segment.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include "f2fs.h"
  20. #include "segment.h"
  21. #include "node.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define __reverse_ffz(x) __reverse_ffs(~(x))
  25. static struct kmem_cache *discard_entry_slab;
  26. static struct kmem_cache *sit_entry_set_slab;
  27. static struct kmem_cache *inmem_entry_slab;
  28. static unsigned long __reverse_ulong(unsigned char *str)
  29. {
  30. unsigned long tmp = 0;
  31. int shift = 24, idx = 0;
  32. #if BITS_PER_LONG == 64
  33. shift = 56;
  34. #endif
  35. while (shift >= 0) {
  36. tmp |= (unsigned long)str[idx++] << shift;
  37. shift -= BITS_PER_BYTE;
  38. }
  39. return tmp;
  40. }
  41. /*
  42. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  43. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  44. */
  45. static inline unsigned long __reverse_ffs(unsigned long word)
  46. {
  47. int num = 0;
  48. #if BITS_PER_LONG == 64
  49. if ((word & 0xffffffff00000000UL) == 0)
  50. num += 32;
  51. else
  52. word >>= 32;
  53. #endif
  54. if ((word & 0xffff0000) == 0)
  55. num += 16;
  56. else
  57. word >>= 16;
  58. if ((word & 0xff00) == 0)
  59. num += 8;
  60. else
  61. word >>= 8;
  62. if ((word & 0xf0) == 0)
  63. num += 4;
  64. else
  65. word >>= 4;
  66. if ((word & 0xc) == 0)
  67. num += 2;
  68. else
  69. word >>= 2;
  70. if ((word & 0x2) == 0)
  71. num += 1;
  72. return num;
  73. }
  74. /*
  75. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  76. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  77. * @size must be integral times of unsigned long.
  78. * Example:
  79. * MSB <--> LSB
  80. * f2fs_set_bit(0, bitmap) => 1000 0000
  81. * f2fs_set_bit(7, bitmap) => 0000 0001
  82. */
  83. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  84. unsigned long size, unsigned long offset)
  85. {
  86. const unsigned long *p = addr + BIT_WORD(offset);
  87. unsigned long result = size;
  88. unsigned long tmp;
  89. if (offset >= size)
  90. return size;
  91. size -= (offset & ~(BITS_PER_LONG - 1));
  92. offset %= BITS_PER_LONG;
  93. while (1) {
  94. if (*p == 0)
  95. goto pass;
  96. tmp = __reverse_ulong((unsigned char *)p);
  97. tmp &= ~0UL >> offset;
  98. if (size < BITS_PER_LONG)
  99. tmp &= (~0UL << (BITS_PER_LONG - size));
  100. if (tmp)
  101. goto found;
  102. pass:
  103. if (size <= BITS_PER_LONG)
  104. break;
  105. size -= BITS_PER_LONG;
  106. offset = 0;
  107. p++;
  108. }
  109. return result;
  110. found:
  111. return result - size + __reverse_ffs(tmp);
  112. }
  113. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  114. unsigned long size, unsigned long offset)
  115. {
  116. const unsigned long *p = addr + BIT_WORD(offset);
  117. unsigned long result = size;
  118. unsigned long tmp;
  119. if (offset >= size)
  120. return size;
  121. size -= (offset & ~(BITS_PER_LONG - 1));
  122. offset %= BITS_PER_LONG;
  123. while (1) {
  124. if (*p == ~0UL)
  125. goto pass;
  126. tmp = __reverse_ulong((unsigned char *)p);
  127. if (offset)
  128. tmp |= ~0UL << (BITS_PER_LONG - offset);
  129. if (size < BITS_PER_LONG)
  130. tmp |= ~0UL >> size;
  131. if (tmp != ~0UL)
  132. goto found;
  133. pass:
  134. if (size <= BITS_PER_LONG)
  135. break;
  136. size -= BITS_PER_LONG;
  137. offset = 0;
  138. p++;
  139. }
  140. return result;
  141. found:
  142. return result - size + __reverse_ffz(tmp);
  143. }
  144. void register_inmem_page(struct inode *inode, struct page *page)
  145. {
  146. struct f2fs_inode_info *fi = F2FS_I(inode);
  147. struct inmem_pages *new;
  148. f2fs_trace_pid(page);
  149. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  150. SetPagePrivate(page);
  151. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  152. /* add atomic page indices to the list */
  153. new->page = page;
  154. INIT_LIST_HEAD(&new->list);
  155. /* increase reference count with clean state */
  156. mutex_lock(&fi->inmem_lock);
  157. get_page(page);
  158. list_add_tail(&new->list, &fi->inmem_pages);
  159. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  160. mutex_unlock(&fi->inmem_lock);
  161. trace_f2fs_register_inmem_page(page, INMEM);
  162. }
  163. static int __revoke_inmem_pages(struct inode *inode,
  164. struct list_head *head, bool drop, bool recover)
  165. {
  166. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  167. struct inmem_pages *cur, *tmp;
  168. int err = 0;
  169. list_for_each_entry_safe(cur, tmp, head, list) {
  170. struct page *page = cur->page;
  171. if (drop)
  172. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  173. lock_page(page);
  174. if (recover) {
  175. struct dnode_of_data dn;
  176. struct node_info ni;
  177. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  178. set_new_dnode(&dn, inode, NULL, NULL, 0);
  179. if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
  180. err = -EAGAIN;
  181. goto next;
  182. }
  183. get_node_info(sbi, dn.nid, &ni);
  184. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  185. cur->old_addr, ni.version, true, true);
  186. f2fs_put_dnode(&dn);
  187. }
  188. next:
  189. /* we don't need to invalidate this in the sccessful status */
  190. if (drop || recover)
  191. ClearPageUptodate(page);
  192. set_page_private(page, 0);
  193. ClearPagePrivate(page);
  194. f2fs_put_page(page, 1);
  195. list_del(&cur->list);
  196. kmem_cache_free(inmem_entry_slab, cur);
  197. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  198. }
  199. return err;
  200. }
  201. void drop_inmem_pages(struct inode *inode)
  202. {
  203. struct f2fs_inode_info *fi = F2FS_I(inode);
  204. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  205. mutex_lock(&fi->inmem_lock);
  206. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  207. mutex_unlock(&fi->inmem_lock);
  208. }
  209. static int __commit_inmem_pages(struct inode *inode,
  210. struct list_head *revoke_list)
  211. {
  212. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  213. struct f2fs_inode_info *fi = F2FS_I(inode);
  214. struct inmem_pages *cur, *tmp;
  215. struct f2fs_io_info fio = {
  216. .sbi = sbi,
  217. .type = DATA,
  218. .rw = WRITE_SYNC | REQ_PRIO,
  219. .encrypted_page = NULL,
  220. };
  221. bool submit_bio = false;
  222. int err = 0;
  223. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  224. struct page *page = cur->page;
  225. lock_page(page);
  226. if (page->mapping == inode->i_mapping) {
  227. trace_f2fs_commit_inmem_page(page, INMEM);
  228. set_page_dirty(page);
  229. f2fs_wait_on_page_writeback(page, DATA, true);
  230. if (clear_page_dirty_for_io(page))
  231. inode_dec_dirty_pages(inode);
  232. fio.page = page;
  233. err = do_write_data_page(&fio);
  234. if (err) {
  235. unlock_page(page);
  236. break;
  237. }
  238. /* record old blkaddr for revoking */
  239. cur->old_addr = fio.old_blkaddr;
  240. clear_cold_data(page);
  241. submit_bio = true;
  242. }
  243. unlock_page(page);
  244. list_move_tail(&cur->list, revoke_list);
  245. }
  246. if (submit_bio)
  247. f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
  248. if (!err)
  249. __revoke_inmem_pages(inode, revoke_list, false, false);
  250. return err;
  251. }
  252. int commit_inmem_pages(struct inode *inode)
  253. {
  254. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  255. struct f2fs_inode_info *fi = F2FS_I(inode);
  256. struct list_head revoke_list;
  257. int err;
  258. INIT_LIST_HEAD(&revoke_list);
  259. f2fs_balance_fs(sbi, true);
  260. f2fs_lock_op(sbi);
  261. mutex_lock(&fi->inmem_lock);
  262. err = __commit_inmem_pages(inode, &revoke_list);
  263. if (err) {
  264. int ret;
  265. /*
  266. * try to revoke all committed pages, but still we could fail
  267. * due to no memory or other reason, if that happened, EAGAIN
  268. * will be returned, which means in such case, transaction is
  269. * already not integrity, caller should use journal to do the
  270. * recovery or rewrite & commit last transaction. For other
  271. * error number, revoking was done by filesystem itself.
  272. */
  273. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  274. if (ret)
  275. err = ret;
  276. /* drop all uncommitted pages */
  277. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  278. }
  279. mutex_unlock(&fi->inmem_lock);
  280. f2fs_unlock_op(sbi);
  281. return err;
  282. }
  283. /*
  284. * This function balances dirty node and dentry pages.
  285. * In addition, it controls garbage collection.
  286. */
  287. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  288. {
  289. if (!need)
  290. return;
  291. /*
  292. * We should do GC or end up with checkpoint, if there are so many dirty
  293. * dir/node pages without enough free segments.
