file.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uuid.h>
  24. #include "f2fs.h"
  25. #include "node.h"
  26. #include "segment.h"
  27. #include "xattr.h"
  28. #include "acl.h"
  29. #include "gc.h"
  30. #include "trace.h"
  31. #include <trace/events/f2fs.h>
  32. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  33. struct vm_fault *vmf)
  34. {
  35. struct page *page = vmf->page;
  36. struct inode *inode = file_inode(vma->vm_file);
  37. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  38. struct dnode_of_data dn;
  39. int err;
  40. sb_start_pagefault(inode->i_sb);
  41. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  42. /* block allocation */
  43. f2fs_lock_op(sbi);
  44. set_new_dnode(&dn, inode, NULL, NULL, 0);
  45. err = f2fs_reserve_block(&dn, page->index);
  46. if (err) {
  47. f2fs_unlock_op(sbi);
  48. goto out;
  49. }
  50. f2fs_put_dnode(&dn);
  51. f2fs_unlock_op(sbi);
  52. f2fs_balance_fs(sbi, dn.node_changed);
  53. file_update_time(vma->vm_file);
  54. lock_page(page);
  55. if (unlikely(page->mapping != inode->i_mapping ||
  56. page_offset(page) > i_size_read(inode) ||
  57. !PageUptodate(page))) {
  58. unlock_page(page);
  59. err = -EFAULT;
  60. goto out;
  61. }
  62. /*
  63. * check to see if the page is mapped already (no holes)
  64. */
  65. if (PageMappedToDisk(page))
  66. goto mapped;
  67. /* page is wholly or partially inside EOF */
  68. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  69. i_size_read(inode)) {
  70. unsigned offset;
  71. offset = i_size_read(inode) & ~PAGE_MASK;
  72. zero_user_segment(page, offset, PAGE_SIZE);
  73. }
  74. set_page_dirty(page);
  75. SetPageUptodate(page);
  76. trace_f2fs_vm_page_mkwrite(page, DATA);
  77. mapped:
  78. /* fill the page */
  79. f2fs_wait_on_page_writeback(page, DATA, false);
  80. /* wait for GCed encrypted page writeback */
  81. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  82. f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
  83. /* if gced page is attached, don't write to cold segment */
  84. clear_cold_data(page);
  85. out:
  86. sb_end_pagefault(inode->i_sb);
  87. f2fs_update_time(sbi, REQ_TIME);
  88. return block_page_mkwrite_return(err);
  89. }
  90. static const struct vm_operations_struct f2fs_file_vm_ops = {
  91. .fault = filemap_fault,
  92. .map_pages = filemap_map_pages,
  93. .page_mkwrite = f2fs_vm_page_mkwrite,
  94. };
  95. static int get_parent_ino(struct inode *inode, nid_t *pino)
  96. {
  97. struct dentry *dentry;
  98. inode = igrab(inode);
  99. dentry = d_find_any_alias(inode);
  100. iput(inode);
  101. if (!dentry)
  102. return 0;
  103. if (update_dent_inode(inode, inode, &dentry->d_name)) {
  104. dput(dentry);
  105. return 0;
  106. }
  107. *pino = parent_ino(dentry);
  108. dput(dentry);
  109. return 1;
  110. }
  111. static inline bool need_do_checkpoint(struct inode *inode)
  112. {
  113. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  114. bool need_cp = false;
  115. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  116. need_cp = true;
  117. else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
  118. need_cp = true;
  119. else if (file_wrong_pino(inode))
  120. need_cp = true;
  121. else if (!space_for_roll_forward(sbi))
  122. need_cp = true;
  123. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  124. need_cp = true;
  125. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  126. need_cp = true;
  127. else if (test_opt(sbi, FASTBOOT))
  128. need_cp = true;
  129. else if (sbi->active_logs == 2)
  130. need_cp = true;
  131. return need_cp;
  132. }
  133. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  134. {
  135. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  136. bool ret = false;
  137. /* But we need to avoid that there are some inode updates */
  138. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  139. ret = true;
  140. f2fs_put_page(i, 0);
  141. return ret;
  142. }
  143. static void try_to_fix_pino(struct inode *inode)
  144. {
  145. struct f2fs_inode_info *fi = F2FS_I(inode);
  146. nid_t pino;
  147. down_write(&fi->i_sem);
  148. fi->xattr_ver = 0;
  149. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  150. get_parent_ino(inode, &pino)) {
  151. fi->i_pino = pino;
  152. file_got_pino(inode);
  153. up_write(&fi->i_sem);
  154. mark_inode_dirty_sync(inode);
  155. f2fs_write_inode(inode, NULL);
  156. } else {
  157. up_write(&fi->i_sem);
  158. }
  159. }
  160. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  161. int datasync, bool atomic)
  162. {
  163. struct inode *inode = file->f_mapping->host;
  164. struct f2fs_inode_info *fi = F2FS_I(inode);
  165. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  166. nid_t ino = inode->i_ino;
  167. int ret = 0;
  168. bool need_cp = false;
  169. struct writeback_control wbc = {
  170. .sync_mode = WB_SYNC_ALL,
  171. .nr_to_write = LONG_MAX,
  172. .for_reclaim = 0,
  173. };
  174. if (unlikely(f2fs_readonly(inode->i_sb)))
  175. return 0;
  176. trace_f2fs_sync_file_enter(inode);
  177. /* if fdatasync is triggered, let's do in-place-update */
  178. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  179. set_inode_flag(fi, FI_NEED_IPU);
  180. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  181. clear_inode_flag(fi, FI_NEED_IPU);
  182. if (ret) {
  183. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  184. return ret;
  185. }
  186. /* if the inode is dirty, let's recover all the time */
  187. if (!datasync) {
  188. f2fs_write_inode(inode, NULL);
  189. goto go_write;
  190. }
  191. /*
  192. * if there is no written data, don't waste time to write recovery info.
  193. */
  194. if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
  195. !exist_written_data(sbi, ino, APPEND_INO)) {
  196. /* it may call write_inode just prior to fsync */
  197. if (need_inode_page_update(sbi, ino))
  198. goto go_write;
  199. if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
  200. exist_written_data(sbi, ino, UPDATE_INO))
  201. goto flush_out;
  202. goto out;
  203. }
  204. go_write:
  205. /*
  206. * Both of fdatasync() and fsync() are able to be recovered from
  207. * sudden-power-off.
  208. */
  209. down_read(&fi->i_sem);
  210. need_cp = need_do_checkpoint(inode);
  211. up_read(&fi->i_sem);
  212. if (need_cp) {
  213. /* all the dirty node pages should be flushed for POR */
  214. ret = f2fs_sync_fs(inode->i_sb, 1);
  215. /*
  216. * We've secured consistency through sync_fs. Following pino
  217. * will be used only for fsynced inodes after checkpoint.
