inline.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. #include "node.h"
  14. bool f2fs_may_inline_data(struct inode *inode)
  15. {
  16. if (f2fs_is_atomic_file(inode))
  17. return false;
  18. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  19. return false;
  20. if (i_size_read(inode) > MAX_INLINE_DATA)
  21. return false;
  22. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  23. return false;
  24. return true;
  25. }
  26. bool f2fs_may_inline_dentry(struct inode *inode)
  27. {
  28. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  29. return false;
  30. if (!S_ISDIR(inode->i_mode))
  31. return false;
  32. return true;
  33. }
  34. void read_inline_data(struct page *page, struct page *ipage)
  35. {
  36. void *src_addr, *dst_addr;
  37. if (PageUptodate(page))
  38. return;
  39. f2fs_bug_on(F2FS_P_SB(page), page->index);
  40. zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
  41. /* Copy the whole inline data block */
  42. src_addr = inline_data_addr(ipage);
  43. dst_addr = kmap_atomic(page);
  44. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  45. flush_dcache_page(page);
  46. kunmap_atomic(dst_addr);
  47. SetPageUptodate(page);
  48. }
  49. bool truncate_inline_inode(struct page *ipage, u64 from)
  50. {
  51. void *addr;
  52. if (from >= MAX_INLINE_DATA)
  53. return false;
  54. addr = inline_data_addr(ipage);
  55. f2fs_wait_on_page_writeback(ipage, NODE, true);
  56. memset(addr + from, 0, MAX_INLINE_DATA - from);
  57. return true;
  58. }
  59. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  60. {
  61. struct page *ipage;
  62. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  63. if (IS_ERR(ipage)) {
  64. unlock_page(page);
  65. return PTR_ERR(ipage);
  66. }
  67. if (!f2fs_has_inline_data(inode)) {
  68. f2fs_put_page(ipage, 1);
  69. return -EAGAIN;
  70. }
  71. if (page->index)
  72. zero_user_segment(page, 0, PAGE_SIZE);
  73. else
  74. read_inline_data(page, ipage);
  75. SetPageUptodate(page);
  76. f2fs_put_page(ipage, 1);
  77. unlock_page(page);
  78. return 0;
  79. }
  80. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  81. {
  82. struct f2fs_io_info fio = {
  83. .sbi = F2FS_I_SB(dn->inode),
  84. .type = DATA,
  85. .rw = WRITE_SYNC | REQ_PRIO,
  86. .page = page,
  87. .encrypted_page = NULL,
  88. };
  89. int dirty, err;
  90. if (!f2fs_exist_data(dn->inode))
  91. goto clear_out;
  92. err = f2fs_reserve_block(dn, 0);
  93. if (err)
  94. return err;
  95. f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
  96. read_inline_data(page, dn->inode_page);
  97. set_page_dirty(page);
  98. /* clear dirty state */
  99. dirty = clear_page_dirty_for_io(page);
  100. /* write data page to try to make data consistent */
  101. set_page_writeback(page);
  102. fio.old_blkaddr = dn->data_blkaddr;
  103. write_data_page(dn, &fio);
  104. f2fs_wait_on_page_writeback(page, DATA, true);
  105. if (dirty)
  106. inode_dec_dirty_pages(dn->inode);
  107. /* this converted inline_data should be recovered. */
  108. set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
  109. /* clear inline data and flag after data writeback */
  110. truncate_inline_inode(dn->inode_page, 0);
  111. clear_inline_node(dn->inode_page);
  112. clear_out:
  113. stat_dec_inline_inode(dn->inode);
  114. f2fs_clear_inline_inode(dn->inode);
  115. sync_inode_page(dn);
  116. f2fs_put_dnode(dn);
  117. return 0;
  118. }
  119. int f2fs_convert_inline_inode(struct inode *inode)
  120. {
  121. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  122. struct dnode_of_data dn;
  123. struct page *ipage, *page;
  124. int err = 0;
  125. if (!f2fs_has_inline_data(inode))
  126. return 0;