  294. */
  295. if (has_not_enough_free_secs(sbi, 0)) {
  296. mutex_lock(&sbi->gc_mutex);
  297. f2fs_gc(sbi, false);
  298. }
  299. }
  300. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  301. {
  302. /* try to shrink extent cache when there is no enough memory */
  303. if (!available_free_memory(sbi, EXTENT_CACHE))
  304. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  305. /* check the # of cached NAT entries */
  306. if (!available_free_memory(sbi, NAT_ENTRIES))
  307. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  308. if (!available_free_memory(sbi, FREE_NIDS))
  309. try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
  310. /* checkpoint is the only way to shrink partial cached entries */
  311. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  312. !available_free_memory(sbi, INO_ENTRIES) ||
  313. excess_prefree_segs(sbi) ||
  314. excess_dirty_nats(sbi) ||
  315. (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
  316. if (test_opt(sbi, DATA_FLUSH)) {
  317. struct blk_plug plug;
  318. blk_start_plug(&plug);
  319. sync_dirty_inodes(sbi, FILE_INODE);
  320. blk_finish_plug(&plug);
  321. }
  322. f2fs_sync_fs(sbi->sb, true);
  323. stat_inc_bg_cp_count(sbi->stat_info);
  324. }
  325. }
  326. static int issue_flush_thread(void *data)
  327. {
  328. struct f2fs_sb_info *sbi = data;
  329. struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
  330. wait_queue_head_t *q = &fcc->flush_wait_queue;
  331. repeat:
  332. if (kthread_should_stop())
  333. return 0;
  334. if (!llist_empty(&fcc->issue_list)) {
  335. struct bio *bio;
  336. struct flush_cmd *cmd, *next;
  337. int ret;
  338. bio = f2fs_bio_alloc(0);
  339. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  340. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  341. bio->bi_bdev = sbi->sb->s_bdev;
  342. ret = submit_bio_wait(WRITE_FLUSH, bio);
  343. llist_for_each_entry_safe(cmd, next,
  344. fcc->dispatch_list, llnode) {
  345. cmd->ret = ret;
  346. complete(&cmd->wait);
  347. }
  348. bio_put(bio);
  349. fcc->dispatch_list = NULL;
  350. }
  351. wait_event_interruptible(*q,
  352. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  353. goto repeat;
  354. }
  355. int f2fs_issue_flush(struct f2fs_sb_info *sbi)
  356. {
  357. struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
  358. struct flush_cmd cmd;
  359. trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
  360. test_opt(sbi, FLUSH_MERGE));
  361. if (test_opt(sbi, NOBARRIER))
  362. return 0;
  363. if (!test_opt(sbi, FLUSH_MERGE)) {
  364. struct bio *bio = f2fs_bio_alloc(0);
  365. int ret;
  366. bio->bi_bdev = sbi->sb->s_bdev;
  367. ret = submit_bio_wait(WRITE_FLUSH, bio);
  368. bio_put(bio);
  369. return ret;
  370. }
  371. init_completion(&cmd.wait);
  372. llist_add(&cmd.llnode, &fcc->issue_list);
  373. if (!fcc->dispatch_list)
  374. wake_up(&fcc->flush_wait_queue);
  375. wait_for_completion(&cmd.wait);
  376. return cmd.ret;
  377. }
  378. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  379. {
  380. dev_t dev = sbi->sb->s_bdev->bd_dev;
  381. struct flush_cmd_control *fcc;
  382. int err = 0;
  383. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  384. if (!fcc)
  385. return -ENOMEM;
  386. init_waitqueue_head(&fcc->flush_wait_queue);
  387. init_llist_head(&fcc->issue_list);
  388. SM_I(sbi)->cmd_control_info = fcc;
  389. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  390. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  391. if (IS_ERR(fcc->f2fs_issue_flush)) {
  392. err = PTR_ERR(fcc->f2fs_issue_flush);
  393. kfree(fcc);
  394. SM_I(sbi)->cmd_control_info = NULL;
  395. return err;
  396. }
  397. return err;
  398. }
  399. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
  400. {
  401. struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
  402. if (fcc && fcc->f2fs_issue_flush)
  403. kthread_stop(fcc->f2fs_issue_flush);
  404. kfree(fcc);
  405. SM_I(sbi)->cmd_control_info = NULL;
  406. }
  407. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  408. enum dirty_type dirty_type)
  409. {
  410. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  411. /* need not be added */
  412. if (IS_CURSEG(sbi, segno))
  413. return;
  414. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  415. dirty_i->nr_dirty[dirty_type]++;
  416. if (dirty_type == DIRTY) {
  417. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  418. enum dirty_type t = sentry->type;
  419. if (unlikely(t >= DIRTY)) {
  420. f2fs_bug_on(sbi, 1);
  421. return;
  422. }
  423. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  424. dirty_i->nr_dirty[t]++;
  425. }
  426. }
  427. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  428. enum dirty_type dirty_type)
  429. {
  430. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  431. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  432. dirty_i->nr_dirty[dirty_type]--;
  433. if (dirty_type == DIRTY) {
  434. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  435. enum dirty_type t = sentry->type;
  436. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  437. dirty_i->nr_dirty[t]--;
  438. if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
  439. clear_bit(GET_SECNO(sbi, segno),
  440. dirty_i->victim_secmap);
  441. }
  442. }
  443. /*
  444. * Should not occur error such as -ENOMEM.
  445. * Adding dirty entry into seglist is not critical operation.
  446. * If a given segment is one of current working segments, it won't be added.
  447. */
  448. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  449. {
  450. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  451. unsigned short valid_blocks;
  452. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  453. return;
  454. mutex_lock(&dirty_i->seglist_lock);
  455. valid_blocks = get_valid_blocks(sbi, segno, 0);
  456. if (valid_blocks == 0) {
  457. __locate_dirty_segment(sbi, segno, PRE);
  458. __remove_dirty_segment(sbi, segno, DIRTY);
  459. } else if (valid_blocks < sbi->blocks_per_seg) {
  460. __locate_dirty_segment(sbi, segno, DIRTY);
  461. } else {
  462. /* Recovery routine with SSR needs this */
  463. __remove_dirty_segment(sbi, segno, DIRTY);
  464. }
  465. mutex_unlock(&dirty_i->seglist_lock);
  466. }
  467. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  468. block_t blkstart, block_t blklen)
  469. {
  470. sector_t start = SECTOR_FROM_BLOCK(blkstart);
  471. sector_t len = SECTOR_FROM_BLOCK(blklen);
  472. struct seg_entry *se;
  473. unsigned int offset;
  474. block_t i;
  475. for (i = blkstart; i < blkstart + blklen; i++) {
  476. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  477. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  478. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  479. sbi->discard_blks--;
  480. }
  481. trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
  482. return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
  483. }
  484. bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
  485. {
  486. int err = -EOPNOTSUPP;
  487. if (test_opt(sbi, DISCARD)) {
  488. struct seg_entry *se = get_seg_entry(sbi,
  489. GET_SEGNO(sbi, blkaddr));
  490. unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  491. if (f2fs_test_bit(offset, se->discard_map))
  492. return false;
  493. err = f2fs_issue_discard(sbi, blkaddr, 1);
  494. }
  495. if (err) {
  496. update_meta_page(sbi, NULL, blkaddr);
  497. return true;
  498. }
  499. return false;
  500. }
  501. static void __add_discard_entry(struct f2fs_sb_info *sbi,
  502. struct cp_control *cpc, struct seg_entry *se,
  503. unsigned int start, unsigned int end)
  504. {
  505. struct list_head *head = &SM_I(sbi)->discard_list;
  506. struct discard_entry *new, *last;
  507. if (!list_empty(head)) {
  508. last = list_last_entry(head, struct discard_entry, list);
  509. if (START_BLOCK(sbi, cpc->trim_start) + start ==
  510. last->blkaddr + last->len) {
  511. last->len += end - start;
  512. goto done;
  513. }
  514. }
  515. new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
  516. INIT_LIST_HEAD(&new->list);
  517. new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
  518. new->len = end - start;
  519. list_add_tail(&new->list, head);
  520. done:
  521. SM_I(sbi)->nr_discards += end - start;
  522. }
  523. static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  524. {
  525. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  526. int max_blocks = sbi->blocks_per_seg;
  527. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  528. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  529. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  530. unsigned long *discard_map = (unsigned long *)se->discard_map;
  531. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  532. unsigned int start = 0, end = -1;
  533. bool force = (cpc->reason == CP_DISCARD);
  534. int i;
  535. if (se->valid_blocks == max_blocks)
  536. return;
  537. if (!force) {
  538. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  539. SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
  540. return;
  541. }
  542. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  543. for (i = 0; i < entries; i++)
  544. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  545. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  546. while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
  547. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  548. if (start >= max_blocks)
  549. break;
  550. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  551. __add_discard_entry(sbi, cpc, se, start, end);
  552. }
  553. }
  554. void release_discard_addrs(struct f2fs_sb_info *sbi)
  555. {
  556. struct list_head *head = &(SM_I(sbi)->discard_list);
  557. struct discard_entry *entry, *this;
  558. /* drop caches */
  559. list_for_each_entry_safe(entry, this, head, list) {
  560. list_del(&entry->list);
  561. kmem_cache_free(discard_entry_slab, entry);
  562. }
  563. }
  564. /*
  565. * Should call clear_prefree_segments after checkpoint is done.