  218. */
  219. try_to_fix_pino(inode);
  220. clear_inode_flag(fi, FI_APPEND_WRITE);
  221. clear_inode_flag(fi, FI_UPDATE_WRITE);
  222. goto out;
  223. }
  224. sync_nodes:
  225. ret = fsync_node_pages(sbi, ino, &wbc, atomic);
  226. if (ret)
  227. goto out;
  228. /* if cp_error was enabled, we should avoid infinite loop */
  229. if (unlikely(f2fs_cp_error(sbi))) {
  230. ret = -EIO;
  231. goto out;
  232. }
  233. if (need_inode_block_update(sbi, ino)) {
  234. mark_inode_dirty_sync(inode);
  235. f2fs_write_inode(inode, NULL);
  236. goto sync_nodes;
  237. }
  238. ret = wait_on_node_pages_writeback(sbi, ino);
  239. if (ret)
  240. goto out;
  241. /* once recovery info is written, don't need to tack this */
  242. remove_ino_entry(sbi, ino, APPEND_INO);
  243. clear_inode_flag(fi, FI_APPEND_WRITE);
  244. flush_out:
  245. remove_ino_entry(sbi, ino, UPDATE_INO);
  246. clear_inode_flag(fi, FI_UPDATE_WRITE);
  247. ret = f2fs_issue_flush(sbi);
  248. f2fs_update_time(sbi, REQ_TIME);
  249. out:
  250. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  251. f2fs_trace_ios(NULL, 1);
  252. return ret;
  253. }
  254. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  255. {
  256. return f2fs_do_sync_file(file, start, end, datasync, false);
  257. }
  258. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  259. pgoff_t pgofs, int whence)
  260. {
  261. struct pagevec pvec;
  262. int nr_pages;
  263. if (whence != SEEK_DATA)
  264. return 0;
  265. /* find first dirty page index */
  266. pagevec_init(&pvec, 0);
  267. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  268. PAGECACHE_TAG_DIRTY, 1);
  269. pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
  270. pagevec_release(&pvec);
  271. return pgofs;
  272. }
  273. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  274. int whence)
  275. {
  276. switch (whence) {
  277. case SEEK_DATA:
  278. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  279. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  280. return true;
  281. break;
  282. case SEEK_HOLE:
  283. if (blkaddr == NULL_ADDR)
  284. return true;
  285. break;
  286. }
  287. return false;
  288. }
  289. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  290. {
  291. struct inode *inode = file->f_mapping->host;
  292. loff_t maxbytes = inode->i_sb->s_maxbytes;
  293. struct dnode_of_data dn;
  294. pgoff_t pgofs, end_offset, dirty;
  295. loff_t data_ofs = offset;
  296. loff_t isize;
  297. int err = 0;
  298. inode_lock(inode);
  299. isize = i_size_read(inode);
  300. if (offset >= isize)
  301. goto fail;
  302. /* handle inline data case */
  303. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  304. if (whence == SEEK_HOLE)
  305. data_ofs = isize;
  306. goto found;
  307. }
  308. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  309. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  310. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  311. set_new_dnode(&dn, inode, NULL, NULL, 0);
  312. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  313. if (err && err != -ENOENT) {
  314. goto fail;
  315. } else if (err == -ENOENT) {
  316. /* direct node does not exists */
  317. if (whence == SEEK_DATA) {
  318. pgofs = get_next_page_offset(&dn, pgofs);
  319. continue;
  320. } else {
  321. goto found;
  322. }
  323. }
  324. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  325. /* find data/hole in dnode block */
  326. for (; dn.ofs_in_node < end_offset;
  327. dn.ofs_in_node++, pgofs++,
  328. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  329. block_t blkaddr;
  330. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  331. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  332. f2fs_put_dnode(&dn);
  333. goto found;
  334. }
  335. }
  336. f2fs_put_dnode(&dn);
  337. }
  338. if (whence == SEEK_DATA)
  339. goto fail;
  340. found:
  341. if (whence == SEEK_HOLE && data_ofs > isize)
  342. data_ofs = isize;
  343. inode_unlock(inode);
  344. return vfs_setpos(file, data_ofs, maxbytes);
  345. fail:
  346. inode_unlock(inode);
  347. return -ENXIO;
  348. }
  349. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  350. {
  351. struct inode *inode = file->f_mapping->host;
  352. loff_t maxbytes = inode->i_sb->s_maxbytes;
  353. switch (whence) {
  354. case SEEK_SET:
  355. case SEEK_CUR:
  356. case SEEK_END:
  357. return generic_file_llseek_size(file, offset, whence,
  358. maxbytes, i_size_read(inode));
  359. case SEEK_DATA:
  360. case SEEK_HOLE:
  361. if (offset < 0)
  362. return -ENXIO;
  363. return f2fs_seek_block(file, offset, whence);
  364. }
  365. return -EINVAL;
  366. }
  367. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  368. {
  369. struct inode *inode = file_inode(file);
  370. int err;
  371. if (f2fs_encrypted_inode(inode)) {
  372. err = fscrypt_get_encryption_info(inode);
  373. if (err)
  374. return 0;
  375. if (!f2fs_encrypted_inode(inode))
  376. return -ENOKEY;
  377. }
  378. /* we don't need to use inline_data strictly */
  379. err = f2fs_convert_inline_inode(inode);
  380. if (err)
  381. return err;
  382. file_accessed(file);
  383. vma->vm_ops = &f2fs_file_vm_ops;
  384. return 0;
  385. }
  386. static int f2fs_file_open(struct inode *inode, struct file *filp)
  387. {
  388. int ret = generic_file_open(inode, filp);
  389. struct dentry *dir;
  390. if (!ret && f2fs_encrypted_inode(inode)) {
  391. ret = fscrypt_get_encryption_info(inode);
  392. if (ret)
  393. return -EACCES;
  394. if (!fscrypt_has_encryption_key(inode))
  395. return -ENOKEY;
  396. }
  397. dir = dget_parent(file_dentry(filp));
  398. if (f2fs_encrypted_inode(d_inode(dir)) &&
  399. !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  400. dput(dir);
  401. return -EPERM;
  402. }
  403. dput(dir);
  404. return ret;
  405. }
  406. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  407. {
  408. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  409. struct f2fs_node *raw_node;
  410. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  411. __le32 *addr;
  412. raw_node = F2FS_NODE(dn->node_page);
  413. addr = blkaddr_in_node(raw_node) + ofs;
  414. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  415. block_t blkaddr = le32_to_cpu(*addr);
  416. if (blkaddr == NULL_ADDR)
  417. continue;
  418. dn->data_blkaddr = NULL_ADDR;
  419. set_data_blkaddr(dn);
  420. invalidate_blocks(sbi, blkaddr);
  421. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  422. clear_inode_flag(F2FS_I(dn->inode),
  423. FI_FIRST_BLOCK_WRITTEN);
  424. nr_free++;
  425. }
  426. if (nr_free) {
  427. pgoff_t fofs;
  428. /*
  429. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  430. * we will invalidate all blkaddr in the whole range.