  127. page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
  128. if (!page)
  129. return -ENOMEM;
  130. f2fs_lock_op(sbi);
  131. ipage = get_node_page(sbi, inode->i_ino);
  132. if (IS_ERR(ipage)) {
  133. err = PTR_ERR(ipage);
  134. goto out;
  135. }
  136. set_new_dnode(&dn, inode, ipage, ipage, 0);
  137. if (f2fs_has_inline_data(inode))
  138. err = f2fs_convert_inline_page(&dn, page);
  139. f2fs_put_dnode(&dn);
  140. out:
  141. f2fs_unlock_op(sbi);
  142. f2fs_put_page(page, 1);
  143. f2fs_balance_fs(sbi, dn.node_changed);
  144. return err;
  145. }
  146. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  147. {
  148. void *src_addr, *dst_addr;
  149. struct dnode_of_data dn;
  150. int err;
  151. set_new_dnode(&dn, inode, NULL, NULL, 0);
  152. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  153. if (err)
  154. return err;
  155. if (!f2fs_has_inline_data(inode)) {
  156. f2fs_put_dnode(&dn);
  157. return -EAGAIN;
  158. }
  159. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  160. f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
  161. src_addr = kmap_atomic(page);
  162. dst_addr = inline_data_addr(dn.inode_page);
  163. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  164. kunmap_atomic(src_addr);
  165. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  166. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  167. sync_inode_page(&dn);
  168. clear_inline_node(dn.inode_page);
  169. f2fs_put_dnode(&dn);
  170. return 0;
  171. }
  172. bool recover_inline_data(struct inode *inode, struct page *npage)
  173. {
  174. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  175. struct f2fs_inode *ri = NULL;
  176. void *src_addr, *dst_addr;
  177. struct page *ipage;
  178. /*
  179. * The inline_data recovery policy is as follows.
  180. * [prev.] [next] of inline_data flag
  181. * o o -> recover inline_data
  182. * o x -> remove inline_data, and then recover data blocks
  183. * x o -> remove inline_data, and then recover inline_data
  184. * x x -> recover data blocks
  185. */
  186. if (IS_INODE(npage))
  187. ri = F2FS_INODE(npage);
  188. if (f2fs_has_inline_data(inode) &&
  189. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  190. process_inline:
  191. ipage = get_node_page(sbi, inode->i_ino);
  192. f2fs_bug_on(sbi, IS_ERR(ipage));
  193. f2fs_wait_on_page_writeback(ipage, NODE, true);
  194. src_addr = inline_data_addr(npage);
  195. dst_addr = inline_data_addr(ipage);
  196. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  197. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  198. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  199. update_inode(inode, ipage);
  200. f2fs_put_page(ipage, 1);
  201. return true;
  202. }
  203. if (f2fs_has_inline_data(inode)) {
  204. ipage = get_node_page(sbi, inode->i_ino);
  205. f2fs_bug_on(sbi, IS_ERR(ipage));
  206. if (!truncate_inline_inode(ipage, 0))
  207. return false;
  208. f2fs_clear_inline_inode(inode);
  209. update_inode(inode, ipage);
  210. f2fs_put_page(ipage, 1);
  211. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  212. if (truncate_blocks(inode, 0, false))
  213. return false;
  214. goto process_inline;
  215. }
  216. return false;
  217. }
  218. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  219. struct fscrypt_name *fname, struct page **res_page)
  220. {
  221. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  222. struct f2fs_inline_dentry *inline_dentry;
  223. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  224. struct f2fs_dir_entry *de;
  225. struct f2fs_dentry_ptr d;
  226. struct page *ipage;
  227. f2fs_hash_t namehash;
  228. ipage = get_node_page(sbi, dir->i_ino);
  229. if (IS_ERR(ipage))
  230. return NULL;