  566. */
  567. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  568. {
  569. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  570. unsigned int segno;
  571. mutex_lock(&dirty_i->seglist_lock);
  572. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  573. __set_test_and_free(sbi, segno);
  574. mutex_unlock(&dirty_i->seglist_lock);
  575. }
  576. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  577. {
  578. struct list_head *head = &(SM_I(sbi)->discard_list);
  579. struct discard_entry *entry, *this;
  580. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  581. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  582. unsigned int start = 0, end = -1;
  583. mutex_lock(&dirty_i->seglist_lock);
  584. while (1) {
  585. int i;
  586. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  587. if (start >= MAIN_SEGS(sbi))
  588. break;
  589. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  590. start + 1);
  591. for (i = start; i < end; i++)
  592. clear_bit(i, prefree_map);
  593. dirty_i->nr_dirty[PRE] -= end - start;
  594. if (!test_opt(sbi, DISCARD))
  595. continue;
  596. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  597. (end - start) << sbi->log_blocks_per_seg);
  598. }
  599. mutex_unlock(&dirty_i->seglist_lock);
  600. /* send small discards */
  601. list_for_each_entry_safe(entry, this, head, list) {
  602. if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
  603. goto skip;
  604. f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
  605. cpc->trimmed += entry->len;
  606. skip:
  607. list_del(&entry->list);
  608. SM_I(sbi)->nr_discards -= entry->len;
  609. kmem_cache_free(discard_entry_slab, entry);
  610. }
  611. }
  612. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  613. {
  614. struct sit_info *sit_i = SIT_I(sbi);
  615. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  616. sit_i->dirty_sentries++;
  617. return false;
  618. }
  619. return true;
  620. }
  621. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  622. unsigned int segno, int modified)
  623. {
  624. struct seg_entry *se = get_seg_entry(sbi, segno);
  625. se->type = type;
  626. if (modified)
  627. __mark_sit_entry_dirty(sbi, segno);
  628. }
  629. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  630. {
  631. struct seg_entry *se;
  632. unsigned int segno, offset;
  633. long int new_vblocks;
  634. segno = GET_SEGNO(sbi, blkaddr);
  635. se = get_seg_entry(sbi, segno);
  636. new_vblocks = se->valid_blocks + del;
  637. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  638. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  639. (new_vblocks > sbi->blocks_per_seg)));
  640. se->valid_blocks = new_vblocks;
  641. se->mtime = get_mtime(sbi);
  642. SIT_I(sbi)->max_mtime = se->mtime;
  643. /* Update valid block bitmap */
  644. if (del > 0) {
  645. if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
  646. f2fs_bug_on(sbi, 1);
  647. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  648. sbi->discard_blks--;
  649. } else {
  650. if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
  651. f2fs_bug_on(sbi, 1);
  652. if (f2fs_test_and_clear_bit(offset, se->discard_map))
  653. sbi->discard_blks++;
  654. }
  655. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  656. se->ckpt_valid_blocks += del;
  657. __mark_sit_entry_dirty(sbi, segno);
  658. /* update total number of valid blocks to be written in ckpt area */
  659. SIT_I(sbi)->written_valid_blocks += del;
  660. if (sbi->segs_per_sec > 1)
  661. get_sec_entry(sbi, segno)->valid_blocks += del;
  662. }
  663. void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
  664. {
  665. update_sit_entry(sbi, new, 1);
  666. if (GET_SEGNO(sbi, old) != NULL_SEGNO)
  667. update_sit_entry(sbi, old, -1);
  668. locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
  669. locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
  670. }
  671. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  672. {
  673. unsigned int segno = GET_SEGNO(sbi, addr);
  674. struct sit_info *sit_i = SIT_I(sbi);
  675. f2fs_bug_on(sbi, addr == NULL_ADDR);
  676. if (addr == NEW_ADDR)
  677. return;
  678. /* add it into sit main buffer */
  679. mutex_lock(&sit_i->sentry_lock);
  680. update_sit_entry(sbi, addr, -1);
  681. /* add it into dirty seglist */
  682. locate_dirty_segment(sbi, segno);
  683. mutex_unlock(&sit_i->sentry_lock);
  684. }
  685. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  686. {
  687. struct sit_info *sit_i = SIT_I(sbi);
  688. unsigned int segno, offset;
  689. struct seg_entry *se;
  690. bool is_cp = false;
  691. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  692. return true;
  693. mutex_lock(&sit_i->sentry_lock);
  694. segno = GET_SEGNO(sbi, blkaddr);
  695. se = get_seg_entry(sbi, segno);
  696. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  697. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  698. is_cp = true;
  699. mutex_unlock(&sit_i->sentry_lock);
  700. return is_cp;
  701. }
  702. /*
  703. * This function should be resided under the curseg_mutex lock
  704. */
  705. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  706. struct f2fs_summary *sum)
  707. {
  708. struct curseg_info *curseg = CURSEG_I(sbi, type);
  709. void *addr = curseg->sum_blk;
  710. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  711. memcpy(addr, sum, sizeof(struct f2fs_summary));
  712. }
  713. /*
  714. * Calculate the number of current summary pages for writing
  715. */
  716. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  717. {
  718. int valid_sum_count = 0;
  719. int i, sum_in_page;
  720. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  721. if (sbi->ckpt->alloc_type[i] == SSR)
  722. valid_sum_count += sbi->blocks_per_seg;
  723. else {
  724. if (for_ra)
  725. valid_sum_count += le16_to_cpu(
  726. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  727. else
  728. valid_sum_count += curseg_blkoff(sbi, i);
  729. }
  730. }
  731. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  732. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  733. if (valid_sum_count <= sum_in_page)
  734. return 1;
  735. else if ((valid_sum_count - sum_in_page) <=
  736. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  737. return 2;
  738. return 3;
  739. }
  740. /*
  741. * Caller should put this summary page
  742. */
  743. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  744. {
  745. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  746. }
  747. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  748. {
  749. struct page *page = grab_meta_page(sbi, blk_addr);
  750. void *dst = page_address(page);
  751. if (src)
  752. memcpy(dst, src, PAGE_SIZE);
  753. else
  754. memset(dst, 0, PAGE_SIZE);
  755. set_page_dirty(page);
  756. f2fs_put_page(page, 1);
  757. }
  758. static void write_sum_page(struct f2fs_sb_info *sbi,
  759. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  760. {
  761. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  762. }
  763. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  764. int type, block_t blk_addr)
  765. {
  766. struct curseg_info *curseg = CURSEG_I(sbi, type);
  767. struct page *page = grab_meta_page(sbi, blk_addr);
  768. struct f2fs_summary_block *src = curseg->sum_blk;
  769. struct f2fs_summary_block *dst;
  770. dst = (struct f2fs_summary_block *)page_address(page);
  771. mutex_lock(&curseg->curseg_mutex);
  772. down_read(&curseg->journal_rwsem);
  773. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  774. up_read(&curseg->journal_rwsem);
  775. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  776. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  777. mutex_unlock(&curseg->curseg_mutex);
  778. set_page_dirty(page);
  779. f2fs_put_page(page, 1);
  780. }
  781. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  782. {
  783. struct curseg_info *curseg = CURSEG_I(sbi, type);
  784. unsigned int segno = curseg->segno + 1;
  785. struct free_segmap_info *free_i = FREE_I(sbi);
  786. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  787. return !test_bit(segno, free_i->free_segmap);
  788. return 0;
  789. }
  790. /*
  791. * Find a new segment from the free segments bitmap to right order
  792. * This function should be returned with success, otherwise BUG
  793. */
  794. static void get_new_segment(struct f2fs_sb_info *sbi,
  795. unsigned int *newseg, bool new_sec, int dir)
  796. {
  797. struct free_segmap_info *free_i = FREE_I(sbi);
  798. unsigned int segno, secno, zoneno;
  799. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  800. unsigned int hint = *newseg / sbi->segs_per_sec;
  801. unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
  802. unsigned int left_start = hint;
  803. bool init = true;
  804. int go_left = 0;
  805. int i;
  806. spin_lock(&free_i->segmap_lock);
  807. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  808. segno = find_next_zero_bit(free_i->free_segmap,
  809. (hint + 1) * sbi->segs_per_sec, *newseg + 1);
  810. if (segno < (hint + 1) * sbi->segs_per_sec)
  811. goto got_it;
  812. }
  813. find_other_zone:
  814. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  815. if (secno >= MAIN_SECS(sbi)) {
  816. if (dir == ALLOC_RIGHT) {
  817. secno = find_next_zero_bit(free_i->free_secmap,
  818. MAIN_SECS(sbi), 0);
  819. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  820. } else {
  821. go_left = 1;
  822. left_start = hint - 1;
  823. }
  824. }
  825. if (go_left == 0)
  826. goto skip_left;
  827. while (test_bit(left_start, free_i->free_secmap)) {
  828. if (left_start > 0) {
  829. left_start--;
  830. continue;
  831. }
  832. left_start = find_next_zero_bit(free_i->free_secmap,
  833. MAIN_SECS(sbi), 0);
  834. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  835. break;
  836. }
  837. secno = left_start;
  838. skip_left:
  839. hint = secno;
  840. segno = secno * sbi->segs_per_sec;
  841. zoneno = secno / sbi->secs_per_zone;
  842. /* give up on finding another zone */
  843. if (!init)
  844. goto got_it;
  845. if (sbi->secs_per_zone == 1)
  846. goto got_it;
  847. if (zoneno == old_zoneno)
  848. goto got_it;
  849. if (dir == ALLOC_LEFT) {
  850. if (!go_left && zoneno + 1 >= total_zones)
  851. goto got_it;
  852. if (go_left && zoneno == 0)
  853. goto got_it;
  854. }
  855. for (i = 0; i < NR_CURSEG_TYPE; i++)
  856. if (CURSEG_I(sbi, i)->zone == zoneno)
  857. break;
  858. if (i < NR_CURSEG_TYPE) {
  859. /* zone is in user, try another */
  860. if (go_left)
  861. hint = zoneno * sbi->secs_per_zone - 1;
  862. else if (zoneno + 1 >= total_zones)
  863. hint = 0;
  864. else
  865. hint = (zoneno + 1) * sbi->secs_per_zone;
  866. init = false;
  867. goto find_other_zone;
  868. }
  869. got_it:
  870. /* set it as dirty segment in free segmap */
  871. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  872. __set_inuse(sbi, segno);
  873. *newseg = segno;
  874. spin_unlock(&free_i->segmap_lock);
  875. }
  876. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  877. {
  878. struct curseg_info *curseg = CURSEG_I(sbi, type);
  879. struct summary_footer *sum_footer;
  880. curseg->segno = curseg->next_segno;
  881. curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
  882. curseg->next_blkoff = 0;
  883. curseg->next_segno = NULL_SEGNO;
  884. sum_footer = &(curseg->sum_blk->footer);
  885. memset(sum_footer, 0, sizeof(struct summary_footer));
  886. if (IS_DATASEG(type))
  887. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  888. if (IS_NODESEG(type))
  889. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  890. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  891. }
  892. /*
  893. * Allocate a current working segment.
