must be aligned */
  1180. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1181. goto out_mm;
  1182. ret = 0;
  1183. if (!count)
  1184. goto out_mm;
  1185. /* do not disclose physical addresses: attack vector */
  1186. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1187. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1188. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  1189. ret = -ENOMEM;
  1190. if (!pm.buffer)
  1191. goto out_mm;
  1192. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1193. pagemap_walk.pte_hole = pagemap_pte_hole;
  1194. #ifdef CONFIG_HUGETLB_PAGE
  1195. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1196. #endif
  1197. pagemap_walk.mm = mm;
  1198. pagemap_walk.private = &pm;
  1199. src = *ppos;
  1200. svpfn = src / PM_ENTRY_BYTES;
  1201. start_vaddr = svpfn << PAGE_SHIFT;
  1202. end_vaddr = mm->task_size;
  1203. /* watch out for wraparound */
  1204. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1205. start_vaddr = end_vaddr;
  1206. /*
  1207. * The odds are that this will stop walking way
  1208. * before end_vaddr, because the length of the
  1209. * user buffer is tracked in "pm", and the walk
  1210. * will stop when we hit the end of the buffer.
  1211. */
  1212. ret = 0;
  1213. while (count && (start_vaddr < end_vaddr)) {
  1214. int len;
  1215. unsigned long end;
  1216. pm.pos = 0;
  1217. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1218. /* overflow ? */
  1219. if (end < start_vaddr || end > end_vaddr)
  1220. end = end_vaddr;
  1221. down_read(&mm->mmap_sem);
  1222. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1223. up_read(&mm->mmap_sem);
  1224. start_vaddr = end;
  1225. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1226. if (copy_to_user(buf, pm.buffer, len)) {
  1227. ret = -EFAULT;
  1228. goto out_free;
  1229. }
  1230. copied += len;
  1231. buf += len;
  1232. count -= len;
  1233. }
  1234. *ppos += copied;
  1235. if (!ret || ret == PM_END_OF_BUFFER)
  1236. ret = copied;
  1237. out_free:
  1238. kfree(pm.buffer);
  1239. out_mm:
  1240. mmput(mm);
  1241. out:
  1242. return ret;
  1243. }
  1244. static int pagemap_open(struct inode *inode, struct file *file)
  1245. {
  1246. struct mm_struct *mm;
  1247. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1248. if (IS_ERR(mm))
  1249. return PTR_ERR(mm);
  1250. file->private_data = mm;
  1251. return 0;
  1252. }
  1253. static int pagemap_release(struct inode *inode, struct file *file)
  1254. {
  1255. struct mm_struct *mm = file->private_data;
  1256. if (mm)
  1257. mmdrop(mm);
  1258. return 0;
  1259. }
  1260. const struct file_operations proc_pagemap_operations = {
  1261. .llseek = mem_lseek, /* borrow this */
  1262. .read = pagemap_read,
  1263. .open = pagemap_open,
  1264. .release = pagemap_release,
  1265. };
  1266. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1267. #ifdef CONFIG_NUMA
  1268. struct numa_maps {
  1269. unsigned long pages;
  1270. unsigned long anon;
  1271. unsigned long active;
  1272. unsigned long writeback;
  1273. unsigned long mapcount_max;
  1274. unsigned long dirty;
  1275. unsigned long swapcache;
  1276. unsigned long node[MAX_NUMNODES];
  1277. };
  1278. struct numa_maps_private {
  1279. struct proc_maps_private proc_maps;
  1280. struct numa_maps md;
  1281. };
  1282. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1283. unsigned long nr_pages)
  1284. {
  1285. int count = page_mapcount(page);
  1286. md->pages += nr_pages;
  1287. if (pte_dirty || PageDirty(page))
  1288. md->dirty += nr_pages;
  1289. if (PageSwapCache(page))
  1290. md->swapcache += nr_pages;
  1291. if (PageActive(page) || PageUnevictable(page))
  1292. md->active += nr_pages;
  1293. if (PageWriteback(page))
  1294. md->writeback += nr_pages;
  1295. if (PageAnon(page))
  1296. md->anon += nr_pages;
  1297. if (count > md->mapcount_max)
  1298. md->mapcount_max = count;
  1299. md->node[page_to_nid(page)] += nr_pages;
  1300. }
  1301. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1302. unsigned long addr)
  1303. {
  1304. struct page *page;
  1305. int nid;
  1306. if (!pte_present(pte))
  1307. return NULL;
  1308. page = vm_normal_page(vma, addr, pte);
  1309. if (!page)
  1310. return NULL;
  1311. if (PageReserved(page))
  1312. return NULL;
  1313. nid = page_to_nid(page);
  1314. if (!node_isset(nid, node_states[N_MEMORY]))
  1315. return NULL;
  1316. return page;
  1317. }
  1318. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1319. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1320. struct vm_area_struct *vma,
  1321. unsigned long addr)
  1322. {
  1323. struct page *page;
  1324. int nid;
  1325. if (!pmd_present(pmd))
  1326. return NULL;
  1327. page = vm_normal_page_pmd(vma, addr, pmd);
  1328. if (!page)
  1329. return NULL;
  1330. if (PageReserved(page))
  1331. return NULL;
  1332. nid = page_to_nid(page);
  1333. if (!node_isset(nid, node_states[N_MEMORY]))
  1334. return NULL;
  1335. return page;
  1336. }
  1337. #endif
  1338. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1339. unsigned long end, struct mm_walk *walk)
  1340. {
  1341. struct numa_maps *md = walk->private;
  1342. struct vm_area_struct *vma = walk->vma;
  1343. spinlock_t *ptl;
  1344. pte_t *orig_pte;
  1345. pte_t *pte;
  1346. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1347. ptl = pmd_trans_huge_lock(pmd, vma);
  1348. if (ptl) {
  1349. struct page *page;
  1350. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1351. if (page)
  1352. gather_stats(page, md, pmd_dirty(*pmd),
  1353. HPAGE_PMD_SIZE/PAGE_SIZE);
  1354. spin_unlock(ptl);
  1355. return 0;
  1356. }
  1357. if (pmd_trans_unstable(pmd))
  1358. return 0;
  1359. #endif
  1360. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1361. do {
  1362. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1363. if (!page)
  1364. continue;
  1365. gather_stats(page, md, pte_dirty(*pte), 1);
  1366. } while (pte++, addr += PAGE_SIZE, addr != end);
  1367. pte_unmap_unlock(orig_pte, ptl);
  1368. return 0;
  1369. }
  1370. #ifdef CONFIG_HUGETLB_PAGE
  1371. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1372. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1373. {
  1374. pte_t huge_pte = huge_ptep_get(pte);
  1375. struct numa_maps *md;
  1376. struct page *page;
  1377. if (!pte_present(huge_pte))
  1378. return 0;
  1379. page = pte_page(huge_pte);
  1380. if (!page)
  1381. return 0;
  1382. md = walk->private;
  1383. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1384. return 0;
  1385. }
  1386. #else
  1387. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1388. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1389. {
  1390. return 0;
  1391. }
  1392. #endif
  1393. /*
  1394. * Display pages allocated per node and memory policy via /proc.
