segment.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738
  1. /*
  2. * fs/f2fs/segment.h
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/blkdev.h>
  12. #include <linux/backing-dev.h>
  13. /* constant macro */
  14. #define NULL_SEGNO ((unsigned int)(~0))
  15. #define NULL_SECNO ((unsigned int)(~0))
  16. #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
  17. /* L: Logical segment # in volume, R: Relative segment # in main area */
  18. #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
  19. #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
  20. #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
  21. #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
  22. #define IS_CURSEG(sbi, seg) \
  23. ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
  24. (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
  25. (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
  26. (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
  27. (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
  28. (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
  29. #define IS_CURSEC(sbi, secno) \
  30. ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
  31. sbi->segs_per_sec) || \
  32. (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
  33. sbi->segs_per_sec) || \
  34. (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
  35. sbi->segs_per_sec) || \
  36. (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
  37. sbi->segs_per_sec) || \
  38. (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
  39. sbi->segs_per_sec) || \
  40. (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
  41. sbi->segs_per_sec)) \
  42. #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
  43. #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
  44. #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
  45. #define MAIN_SECS(sbi) (sbi->total_sections)
  46. #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
  47. #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
  48. #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
  49. #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
  50. sbi->log_blocks_per_seg))
  51. #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
  52. (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
  53. #define NEXT_FREE_BLKADDR(sbi, curseg) \
  54. (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
  55. #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
  56. #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
  57. (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
  58. #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
  59. (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
  60. #define GET_SEGNO(sbi, blk_addr) \
  61. (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
  62. NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
  63. GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
  64. #define GET_SECNO(sbi, segno) \
  65. ((segno) / sbi->segs_per_sec)
  66. #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
  67. ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
  68. #define GET_SUM_BLOCK(sbi, segno) \
  69. ((sbi->sm_info->ssa_blkaddr) + segno)
  70. #define GET_SUM_TYPE(footer) ((footer)->entry_type)
  71. #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
  72. #define SIT_ENTRY_OFFSET(sit_i, segno) \
  73. (segno % sit_i->sents_per_block)
  74. #define SIT_BLOCK_OFFSET(segno) \
  75. (segno / SIT_ENTRY_PER_BLOCK)
  76. #define START_SEGNO(segno) \
  77. (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
  78. #define SIT_BLK_CNT(sbi) \
  79. ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
  80. #define f2fs_bitmap_size(nr) \
  81. (BITS_TO_LONGS(nr) * sizeof(unsigned long))
  82. #define SECTOR_FROM_BLOCK(blk_addr) \
  83. (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
  84. #define SECTOR_TO_BLOCK(sectors) \
  85. (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
  86. #define MAX_BIO_BLOCKS(sbi) \
  87. ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
  88. /*
  89. * indicate a block allocation direction: RIGHT and LEFT.
  90. * RIGHT means allocating new sections towards the end of volume.
  91. * LEFT means the opposite direction.
  92. */
  93. enum {
  94. ALLOC_RIGHT = 0,
  95. ALLOC_LEFT
  96. };
  97. /*
  98. * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
  99. * LFS writes data sequentially with cleaning operations.
  100. * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
  101. */
  102. enum {
  103. LFS = 0,
  104. SSR
  105. };
  106. /*
  107. * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
  108. * GC_CB is based on cost-benefit algorithm.
  109. * GC_GREEDY is based on greedy algorithm.
  110. */
  111. enum {
  112. GC_CB = 0,
  113. GC_GREEDY
  114. };
  115. /*
  116. * BG_GC means the background cleaning job.
  117. * FG_GC means the on-demand cleaning job.
  118. * FORCE_FG_GC means on-demand cleaning job in background.
  119. */
  120. enum {
  121. BG_GC = 0,
  122. FG_GC,
  123. FORCE_FG_GC,
  124. };
  125. /* for a function parameter to select a victim segment */
  126. struct victim_sel_policy {
  127. int alloc_mode; /* LFS or SSR */
  128. int gc_mode; /* GC_CB or GC_GREEDY */
  129. unsigned long *dirty_segmap; /* dirty segment bitmap */
  130. unsigned int max_search; /* maximum # of segments to search */
  131. unsigned int offset; /* last scanned bitmap offset */
  132. unsigned int ofs_unit; /* bitmap search unit */
  133. unsigned int min_cost; /* minimum cost */
  134. unsigned int min_segno; /* segment # having min. cost */
  135. };
  136. struct seg_entry {
  137. unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
  138. unsigned int valid_blocks:10; /* # of valid blocks */
  139. unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
  140. unsigned int padding:6; /* padding */
  141. unsigned char *cur_valid_map; /* validity bitmap of blocks */
  142. /*
  143. * # of valid blocks and the validity bitmap stored in the the last
  144. * checkpoint pack. This information is used by the SSR mode.