  894. * This function always allocates a free segment in LFS manner.
  895. */
  896. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  897. {
  898. struct curseg_info *curseg = CURSEG_I(sbi, type);
  899. unsigned int segno = curseg->segno;
  900. int dir = ALLOC_LEFT;
  901. write_sum_page(sbi, curseg->sum_blk,
  902. GET_SUM_BLOCK(sbi, segno));
  903. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  904. dir = ALLOC_RIGHT;
  905. if (test_opt(sbi, NOHEAP))
  906. dir = ALLOC_RIGHT;
  907. get_new_segment(sbi, &segno, new_sec, dir);
  908. curseg->next_segno = segno;
  909. reset_curseg(sbi, type, 1);
  910. curseg->alloc_type = LFS;
  911. }
  912. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  913. struct curseg_info *seg, block_t start)
  914. {
  915. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  916. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  917. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  918. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  919. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  920. int i, pos;
  921. for (i = 0; i < entries; i++)
  922. target_map[i] = ckpt_map[i] | cur_map[i];
  923. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  924. seg->next_blkoff = pos;
  925. }
  926. /*
  927. * If a segment is written by LFS manner, next block offset is just obtained
  928. * by increasing the current block offset. However, if a segment is written by
  929. * SSR manner, next block offset obtained by calling __next_free_blkoff
  930. */
  931. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  932. struct curseg_info *seg)
  933. {
  934. if (seg->alloc_type == SSR)
  935. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  936. else
  937. seg->next_blkoff++;
  938. }
  939. /*
  940. * This function always allocates a used segment(from dirty seglist) by SSR
  941. * manner, so it should recover the existing segment information of valid blocks
  942. */
  943. static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
  944. {
  945. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  946. struct curseg_info *curseg = CURSEG_I(sbi, type);
  947. unsigned int new_segno = curseg->next_segno;
  948. struct f2fs_summary_block *sum_node;
  949. struct page *sum_page;
  950. write_sum_page(sbi, curseg->sum_blk,
  951. GET_SUM_BLOCK(sbi, curseg->segno));
  952. __set_test_and_inuse(sbi, new_segno);
  953. mutex_lock(&dirty_i->seglist_lock);
  954. __remove_dirty_segment(sbi, new_segno, PRE);
  955. __remove_dirty_segment(sbi, new_segno, DIRTY);
  956. mutex_unlock(&dirty_i->seglist_lock);
  957. reset_curseg(sbi, type, 1);
  958. curseg->alloc_type = SSR;
  959. __next_free_blkoff(sbi, curseg, 0);
  960. if (reuse) {
  961. sum_page = get_sum_page(sbi, new_segno);
  962. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  963. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  964. f2fs_put_page(sum_page, 1);
  965. }
  966. }
  967. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  968. {
  969. struct curseg_info *curseg = CURSEG_I(sbi, type);
  970. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  971. if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
  972. return v_ops->get_victim(sbi,
  973. &(curseg)->next_segno, BG_GC, type, SSR);
  974. /* For data segments, let's do SSR more intensively */
  975. for (; type >= CURSEG_HOT_DATA; type--)
  976. if (v_ops->get_victim(sbi, &(curseg)->next_segno,
  977. BG_GC, type, SSR))
  978. return 1;
  979. return 0;
  980. }
  981. /*
  982. * flush out current segment and replace it with new segment
  983. * This function should be returned with success, otherwise BUG
  984. */
  985. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  986. int type, bool force)
  987. {
  988. struct curseg_info *curseg = CURSEG_I(sbi, type);
  989. if (force)
  990. new_curseg(sbi, type, true);
  991. else if (type == CURSEG_WARM_NODE)
  992. new_curseg(sbi, type, false);
  993. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  994. new_curseg(sbi, type, false);
  995. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  996. change_curseg(sbi, type, true);
  997. else
  998. new_curseg(sbi, type, false);
  999. stat_inc_seg_type(sbi, curseg);
  1000. }
  1001. static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
  1002. {
  1003. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1004. unsigned int old_segno;
  1005. old_segno = curseg->segno;
  1006. SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
  1007. locate_dirty_segment(sbi, old_segno);
  1008. }
  1009. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1010. {
  1011. int i;
  1012. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
  1013. __allocate_new_segments(sbi, i);
  1014. }
  1015. static const struct segment_allocation default_salloc_ops = {
  1016. .allocate_segment = allocate_segment_by_default,
  1017. };
  1018. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1019. {
  1020. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1021. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1022. unsigned int start_segno, end_segno;
  1023. struct cp_control cpc;
  1024. int err = 0;
  1025. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1026. return -EINVAL;
  1027. cpc.trimmed = 0;
  1028. if (end <= MAIN_BLKADDR(sbi))
  1029. goto out;
  1030. /* start/end segment number in main_area */
  1031. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1032. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  1033. GET_SEGNO(sbi, end);
  1034. cpc.reason = CP_DISCARD;
  1035. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  1036. /* do checkpoint to issue discard commands safely */
  1037. for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
  1038. cpc.trim_start = start_segno;
  1039. if (sbi->discard_blks == 0)
  1040. break;
  1041. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  1042. cpc.trim_end = end_segno;
  1043. else
  1044. cpc.trim_end = min_t(unsigned int,
  1045. rounddown(start_segno +
  1046. BATCHED_TRIM_SEGMENTS(sbi),
  1047. sbi->segs_per_sec) - 1, end_segno);
  1048. mutex_lock(&sbi->gc_mutex);
  1049. err = write_checkpoint(sbi, &cpc);
  1050. mutex_unlock(&sbi->gc_mutex);
  1051. }
  1052. out:
  1053. range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
  1054. return err;
  1055. }
  1056. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  1057. {
  1058. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1059. if (curseg->next_blkoff < sbi->blocks_per_seg)
  1060. return true;
  1061. return false;
  1062. }
  1063. static int __get_segment_type_2(struct page *page, enum page_type p_type)
  1064. {
  1065. if (p_type == DATA)
  1066. return CURSEG_HOT_DATA;
  1067. else
  1068. return CURSEG_HOT_NODE;
  1069. }
  1070. static int __get_segment_type_4(struct page *page, enum page_type p_type)
  1071. {
  1072. if (p_type == DATA) {
  1073. struct inode *inode = page->mapping->host;
  1074. if (S_ISDIR(inode->i_mode))
  1075. return CURSEG_HOT_DATA;
  1076. else
  1077. return CURSEG_COLD_DATA;
  1078. } else {
  1079. if (IS_DNODE(page) && is_cold_node(page))
  1080. return CURSEG_WARM_NODE;
  1081. else
  1082. return CURSEG_COLD_NODE;
  1083. }
  1084. }
  1085. static int __get_segment_type_6(struct page *page, enum page_type p_type)
  1086. {
  1087. if (p_type == DATA) {
  1088. struct inode *inode = page->mapping->host;
  1089. if (S_ISDIR(inode->i_mode))
  1090. return CURSEG_HOT_DATA;
  1091. else if (is_cold_data(page) || file_is_cold(inode))
  1092. return CURSEG_COLD_DATA;
  1093. else
  1094. return CURSEG_WARM_DATA;
  1095. } else {
  1096. if (IS_DNODE(page))
  1097. return is_cold_node(page) ? CURSEG_WARM_NODE :
  1098. CURSEG_HOT_NODE;
  1099. else
  1100. return CURSEG_COLD_NODE;
  1101. }
  1102. }
  1103. static int __get_segment_type(struct page *page, enum page_type p_type)
  1104. {
  1105. switch (F2FS_P_SB(page)->active_logs) {
  1106. case 2:
  1107. return __get_segment_type_2(page, p_type);
  1108. case 4:
  1109. return __get_segment_type_4(page, p_type);
  1110. }
  1111. /* NR_CURSEG_TYPE(6) logs by default */
  1112. f2fs_bug_on(F2FS_P_SB(page),
  1113. F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
  1114. return __get_segment_type_6(page, p_type);
  1115. }
  1116. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  1117. block_t old_blkaddr, block_t *new_blkaddr,
  1118. struct f2fs_summary *sum, int type)
  1119. {
  1120. struct sit_info *sit_i = SIT_I(sbi);
  1121. struct curseg_info *curseg;
  1122. bool direct_io = (type == CURSEG_DIRECT_IO);
  1123. type = direct_io ? CURSEG_WARM_DATA : type;
  1124. curseg = CURSEG_I(sbi, type);
  1125. mutex_lock(&curseg->curseg_mutex);
  1126. mutex_lock(&sit_i->sentry_lock);
  1127. /* direct_io'ed data is aligned to the segment for better performance */
  1128. if (direct_io && curseg->next_blkoff &&
  1129. !has_not_enough_free_secs(sbi, 0))
  1130. __allocate_new_segments(sbi, type);
  1131. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  1132. /*
  1133. * __add_sum_entry should be resided under the curseg_mutex
  1134. * because, this function updates a summary entry in the
  1135. * current summary block.
