direct-io.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360
  1. /*
  2. * fs/direct-io.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * O_DIRECT
  7. *
  8. * 04Jul2002 Andrew Morton
  9. * Initial version
  10. * 11Sep2002 janetinc@us.ibm.com
  11. * added readv/writev support.
  12. * 29Oct2002 Andrew Morton
  13. * rewrote bio_add_page() support.
  14. * 30Oct2002 pbadari@us.ibm.com
  15. * added support for non-aligned IO.
  16. * 06Nov2002 pbadari@us.ibm.com
  17. * added asynchronous IO support.
  18. * 21Jul2003 nathans@sgi.com
  19. * added IO completion notifier.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/types.h>
  24. #include <linux/fs.h>
  25. #include <linux/mm.h>
  26. #include <linux/slab.h>
  27. #include <linux/highmem.h>
  28. #include <linux/pagemap.h>
  29. #include <linux/task_io_accounting_ops.h>
  30. #include <linux/bio.h>
  31. #include <linux/wait.h>
  32. #include <linux/err.h>
  33. #include <linux/blkdev.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/rwsem.h>
  36. #include <linux/uio.h>
  37. #include <linux/atomic.h>
  38. #include <linux/prefetch.h>
  39. /*
  40. * How many user pages to map in one call to get_user_pages(). This determines
  41. * the size of a structure in the slab cache
  42. */
  43. #define DIO_PAGES 64
  44. /*
  45. * This code generally works in units of "dio_blocks". A dio_block is
  46. * somewhere between the hard sector size and the filesystem block size. it
  47. * is determined on a per-invocation basis. When talking to the filesystem
  48. * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  49. * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
  50. * to bio_block quantities by shifting left by blkfactor.
  51. *
  52. * If blkfactor is zero then the user's request was aligned to the filesystem's
  53. * blocksize.
  54. */
  55. /* dio_state only used in the submission path */
  56. struct dio_submit {
  57. struct bio *bio; /* bio under assembly */
  58. unsigned blkbits; /* doesn't change */
  59. unsigned blkfactor; /* When we're using an alignment which
  60. is finer than the filesystem's soft
  61. blocksize, this specifies how much
  62. finer. blkfactor=2 means 1/4-block
  63. alignment. Does not change */
  64. unsigned start_zero_done; /* flag: sub-blocksize zeroing has
  65. been performed at the start of a
  66. write */
  67. int pages_in_io; /* approximate total IO pages */
  68. sector_t block_in_file; /* Current offset into the underlying
  69. file in dio_block units. */
  70. unsigned blocks_available; /* At block_in_file. changes */
  71. int reap_counter; /* rate limit reaping */
  72. sector_t final_block_in_request;/* doesn't change */
  73. int boundary; /* prev block is at a boundary */
  74. get_block_t *get_block; /* block mapping function */
  75. dio_submit_t *submit_io; /* IO submition function */
  76. loff_t logical_offset_in_bio; /* current first logical block in bio */
  77. sector_t final_block_in_bio; /* current final block in bio + 1 */
  78. sector_t next_block_for_io; /* next block to be put under IO,
  79. in dio_blocks units */
  80. /*
  81. * Deferred addition of a page to the dio. These variables are
  82. * private to dio_send_cur_page(), submit_page_section() and
  83. * dio_bio_add_page().
  84. */
  85. struct page *cur_page; /* The page */
  86. unsigned cur_page_offset; /* Offset into it, in bytes */
  87. unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
  88. sector_t cur_page_block; /* Where it starts */
  89. loff_t cur_page_fs_offset; /* Offset in file */
  90. struct iov_iter *iter;
  91. /*
  92. * Page queue. These variables belong to dio_refill_pages() and
  93. * dio_get_page().