  431. */
  432. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  433. dn->inode) + ofs;
  434. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  435. dec_valid_block_count(sbi, dn->inode, nr_free);
  436. sync_inode_page(dn);
  437. }
  438. dn->ofs_in_node = ofs;
  439. f2fs_update_time(sbi, REQ_TIME);
  440. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  441. dn->ofs_in_node, nr_free);
  442. return nr_free;
  443. }
  444. void truncate_data_blocks(struct dnode_of_data *dn)
  445. {
  446. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  447. }
  448. static int truncate_partial_data_page(struct inode *inode, u64 from,
  449. bool cache_only)
  450. {
  451. unsigned offset = from & (PAGE_SIZE - 1);
  452. pgoff_t index = from >> PAGE_SHIFT;
  453. struct address_space *mapping = inode->i_mapping;
  454. struct page *page;
  455. if (!offset && !cache_only)
  456. return 0;
  457. if (cache_only) {
  458. page = f2fs_grab_cache_page(mapping, index, false);
  459. if (page && PageUptodate(page))
  460. goto truncate_out;
  461. f2fs_put_page(page, 1);
  462. return 0;
  463. }
  464. page = get_lock_data_page(inode, index, true);
  465. if (IS_ERR(page))
  466. return 0;
  467. truncate_out:
  468. f2fs_wait_on_page_writeback(page, DATA, true);
  469. zero_user(page, offset, PAGE_SIZE - offset);
  470. if (!cache_only || !f2fs_encrypted_inode(inode) ||
  471. !S_ISREG(inode->i_mode))
  472. set_page_dirty(page);
  473. f2fs_put_page(page, 1);
  474. return 0;
  475. }
  476. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  477. {
  478. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  479. unsigned int blocksize = inode->i_sb->s_blocksize;
  480. struct dnode_of_data dn;
  481. pgoff_t free_from;
  482. int count = 0, err = 0;
  483. struct page *ipage;
  484. bool truncate_page = false;
  485. trace_f2fs_truncate_blocks_enter(inode, from);
  486. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  487. if (free_from >= sbi->max_file_blocks)
  488. goto free_partial;
  489. if (lock)
  490. f2fs_lock_op(sbi);
  491. ipage = get_node_page(sbi, inode->i_ino);
  492. if (IS_ERR(ipage)) {
  493. err = PTR_ERR(ipage);
  494. goto out;
  495. }
  496. if (f2fs_has_inline_data(inode)) {
  497. if (truncate_inline_inode(ipage, from))
  498. set_page_dirty(ipage);
  499. f2fs_put_page(ipage, 1);
  500. truncate_page = true;
  501. goto out;
  502. }
  503. set_new_dnode(&dn, inode, ipage, NULL, 0);
  504. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  505. if (err) {
  506. if (err == -ENOENT)
  507. goto free_next;
  508. goto out;
  509. }
  510. count = ADDRS_PER_PAGE(dn.node_page, inode);
  511. count -= dn.ofs_in_node;
  512. f2fs_bug_on(sbi, count < 0);
  513. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  514. truncate_data_blocks_range(&dn, count);
  515. free_from += count;
  516. }
  517. f2fs_put_dnode(&dn);
  518. free_next:
  519. err = truncate_inode_blocks(inode, free_from);
  520. out:
  521. if (lock)
  522. f2fs_unlock_op(sbi);
  523. free_partial:
  524. /* lastly zero out the first data page */
  525. if (!err)
  526. err = truncate_partial_data_page(inode, from, truncate_page);
  527. trace_f2fs_truncate_blocks_exit(inode, err);
  528. return err;
  529. }
  530. int f2fs_truncate(struct inode *inode, bool lock)
  531. {
  532. int err;
  533. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  534. S_ISLNK(inode->i_mode)))
  535. return 0;
  536. trace_f2fs_truncate(inode);
  537. /* we should check inline_data size */
  538. if (!f2fs_may_inline_data(inode)) {
  539. err = f2fs_convert_inline_inode(inode);
  540. if (err)
  541. return err;
  542. }
  543. err = truncate_blocks(inode, i_size_read(inode), lock);
  544. if (err)
  545. return err;
  546. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  547. mark_inode_dirty(inode);
  548. return 0;
  549. }
  550. int f2fs_getattr(struct vfsmount *mnt,
  551. struct dentry *dentry, struct kstat *stat)
  552. {
  553. struct inode *inode = d_inode(dentry);
  554. generic_fillattr(inode, stat);
  555. stat->blocks <<= 3;
  556. return 0;
  557. }
  558. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  559. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  560. {
  561. struct f2fs_inode_info *fi = F2FS_I(inode);
  562. unsigned int ia_valid = attr->ia_valid;
  563. if (ia_valid & ATTR_UID)
  564. inode->i_uid = attr->ia_uid;
  565. if (ia_valid & ATTR_GID)
  566. inode->i_gid = attr->ia_gid;
  567. if (ia_valid & ATTR_ATIME)
  568. inode->i_atime = timespec_trunc(attr->ia_atime,
  569. inode->i_sb->s_time_gran);
  570. if (ia_valid & ATTR_MTIME)
  571. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  572. inode->i_sb->s_time_gran);
  573. if (ia_valid & ATTR_CTIME)
  574. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  575. inode->i_sb->s_time_gran);
  576. if (ia_valid & ATTR_MODE) {
  577. umode_t mode = attr->ia_mode;
  578. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  579. mode &= ~S_ISGID;
  580. set_acl_inode(fi, mode);
  581. }
  582. }
  583. #else
  584. #define __setattr_copy setattr_copy
  585. #endif
  586. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  587. {
  588. struct inode *inode = d_inode(dentry);
  589. struct f2fs_inode_info *fi = F2FS_I(inode);
  590. int err;
  591. err = inode_change_ok(inode, attr);
  592. if (err)
  593. return err;
  594. if (attr->ia_valid & ATTR_SIZE) {
  595. if (f2fs_encrypted_inode(inode) &&
  596. fscrypt_get_encryption_info(inode))
  597. return -EACCES;
  598. if (attr->ia_size <= i_size_read(inode)) {
  599. truncate_setsize(inode, attr->ia_size);
  600. err = f2fs_truncate(inode, true);
  601. if (err)
  602. return err;
  603. f2fs_balance_fs(F2FS_I_SB(inode), true);
  604. } else {
  605. /*
  606. * do not trim all blocks after i_size if target size is
  607. * larger than i_size.