  1395. */
  1396. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1397. {
  1398. struct numa_maps_private *numa_priv = m->private;
  1399. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1400. struct vm_area_struct *vma = v;
  1401. struct numa_maps *md = &numa_priv->md;
  1402. struct file *file = vma->vm_file;
  1403. struct mm_struct *mm = vma->vm_mm;
  1404. struct mm_walk walk = {
  1405. .hugetlb_entry = gather_hugetlb_stats,
  1406. .pmd_entry = gather_pte_stats,
  1407. .private = md,
  1408. .mm = mm,
  1409. };
  1410. struct mempolicy *pol;
  1411. char buffer[64];
  1412. int nid;
  1413. if (!mm)
  1414. return 0;
  1415. /* Ensure we start with an empty set of numa_maps statistics. */
  1416. memset(md, 0, sizeof(*md));
  1417. pol = __get_vma_policy(vma, vma->vm_start);
  1418. if (pol) {
  1419. mpol_to_str(buffer, sizeof(buffer), pol);
  1420. mpol_cond_put(pol);
  1421. } else {
  1422. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1423. }
  1424. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1425. if (file) {
  1426. seq_puts(m, " file=");
  1427. seq_file_path(m, file, "\n\t= ");
  1428. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1429. seq_puts(m, " heap");
  1430. } else if (is_stack(proc_priv, vma, is_pid)) {
  1431. seq_puts(m, " stack");
  1432. }
  1433. if (is_vm_hugetlb_page(vma))
  1434. seq_puts(m, " huge");
  1435. /* mmap_sem is held by m_start */
  1436. walk_page_vma(vma, &walk);
  1437. if (!md->pages)
  1438. goto out;
  1439. if (md->anon)
  1440. seq_printf(m, " anon=%lu", md->anon);
  1441. if (md->dirty)
  1442. seq_printf(m, " dirty=%lu", md->dirty);
  1443. if (md->pages != md->anon && md->pages != md->dirty)
  1444. seq_printf(m, " mapped=%lu", md->pages);
  1445. if (md->mapcount_max > 1)
  1446. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1447. if (md->swapcache)
  1448. seq_printf(m, " swapcache=%lu", md->swapcache);
  1449. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1450. seq_printf(m, " active=%lu", md->active);
  1451. if (md->writeback)
  1452. seq_printf(m, " writeback=%lu", md->writeback);
  1453. for_each_node_state(nid, N_MEMORY)
  1454. if (md->node[nid])
  1455. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1456. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1457. out:
  1458. seq_putc(m, '\n');
  1459. m_cache_vma(m, vma);
  1460. return 0;
  1461. }
  1462. static int show_pid_numa_map(struct seq_file *m, void *v)
  1463. {
  1464. return show_numa_map(m, v, 1);
  1465. }
  1466. static int show_tid_numa_map(struct seq_file *m, void *v)
  1467. {
  1468. return show_numa_map(m, v, 0);
  1469. }
  1470. static const struct seq_operations proc_pid_numa_maps_op = {
  1471. .start = m_start,
  1472. .next = m_next,
  1473. .stop = m_stop,
  1474. .show = show_pid_numa_map,
  1475. };
  1476. static const struct seq_operations proc_tid_numa_maps_op = {
  1477. .start = m_start,
  1478. .next = m_next,
  1479. .stop = m_stop,
  1480. .show = show_tid_numa_map,
  1481. };
  1482. static int numa_maps_open(struct inode *inode, struct file *file,
  1483. const struct seq_operations *ops)
  1484. {
  1485. return proc_maps_open(inode, file, ops,
  1486. sizeof(struct numa_maps_private));
  1487. }
  1488. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1489. {
  1490. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1491. }
  1492. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1493. {
  1494. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1495. }
  1496. const struct file_operations proc_pid_numa_maps_operations = {
  1497. .open = pid_numa_maps_open,
  1498. .read = seq_read,
  1499. .llseek = seq_lseek,
  1500. .release = proc_map_release,
  1501. };
  1502. const struct file_operations proc_tid_numa_maps_operations = {
  1503. .open = tid_numa_maps_open,
  1504. .read = seq_read,
  1505. .llseek = seq_lseek,
  1506. .release = proc_map_release,
  1507. };
  1508. #endif /* CONFIG_NUMA */