  145. */
  146. unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
  147. unsigned char *discard_map;
  148. unsigned long long mtime; /* modification time of the segment */
  149. };
  150. struct sec_entry {
  151. unsigned int valid_blocks; /* # of valid blocks in a section */
  152. };
  153. struct segment_allocation {
  154. void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
  155. };
  156. /*
  157. * this value is set in page as a private data which indicate that
  158. * the page is atomically written, and it is in inmem_pages list.
  159. */
  160. #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
  161. #define IS_ATOMIC_WRITTEN_PAGE(page) \
  162. (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
  163. struct inmem_pages {
  164. struct list_head list;
  165. struct page *page;
  166. block_t old_addr; /* for revoking when fail to commit */
  167. };
  168. struct sit_info {
  169. const struct segment_allocation *s_ops;
  170. block_t sit_base_addr; /* start block address of SIT area */
  171. block_t sit_blocks; /* # of blocks used by SIT area */
  172. block_t written_valid_blocks; /* # of valid blocks in main area */
  173. char *sit_bitmap; /* SIT bitmap pointer */
  174. unsigned int bitmap_size; /* SIT bitmap size */
  175. unsigned long *tmp_map; /* bitmap for temporal use */
  176. unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
  177. unsigned int dirty_sentries; /* # of dirty sentries */
  178. unsigned int sents_per_block; /* # of SIT entries per block */
  179. struct mutex sentry_lock; /* to protect SIT cache */
  180. struct seg_entry *sentries; /* SIT segment-level cache */
  181. struct sec_entry *sec_entries; /* SIT section-level cache */
  182. /* for cost-benefit algorithm in cleaning procedure */
  183. unsigned long long elapsed_time; /* elapsed time after mount */
  184. unsigned long long mounted_time; /* mount time */
  185. unsigned long long min_mtime; /* min. modification time */
  186. unsigned long long max_mtime; /* max. modification time */
  187. };
  188. struct free_segmap_info {
  189. unsigned int start_segno; /* start segment number logically */
  190. unsigned int free_segments; /* # of free segments */
  191. unsigned int free_sections; /* # of free sections */
  192. spinlock_t segmap_lock; /* free segmap lock */
  193. unsigned long *free_segmap; /* free segment bitmap */
  194. unsigned long *free_secmap; /* free section bitmap */
  195. };
  196. /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
  197. enum dirty_type {
  198. DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
  199. DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
  200. DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
  201. DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
  202. DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
  203. DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
  204. DIRTY, /* to count # of dirty segments */
  205. PRE, /* to count # of entirely obsolete segments */
  206. NR_DIRTY_TYPE
  207. };
  208. struct dirty_seglist_info {
  209. const struct victim_selection *v_ops; /* victim selction operation */
  210. unsigned long *dirty_segmap[NR_DIRTY_TYPE];
  211. struct mutex seglist_lock; /* lock for segment bitmaps */
  212. int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
  213. unsigned long *victim_secmap; /* background GC victims */
  214. };
  215. /* victim selection function for cleaning and SSR */
  216. struct victim_selection {
  217. int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
  218. int, int, char);
  219. };
  220. /* for active log information */
  221. struct curseg_info {
  222. struct mutex curseg_mutex; /* lock for consistency */
  223. struct f2fs_summary_block *sum_blk; /* cached summary block */
  224. struct rw_semaphore journal_rwsem; /* protect journal area */
  225. struct f2fs_journal *journal; /* cached journal info */
  226. unsigned char alloc_type; /* current allocation type */
  227. unsigned int segno; /* current segment number */
  228. unsigned short next_blkoff; /* next block offset to write */
  229. unsigned int zone; /* current zone number */
  230. unsigned int next_segno; /* preallocated segment */
  231. };
  232. struct sit_entry_set {
  233. struct list_head set_list; /* link with all sit sets */
  234. unsigned int start_segno; /* start segno of sits in set */
  235. unsigned int entry_cnt; /* the # of sit entries in set */
  236. };
  237. /*
  238. * inline functions
  239. */
  240. static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
  241. {
  242. return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
  243. }
  244. static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
  245. unsigned int segno)
  246. {
  247. struct sit_info *sit_i = SIT_I(sbi);
  248. return &sit_i->sentries[segno];
  249. }
  250. static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
  251. unsigned int segno)
  252. {
  253. struct sit_info *sit_i = SIT_I(sbi);
  254. return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
  255. }
  256. static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
  257. unsigned int segno, int section)
  258. {
  259. /*
  260. * In order to get # of valid blocks in a section instantly from many
  261. * segments, f2fs manages two counting structures separately.