  1136. */
  1137. __add_sum_entry(sbi, type, sum);
  1138. __refresh_next_blkoff(sbi, curseg);
  1139. stat_inc_block_count(sbi, curseg);
  1140. if (!__has_curseg_space(sbi, type))
  1141. sit_i->s_ops->allocate_segment(sbi, type, false);
  1142. /*
  1143. * SIT information should be updated before segment allocation,
  1144. * since SSR needs latest valid block information.
  1145. */
  1146. refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
  1147. mutex_unlock(&sit_i->sentry_lock);
  1148. if (page && IS_NODESEG(type))
  1149. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  1150. mutex_unlock(&curseg->curseg_mutex);
  1151. }
  1152. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  1153. {
  1154. int type = __get_segment_type(fio->page, fio->type);
  1155. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  1156. &fio->new_blkaddr, sum, type);
  1157. /* writeout dirty page into bdev */
  1158. f2fs_submit_page_mbio(fio);
  1159. }
  1160. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
  1161. {
  1162. struct f2fs_io_info fio = {
  1163. .sbi = sbi,
  1164. .type = META,
  1165. .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
  1166. .old_blkaddr = page->index,
  1167. .new_blkaddr = page->index,
  1168. .page = page,
  1169. .encrypted_page = NULL,
  1170. };
  1171. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  1172. fio.rw &= ~REQ_META;
  1173. set_page_writeback(page);
  1174. f2fs_submit_page_mbio(&fio);
  1175. }
  1176. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  1177. {
  1178. struct f2fs_summary sum;
  1179. set_summary(&sum, nid, 0, 0);
  1180. do_write_page(&sum, fio);
  1181. }
  1182. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  1183. {
  1184. struct f2fs_sb_info *sbi = fio->sbi;
  1185. struct f2fs_summary sum;
  1186. struct node_info ni;
  1187. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  1188. get_node_info(sbi, dn->nid, &ni);
  1189. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  1190. do_write_page(&sum, fio);
  1191. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  1192. }
  1193. void rewrite_data_page(struct f2fs_io_info *fio)
  1194. {
  1195. fio->new_blkaddr = fio->old_blkaddr;
  1196. stat_inc_inplace_blocks(fio->sbi);
  1197. f2fs_submit_page_mbio(fio);
  1198. }
  1199. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  1200. block_t old_blkaddr, block_t new_blkaddr,
  1201. bool recover_curseg, bool recover_newaddr)
  1202. {
  1203. struct sit_info *sit_i = SIT_I(sbi);
  1204. struct curseg_info *curseg;
  1205. unsigned int segno, old_cursegno;
  1206. struct seg_entry *se;
  1207. int type;
  1208. unsigned short old_blkoff;
  1209. segno = GET_SEGNO(sbi, new_blkaddr);
  1210. se = get_seg_entry(sbi, segno);
  1211. type = se->type;
  1212. if (!recover_curseg) {
  1213. /* for recovery flow */
  1214. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  1215. if (old_blkaddr == NULL_ADDR)
  1216. type = CURSEG_COLD_DATA;
  1217. else
  1218. type = CURSEG_WARM_DATA;
  1219. }
  1220. } else {
  1221. if (!IS_CURSEG(sbi, segno))
  1222. type = CURSEG_WARM_DATA;
  1223. }
  1224. curseg = CURSEG_I(sbi, type);
  1225. mutex_lock(&curseg->curseg_mutex);
  1226. mutex_lock(&sit_i->sentry_lock);
  1227. old_cursegno = curseg->segno;
  1228. old_blkoff = curseg->next_blkoff;
  1229. /* change the current segment */
  1230. if (segno != curseg->segno) {
  1231. curseg->next_segno = segno;
  1232. change_curseg(sbi, type, true);
  1233. }
  1234. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  1235. __add_sum_entry(sbi, type, sum);
  1236. if (!recover_curseg || recover_newaddr)
  1237. update_sit_entry(sbi, new_blkaddr, 1);
  1238. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  1239. update_sit_entry(sbi, old_blkaddr, -1);
  1240. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  1241. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  1242. locate_dirty_segment(sbi, old_cursegno);
  1243. if (recover_curseg) {
  1244. if (old_cursegno != curseg->segno) {
  1245. curseg->next_segno = old_cursegno;
  1246. change_curseg(sbi, type, true);
  1247. }
  1248. curseg->next_blkoff = old_blkoff;
  1249. }
  1250. mutex_unlock(&sit_i->sentry_lock);
  1251. mutex_unlock(&curseg->curseg_mutex);
  1252. }
  1253. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  1254. block_t old_addr, block_t new_addr,
  1255. unsigned char version, bool recover_curseg,
  1256. bool recover_newaddr)
  1257. {
  1258. struct f2fs_summary sum;
  1259. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  1260. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  1261. recover_curseg, recover_newaddr);
  1262. f2fs_update_data_blkaddr(dn, new_addr);
  1263. }
  1264. void f2fs_wait_on_page_writeback(struct page *page,
  1265. enum page_type type, bool ordered)
  1266. {
  1267. if (PageWriteback(page)) {
  1268. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1269. f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
  1270. if (ordered)
  1271. wait_on_page_writeback(page);
  1272. else
  1273. wait_for_stable_page(page);
  1274. }
  1275. }
  1276. void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
  1277. block_t blkaddr)
  1278. {
  1279. struct page *cpage;
  1280. if (blkaddr == NEW_ADDR)
  1281. return;
  1282. f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
  1283. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  1284. if (cpage) {
  1285. f2fs_wait_on_page_writeback(cpage, DATA, true);
  1286. f2fs_put_page(cpage, 1);
  1287. }
  1288. }
  1289. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  1290. {
  1291. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1292. struct curseg_info *seg_i;
  1293. unsigned char *kaddr;
  1294. struct page *page;
  1295. block_t start;
  1296. int i, j, offset;
  1297. start = start_sum_block(sbi);
  1298. page = get_meta_page(sbi, start++);
  1299. kaddr = (unsigned char *)page_address(page);
  1300. /* Step 1: restore nat cache */
  1301. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1302. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  1303. /* Step 2: restore sit cache */
  1304. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1305. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  1306. offset = 2 * SUM_JOURNAL_SIZE;
  1307. /* Step 3: restore summary entries */
  1308. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1309. unsigned short blk_off;
  1310. unsigned int segno;
  1311. seg_i = CURSEG_I(sbi, i);
  1312. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  1313. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  1314. seg_i->next_segno = segno;
  1315. reset_curseg(sbi, i, 0);
  1316. seg_i->alloc_type = ckpt->alloc_type[i];
  1317. seg_i->next_blkoff = blk_off;
  1318. if (seg_i->alloc_type == SSR)
  1319. blk_off = sbi->blocks_per_seg;
  1320. for (j = 0; j < blk_off; j++) {
  1321. struct f2fs_summary *s;
  1322. s = (struct f2fs_summary *)(kaddr + offset);
  1323. seg_i->sum_blk->entries[j] = *s;
  1324. offset += SUMMARY_SIZE;
  1325. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  1326. SUM_FOOTER_SIZE)
  1327. continue;
  1328. f2fs_put_page(page, 1);
  1329. page = NULL;
  1330. page = get_meta_page(sbi, start++);
  1331. kaddr = (unsigned char *)page_address(page);
  1332. offset = 0;
  1333. }
  1334. }
  1335. f2fs_put_page(page, 1);
  1336. return 0;
  1337. }
  1338. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  1339. {
  1340. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1341. struct f2fs_summary_block *sum;
  1342. struct curseg_info *curseg;
  1343. struct page *new;
  1344. unsigned short blk_off;
  1345. unsigned int segno = 0;
  1346. block_t blk_addr = 0;
  1347. /* get segment number and block addr */
  1348. if (IS_DATASEG(type)) {
  1349. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  1350. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  1351. CURSEG_HOT_DATA]);
  1352. if (__exist_node_summaries(sbi))
  1353. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  1354. else
  1355. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  1356. } else {
  1357. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  1358. CURSEG_HOT_NODE]);
  1359. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  1360. CURSEG_HOT_NODE]);
  1361. if (__exist_node_summaries(sbi))
  1362. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  1363. type - CURSEG_HOT_NODE);
  1364. else
  1365. blk_addr = GET_SUM_BLOCK(sbi, segno);
  1366. }
  1367. new = get_meta_page(sbi, blk_addr);
  1368. sum = (struct f2fs_summary_block *)page_address(new);
  1369. if (IS_NODESEG(type)) {