  94. */
  95. unsigned head; /* next page to process */
  96. unsigned tail; /* last valid page + 1 */
  97. size_t from, to;
  98. };
  99. /* dio_state communicated between submission path and end_io */
  100. struct dio {
  101. int flags; /* doesn't change */
  102. int rw;
  103. blk_qc_t bio_cookie;
  104. struct block_device *bio_bdev;
  105. struct inode *inode;
  106. loff_t i_size; /* i_size when submitted */
  107. dio_iodone_t *end_io; /* IO completion function */
  108. void *private; /* copy from map_bh.b_private */
  109. /* BIO completion state */
  110. spinlock_t bio_lock; /* protects BIO fields below */
  111. int page_errors; /* errno from get_user_pages() */
  112. int is_async; /* is IO async ? */
  113. bool defer_completion; /* defer AIO completion to workqueue? */
  114. bool should_dirty; /* if pages should be dirtied */
  115. int io_error; /* IO error in completion path */
  116. unsigned long refcount; /* direct_io_worker() and bios */
  117. struct bio *bio_list; /* singly linked via bi_private */
  118. struct task_struct *waiter; /* waiting task (NULL if none) */
  119. /* AIO related stuff */
  120. struct kiocb *iocb; /* kiocb */
  121. ssize_t result; /* IO result */
  122. /*
  123. * pages[] (and any fields placed after it) are not zeroed out at
  124. * allocation time. Don't add new fields after pages[] unless you
  125. * wish that they not be zeroed.
  126. */
  127. union {
  128. struct page *pages[DIO_PAGES]; /* page buffer */
  129. struct work_struct complete_work;/* deferred AIO completion */
  130. };
  131. } ____cacheline_aligned_in_smp;
  132. static struct kmem_cache *dio_cache __read_mostly;
  133. /*
  134. * How many pages are in the queue?
  135. */
  136. static inline unsigned dio_pages_present(struct dio_submit *sdio)
  137. {
  138. return sdio->tail - sdio->head;
  139. }
  140. /*
  141. * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
  142. */
  143. static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
  144. {
  145. ssize_t ret;
  146. ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
  147. &sdio->from);
  148. if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
  149. struct page *page = ZERO_PAGE(0);
  150. /*
  151. * A memory fault, but the filesystem has some outstanding
  152. * mapped blocks. We need to use those blocks up to avoid
  153. * leaking stale data in the file.
  154. */
  155. if (dio->page_errors == 0)
  156. dio->page_errors = ret;
  157. get_page(page);
  158. dio->pages[0] = page;
  159. sdio->head = 0;
  160. sdio->tail = 1;
  161. sdio->from = 0;
  162. sdio->to = PAGE_SIZE;
  163. return 0;
  164. }
  165. if (ret >= 0) {
  166. iov_iter_advance(sdio->iter, ret);
  167. ret += sdio->from;
  168. sdio->head = 0;
  169. sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
  170. sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
  171. return 0;
  172. }
  173. return ret;
  174. }
  175. /*
  176. * Get another userspace page. Returns an ERR_PTR on error. Pages are
  177. * buffered inside the dio so that we can call get_user_pages() against a
  178. * decent number of pages, less frequently. To provide nicer use of the
  179. * L1 cache.
  180. */
  181. static inline struct page *dio_get_page(struct dio *dio,
  182. struct dio_submit *sdio)
  183. {
  184. if (dio_pages_present(sdio) == 0) {
  185. int ret;
  186. ret = dio_refill_pages(dio, sdio);
  187. if (ret)
  188. return ERR_PTR(ret);
  189. BUG_ON(dio_pages_present(sdio) == 0);
  190. }
  191. return dio->pages[sdio->head];
  192. }
  193. /**
  194. * dio_complete() - called when all DIO BIO I/O has been completed
  195. * @offset: the byte offset in the file of the completed operation
  196. *
  197. * This drops i_dio_count, lets interested parties know that a DIO operation
  198. * has completed, and calculates the resulting return code for the operation.
  199. *
  200. * It lets the filesystem know if it registered an interest earlier via
  201. * get_block. Pass the private field of the map buffer_head so that
  202. * filesystems can use it to hold additional state between get_block calls and
  203. * dio_complete.