  262. */
  263. if (section > 1)
  264. return get_sec_entry(sbi, segno)->valid_blocks;
  265. else
  266. return get_seg_entry(sbi, segno)->valid_blocks;
  267. }
  268. static inline void seg_info_from_raw_sit(struct seg_entry *se,
  269. struct f2fs_sit_entry *rs)
  270. {
  271. se->valid_blocks = GET_SIT_VBLOCKS(rs);
  272. se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
  273. memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  274. memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  275. se->type = GET_SIT_TYPE(rs);
  276. se->mtime = le64_to_cpu(rs->mtime);
  277. }
  278. static inline void seg_info_to_raw_sit(struct seg_entry *se,
  279. struct f2fs_sit_entry *rs)
  280. {
  281. unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
  282. se->valid_blocks;
  283. rs->vblocks = cpu_to_le16(raw_vblocks);
  284. memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
  285. memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  286. se->ckpt_valid_blocks = se->valid_blocks;
  287. rs->mtime = cpu_to_le64(se->mtime);
  288. }
  289. static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
  290. unsigned int max, unsigned int segno)
  291. {
  292. unsigned int ret;
  293. spin_lock(&free_i->segmap_lock);
  294. ret = find_next_bit(free_i->free_segmap, max, segno);
  295. spin_unlock(&free_i->segmap_lock);
  296. return ret;
  297. }
  298. static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
  299. {
  300. struct free_segmap_info *free_i = FREE_I(sbi);
  301. unsigned int secno = segno / sbi->segs_per_sec;
  302. unsigned int start_segno = secno * sbi->segs_per_sec;
  303. unsigned int next;
  304. spin_lock(&free_i->segmap_lock);
  305. clear_bit(segno, free_i->free_segmap);
  306. free_i->free_segments++;
  307. next = find_next_bit(free_i->free_segmap,
  308. start_segno + sbi->segs_per_sec, start_segno);
  309. if (next >= start_segno + sbi->segs_per_sec) {
  310. clear_bit(secno, free_i->free_secmap);
  311. free_i->free_sections++;
  312. }
  313. spin_unlock(&free_i->segmap_lock);
  314. }
  315. static inline void __set_inuse(struct f2fs_sb_info *sbi,
  316. unsigned int segno)
  317. {
  318. struct free_segmap_info *free_i = FREE_I(sbi);
  319. unsigned int secno = segno / sbi->segs_per_sec;
  320. set_bit(segno, free_i->free_segmap);
  321. free_i->free_segments--;
  322. if (!test_and_set_bit(secno, free_i->free_secmap))
  323. free_i->free_sections--;
  324. }
  325. static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
  326. unsigned int segno)
  327. {
  328. struct free_segmap_info *free_i = FREE_I(sbi);
  329. unsigned int secno = segno / sbi->segs_per_sec;
  330. unsigned int start_segno = secno * sbi->segs_per_sec;
  331. unsigned int next;
  332. spin_lock(&free_i->segmap_lock);
  333. if (test_and_clear_bit(segno, free_i->free_segmap)) {
  334. free_i->free_segments++;
  335. next = find_next_bit(free_i->free_segmap,
  336. start_segno + sbi->segs_per_sec, start_segno);
  337. if (next >= start_segno + sbi->segs_per_sec) {
  338. if (test_and_clear_bit(secno, free_i->free_secmap))
  339. free_i->free_sections++;
  340. }
  341. }
  342. spin_unlock(&free_i->segmap_lock);
  343. }
  344. static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
  345. unsigned int segno)
  346. {
  347. struct free_segmap_info *free_i = FREE_I(sbi);
  348. unsigned int secno = segno / sbi->segs_per_sec;
  349. spin_lock(&free_i->segmap_lock);
  350. if (!test_and_set_bit(segno, free_i->free_segmap)) {
  351. free_i->free_segments--;
  352. if (!test_and_set_bit(secno, free_i->free_secmap))
  353. free_i->free_sections--;
  354. }
  355. spin_unlock(&free_i->segmap_lock);
  356. }
  357. static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
  358. void *dst_addr)
  359. {
  360. struct sit_info *sit_i = SIT_I(sbi);
  361. memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
  362. }
  363. static inline block_t written_block_count(struct f2fs_sb_info *sbi)
  364. {
  365. return SIT_I(sbi)->written_valid_blocks;
  366. }
  367. static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
  368. {
  369. return FREE_I(sbi)->free_segments;
  370. }
  371. static inline int reserved_segments(struct f2fs_sb_info *sbi)
  372. {
  373. return SM_I(sbi)->reserved_segments;
  374. }
  375. static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
  376. {
  377. return FREE_I(sbi)->free_sections;
  378. }
  379. static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
  380. {
  381. return DIRTY_I(sbi)->nr_dirty[PRE];
  382. }
  383. static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
  384. {