  1370. if (__exist_node_summaries(sbi)) {
  1371. struct f2fs_summary *ns = &sum->entries[0];
  1372. int i;
  1373. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  1374. ns->version = 0;
  1375. ns->ofs_in_node = 0;
  1376. }
  1377. } else {
  1378. int err;
  1379. err = restore_node_summary(sbi, segno, sum);
  1380. if (err) {
  1381. f2fs_put_page(new, 1);
  1382. return err;
  1383. }
  1384. }
  1385. }
  1386. /* set uncompleted segment to curseg */
  1387. curseg = CURSEG_I(sbi, type);
  1388. mutex_lock(&curseg->curseg_mutex);
  1389. /* update journal info */
  1390. down_write(&curseg->journal_rwsem);
  1391. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  1392. up_write(&curseg->journal_rwsem);
  1393. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  1394. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  1395. curseg->next_segno = segno;
  1396. reset_curseg(sbi, type, 0);
  1397. curseg->alloc_type = ckpt->alloc_type[type];
  1398. curseg->next_blkoff = blk_off;
  1399. mutex_unlock(&curseg->curseg_mutex);
  1400. f2fs_put_page(new, 1);
  1401. return 0;
  1402. }
  1403. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  1404. {
  1405. int type = CURSEG_HOT_DATA;
  1406. int err;
  1407. if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
  1408. int npages = npages_for_summary_flush(sbi, true);
  1409. if (npages >= 2)
  1410. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  1411. META_CP, true);
  1412. /* restore for compacted data summary */
  1413. if (read_compacted_summaries(sbi))
  1414. return -EINVAL;
  1415. type = CURSEG_HOT_NODE;
  1416. }
  1417. if (__exist_node_summaries(sbi))
  1418. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  1419. NR_CURSEG_TYPE - type, META_CP, true);
  1420. for (; type <= CURSEG_COLD_NODE; type++) {
  1421. err = read_normal_summaries(sbi, type);
  1422. if (err)
  1423. return err;
  1424. }
  1425. return 0;
  1426. }
  1427. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  1428. {
  1429. struct page *page;
  1430. unsigned char *kaddr;
  1431. struct f2fs_summary *summary;
  1432. struct curseg_info *seg_i;
  1433. int written_size = 0;
  1434. int i, j;
  1435. page = grab_meta_page(sbi, blkaddr++);
  1436. kaddr = (unsigned char *)page_address(page);
  1437. /* Step 1: write nat cache */
  1438. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1439. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  1440. written_size += SUM_JOURNAL_SIZE;
  1441. /* Step 2: write sit cache */
  1442. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1443. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  1444. written_size += SUM_JOURNAL_SIZE;
  1445. /* Step 3: write summary entries */
  1446. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1447. unsigned short blkoff;
  1448. seg_i = CURSEG_I(sbi, i);
  1449. if (sbi->ckpt->alloc_type[i] == SSR)
  1450. blkoff = sbi->blocks_per_seg;
  1451. else
  1452. blkoff = curseg_blkoff(sbi, i);
  1453. for (j = 0; j < blkoff; j++) {
  1454. if (!page) {
  1455. page = grab_meta_page(sbi, blkaddr++);
  1456. kaddr = (unsigned char *)page_address(page);
  1457. written_size = 0;
  1458. }
  1459. summary = (struct f2fs_summary *)(kaddr + written_size);
  1460. *summary = seg_i->sum_blk->entries[j];
  1461. written_size += SUMMARY_SIZE;
  1462. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  1463. SUM_FOOTER_SIZE)
  1464. continue;
  1465. set_page_dirty(page);
  1466. f2fs_put_page(page, 1);
  1467. page = NULL;
  1468. }
  1469. }
  1470. if (page) {
  1471. set_page_dirty(page);
  1472. f2fs_put_page(page, 1);
  1473. }
  1474. }
  1475. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  1476. block_t blkaddr, int type)
  1477. {
  1478. int i, end;
  1479. if (IS_DATASEG(type))
  1480. end = type + NR_CURSEG_DATA_TYPE;
  1481. else
  1482. end = type + NR_CURSEG_NODE_TYPE;
  1483. for (i = type; i < end; i++)
  1484. write_current_sum_page(sbi, i, blkaddr + (i - type));
  1485. }
  1486. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  1487. {
  1488. if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
  1489. write_compacted_summaries(sbi, start_blk);
  1490. else
  1491. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  1492. }
  1493. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  1494. {
  1495. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  1496. }
  1497. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  1498. unsigned int val, int alloc)
  1499. {
  1500. int i;
  1501. if (type == NAT_JOURNAL) {
  1502. for (i = 0; i < nats_in_cursum(journal); i++) {
  1503. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  1504. return i;
  1505. }
  1506. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  1507. return update_nats_in_cursum(journal, 1);
  1508. } else if (type == SIT_JOURNAL) {
  1509. for (i = 0; i < sits_in_cursum(journal); i++)
  1510. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  1511. return i;
  1512. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  1513. return update_sits_in_cursum(journal, 1);
  1514. }
  1515. return -1;
  1516. }
  1517. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  1518. unsigned int segno)
  1519. {
  1520. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  1521. }
  1522. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  1523. unsigned int start)
  1524. {
  1525. struct sit_info *sit_i = SIT_I(sbi);
  1526. struct page *src_page, *dst_page;
  1527. pgoff_t src_off, dst_off;
  1528. void *src_addr, *dst_addr;
  1529. src_off = current_sit_addr(sbi, start);
  1530. dst_off = next_sit_addr(sbi, src_off);
  1531. /* get current sit block page without lock */
  1532. src_page = get_meta_page(sbi, src_off);
  1533. dst_page = grab_meta_page(sbi, dst_off);
  1534. f2fs_bug_on(sbi, PageDirty(src_page));
  1535. src_addr = page_address(src_page);
  1536. dst_addr = page_address(dst_page);
  1537. memcpy(dst_addr, src_addr, PAGE_SIZE);
  1538. set_page_dirty(dst_page);
  1539. f2fs_put_page(src_page, 1);
  1540. set_to_next_sit(sit_i, start);
  1541. return dst_page;
  1542. }
  1543. static struct sit_entry_set *grab_sit_entry_set(void)
  1544. {
  1545. struct sit_entry_set *ses =
  1546. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  1547. ses->entry_cnt = 0;
  1548. INIT_LIST_HEAD(&ses->set_list);
  1549. return ses;
  1550. }
  1551. static void release_sit_entry_set(struct sit_entry_set *ses)
  1552. {
  1553. list_del(&ses->set_list);
  1554. kmem_cache_free(sit_entry_set_slab, ses);
  1555. }
  1556. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  1557. struct list_head *head)
  1558. {
  1559. struct sit_entry_set *next = ses;
  1560. if (list_is_last(&ses->set_list, head))
  1561. return;
  1562. list_for_each_entry_continue(next, head, set_list)
  1563. if (ses->entry_cnt <= next->entry_cnt)
  1564. break;
  1565. list_move_tail(&ses->set_list, &next->set_list);
  1566. }
  1567. static void add_sit_entry(unsigned int segno, struct list_head *head)
  1568. {
  1569. struct sit_entry_set *ses;
  1570. unsigned int start_segno = START_SEGNO(segno);
  1571. list_for_each_entry(ses, head, set_list) {
  1572. if (ses->start_segno == start_segno) {
  1573. ses->entry_cnt++;
  1574. adjust_sit_entry_set(ses, head);
  1575. return;
  1576. }
  1577. }
  1578. ses = grab_sit_entry_set();
  1579. ses->start_segno = start_segno;
  1580. ses->entry_cnt++;
  1581. list_add(&ses->set_list, head);
  1582. }
  1583. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  1584. {
  1585. struct f2fs_sm_info *sm_info = SM_I(sbi);
  1586. struct list_head *set_list = &sm_info->sit_entry_set;
  1587. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  1588. unsigned int segno;
  1589. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  1590. add_sit_entry(segno, set_list);
  1591. }
  1592. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  1593. {
  1594. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1595. struct f2fs_journal *journal = curseg->journal;
  1596. int i;
  1597. down_write(&curseg->journal_rwsem);
  1598. for (i = 0; i < sits_in_cursum(journal); i++) {
  1599. unsigned int segno;
  1600. bool dirtied;
  1601. segno = le32_to_cpu(segno_in_journal(journal, i));
  1602. dirtied = __mark_sit_entry_dirty(sbi, segno);
  1603. if (!dirtied)
  1604. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  1605. }
  1606. update_sits_in_cursum(journal, -i);
  1607. up_write(&curseg->journal_rwsem);
  1608. }
  1609. /*
  1610. * CP calls this function, which flushes SIT entries including sit_journal,
  1611. * and moves prefree segs to free segs.