  204. */
  205. static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
  206. {
  207. loff_t offset = dio->iocb->ki_pos;
  208. ssize_t transferred = 0;
  209. /*
  210. * AIO submission can race with bio completion to get here while
  211. * expecting to have the last io completed by bio completion.
  212. * In that case -EIOCBQUEUED is in fact not an error we want
  213. * to preserve through this call.
  214. */
  215. if (ret == -EIOCBQUEUED)
  216. ret = 0;
  217. if (dio->result) {
  218. transferred = dio->result;
  219. /* Check for short read case */
  220. if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
  221. transferred = dio->i_size - offset;
  222. }
  223. if (ret == 0)
  224. ret = dio->page_errors;
  225. if (ret == 0)
  226. ret = dio->io_error;
  227. if (ret == 0)
  228. ret = transferred;
  229. if (dio->end_io) {
  230. int err;
  231. // XXX: ki_pos??
  232. err = dio->end_io(dio->iocb, offset, ret, dio->private);
  233. if (err)
  234. ret = err;
  235. }
  236. if (!(dio->flags & DIO_SKIP_DIO_COUNT))
  237. inode_dio_end(dio->inode);
  238. if (is_async) {
  239. /*
  240. * generic_write_sync expects ki_pos to have been updated
  241. * already, but the submission path only does this for
  242. * synchronous I/O.
  243. */
  244. dio->iocb->ki_pos += transferred;
  245. if (dio->rw & WRITE)
  246. ret = generic_write_sync(dio->iocb, transferred);
  247. dio->iocb->ki_complete(dio->iocb, ret, 0);
  248. }
  249. kmem_cache_free(dio_cache, dio);
  250. return ret;
  251. }
  252. static void dio_aio_complete_work(struct work_struct *work)
  253. {
  254. struct dio *dio = container_of(work, struct dio, complete_work);
  255. dio_complete(dio, 0, true);
  256. }
  257. static int dio_bio_complete(struct dio *dio, struct bio *bio);
  258. /*
  259. * Asynchronous IO callback.
  260. */
  261. static void dio_bio_end_aio(struct bio *bio)
  262. {
  263. struct dio *dio = bio->bi_private;
  264. unsigned long remaining;
  265. unsigned long flags;
  266. /* cleanup the bio */
  267. dio_bio_complete(dio, bio);
  268. spin_lock_irqsave(&dio->bio_lock, flags);
  269. remaining = --dio->refcount;
  270. if (remaining == 1 && dio->waiter)
  271. wake_up_process(dio->waiter);
  272. spin_unlock_irqrestore(&dio->bio_lock, flags);
  273. if (remaining == 0) {
  274. if (dio->result && dio->defer_completion) {
  275. INIT_WORK(&dio->complete_work, dio_aio_complete_work);
  276. queue_work(dio->inode->i_sb->s_dio_done_wq,
  277. &dio->complete_work);
  278. } else {
  279. dio_complete(dio, 0, true);
  280. }
  281. }
  282. }
  283. /*
  284. * The BIO completion handler simply queues the BIO up for the process-context
  285. * handler.
  286. *
  287. * During I/O bi_private points at the dio. After I/O, bi_private is used to
  288. * implement a singly-linked list of completed BIOs, at dio->bio_list.
  289. */
  290. static void dio_bio_end_io(struct bio *bio)
  291. {
  292. struct dio *dio = bio->bi_private;
  293. unsigned long flags;
  294. spin_lock_irqsave(&dio->bio_lock, flags);
  295. bio->bi_private = dio->bio_list;
  296. dio->bio_list = bio;
  297. if (--dio->refcount == 1 && dio->waiter)
  298. wake_up_process(dio->waiter);
  299. spin_unlock_irqrestore(&dio->bio_lock, flags);
  300. }
  301. /**
  302. * dio_end_io - handle the end io action for the given bio
  303. * @bio: The direct io bio thats being completed
  304. * @error: Error if there was one
  305. *
  306. * This is meant to be called by any filesystem that uses their own dio_submit_t
  307. * so that the DIO specific endio actions are dealt with after the filesystem
  308. * has done it's completion work.