  385. return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
  386. DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
  387. DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
  388. DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
  389. DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
  390. DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
  391. }
  392. static inline int overprovision_segments(struct f2fs_sb_info *sbi)
  393. {
  394. return SM_I(sbi)->ovp_segments;
  395. }
  396. static inline int overprovision_sections(struct f2fs_sb_info *sbi)
  397. {
  398. return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
  399. }
  400. static inline int reserved_sections(struct f2fs_sb_info *sbi)
  401. {
  402. return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
  403. }
  404. static inline bool need_SSR(struct f2fs_sb_info *sbi)
  405. {
  406. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  407. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  408. return free_sections(sbi) <= (node_secs + 2 * dent_secs +
  409. reserved_sections(sbi) + 1);
  410. }
  411. static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
  412. {
  413. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  414. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  415. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  416. return false;
  417. return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
  418. reserved_sections(sbi));
  419. }
  420. static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
  421. {
  422. return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
  423. }
  424. static inline int utilization(struct f2fs_sb_info *sbi)
  425. {
  426. return div_u64((u64)valid_user_blocks(sbi) * 100,
  427. sbi->user_block_count);
  428. }
  429. /*
  430. * Sometimes f2fs may be better to drop out-of-place update policy.
  431. * And, users can control the policy through sysfs entries.
  432. * There are five policies with triggering conditions as follows.
  433. * F2FS_IPU_FORCE - all the time,
  434. * F2FS_IPU_SSR - if SSR mode is activated,
  435. * F2FS_IPU_UTIL - if FS utilization is over threashold,
  436. * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
  437. * threashold,
  438. * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
  439. * storages. IPU will be triggered only if the # of dirty
  440. * pages over min_fsync_blocks.
  441. * F2FS_IPUT_DISABLE - disable IPU. (=default option)
  442. */
  443. #define DEF_MIN_IPU_UTIL 70
  444. #define DEF_MIN_FSYNC_BLOCKS 8
  445. enum {
  446. F2FS_IPU_FORCE,
  447. F2FS_IPU_SSR,
  448. F2FS_IPU_UTIL,
  449. F2FS_IPU_SSR_UTIL,
  450. F2FS_IPU_FSYNC,
  451. };
  452. static inline bool need_inplace_update(struct inode *inode)
  453. {
  454. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  455. unsigned int policy = SM_I(sbi)->ipu_policy;
  456. /* IPU can be done only for the user data */
  457. if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
  458. return false;
  459. if (policy & (0x1 << F2FS_IPU_FORCE))
  460. return true;
  461. if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
  462. return true;
  463. if (policy & (0x1 << F2FS_IPU_UTIL) &&
  464. utilization(sbi) > SM_I(sbi)->min_ipu_util)
  465. return true;
  466. if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
  467. utilization(sbi) > SM_I(sbi)->min_ipu_util)
  468. return true;
  469. /* this is only set during fdatasync */
  470. if (policy & (0x1 << F2FS_IPU_FSYNC) &&
  471. is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
  472. return true;
  473. return false;
  474. }
  475. static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
  476. int type)
  477. {
  478. struct curseg_info *curseg = CURSEG_I(sbi, type);
  479. return curseg->segno;
  480. }
  481. static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
  482. int type)
  483. {
  484. struct curseg_info *curseg = CURSEG_I(sbi, type);
  485. return curseg->alloc_type;
  486. }
  487. static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
  488. {
  489. struct curseg_info *curseg = CURSEG_I(sbi, type);
  490. return curseg->next_blkoff;
  491. }
  492. static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
  493. {
  494. f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
  495. }
  496. static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
  497. {
  498. f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
  499. || blk_addr >= MAX_BLKADDR(sbi));
  500. }
  501. /*
  502. * Summary block is always treated as an invalid block
  503. */