  608. */
  609. truncate_setsize(inode, attr->ia_size);
  610. /* should convert inline inode here */
  611. if (!f2fs_may_inline_data(inode)) {
  612. err = f2fs_convert_inline_inode(inode);
  613. if (err)
  614. return err;
  615. }
  616. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  617. }
  618. }
  619. __setattr_copy(inode, attr);
  620. if (attr->ia_valid & ATTR_MODE) {
  621. err = posix_acl_chmod(inode, get_inode_mode(inode));
  622. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  623. inode->i_mode = fi->i_acl_mode;
  624. clear_inode_flag(fi, FI_ACL_MODE);
  625. }
  626. }
  627. mark_inode_dirty(inode);
  628. return err;
  629. }
  630. const struct inode_operations f2fs_file_inode_operations = {
  631. .getattr = f2fs_getattr,
  632. .setattr = f2fs_setattr,
  633. .get_acl = f2fs_get_acl,
  634. .set_acl = f2fs_set_acl,
  635. #ifdef CONFIG_F2FS_FS_XATTR
  636. .setxattr = generic_setxattr,
  637. .getxattr = generic_getxattr,
  638. .listxattr = f2fs_listxattr,
  639. .removexattr = generic_removexattr,
  640. #endif
  641. .fiemap = f2fs_fiemap,
  642. };
  643. static int fill_zero(struct inode *inode, pgoff_t index,
  644. loff_t start, loff_t len)
  645. {
  646. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  647. struct page *page;
  648. if (!len)
  649. return 0;
  650. f2fs_balance_fs(sbi, true);
  651. f2fs_lock_op(sbi);
  652. page = get_new_data_page(inode, NULL, index, false);
  653. f2fs_unlock_op(sbi);
  654. if (IS_ERR(page))
  655. return PTR_ERR(page);
  656. f2fs_wait_on_page_writeback(page, DATA, true);
  657. zero_user(page, start, len);
  658. set_page_dirty(page);
  659. f2fs_put_page(page, 1);
  660. return 0;
  661. }
  662. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  663. {
  664. int err;
  665. while (pg_start < pg_end) {
  666. struct dnode_of_data dn;
  667. pgoff_t end_offset, count;
  668. set_new_dnode(&dn, inode, NULL, NULL, 0);
  669. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  670. if (err) {
  671. if (err == -ENOENT) {
  672. pg_start++;
  673. continue;
  674. }
  675. return err;
  676. }
  677. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  678. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  679. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  680. truncate_data_blocks_range(&dn, count);
  681. f2fs_put_dnode(&dn);
  682. pg_start += count;
  683. }
  684. return 0;
  685. }
  686. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  687. {
  688. pgoff_t pg_start, pg_end;
  689. loff_t off_start, off_end;
  690. int ret;
  691. ret = f2fs_convert_inline_inode(inode);
  692. if (ret)
  693. return ret;
  694. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  695. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  696. off_start = offset & (PAGE_SIZE - 1);
  697. off_end = (offset + len) & (PAGE_SIZE - 1);
  698. if (pg_start == pg_end) {
  699. ret = fill_zero(inode, pg_start, off_start,
  700. off_end - off_start);
  701. if (ret)
  702. return ret;
  703. } else {
  704. if (off_start) {
  705. ret = fill_zero(inode, pg_start++, off_start,
  706. PAGE_SIZE - off_start);
  707. if (ret)
  708. return ret;
  709. }
  710. if (off_end) {
  711. ret = fill_zero(inode, pg_end, 0, off_end);
  712. if (ret)
  713. return ret;
  714. }
  715. if (pg_start < pg_end) {
  716. struct address_space *mapping = inode->i_mapping;
  717. loff_t blk_start, blk_end;
  718. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  719. f2fs_balance_fs(sbi, true);
  720. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  721. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  722. truncate_inode_pages_range(mapping, blk_start,
  723. blk_end - 1);
  724. f2fs_lock_op(sbi);
  725. ret = truncate_hole(inode, pg_start, pg_end);
  726. f2fs_unlock_op(sbi);
  727. }
  728. }
  729. return ret;
  730. }
  731. static int __exchange_data_block(struct inode *inode, pgoff_t src,
  732. pgoff_t dst, bool full)
  733. {
  734. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  735. struct dnode_of_data dn;
  736. block_t new_addr;
  737. bool do_replace = false;
  738. int ret;
  739. set_new_dnode(&dn, inode, NULL, NULL, 0);
  740. ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
  741. if (ret && ret != -ENOENT) {
  742. return ret;
  743. } else if (ret == -ENOENT) {
  744. new_addr = NULL_ADDR;
  745. } else {
  746. new_addr = dn.data_blkaddr;
  747. if (!is_checkpointed_data(sbi, new_addr)) {
  748. /* do not invalidate this block address */
  749. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  750. do_replace = true;
  751. }
  752. f2fs_put_dnode(&dn);
  753. }
  754. if (new_addr == NULL_ADDR)
  755. return full ? truncate_hole(inode, dst, dst + 1) : 0;
  756. if (do_replace) {
  757. struct page *ipage = get_node_page(sbi, inode->i_ino);
  758. struct node_info ni;
  759. if (IS_ERR(ipage)) {
  760. ret = PTR_ERR(ipage);
  761. goto err_out;
  762. }
  763. set_new_dnode(&dn, inode, ipage, NULL, 0);
  764. ret = f2fs_reserve_block(&dn, dst);
  765. if (ret)
  766. goto err_out;
  767. truncate_data_blocks_range(&dn, 1);
  768. get_node_info(sbi, dn.nid, &ni);
  769. f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
  770. ni.version, true, false);
  771. f2fs_put_dnode(&dn);
  772. } else {
  773. struct page *psrc, *pdst;
  774. psrc = get_lock_data_page(inode, src, true);
  775. if (IS_ERR(psrc))
  776. return PTR_ERR(psrc);
  777. pdst = get_new_data_page(inode, NULL, dst, true);
  778. if (IS_ERR(pdst)) {
  779. f2fs_put_page(psrc, 1);
  780. return PTR_ERR(pdst);
  781. }
  782. f2fs_copy_page(psrc, pdst);
  783. set_page_dirty(pdst);
  784. f2fs_put_page(pdst, 1);
  785. f2fs_put_page(psrc, 1);
  786. return truncate_hole(inode, src, src + 1);
  787. }
  788. return 0;
  789. err_out:
  790. if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
  791. f2fs_update_data_blkaddr(&dn, new_addr);
  792. f2fs_put_dnode(&dn);
  793. }
  794. return ret;
  795. }
  796. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  797. {
  798. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  799. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  800. int ret = 0;
  801. for (; end < nrpages; start++, end++) {
  802. f2fs_balance_fs(sbi, true);
  803. f2fs_lock_op(sbi);
  804. ret = __exchange_data_block(inode, end, start, true);
  805. f2fs_unlock_op(sbi);
  806. if (ret)
  807. break;
  808. }
  809. return ret;
  810. }
  811. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  812. {
  813. pgoff_t pg_start, pg_end;
  814. loff_t new_size;
  815. int ret;
  816. if (offset + len >= i_size_read(inode))
  817. return -EINVAL;
  818. /* collapse range should be aligned to block size of f2fs. */
  819. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  820. return -EINVAL;
  821. ret = f2fs_convert_inline_inode(inode);
  822. if (ret)
  823. return ret;
  824. pg_start = offset >> PAGE_SHIFT;
  825. pg_end = (offset + len) >> PAGE_SHIFT;
  826. /* write out all dirty pages from offset */
  827. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  828. if (ret)
  829. return ret;
  830. truncate_pagecache(inode, offset);
  831. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  832. if (ret)
  833. return ret;
  834. /* write out all moved pages, if possible */
  835. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  836. truncate_pagecache(inode, offset);
  837. new_size = i_size_read(inode) - len;
  838. truncate_pagecache(inode, new_size);
  839. ret = truncate_blocks(inode, new_size, true);
  840. if (!ret)
  841. i_size_write(inode, new_size);
  842. return ret;
  843. }
  844. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  845. pgoff_t end)
  846. {
  847. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  848. pgoff_t index = start;
  849. unsigned int ofs_in_node = dn->ofs_in_node;
  850. blkcnt_t count = 0;
  851. int ret;
  852. for (; index < end; index++, dn->ofs_in_node++) {
  853. if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
  854. count++;
  855. }
  856. dn->ofs_in_node = ofs_in_node;
  857. ret = reserve_new_blocks(dn, count);
  858. if (ret)
  859. return ret;
  860. dn->ofs_in_node = ofs_in_node;
  861. for (index = start; index < end; index++, dn->ofs_in_node++) {
  862. dn->data_blkaddr =
  863. datablock_addr(dn->node_page, dn->ofs_in_node);
  864. /*
  865. * reserve_new_blocks will not guarantee entire block
  866. * allocation.