  309. */
  310. void dio_end_io(struct bio *bio, int error)
  311. {
  312. struct dio *dio = bio->bi_private;
  313. if (dio->is_async)
  314. dio_bio_end_aio(bio);
  315. else
  316. dio_bio_end_io(bio);
  317. }
  318. EXPORT_SYMBOL_GPL(dio_end_io);
  319. static inline void
  320. dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
  321. struct block_device *bdev,
  322. sector_t first_sector, int nr_vecs)
  323. {
  324. struct bio *bio;
  325. /*
  326. * bio_alloc() is guaranteed to return a bio when called with
  327. * __GFP_RECLAIM and we request a valid number of vectors.
  328. */
  329. bio = bio_alloc(GFP_KERNEL, nr_vecs);
  330. bio->bi_bdev = bdev;
  331. bio->bi_iter.bi_sector = first_sector;
  332. if (dio->is_async)
  333. bio->bi_end_io = dio_bio_end_aio;
  334. else
  335. bio->bi_end_io = dio_bio_end_io;
  336. sdio->bio = bio;
  337. sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
  338. }
  339. /*
  340. * In the AIO read case we speculatively dirty the pages before starting IO.
  341. * During IO completion, any of these pages which happen to have been written
  342. * back will be redirtied by bio_check_pages_dirty().
  343. *
  344. * bios hold a dio reference between submit_bio and ->end_io.
  345. */
  346. static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
  347. {
  348. struct bio *bio = sdio->bio;
  349. unsigned long flags;
  350. bio->bi_private = dio;
  351. spin_lock_irqsave(&dio->bio_lock, flags);
  352. dio->refcount++;
  353. spin_unlock_irqrestore(&dio->bio_lock, flags);
  354. if (dio->is_async && dio->rw == READ && dio->should_dirty)
  355. bio_set_pages_dirty(bio);
  356. dio->bio_bdev = bio->bi_bdev;
  357. if (sdio->submit_io) {
  358. sdio->submit_io(dio->rw, bio, dio->inode,
  359. sdio->logical_offset_in_bio);
  360. dio->bio_cookie = BLK_QC_T_NONE;
  361. } else
  362. dio->bio_cookie = submit_bio(dio->rw, bio);
  363. sdio->bio = NULL;
  364. sdio->boundary = 0;
  365. sdio->logical_offset_in_bio = 0;
  366. }
  367. /*
  368. * Release any resources in case of a failure
  369. */
  370. static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
  371. {
  372. while (sdio->head < sdio->tail)
  373. put_page(dio->pages[sdio->head++]);
  374. }
  375. /*
  376. * Wait for the next BIO to complete. Remove it and return it. NULL is
  377. * returned once all BIOs have been completed. This must only be called once
  378. * all bios have been issued so that dio->refcount can only decrease. This
  379. * requires that that the caller hold a reference on the dio.
  380. */
  381. static struct bio *dio_await_one(struct dio *dio)
  382. {
  383. unsigned long flags;
  384. struct bio *bio = NULL;
  385. spin_lock_irqsave(&dio->bio_lock, flags);
  386. /*
  387. * Wait as long as the list is empty and there are bios in flight. bio
  388. * completion drops the count, maybe adds to the list, and wakes while
  389. * holding the bio_lock so we don't need set_current_state()'s barrier
  390. * and can call it after testing our condition.
  391. */
  392. while (dio->refcount > 1 && dio->bio_list == NULL) {
  393. __set_current_state(TASK_UNINTERRUPTIBLE);
  394. dio->waiter = current;
  395. spin_unlock_irqrestore(&dio->bio_lock, flags);
  396. if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
  397. !blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
  398. io_schedule();
  399. /* wake up sets us TASK_RUNNING */
  400. spin_lock_irqsave(&dio->bio_lock, flags);
  401. dio->waiter = NULL;
  402. }
  403. if (dio->bio_list) {
  404. bio = dio->bio_list;
  405. dio->bio_list = bio->bi_private;
  406. }
  407. spin_unlock_irqrestore(&dio->bio_lock, flags);
  408. return bio;
  409. }
  410. /*
  411. * Process one completed BIO. No locks are held.