  1612. */
  1613. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1614. {
  1615. struct sit_info *sit_i = SIT_I(sbi);
  1616. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  1617. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1618. struct f2fs_journal *journal = curseg->journal;
  1619. struct sit_entry_set *ses, *tmp;
  1620. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  1621. bool to_journal = true;
  1622. struct seg_entry *se;
  1623. mutex_lock(&sit_i->sentry_lock);
  1624. if (!sit_i->dirty_sentries)
  1625. goto out;
  1626. /*
  1627. * add and account sit entries of dirty bitmap in sit entry
  1628. * set temporarily
  1629. */
  1630. add_sits_in_set(sbi);
  1631. /*
  1632. * if there are no enough space in journal to store dirty sit
  1633. * entries, remove all entries from journal and add and account
  1634. * them in sit entry set.
  1635. */
  1636. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  1637. remove_sits_in_journal(sbi);
  1638. /*
  1639. * there are two steps to flush sit entries:
  1640. * #1, flush sit entries to journal in current cold data summary block.
  1641. * #2, flush sit entries to sit page.
  1642. */
  1643. list_for_each_entry_safe(ses, tmp, head, set_list) {
  1644. struct page *page = NULL;
  1645. struct f2fs_sit_block *raw_sit = NULL;
  1646. unsigned int start_segno = ses->start_segno;
  1647. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  1648. (unsigned long)MAIN_SEGS(sbi));
  1649. unsigned int segno = start_segno;
  1650. if (to_journal &&
  1651. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  1652. to_journal = false;
  1653. if (to_journal) {
  1654. down_write(&curseg->journal_rwsem);
  1655. } else {
  1656. page = get_next_sit_page(sbi, start_segno);
  1657. raw_sit = page_address(page);
  1658. }
  1659. /* flush dirty sit entries in region of current sit set */
  1660. for_each_set_bit_from(segno, bitmap, end) {
  1661. int offset, sit_offset;
  1662. se = get_seg_entry(sbi, segno);
  1663. /* add discard candidates */
  1664. if (cpc->reason != CP_DISCARD) {
  1665. cpc->trim_start = segno;
  1666. add_discard_addrs(sbi, cpc);
  1667. }
  1668. if (to_journal) {
  1669. offset = lookup_journal_in_cursum(journal,
  1670. SIT_JOURNAL, segno, 1);
  1671. f2fs_bug_on(sbi, offset < 0);
  1672. segno_in_journal(journal, offset) =
  1673. cpu_to_le32(segno);
  1674. seg_info_to_raw_sit(se,
  1675. &sit_in_journal(journal, offset));
  1676. } else {
  1677. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  1678. seg_info_to_raw_sit(se,
  1679. &raw_sit->entries[sit_offset]);
  1680. }
  1681. __clear_bit(segno, bitmap);
  1682. sit_i->dirty_sentries--;
  1683. ses->entry_cnt--;
  1684. }
  1685. if (to_journal)
  1686. up_write(&curseg->journal_rwsem);
  1687. else
  1688. f2fs_put_page(page, 1);
  1689. f2fs_bug_on(sbi, ses->entry_cnt);
  1690. release_sit_entry_set(ses);
  1691. }
  1692. f2fs_bug_on(sbi, !list_empty(head));
  1693. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  1694. out:
  1695. if (cpc->reason == CP_DISCARD) {
  1696. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  1697. add_discard_addrs(sbi, cpc);
  1698. }
  1699. mutex_unlock(&sit_i->sentry_lock);
  1700. set_prefree_as_free_segments(sbi);
  1701. }
  1702. static int build_sit_info(struct f2fs_sb_info *sbi)
  1703. {
  1704. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  1705. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1706. struct sit_info *sit_i;
  1707. unsigned int sit_segs, start;
  1708. char *src_bitmap, *dst_bitmap;
  1709. unsigned int bitmap_size;
  1710. /* allocate memory for SIT information */
  1711. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  1712. if (!sit_i)
  1713. return -ENOMEM;
  1714. SM_I(sbi)->sit_info = sit_i;
  1715. sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
  1716. sizeof(struct seg_entry), GFP_KERNEL);
  1717. if (!sit_i->sentries)
  1718. return -ENOMEM;
  1719. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  1720. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  1721. if (!sit_i->dirty_sentries_bitmap)
  1722. return -ENOMEM;
  1723. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  1724. sit_i->sentries[start].cur_valid_map
  1725. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  1726. sit_i->sentries[start].ckpt_valid_map
  1727. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  1728. sit_i->sentries[start].discard_map
  1729. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  1730. if (!sit_i->sentries[start].cur_valid_map ||
  1731. !sit_i->sentries[start].ckpt_valid_map ||
  1732. !sit_i->sentries[start].discard_map)
  1733. return -ENOMEM;
  1734. }
  1735. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  1736. if (!sit_i->tmp_map)
  1737. return -ENOMEM;
  1738. if (sbi->segs_per_sec > 1) {
  1739. sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
  1740. sizeof(struct sec_entry), GFP_KERNEL);
  1741. if (!sit_i->sec_entries)
  1742. return -ENOMEM;
  1743. }
  1744. /* get information related with SIT */
  1745. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  1746. /* setup SIT bitmap from ckeckpoint pack */
  1747. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  1748. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  1749. dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  1750. if (!dst_bitmap)
  1751. return -ENOMEM;
  1752. /* init SIT information */
  1753. sit_i->s_ops = &default_salloc_ops;
  1754. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  1755. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  1756. sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
  1757. sit_i->sit_bitmap = dst_bitmap;
  1758. sit_i->bitmap_size = bitmap_size;
  1759. sit_i->dirty_sentries = 0;
  1760. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  1761. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  1762. sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
  1763. mutex_init(&sit_i->sentry_lock);
  1764. return 0;
  1765. }
  1766. static int build_free_segmap(struct f2fs_sb_info *sbi)
  1767. {
  1768. struct free_segmap_info *free_i;
  1769. unsigned int bitmap_size, sec_bitmap_size;
  1770. /* allocate memory for free segmap information */
  1771. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  1772. if (!free_i)
  1773. return -ENOMEM;
  1774. SM_I(sbi)->free_info = free_i;
  1775. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  1776. free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
  1777. if (!free_i->free_segmap)
  1778. return -ENOMEM;
  1779. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  1780. free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
  1781. if (!free_i->free_secmap)
  1782. return -ENOMEM;
  1783. /* set all segments as dirty temporarily */
  1784. memset(free_i->free_segmap, 0xff, bitmap_size);
  1785. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  1786. /* init free segmap information */
  1787. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  1788. free_i->free_segments = 0;
  1789. free_i->free_sections = 0;
  1790. spin_lock_init(&free_i->segmap_lock);
  1791. return 0;
  1792. }
  1793. static int build_curseg(struct f2fs_sb_info *sbi)
  1794. {
  1795. struct curseg_info *array;
  1796. int i;
  1797. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  1798. if (!array)
  1799. return -ENOMEM;
  1800. SM_I(sbi)->curseg_array = array;
  1801. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  1802. mutex_init(&array[i].curseg_mutex);
  1803. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1804. if (!array[i].sum_blk)
  1805. return -ENOMEM;
  1806. init_rwsem(&array[i].journal_rwsem);
  1807. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  1808. GFP_KERNEL);
  1809. if (!array[i].journal)
  1810. return -ENOMEM;
  1811. array[i].segno = NULL_SEGNO;
  1812. array[i].next_blkoff = 0;
  1813. }
  1814. return restore_curseg_summaries(sbi);
  1815. }
  1816. static void build_sit_entries(struct f2fs_sb_info *sbi)
  1817. {
  1818. struct sit_info *sit_i = SIT_I(sbi);
  1819. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1820. struct f2fs_journal *journal = curseg->journal;
  1821. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  1822. unsigned int i, start, end;
  1823. unsigned int readed, start_blk = 0;
  1824. int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
  1825. do {
  1826. readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
  1827. start = start_blk * sit_i->sents_per_block;
  1828. end = (start_blk + readed) * sit_i->sents_per_block;
  1829. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  1830. struct seg_entry *se = &sit_i->sentries[start];
  1831. struct f2fs_sit_block *sit_blk;
  1832. struct f2fs_sit_entry sit;
  1833. struct page *page;
  1834. down_read(&curseg->journal_rwsem);
  1835. for (i = 0; i < sits_in_cursum(journal); i++) {
  1836. if (le32_to_cpu(segno_in_journal(journal, i))
  1837. == start) {
  1838. sit = sit_in_journal(journal, i);
  1839. up_read(&curseg->journal_rwsem);
  1840. goto got_it;
  1841. }
  1842. }
  1843. up_read(&curseg->journal_rwsem);
  1844. page = get_current_sit_page(sbi, start);
  1845. sit_blk = (struct f2fs_sit_block *)page_address(page);
  1846. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  1847. f2fs_put_page(page, 1);
  1848. got_it:
  1849. check_block_count(sbi, start, &sit);