  867. */
  868. if (dn->data_blkaddr == NULL_ADDR) {
  869. ret = -ENOSPC;
  870. break;
  871. }
  872. if (dn->data_blkaddr != NEW_ADDR) {
  873. invalidate_blocks(sbi, dn->data_blkaddr);
  874. dn->data_blkaddr = NEW_ADDR;
  875. set_data_blkaddr(dn);
  876. }
  877. }
  878. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  879. return ret;
  880. }
  881. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  882. int mode)
  883. {
  884. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  885. struct address_space *mapping = inode->i_mapping;
  886. pgoff_t index, pg_start, pg_end;
  887. loff_t new_size = i_size_read(inode);
  888. loff_t off_start, off_end;
  889. int ret = 0;
  890. ret = inode_newsize_ok(inode, (len + offset));
  891. if (ret)
  892. return ret;
  893. ret = f2fs_convert_inline_inode(inode);
  894. if (ret)
  895. return ret;
  896. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  897. if (ret)
  898. return ret;
  899. truncate_pagecache_range(inode, offset, offset + len - 1);
  900. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  901. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  902. off_start = offset & (PAGE_SIZE - 1);
  903. off_end = (offset + len) & (PAGE_SIZE - 1);
  904. if (pg_start == pg_end) {
  905. ret = fill_zero(inode, pg_start, off_start,
  906. off_end - off_start);
  907. if (ret)
  908. return ret;
  909. if (offset + len > new_size)
  910. new_size = offset + len;
  911. new_size = max_t(loff_t, new_size, offset + len);
  912. } else {
  913. if (off_start) {
  914. ret = fill_zero(inode, pg_start++, off_start,
  915. PAGE_SIZE - off_start);
  916. if (ret)
  917. return ret;
  918. new_size = max_t(loff_t, new_size,
  919. (loff_t)pg_start << PAGE_SHIFT);
  920. }
  921. for (index = pg_start; index < pg_end;) {
  922. struct dnode_of_data dn;
  923. unsigned int end_offset;
  924. pgoff_t end;
  925. f2fs_lock_op(sbi);
  926. set_new_dnode(&dn, inode, NULL, NULL, 0);
  927. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  928. if (ret) {
  929. f2fs_unlock_op(sbi);
  930. goto out;
  931. }
  932. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  933. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  934. ret = f2fs_do_zero_range(&dn, index, end);
  935. f2fs_put_dnode(&dn);
  936. f2fs_unlock_op(sbi);
  937. if (ret)
  938. goto out;
  939. index = end;
  940. new_size = max_t(loff_t, new_size,
  941. (loff_t)index << PAGE_SHIFT);
  942. }
  943. if (off_end) {
  944. ret = fill_zero(inode, pg_end, 0, off_end);
  945. if (ret)
  946. goto out;
  947. new_size = max_t(loff_t, new_size, offset + len);
  948. }
  949. }
  950. out:
  951. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
  952. i_size_write(inode, new_size);
  953. mark_inode_dirty(inode);
  954. update_inode_page(inode);
  955. }
  956. return ret;
  957. }
  958. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  959. {
  960. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  961. pgoff_t pg_start, pg_end, delta, nrpages, idx;
  962. loff_t new_size;
  963. int ret = 0;
  964. new_size = i_size_read(inode) + len;
  965. if (new_size > inode->i_sb->s_maxbytes)
  966. return -EFBIG;
  967. if (offset >= i_size_read(inode))
  968. return -EINVAL;
  969. /* insert range should be aligned to block size of f2fs. */
  970. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  971. return -EINVAL;
  972. ret = f2fs_convert_inline_inode(inode);
  973. if (ret)
  974. return ret;
  975. f2fs_balance_fs(sbi, true);
  976. ret = truncate_blocks(inode, i_size_read(inode), true);
  977. if (ret)
  978. return ret;
  979. /* write out all dirty pages from offset */
  980. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  981. if (ret)
  982. return ret;
  983. truncate_pagecache(inode, offset);
  984. pg_start = offset >> PAGE_SHIFT;
  985. pg_end = (offset + len) >> PAGE_SHIFT;
  986. delta = pg_end - pg_start;
  987. nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  988. for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
  989. f2fs_lock_op(sbi);
  990. ret = __exchange_data_block(inode, idx, idx + delta, false);
  991. f2fs_unlock_op(sbi);
  992. if (ret)
  993. break;
  994. }
  995. /* write out all moved pages, if possible */
  996. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  997. truncate_pagecache(inode, offset);
  998. if (!ret)
  999. i_size_write(inode, new_size);
  1000. return ret;
  1001. }
  1002. static int expand_inode_data(struct inode *inode, loff_t offset,
  1003. loff_t len, int mode)
  1004. {
  1005. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1006. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1007. pgoff_t pg_end;
  1008. loff_t new_size = i_size_read(inode);
  1009. loff_t off_end;
  1010. int ret;
  1011. ret = inode_newsize_ok(inode, (len + offset));
  1012. if (ret)
  1013. return ret;
  1014. ret = f2fs_convert_inline_inode(inode);
  1015. if (ret)
  1016. return ret;
  1017. f2fs_balance_fs(sbi, true);
  1018. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1019. off_end = (offset + len) & (PAGE_SIZE - 1);
  1020. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1021. map.m_len = pg_end - map.m_lblk;
  1022. if (off_end)
  1023. map.m_len++;
  1024. ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1025. if (ret) {
  1026. pgoff_t last_off;
  1027. if (!map.m_len)
  1028. return ret;
  1029. last_off = map.m_lblk + map.m_len - 1;
  1030. /* update new size to the failed position */
  1031. new_size = (last_off == pg_end) ? offset + len:
  1032. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1033. } else {
  1034. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1035. }
  1036. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
  1037. i_size_write(inode, new_size);
  1038. mark_inode_dirty(inode);
  1039. update_inode_page(inode);
  1040. }
  1041. return ret;
  1042. }
  1043. static long f2fs_fallocate(struct file *file, int mode,
  1044. loff_t offset, loff_t len)
  1045. {
  1046. struct inode *inode = file_inode(file);
  1047. long ret = 0;
  1048. /* f2fs only support ->fallocate for regular file */
  1049. if (!S_ISREG(inode->i_mode))
  1050. return -EINVAL;
  1051. if (f2fs_encrypted_inode(inode) &&
  1052. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1053. return -EOPNOTSUPP;
  1054. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1055. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1056. FALLOC_FL_INSERT_RANGE))
  1057. return -EOPNOTSUPP;
  1058. inode_lock(inode);
  1059. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1060. if (offset >= inode->i_size)
  1061. goto out;
  1062. ret = punch_hole(inode, offset, len);
  1063. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1064. ret = f2fs_collapse_range(inode, offset, len);
  1065. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1066. ret = f2fs_zero_range(inode, offset, len, mode);
  1067. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1068. ret = f2fs_insert_range(inode, offset, len);
  1069. } else {
  1070. ret = expand_inode_data(inode, offset, len, mode);
  1071. }
  1072. if (!ret) {
  1073. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1074. mark_inode_dirty(inode);
  1075. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1076. }
  1077. out:
  1078. inode_unlock(inode);
  1079. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1080. return ret;
  1081. }
  1082. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1083. {
  1084. /*
  1085. * f2fs_relase_file is called at every close calls. So we should
  1086. * not drop any inmemory pages by close called by other process.