  412. */
  413. static int dio_bio_complete(struct dio *dio, struct bio *bio)
  414. {
  415. struct bio_vec *bvec;
  416. unsigned i;
  417. int err;
  418. if (bio->bi_error)
  419. dio->io_error = -EIO;
  420. if (dio->is_async && dio->rw == READ && dio->should_dirty) {
  421. err = bio->bi_error;
  422. bio_check_pages_dirty(bio); /* transfers ownership */
  423. } else {
  424. bio_for_each_segment_all(bvec, bio, i) {
  425. struct page *page = bvec->bv_page;
  426. if (dio->rw == READ && !PageCompound(page) &&
  427. dio->should_dirty)
  428. set_page_dirty_lock(page);
  429. put_page(page);
  430. }
  431. err = bio->bi_error;
  432. bio_put(bio);
  433. }
  434. return err;
  435. }
  436. /*
  437. * Wait on and process all in-flight BIOs. This must only be called once
  438. * all bios have been issued so that the refcount can only decrease.
  439. * This just waits for all bios to make it through dio_bio_complete. IO
  440. * errors are propagated through dio->io_error and should be propagated via
  441. * dio_complete().
  442. */
  443. static void dio_await_completion(struct dio *dio)
  444. {
  445. struct bio *bio;
  446. do {
  447. bio = dio_await_one(dio);
  448. if (bio)
  449. dio_bio_complete(dio, bio);
  450. } while (bio);
  451. }
  452. /*
  453. * A really large O_DIRECT read or write can generate a lot of BIOs. So
  454. * to keep the memory consumption sane we periodically reap any completed BIOs
  455. * during the BIO generation phase.
  456. *
  457. * This also helps to limit the peak amount of pinned userspace memory.
  458. */
  459. static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
  460. {
  461. int ret = 0;
  462. if (sdio->reap_counter++ >= 64) {
  463. while (dio->bio_list) {
  464. unsigned long flags;
  465. struct bio *bio;
  466. int ret2;
  467. spin_lock_irqsave(&dio->bio_lock, flags);
  468. bio = dio->bio_list;
  469. dio->bio_list = bio->bi_private;
  470. spin_unlock_irqrestore(&dio->bio_lock, flags);
  471. ret2 = dio_bio_complete(dio, bio);
  472. if (ret == 0)
  473. ret = ret2;
  474. }
  475. sdio->reap_counter = 0;
  476. }
  477. return ret;
  478. }
  479. /*
  480. * Create workqueue for deferred direct IO completions. We allocate the
  481. * workqueue when it's first needed. This avoids creating workqueue for
  482. * filesystems that don't need it and also allows us to create the workqueue
  483. * late enough so the we can include s_id in the name of the workqueue.
  484. */
  485. static int sb_init_dio_done_wq(struct super_block *sb)
  486. {
  487. struct workqueue_struct *old;
  488. struct workqueue_struct *wq = alloc_workqueue("dio/%s",
  489. WQ_MEM_RECLAIM, 0,
  490. sb->s_id);
  491. if (!wq)
  492. return -ENOMEM;
  493. /*
  494. * This has to be atomic as more DIOs can race to create the workqueue
  495. */
  496. old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
  497. /* Someone created workqueue before us? Free ours... */
  498. if (old)
  499. destroy_workqueue(wq);
  500. return 0;
  501. }
  502. static int dio_set_defer_completion(struct dio *dio)
  503. {
  504. struct super_block *sb = dio->inode->i_sb;
  505. if (dio->defer_completion)
  506. return 0;
  507. dio->defer_completion = true;
  508. if (!sb->s_dio_done_wq)
  509. return sb_init_dio_done_wq(sb);
  510. return 0;
  511. }
  512. /*
  513. * Call into the fs to map some more disk blocks. We record the current number
  514. * of available blocks at sdio->blocks_available. These are in units of the
  515. * fs blocksize, (1 << inode->i_blkbits).