  231. namehash = f2fs_dentry_hash(&name);
  232. inline_dentry = inline_data_addr(ipage);
  233. make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
  234. de = find_target_dentry(fname, namehash, NULL, &d);
  235. unlock_page(ipage);
  236. if (de)
  237. *res_page = ipage;
  238. else
  239. f2fs_put_page(ipage, 0);
  240. return de;
  241. }
  242. struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
  243. struct page **p)
  244. {
  245. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  246. struct page *ipage;
  247. struct f2fs_dir_entry *de;
  248. struct f2fs_inline_dentry *dentry_blk;
  249. ipage = get_node_page(sbi, dir->i_ino);
  250. if (IS_ERR(ipage))
  251. return NULL;
  252. dentry_blk = inline_data_addr(ipage);
  253. de = &dentry_blk->dentry[1];
  254. *p = ipage;
  255. unlock_page(ipage);
  256. return de;
  257. }
  258. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  259. struct page *ipage)
  260. {
  261. struct f2fs_inline_dentry *dentry_blk;
  262. struct f2fs_dentry_ptr d;
  263. dentry_blk = inline_data_addr(ipage);
  264. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  265. do_make_empty_dir(inode, parent, &d);
  266. set_page_dirty(ipage);
  267. /* update i_size to MAX_INLINE_DATA */
  268. if (i_size_read(inode) < MAX_INLINE_DATA) {
  269. i_size_write(inode, MAX_INLINE_DATA);
  270. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  271. }
  272. return 0;
  273. }
  274. /*
  275. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  276. * release ipage in this function.
  277. */
  278. static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
  279. struct f2fs_inline_dentry *inline_dentry)
  280. {
  281. struct page *page;
  282. struct dnode_of_data dn;
  283. struct f2fs_dentry_block *dentry_blk;
  284. int err;
  285. page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
  286. if (!page) {
  287. f2fs_put_page(ipage, 1);
  288. return -ENOMEM;
  289. }
  290. set_new_dnode(&dn, dir, ipage, NULL, 0);
  291. err = f2fs_reserve_block(&dn, 0);
  292. if (err)
  293. goto out;
  294. f2fs_wait_on_page_writeback(page, DATA, true);
  295. zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
  296. dentry_blk = kmap_atomic(page);
  297. /* copy data from inline dentry block to new dentry block */
  298. memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
  299. INLINE_DENTRY_BITMAP_SIZE);
  300. memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
  301. SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
  302. /*
  303. * we do not need to zero out remainder part of dentry and filename
  304. * field, since we have used bitmap for marking the usage status of
  305. * them, besides, we can also ignore copying/zeroing reserved space
  306. * of dentry block, because them haven't been used so far.
  307. */
  308. memcpy(dentry_blk->dentry, inline_dentry->dentry,
  309. sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
  310. memcpy(dentry_blk->filename, inline_dentry->filename,
  311. NR_INLINE_DENTRY * F2FS_SLOT_LEN);
  312. kunmap_atomic(dentry_blk);
  313. SetPageUptodate(page);
  314. set_page_dirty(page);
  315. /* clear inline dir and flag after data writeback */
  316. truncate_inline_inode(ipage, 0);
  317. stat_dec_inline_dir(dir);
  318. clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
  319. F2FS_I(dir)->i_current_depth = 1;
  320. if (i_size_read(dir) < PAGE_SIZE) {
  321. i_size_write(dir, PAGE_SIZE);
  322. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  323. }
  324. sync_inode_page(&dn);
  325. out:
  326. f2fs_put_page(page, 1);
  327. return err;
  328. }
  329. static int f2fs_add_inline_entries(struct inode *dir,
  330. struct f2fs_inline_dentry *inline_dentry)