  1087. */
  1088. if (!(filp->f_mode & FMODE_WRITE) ||
  1089. atomic_read(&inode->i_writecount) != 1)
  1090. return 0;
  1091. /* some remained atomic pages should discarded */
  1092. if (f2fs_is_atomic_file(inode))
  1093. drop_inmem_pages(inode);
  1094. if (f2fs_is_volatile_file(inode)) {
  1095. clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  1096. set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  1097. filemap_fdatawrite(inode->i_mapping);
  1098. clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  1099. }
  1100. return 0;
  1101. }
  1102. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1103. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1104. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1105. {
  1106. if (S_ISDIR(mode))
  1107. return flags;
  1108. else if (S_ISREG(mode))
  1109. return flags & F2FS_REG_FLMASK;
  1110. else
  1111. return flags & F2FS_OTHER_FLMASK;
  1112. }
  1113. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1114. {
  1115. struct inode *inode = file_inode(filp);
  1116. struct f2fs_inode_info *fi = F2FS_I(inode);
  1117. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1118. return put_user(flags, (int __user *)arg);
  1119. }
  1120. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1121. {
  1122. struct inode *inode = file_inode(filp);
  1123. struct f2fs_inode_info *fi = F2FS_I(inode);
  1124. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1125. unsigned int oldflags;
  1126. int ret;
  1127. if (!inode_owner_or_capable(inode))
  1128. return -EACCES;
  1129. if (get_user(flags, (int __user *)arg))
  1130. return -EFAULT;
  1131. ret = mnt_want_write_file(filp);
  1132. if (ret)
  1133. return ret;
  1134. flags = f2fs_mask_flags(inode->i_mode, flags);
  1135. inode_lock(inode);
  1136. oldflags = fi->i_flags;
  1137. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1138. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1139. inode_unlock(inode);
  1140. ret = -EPERM;
  1141. goto out;
  1142. }
  1143. }
  1144. flags = flags & FS_FL_USER_MODIFIABLE;
  1145. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1146. fi->i_flags = flags;
  1147. inode_unlock(inode);
  1148. f2fs_set_inode_flags(inode);
  1149. inode->i_ctime = CURRENT_TIME;
  1150. mark_inode_dirty(inode);
  1151. out:
  1152. mnt_drop_write_file(filp);
  1153. return ret;
  1154. }
  1155. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1156. {
  1157. struct inode *inode = file_inode(filp);
  1158. return put_user(inode->i_generation, (int __user *)arg);
  1159. }
  1160. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1161. {
  1162. struct inode *inode = file_inode(filp);
  1163. int ret;
  1164. if (!inode_owner_or_capable(inode))
  1165. return -EACCES;
  1166. ret = mnt_want_write_file(filp);
  1167. if (ret)
  1168. return ret;
  1169. inode_lock(inode);
  1170. if (f2fs_is_atomic_file(inode))
  1171. goto out;
  1172. ret = f2fs_convert_inline_inode(inode);
  1173. if (ret)
  1174. goto out;
  1175. set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1176. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1177. if (!get_dirty_pages(inode))
  1178. goto out;
  1179. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1180. "Unexpected flush for atomic writes: ino=%lu, npages=%lld",
  1181. inode->i_ino, get_dirty_pages(inode));
  1182. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1183. if (ret)
  1184. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1185. out:
  1186. inode_unlock(inode);
  1187. mnt_drop_write_file(filp);
  1188. return ret;
  1189. }
  1190. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1191. {
  1192. struct inode *inode = file_inode(filp);
  1193. int ret;
  1194. if (!inode_owner_or_capable(inode))
  1195. return -EACCES;
  1196. ret = mnt_want_write_file(filp);
  1197. if (ret)
  1198. return ret;
  1199. inode_lock(inode);
  1200. if (f2fs_is_volatile_file(inode))
  1201. goto err_out;
  1202. if (f2fs_is_atomic_file(inode)) {
  1203. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1204. ret = commit_inmem_pages(inode);
  1205. if (ret) {
  1206. set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1207. goto err_out;
  1208. }
  1209. }
  1210. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1211. err_out:
  1212. inode_unlock(inode);
  1213. mnt_drop_write_file(filp);
  1214. return ret;
  1215. }
  1216. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1217. {
  1218. struct inode *inode = file_inode(filp);
  1219. int ret;
  1220. if (!inode_owner_or_capable(inode))
  1221. return -EACCES;
  1222. ret = mnt_want_write_file(filp);
  1223. if (ret)
  1224. return ret;
  1225. inode_lock(inode);
  1226. if (f2fs_is_volatile_file(inode))
  1227. goto out;
  1228. ret = f2fs_convert_inline_inode(inode);
  1229. if (ret)
  1230. goto out;
  1231. set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  1232. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1233. out:
  1234. inode_unlock(inode);
  1235. mnt_drop_write_file(filp);
  1236. return ret;
  1237. }
  1238. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1239. {
  1240. struct inode *inode = file_inode(filp);
  1241. int ret;
  1242. if (!inode_owner_or_capable(inode))
  1243. return -EACCES;
  1244. ret = mnt_want_write_file(filp);
  1245. if (ret)
  1246. return ret;
  1247. inode_lock(inode);
  1248. if (!f2fs_is_volatile_file(inode))
  1249. goto out;
  1250. if (!f2fs_is_first_block_written(inode)) {
  1251. ret = truncate_partial_data_page(inode, 0, true);
  1252. goto out;
  1253. }
  1254. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1255. out:
  1256. inode_unlock(inode);
  1257. mnt_drop_write_file(filp);
  1258. return ret;
  1259. }
  1260. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1261. {
  1262. struct inode *inode = file_inode(filp);
  1263. int ret;
  1264. if (!inode_owner_or_capable(inode))
  1265. return -EACCES;
  1266. ret = mnt_want_write_file(filp);
  1267. if (ret)
  1268. return ret;
  1269. inode_lock(inode);
  1270. if (f2fs_is_atomic_file(inode))
  1271. drop_inmem_pages(inode);
  1272. if (f2fs_is_volatile_file(inode)) {
  1273. clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  1274. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1275. }
  1276. inode_unlock(inode);
  1277. mnt_drop_write_file(filp);
  1278. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1279. return ret;
  1280. }
  1281. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1282. {
  1283. struct inode *inode = file_inode(filp);
  1284. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1285. struct super_block *sb = sbi->sb;
  1286. __u32 in;
  1287. int ret;
  1288. if (!capable(CAP_SYS_ADMIN))
  1289. return -EPERM;