  516. *
  517. * The fs is allowed to map lots of blocks at once. If it wants to do that,
  518. * it uses the passed inode-relative block number as the file offset, as usual.
  519. *
  520. * get_block() is passed the number of i_blkbits-sized blocks which direct_io
  521. * has remaining to do. The fs should not map more than this number of blocks.
  522. *
  523. * If the fs has mapped a lot of blocks, it should populate bh->b_size to
  524. * indicate how much contiguous disk space has been made available at
  525. * bh->b_blocknr.
  526. *
  527. * If *any* of the mapped blocks are new, then the fs must set buffer_new().
  528. * This isn't very efficient...
  529. *
  530. * In the case of filesystem holes: the fs may return an arbitrarily-large
  531. * hole by returning an appropriate value in b_size and by clearing
  532. * buffer_mapped(). However the direct-io code will only process holes one
  533. * block at a time - it will repeatedly call get_block() as it walks the hole.
  534. */
  535. static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
  536. struct buffer_head *map_bh)
  537. {
  538. int ret;
  539. sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
  540. sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
  541. unsigned long fs_count; /* Number of filesystem-sized blocks */
  542. int create;
  543. unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
  544. /*
  545. * If there was a memory error and we've overwritten all the
  546. * mapped blocks then we can now return that memory error
  547. */
  548. ret = dio->page_errors;
  549. if (ret == 0) {
  550. BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
  551. fs_startblk = sdio->block_in_file >> sdio->blkfactor;
  552. fs_endblk = (sdio->final_block_in_request - 1) >>
  553. sdio->blkfactor;
  554. fs_count = fs_endblk - fs_startblk + 1;
  555. map_bh->b_state = 0;
  556. map_bh->b_size = fs_count << i_blkbits;
  557. /*
  558. * For writes that could fill holes inside i_size on a
  559. * DIO_SKIP_HOLES filesystem we forbid block creations: only
  560. * overwrites are permitted. We will return early to the caller
  561. * once we see an unmapped buffer head returned, and the caller
  562. * will fall back to buffered I/O.
  563. *
  564. * Otherwise the decision is left to the get_blocks method,
  565. * which may decide to handle it or also return an unmapped
  566. * buffer head.
  567. */
  568. create = dio->rw & WRITE;
  569. if (dio->flags & DIO_SKIP_HOLES) {
  570. if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
  571. i_blkbits))
  572. create = 0;
  573. }
  574. ret = (*sdio->get_block)(dio->inode, fs_startblk,
  575. map_bh, create);
  576. /* Store for completion */
  577. dio->private = map_bh->b_private;
  578. if (ret == 0 && buffer_defer_completion(map_bh))
  579. ret = dio_set_defer_completion(dio);
  580. }
  581. return ret;
  582. }
  583. /*
  584. * There is no bio. Make one now.
  585. */
  586. static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
  587. sector_t start_sector, struct buffer_head *map_bh)
  588. {
  589. sector_t sector;
  590. int ret, nr_pages;
  591. ret = dio_bio_reap(dio, sdio);
  592. if (ret)
  593. goto out;
  594. sector = start_sector << (sdio->blkbits - 9);
  595. nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
  596. BUG_ON(nr_pages <= 0);
  597. dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
  598. sdio->boundary = 0;
  599. out:
  600. return ret;
  601. }
  602. /*
  603. * Attempt to put the current chunk of 'cur_page' into the current BIO. If
  604. * that was successful then update final_block_in_bio and take a ref against
  605. * the just-added page.
  606. *
  607. * Return zero on success. Non-zero means the caller needs to start a new BIO.