  331. {
  332. struct f2fs_dentry_ptr d;
  333. unsigned long bit_pos = 0;
  334. int err = 0;
  335. make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
  336. while (bit_pos < d.max) {
  337. struct f2fs_dir_entry *de;
  338. struct qstr new_name;
  339. nid_t ino;
  340. umode_t fake_mode;
  341. if (!test_bit_le(bit_pos, d.bitmap)) {
  342. bit_pos++;
  343. continue;
  344. }
  345. de = &d.dentry[bit_pos];
  346. if (unlikely(!de->name_len)) {
  347. bit_pos++;
  348. continue;
  349. }
  350. new_name.name = d.filename[bit_pos];
  351. new_name.len = de->name_len;
  352. ino = le32_to_cpu(de->ino);
  353. fake_mode = get_de_type(de) << S_SHIFT;
  354. err = f2fs_add_regular_entry(dir, &new_name, NULL,
  355. ino, fake_mode);
  356. if (err)
  357. goto punch_dentry_pages;
  358. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  359. }
  360. return 0;
  361. punch_dentry_pages:
  362. truncate_inode_pages(&dir->i_data, 0);
  363. truncate_blocks(dir, 0, false);
  364. remove_dirty_inode(dir);
  365. return err;
  366. }
  367. static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
  368. struct f2fs_inline_dentry *inline_dentry)
  369. {
  370. struct f2fs_inline_dentry *backup_dentry;
  371. struct f2fs_inode_info *fi = F2FS_I(dir);
  372. int err;
  373. backup_dentry = f2fs_kmalloc(sizeof(struct f2fs_inline_dentry),
  374. GFP_F2FS_ZERO);
  375. if (!backup_dentry) {
  376. f2fs_put_page(ipage, 1);
  377. return -ENOMEM;
  378. }
  379. memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA);
  380. truncate_inline_inode(ipage, 0);
  381. unlock_page(ipage);
  382. err = f2fs_add_inline_entries(dir, backup_dentry);
  383. if (err)
  384. goto recover;
  385. lock_page(ipage);
  386. stat_dec_inline_dir(dir);
  387. clear_inode_flag(fi, FI_INLINE_DENTRY);
  388. update_inode(dir, ipage);
  389. kfree(backup_dentry);
  390. return 0;
  391. recover:
  392. lock_page(ipage);
  393. memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA);
  394. fi->i_current_depth = 0;
  395. i_size_write(dir, MAX_INLINE_DATA);
  396. update_inode(dir, ipage);
  397. f2fs_put_page(ipage, 1);
  398. kfree(backup_dentry);
  399. return err;
  400. }
  401. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  402. struct f2fs_inline_dentry *inline_dentry)
  403. {
  404. if (!F2FS_I(dir)->i_dir_level)
  405. return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
  406. else
  407. return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
  408. }
  409. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
  410. struct inode *inode, nid_t ino, umode_t mode)
  411. {
  412. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  413. struct page *ipage;
  414. unsigned int bit_pos;
  415. f2fs_hash_t name_hash;
  416. size_t namelen = name->len;
  417. struct f2fs_inline_dentry *dentry_blk = NULL;
  418. struct f2fs_dentry_ptr d;
  419. int slots = GET_DENTRY_SLOTS(namelen);
  420. struct page *page = NULL;
  421. int err = 0;
  422. ipage = get_node_page(sbi, dir->i_ino);
  423. if (IS_ERR(ipage))
  424. return PTR_ERR(ipage);
  425. dentry_blk = inline_data_addr(ipage);
  426. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  427. slots, NR_INLINE_DENTRY);
  428. if (bit_pos >= NR_INLINE_DENTRY) {
  429. err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
  430. if (err)
  431. return err;
  432. err = -EAGAIN;
  433. goto out;
  434. }
  435. if (inode) {
  436. down_write(&F2FS_I(inode)->i_sem);
  437. page = init_inode_metadata(inode, dir, name, ipage);
  438. if (IS_ERR(page)) {
  439. err = PTR_ERR(page);
  440. goto fail;
  441. }
  442. }
  443. f2fs_wait_on_page_writeback(ipage, NODE, true);
  444. name_hash = f2fs_dentry_hash(name);