  1290. if (get_user(in, (__u32 __user *)arg))
  1291. return -EFAULT;
  1292. ret = mnt_want_write_file(filp);
  1293. if (ret)
  1294. return ret;
  1295. switch (in) {
  1296. case F2FS_GOING_DOWN_FULLSYNC:
  1297. sb = freeze_bdev(sb->s_bdev);
  1298. if (sb && !IS_ERR(sb)) {
  1299. f2fs_stop_checkpoint(sbi, false);
  1300. thaw_bdev(sb->s_bdev, sb);
  1301. }
  1302. break;
  1303. case F2FS_GOING_DOWN_METASYNC:
  1304. /* do checkpoint only */
  1305. f2fs_sync_fs(sb, 1);
  1306. f2fs_stop_checkpoint(sbi, false);
  1307. break;
  1308. case F2FS_GOING_DOWN_NOSYNC:
  1309. f2fs_stop_checkpoint(sbi, false);
  1310. break;
  1311. case F2FS_GOING_DOWN_METAFLUSH:
  1312. sync_meta_pages(sbi, META, LONG_MAX);
  1313. f2fs_stop_checkpoint(sbi, false);
  1314. break;
  1315. default:
  1316. ret = -EINVAL;
  1317. goto out;
  1318. }
  1319. f2fs_update_time(sbi, REQ_TIME);
  1320. out:
  1321. mnt_drop_write_file(filp);
  1322. return ret;
  1323. }
  1324. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1325. {
  1326. struct inode *inode = file_inode(filp);
  1327. struct super_block *sb = inode->i_sb;
  1328. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1329. struct fstrim_range range;
  1330. int ret;
  1331. if (!capable(CAP_SYS_ADMIN))
  1332. return -EPERM;
  1333. if (!blk_queue_discard(q))
  1334. return -EOPNOTSUPP;
  1335. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1336. sizeof(range)))
  1337. return -EFAULT;
  1338. ret = mnt_want_write_file(filp);
  1339. if (ret)
  1340. return ret;
  1341. range.minlen = max((unsigned int)range.minlen,
  1342. q->limits.discard_granularity);
  1343. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1344. mnt_drop_write_file(filp);
  1345. if (ret < 0)
  1346. return ret;
  1347. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1348. sizeof(range)))
  1349. return -EFAULT;
  1350. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1351. return 0;
  1352. }
  1353. static bool uuid_is_nonzero(__u8 u[16])
  1354. {
  1355. int i;
  1356. for (i = 0; i < 16; i++)
  1357. if (u[i])
  1358. return true;
  1359. return false;
  1360. }
  1361. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1362. {
  1363. struct fscrypt_policy policy;
  1364. struct inode *inode = file_inode(filp);
  1365. int ret;
  1366. if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
  1367. sizeof(policy)))
  1368. return -EFAULT;
  1369. ret = mnt_want_write_file(filp);
  1370. if (ret)
  1371. return ret;
  1372. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1373. ret = fscrypt_process_policy(inode, &policy);
  1374. mnt_drop_write_file(filp);
  1375. return ret;
  1376. }
  1377. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1378. {
  1379. struct fscrypt_policy policy;
  1380. struct inode *inode = file_inode(filp);
  1381. int err;
  1382. err = fscrypt_get_policy(inode, &policy);
  1383. if (err)
  1384. return err;
  1385. if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
  1386. return -EFAULT;
  1387. return 0;
  1388. }
  1389. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1390. {
  1391. struct inode *inode = file_inode(filp);
  1392. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1393. int err;
  1394. if (!f2fs_sb_has_crypto(inode->i_sb))
  1395. return -EOPNOTSUPP;
  1396. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1397. goto got_it;
  1398. err = mnt_want_write_file(filp);
  1399. if (err)
  1400. return err;
  1401. /* update superblock with uuid */
  1402. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1403. err = f2fs_commit_super(sbi, false);
  1404. if (err) {
  1405. /* undo new data */
  1406. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1407. mnt_drop_write_file(filp);
  1408. return err;
  1409. }
  1410. mnt_drop_write_file(filp);
  1411. got_it:
  1412. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1413. 16))
  1414. return -EFAULT;
  1415. return 0;
  1416. }
  1417. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1418. {
  1419. struct inode *inode = file_inode(filp);
  1420. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1421. __u32 sync;
  1422. int ret;
  1423. if (!capable(CAP_SYS_ADMIN))
  1424. return -EPERM;
  1425. if (get_user(sync, (__u32 __user *)arg))
  1426. return -EFAULT;
  1427. if (f2fs_readonly(sbi->sb))
  1428. return -EROFS;
  1429. ret = mnt_want_write_file(filp);
  1430. if (ret)
  1431. return ret;
  1432. if (!sync) {
  1433. if (!mutex_trylock(&sbi->gc_mutex)) {
  1434. ret = -EBUSY;
  1435. goto out;
  1436. }
  1437. } else {
  1438. mutex_lock(&sbi->gc_mutex);
  1439. }
  1440. ret = f2fs_gc(sbi, sync);
  1441. out:
  1442. mnt_drop_write_file(filp);
  1443. return ret;
  1444. }
  1445. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1446. {
  1447. struct inode *inode = file_inode(filp);
  1448. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1449. int ret;
  1450. if (!capable(CAP_SYS_ADMIN))
  1451. return -EPERM;
  1452. if (f2fs_readonly(sbi->sb))
  1453. return -EROFS;
  1454. ret = mnt_want_write_file(filp);
  1455. if (ret)
  1456. return ret;
  1457. ret = f2fs_sync_fs(sbi->sb, 1);
  1458. mnt_drop_write_file(filp);
  1459. return ret;
  1460. }
  1461. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1462. struct file *filp,
  1463. struct f2fs_defragment *range)
  1464. {
  1465. struct inode *inode = file_inode(filp);
  1466. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1467. struct extent_info ei;
  1468. pgoff_t pg_start, pg_end;
  1469. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1470. unsigned int total = 0, sec_num;
  1471. unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
  1472. block_t blk_end = 0;
  1473. bool fragmented = false;
  1474. int err;
  1475. /* if in-place-update policy is enabled, don't waste time here */
  1476. if (need_inplace_update(inode))
  1477. return -EINVAL;
  1478. pg_start = range->start >> PAGE_SHIFT;
  1479. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1480. f2fs_balance_fs(sbi, true);
  1481. inode_lock(inode);
  1482. /* writeback all dirty pages in the range */
  1483. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1484. range->start + range->len - 1);
  1485. if (err)
  1486. goto out;
  1487. /*
  1488. * lookup mapping info in extent cache, skip defragmenting if physical
  1489. * block addresses are continuous.
  1490. */
  1491. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1492. if (ei.fofs + ei.len >= pg_end)
  1493. goto out;
  1494. }
  1495. map.m_lblk = pg_start;
  1496. /*
  1497. * lookup mapping info in dnode page cache, skip defragmenting if all
  1498. * physical block addresses are continuous even if there are hole(s)
  1499. * in logical blocks.