  504. static inline void check_block_count(struct f2fs_sb_info *sbi,
  505. int segno, struct f2fs_sit_entry *raw_sit)
  506. {
  507. #ifdef CONFIG_F2FS_CHECK_FS
  508. bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
  509. int valid_blocks = 0;
  510. int cur_pos = 0, next_pos;
  511. /* check bitmap with valid block count */
  512. do {
  513. if (is_valid) {
  514. next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
  515. sbi->blocks_per_seg,
  516. cur_pos);
  517. valid_blocks += next_pos - cur_pos;
  518. } else
  519. next_pos = find_next_bit_le(&raw_sit->valid_map,
  520. sbi->blocks_per_seg,
  521. cur_pos);
  522. cur_pos = next_pos;
  523. is_valid = !is_valid;
  524. } while (cur_pos < sbi->blocks_per_seg);
  525. BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
  526. #endif
  527. /* check segment usage, and check boundary of a given segment number */
  528. f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
  529. || segno > TOTAL_SEGS(sbi) - 1);
  530. }
  531. static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
  532. unsigned int start)
  533. {
  534. struct sit_info *sit_i = SIT_I(sbi);
  535. unsigned int offset = SIT_BLOCK_OFFSET(start);
  536. block_t blk_addr = sit_i->sit_base_addr + offset;
  537. check_seg_range(sbi, start);
  538. /* calculate sit block address */
  539. if (f2fs_test_bit(offset, sit_i->sit_bitmap))
  540. blk_addr += sit_i->sit_blocks;
  541. return blk_addr;
  542. }
  543. static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
  544. pgoff_t block_addr)
  545. {
  546. struct sit_info *sit_i = SIT_I(sbi);
  547. block_addr -= sit_i->sit_base_addr;
  548. if (block_addr < sit_i->sit_blocks)
  549. block_addr += sit_i->sit_blocks;
  550. else
  551. block_addr -= sit_i->sit_blocks;
  552. return block_addr + sit_i->sit_base_addr;
  553. }
  554. static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
  555. {
  556. unsigned int block_off = SIT_BLOCK_OFFSET(start);
  557. f2fs_change_bit(block_off, sit_i->sit_bitmap);
  558. }
  559. static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
  560. {
  561. struct sit_info *sit_i = SIT_I(sbi);
  562. return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
  563. sit_i->mounted_time;
  564. }
  565. static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
  566. unsigned int ofs_in_node, unsigned char version)
  567. {
  568. sum->nid = cpu_to_le32(nid);
  569. sum->ofs_in_node = cpu_to_le16(ofs_in_node);
  570. sum->version = version;
  571. }
  572. static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
  573. {
  574. return __start_cp_addr(sbi) +
  575. le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
  576. }
  577. static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
  578. {
  579. return __start_cp_addr(sbi) +
  580. le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
  581. - (base + 1) + type;
  582. }
  583. static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
  584. {
  585. if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
  586. return true;
  587. return false;
  588. }
  589. static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
  590. {
  591. struct block_device *bdev = sbi->sb->s_bdev;
  592. struct request_queue *q = bdev_get_queue(bdev);
  593. return SECTOR_TO_BLOCK(queue_max_sectors(q));
  594. }
  595. /*
  596. * It is very important to gather dirty pages and write at once, so that we can
  597. * submit a big bio without interfering other data writes.
  598. * By default, 512 pages for directory data,
  599. * 512 pages (2MB) * 3 for three types of nodes, and
  600. * max_bio_blocks for meta are set.
  601. */
  602. static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
  603. {
  604. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  605. return 0;
  606. if (type == DATA)
  607. return sbi->blocks_per_seg;
  608. else if (type == NODE)
  609. return 3 * sbi->blocks_per_seg;
  610. else if (type == META)
  611. return MAX_BIO_BLOCKS(sbi);
  612. else
  613. return 0;
  614. }
  615. /*
  616. * When writing pages, it'd better align nr_to_write for segment size.
  617. */
  618. static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
  619. struct writeback_control *wbc)
  620. {
  621. long nr_to_write, desired;
  622. if (wbc->sync_mode != WB_SYNC_NONE)
  623. return 0;
  624. nr_to_write = wbc->nr_to_write;
  625. if (type == DATA)
  626. desired = 4096;
  627. else if (type == NODE)
  628. desired = 3 * max_hw_blocks(sbi);
  629. else
  630. desired = MAX_BIO_BLOCKS(sbi);
  631. wbc->nr_to_write = desired;
  632. return desired - nr_to_write;
  633. }