  1850. seg_info_from_raw_sit(se, &sit);
  1851. /* build discard map only one time */
  1852. memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
  1853. sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
  1854. if (sbi->segs_per_sec > 1) {
  1855. struct sec_entry *e = get_sec_entry(sbi, start);
  1856. e->valid_blocks += se->valid_blocks;
  1857. }
  1858. }
  1859. start_blk += readed;
  1860. } while (start_blk < sit_blk_cnt);
  1861. }
  1862. static void init_free_segmap(struct f2fs_sb_info *sbi)
  1863. {
  1864. unsigned int start;
  1865. int type;
  1866. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  1867. struct seg_entry *sentry = get_seg_entry(sbi, start);
  1868. if (!sentry->valid_blocks)
  1869. __set_free(sbi, start);
  1870. }
  1871. /* set use the current segments */
  1872. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  1873. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  1874. __set_test_and_inuse(sbi, curseg_t->segno);
  1875. }
  1876. }
  1877. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  1878. {
  1879. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1880. struct free_segmap_info *free_i = FREE_I(sbi);
  1881. unsigned int segno = 0, offset = 0;
  1882. unsigned short valid_blocks;
  1883. while (1) {
  1884. /* find dirty segment based on free segmap */
  1885. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  1886. if (segno >= MAIN_SEGS(sbi))
  1887. break;
  1888. offset = segno + 1;
  1889. valid_blocks = get_valid_blocks(sbi, segno, 0);
  1890. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  1891. continue;
  1892. if (valid_blocks > sbi->blocks_per_seg) {
  1893. f2fs_bug_on(sbi, 1);
  1894. continue;
  1895. }
  1896. mutex_lock(&dirty_i->seglist_lock);
  1897. __locate_dirty_segment(sbi, segno, DIRTY);
  1898. mutex_unlock(&dirty_i->seglist_lock);
  1899. }
  1900. }
  1901. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  1902. {
  1903. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1904. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  1905. dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  1906. if (!dirty_i->victim_secmap)
  1907. return -ENOMEM;
  1908. return 0;
  1909. }
  1910. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  1911. {
  1912. struct dirty_seglist_info *dirty_i;
  1913. unsigned int bitmap_size, i;
  1914. /* allocate memory for dirty segments list information */
  1915. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  1916. if (!dirty_i)
  1917. return -ENOMEM;
  1918. SM_I(sbi)->dirty_info = dirty_i;
  1919. mutex_init(&dirty_i->seglist_lock);
  1920. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  1921. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  1922. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  1923. if (!dirty_i->dirty_segmap[i])
  1924. return -ENOMEM;
  1925. }
  1926. init_dirty_segmap(sbi);
  1927. return init_victim_secmap(sbi);
  1928. }
  1929. /*
  1930. * Update min, max modified time for cost-benefit GC algorithm
  1931. */
  1932. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  1933. {
  1934. struct sit_info *sit_i = SIT_I(sbi);
  1935. unsigned int segno;
  1936. mutex_lock(&sit_i->sentry_lock);
  1937. sit_i->min_mtime = LLONG_MAX;
  1938. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  1939. unsigned int i;
  1940. unsigned long long mtime = 0;
  1941. for (i = 0; i < sbi->segs_per_sec; i++)
  1942. mtime += get_seg_entry(sbi, segno + i)->mtime;
  1943. mtime = div_u64(mtime, sbi->segs_per_sec);
  1944. if (sit_i->min_mtime > mtime)
  1945. sit_i->min_mtime = mtime;
  1946. }
  1947. sit_i->max_mtime = get_mtime(sbi);
  1948. mutex_unlock(&sit_i->sentry_lock);
  1949. }
  1950. int build_segment_manager(struct f2fs_sb_info *sbi)
  1951. {
  1952. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  1953. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1954. struct f2fs_sm_info *sm_info;
  1955. int err;
  1956. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  1957. if (!sm_info)
  1958. return -ENOMEM;
  1959. /* init sm info */
  1960. sbi->sm_info = sm_info;
  1961. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  1962. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  1963. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  1964. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  1965. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  1966. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  1967. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  1968. sm_info->rec_prefree_segments = sm_info->main_segments *
  1969. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  1970. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  1971. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  1972. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  1973. INIT_LIST_HEAD(&sm_info->discard_list);
  1974. sm_info->nr_discards = 0;
  1975. sm_info->max_discards = 0;
  1976. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  1977. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  1978. if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
  1979. err = create_flush_cmd_control(sbi);
  1980. if (err)
  1981. return err;
  1982. }
  1983. err = build_sit_info(sbi);
  1984. if (err)
  1985. return err;
  1986. err = build_free_segmap(sbi);
  1987. if (err)
  1988. return err;
  1989. err = build_curseg(sbi);
  1990. if (err)
  1991. return err;
  1992. /* reinit free segmap based on SIT */
  1993. build_sit_entries(sbi);
  1994. init_free_segmap(sbi);
  1995. err = build_dirty_segmap(sbi);
  1996. if (err)
  1997. return err;
  1998. init_min_max_mtime(sbi);
  1999. return 0;
  2000. }
  2001. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  2002. enum dirty_type dirty_type)
  2003. {
  2004. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2005. mutex_lock(&dirty_i->seglist_lock);
  2006. kvfree(dirty_i->dirty_segmap[dirty_type]);
  2007. dirty_i->nr_dirty[dirty_type] = 0;
  2008. mutex_unlock(&dirty_i->seglist_lock);
  2009. }
  2010. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  2011. {
  2012. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2013. kvfree(dirty_i->victim_secmap);
  2014. }
  2015. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  2016. {
  2017. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2018. int i;
  2019. if (!dirty_i)
  2020. return;
  2021. /* discard pre-free/dirty segments list */
  2022. for (i = 0; i < NR_DIRTY_TYPE; i++)
  2023. discard_dirty_segmap(sbi, i);
  2024. destroy_victim_secmap(sbi);
  2025. SM_I(sbi)->dirty_info = NULL;
  2026. kfree(dirty_i);
  2027. }
  2028. static void destroy_curseg(struct f2fs_sb_info *sbi)
  2029. {
  2030. struct curseg_info *array = SM_I(sbi)->curseg_array;
  2031. int i;
  2032. if (!array)
  2033. return;
  2034. SM_I(sbi)->curseg_array = NULL;
  2035. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2036. kfree(array[i].sum_blk);
  2037. kfree(array[i].journal);
  2038. }
  2039. kfree(array);
  2040. }
  2041. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  2042. {
  2043. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  2044. if (!free_i)
  2045. return;
  2046. SM_I(sbi)->free_info = NULL;
  2047. kvfree(free_i->free_segmap);
  2048. kvfree(free_i->free_secmap);
  2049. kfree(free_i);
  2050. }
  2051. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  2052. {
  2053. struct sit_info *sit_i = SIT_I(sbi);
  2054. unsigned int start;
  2055. if (!sit_i)
  2056. return;
  2057. if (sit_i->sentries) {
  2058. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2059. kfree(sit_i->sentries[start].cur_valid_map);
  2060. kfree(sit_i->sentries[start].ckpt_valid_map);
  2061. kfree(sit_i->sentries[start].discard_map);
  2062. }
  2063. }
  2064. kfree(sit_i->tmp_map);
  2065. kvfree(sit_i->sentries);
  2066. kvfree(sit_i->sec_entries);
  2067. kvfree(sit_i->dirty_sentries_bitmap);
  2068. SM_I(sbi)->sit_info = NULL;
  2069. kfree(sit_i->sit_bitmap);
  2070. kfree(sit_i);
  2071. }
  2072. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  2073. {
  2074. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2075. if (!sm_info)
  2076. return;
  2077. destroy_flush_cmd_control(sbi);
  2078. destroy_dirty_segmap(sbi);
  2079. destroy_curseg(sbi);
  2080. destroy_free_segmap(sbi);
  2081. destroy_sit_info(sbi);
  2082. sbi->sm_info = NULL;
  2083. kfree(sm_info);
  2084. }
  2085. int __init create_segment_manager_caches(void)
  2086. {
  2087. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  2088. sizeof(struct discard_entry));
  2089. if (!discard_entry_slab)
  2090. goto fail;
  2091. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  2092. sizeof(struct sit_entry_set));
  2093. if (!sit_entry_set_slab)
  2094. goto destory_discard_entry;
  2095. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  2096. sizeof(struct inmem_pages));
  2097. if (!inmem_entry_slab)
  2098. goto destroy_sit_entry_set;
  2099. return 0;
  2100. destroy_sit_entry_set:
  2101. kmem_cache_destroy(sit_entry_set_slab);
  2102. destory_discard_entry:
  2103. kmem_cache_destroy(discard_entry_slab);
  2104. fail:
  2105. return -ENOMEM;
  2106. }
  2107. void destroy_segment_manager_caches(void)
  2108. {
  2109. kmem_cache_destroy(sit_entry_set_slab);
  2110. kmem_cache_destroy(discard_entry_slab);
  2111. kmem_cache_destroy(inmem_entry_slab);
  2112. }