  445. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  446. f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
  447. set_page_dirty(ipage);
  448. /* we don't need to mark_inode_dirty now */
  449. if (inode) {
  450. F2FS_I(inode)->i_pino = dir->i_ino;
  451. update_inode(inode, page);
  452. f2fs_put_page(page, 1);
  453. }
  454. update_parent_metadata(dir, inode, 0);
  455. fail:
  456. if (inode)
  457. up_write(&F2FS_I(inode)->i_sem);
  458. if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
  459. update_inode(dir, ipage);
  460. clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  461. }
  462. out:
  463. f2fs_put_page(ipage, 1);
  464. return err;
  465. }
  466. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  467. struct inode *dir, struct inode *inode)
  468. {
  469. struct f2fs_inline_dentry *inline_dentry;
  470. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  471. unsigned int bit_pos;
  472. int i;
  473. lock_page(page);
  474. f2fs_wait_on_page_writeback(page, NODE, true);
  475. inline_dentry = inline_data_addr(page);
  476. bit_pos = dentry - inline_dentry->dentry;
  477. for (i = 0; i < slots; i++)
  478. test_and_clear_bit_le(bit_pos + i,
  479. &inline_dentry->dentry_bitmap);
  480. set_page_dirty(page);
  481. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  482. if (inode)
  483. f2fs_drop_nlink(dir, inode, page);
  484. f2fs_put_page(page, 1);
  485. }
  486. bool f2fs_empty_inline_dir(struct inode *dir)
  487. {
  488. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  489. struct page *ipage;
  490. unsigned int bit_pos = 2;
  491. struct f2fs_inline_dentry *dentry_blk;
  492. ipage = get_node_page(sbi, dir->i_ino);
  493. if (IS_ERR(ipage))
  494. return false;
  495. dentry_blk = inline_data_addr(ipage);
  496. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  497. NR_INLINE_DENTRY,
  498. bit_pos);
  499. f2fs_put_page(ipage, 1);
  500. if (bit_pos < NR_INLINE_DENTRY)
  501. return false;
  502. return true;
  503. }
  504. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  505. struct fscrypt_str *fstr)
  506. {
  507. struct inode *inode = file_inode(file);
  508. struct f2fs_inline_dentry *inline_dentry = NULL;
  509. struct page *ipage = NULL;
  510. struct f2fs_dentry_ptr d;
  511. if (ctx->pos == NR_INLINE_DENTRY)
  512. return 0;
  513. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  514. if (IS_ERR(ipage))
  515. return PTR_ERR(ipage);
  516. inline_dentry = inline_data_addr(ipage);
  517. make_dentry_ptr(inode, &d, (void *)inline_dentry, 2);
  518. if (!f2fs_fill_dentries(ctx, &d, 0, fstr))
  519. ctx->pos = NR_INLINE_DENTRY;
  520. f2fs_put_page(ipage, 1);
  521. return 0;
  522. }
  523. int f2fs_inline_data_fiemap(struct inode *inode,
  524. struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
  525. {
  526. __u64 byteaddr, ilen;
  527. __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
  528. FIEMAP_EXTENT_LAST;
  529. struct node_info ni;
  530. struct page *ipage;
  531. int err = 0;
  532. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  533. if (IS_ERR(ipage))
  534. return PTR_ERR(ipage);
  535. if (!f2fs_has_inline_data(inode)) {
  536. err = -EAGAIN;
  537. goto out;
  538. }
  539. ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
  540. if (start >= ilen)
  541. goto out;
  542. if (start + len < ilen)
  543. ilen = start + len;
  544. ilen -= start;
  545. get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
  546. byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
  547. byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
  548. err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
  549. out:
  550. f2fs_put_page(ipage, 1);
  551. return err;
  552. }