  1500. */
  1501. while (map.m_lblk < pg_end) {
  1502. map.m_len = pg_end - map.m_lblk;
  1503. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1504. if (err)
  1505. goto out;
  1506. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1507. map.m_lblk++;
  1508. continue;
  1509. }
  1510. if (blk_end && blk_end != map.m_pblk) {
  1511. fragmented = true;
  1512. break;
  1513. }
  1514. blk_end = map.m_pblk + map.m_len;
  1515. map.m_lblk += map.m_len;
  1516. }
  1517. if (!fragmented)
  1518. goto out;
  1519. map.m_lblk = pg_start;
  1520. map.m_len = pg_end - pg_start;
  1521. sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
  1522. /*
  1523. * make sure there are enough free section for LFS allocation, this can
  1524. * avoid defragment running in SSR mode when free section are allocated
  1525. * intensively
  1526. */
  1527. if (has_not_enough_free_secs(sbi, sec_num)) {
  1528. err = -EAGAIN;
  1529. goto out;
  1530. }
  1531. while (map.m_lblk < pg_end) {
  1532. pgoff_t idx;
  1533. int cnt = 0;
  1534. do_map:
  1535. map.m_len = pg_end - map.m_lblk;
  1536. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1537. if (err)
  1538. goto clear_out;
  1539. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1540. map.m_lblk++;
  1541. continue;
  1542. }
  1543. set_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
  1544. idx = map.m_lblk;
  1545. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1546. struct page *page;
  1547. page = get_lock_data_page(inode, idx, true);
  1548. if (IS_ERR(page)) {
  1549. err = PTR_ERR(page);
  1550. goto clear_out;
  1551. }
  1552. set_page_dirty(page);
  1553. f2fs_put_page(page, 1);
  1554. idx++;
  1555. cnt++;
  1556. total++;
  1557. }
  1558. map.m_lblk = idx;
  1559. if (idx < pg_end && cnt < blk_per_seg)
  1560. goto do_map;
  1561. clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
  1562. err = filemap_fdatawrite(inode->i_mapping);
  1563. if (err)
  1564. goto out;
  1565. }
  1566. clear_out:
  1567. clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
  1568. out:
  1569. inode_unlock(inode);
  1570. if (!err)
  1571. range->len = (u64)total << PAGE_SHIFT;
  1572. return err;
  1573. }
  1574. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1575. {
  1576. struct inode *inode = file_inode(filp);
  1577. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1578. struct f2fs_defragment range;
  1579. int err;
  1580. if (!capable(CAP_SYS_ADMIN))
  1581. return -EPERM;
  1582. if (!S_ISREG(inode->i_mode))
  1583. return -EINVAL;
  1584. err = mnt_want_write_file(filp);
  1585. if (err)
  1586. return err;
  1587. if (f2fs_readonly(sbi->sb)) {
  1588. err = -EROFS;
  1589. goto out;
  1590. }
  1591. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1592. sizeof(range))) {
  1593. err = -EFAULT;
  1594. goto out;
  1595. }
  1596. /* verify alignment of offset & size */
  1597. if (range.start & (F2FS_BLKSIZE - 1) ||
  1598. range.len & (F2FS_BLKSIZE - 1)) {
  1599. err = -EINVAL;
  1600. goto out;
  1601. }
  1602. err = f2fs_defragment_range(sbi, filp, &range);
  1603. f2fs_update_time(sbi, REQ_TIME);
  1604. if (err < 0)
  1605. goto out;
  1606. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1607. sizeof(range)))
  1608. err = -EFAULT;
  1609. out:
  1610. mnt_drop_write_file(filp);
  1611. return err;
  1612. }
  1613. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1614. {
  1615. switch (cmd) {
  1616. case F2FS_IOC_GETFLAGS:
  1617. return f2fs_ioc_getflags(filp, arg);
  1618. case F2FS_IOC_SETFLAGS:
  1619. return f2fs_ioc_setflags(filp, arg);
  1620. case F2FS_IOC_GETVERSION:
  1621. return f2fs_ioc_getversion(filp, arg);
  1622. case F2FS_IOC_START_ATOMIC_WRITE:
  1623. return f2fs_ioc_start_atomic_write(filp);
  1624. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1625. return f2fs_ioc_commit_atomic_write(filp);
  1626. case F2FS_IOC_START_VOLATILE_WRITE:
  1627. return f2fs_ioc_start_volatile_write(filp);
  1628. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1629. return f2fs_ioc_release_volatile_write(filp);
  1630. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1631. return f2fs_ioc_abort_volatile_write(filp);
  1632. case F2FS_IOC_SHUTDOWN:
  1633. return f2fs_ioc_shutdown(filp, arg);
  1634. case FITRIM:
  1635. return f2fs_ioc_fitrim(filp, arg);
  1636. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1637. return f2fs_ioc_set_encryption_policy(filp, arg);
  1638. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1639. return f2fs_ioc_get_encryption_policy(filp, arg);
  1640. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1641. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1642. case F2FS_IOC_GARBAGE_COLLECT:
  1643. return f2fs_ioc_gc(filp, arg);
  1644. case F2FS_IOC_WRITE_CHECKPOINT:
  1645. return f2fs_ioc_write_checkpoint(filp, arg);
  1646. case F2FS_IOC_DEFRAGMENT:
  1647. return f2fs_ioc_defragment(filp, arg);
  1648. default:
  1649. return -ENOTTY;
  1650. }
  1651. }
  1652. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1653. {
  1654. struct file *file = iocb->ki_filp;
  1655. struct inode *inode = file_inode(file);
  1656. ssize_t ret;
  1657. if (f2fs_encrypted_inode(inode) &&
  1658. !fscrypt_has_encryption_key(inode) &&
  1659. fscrypt_get_encryption_info(inode))
  1660. return -EACCES;
  1661. inode_lock(inode);
  1662. ret = generic_write_checks(iocb, from);
  1663. if (ret > 0) {
  1664. ret = f2fs_preallocate_blocks(iocb, from);
  1665. if (!ret)
  1666. ret = __generic_file_write_iter(iocb, from);
  1667. }
  1668. inode_unlock(inode);
  1669. if (ret > 0)
  1670. ret = generic_write_sync(iocb, ret);
  1671. return ret;
  1672. }
  1673. #ifdef CONFIG_COMPAT
  1674. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1675. {
  1676. switch (cmd) {
  1677. case F2FS_IOC32_GETFLAGS:
  1678. cmd = F2FS_IOC_GETFLAGS;
  1679. break;
  1680. case F2FS_IOC32_SETFLAGS:
  1681. cmd = F2FS_IOC_SETFLAGS;
  1682. break;
  1683. case F2FS_IOC32_GETVERSION:
  1684. cmd = F2FS_IOC_GETVERSION;
  1685. break;
  1686. case F2FS_IOC_START_ATOMIC_WRITE:
  1687. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1688. case F2FS_IOC_START_VOLATILE_WRITE:
  1689. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1690. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1691. case F2FS_IOC_SHUTDOWN:
  1692. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1693. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1694. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1695. case F2FS_IOC_GARBAGE_COLLECT:
  1696. case F2FS_IOC_WRITE_CHECKPOINT:
  1697. case F2FS_IOC_DEFRAGMENT:
  1698. break;
  1699. default:
  1700. return -ENOIOCTLCMD;
  1701. }
  1702. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  1703. }
  1704. #endif
  1705. const struct file_operations f2fs_file_operations = {
  1706. .llseek = f2fs_llseek,
  1707. .read_iter = generic_file_read_iter,
  1708. .write_iter = f2fs_file_write_iter,
  1709. .open = f2fs_file_open,
  1710. .release = f2fs_release_file,
  1711. .mmap = f2fs_file_mmap,
  1712. .fsync = f2fs_sync_file,
  1713. .fallocate = f2fs_fallocate,
  1714. .unlocked_ioctl = f2fs_ioctl,
  1715. #ifdef CONFIG_COMPAT
  1716. .compat_ioctl = f2fs_compat_ioctl,
  1717. #endif
  1718. .splice_read = generic_file_splice_read,
  1719. .splice_write = iter_file_splice_write,
  1720. };