  608. */
  609. static inline int dio_bio_add_page(struct dio_submit *sdio)
  610. {
  611. int ret;
  612. ret = bio_add_page(sdio->bio, sdio->cur_page,
  613. sdio->cur_page_len, sdio->cur_page_offset);
  614. if (ret == sdio->cur_page_len) {
  615. /*
  616. * Decrement count only, if we are done with this page
  617. */
  618. if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
  619. sdio->pages_in_io--;
  620. get_page(sdio->cur_page);
  621. sdio->final_block_in_bio = sdio->cur_page_block +
  622. (sdio->cur_page_len >> sdio->blkbits);
  623. ret = 0;
  624. } else {
  625. ret = 1;
  626. }
  627. return ret;
  628. }
  629. /*
  630. * Put cur_page under IO. The section of cur_page which is described by
  631. * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
  632. * starts on-disk at cur_page_block.
  633. *
  634. * We take a ref against the page here (on behalf of its presence in the bio).
  635. *
  636. * The caller of this function is responsible for removing cur_page from the
  637. * dio, and for dropping the refcount which came from that presence.
  638. */
  639. static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
  640. struct buffer_head *map_bh)
  641. {
  642. int ret = 0;
  643. if (sdio->bio) {
  644. loff_t cur_offset = sdio->cur_page_fs_offset;
  645. loff_t bio_next_offset = sdio->logical_offset_in_bio +
  646. sdio->bio->bi_iter.bi_size;
  647. /*
  648. * See whether this new request is contiguous with the old.
  649. *
  650. * Btrfs cannot handle having logically non-contiguous requests
  651. * submitted. For example if you have
  652. *
  653. * Logical: [0-4095][HOLE][8192-12287]
  654. * Physical: [0-4095] [4096-8191]
  655. *
  656. * We cannot submit those pages together as one BIO. So if our
  657. * current logical offset in the file does not equal what would
  658. * be the next logical offset in the bio, submit the bio we
  659. * have.
  660. */
  661. if (sdio->final_block_in_bio != sdio->cur_page_block ||
  662. cur_offset != bio_next_offset)
  663. dio_bio_submit(dio, sdio);
  664. }
  665. if (sdio->bio == NULL) {
  666. ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
  667. if (ret)
  668. goto out;
  669. }
  670. if (dio_bio_add_page(sdio) != 0) {
  671. dio_bio_submit(dio, sdio);
  672. ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
  673. if (ret == 0) {
  674. ret = dio_bio_add_page(sdio);
  675. BUG_ON(ret != 0);
  676. }
  677. }
  678. out:
  679. return ret;
  680. }
  681. /*
  682. * An autonomous function to put a chunk of a page under deferred IO.
  683. *
  684. * The caller doesn't actually know (or care) whether this piece of page is in
  685. * a BIO, or is under IO or whatever. We just take care of all possible
  686. * situations here. The separation between the logic of do_direct_IO() and
  687. * that of submit_page_section() is important for clarity. Please don't break.
  688. *
  689. * The chunk of page starts on-disk at blocknr.
  690. *
  691. * We perform deferred IO, by recording the last-submitted page inside our
  692. * private part of the dio structure. If possible, we just expand the IO
  693. * across that page here.
  694. *
  695. * If that doesn't work out then we put the old page into the bio and add this
  696. * page to the dio instead.
  697. */
  698. static inline int
  699. submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
  700. unsigned offset, unsigned len, sector_t blocknr,
  701. struct buffer_head *map_bh)
  702. {
  703. int ret = 0;
  704. if (dio->rw & WRITE) {
  705. /*
  706. * Read accounting is performed in submit_bio()
  707. */
  708. task_io_account_write(len);
  709. }
  710. /*
  711. * Can we just grow the current page's presence in the dio?
  712. */
  713. if (sdio->cur_page == page &&
  714. sdio->cur_page_offset + sdio->cur_page_len == offset &&
  715. sdio->cur_page_block +
  716. (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
  717. sdio->cur_page_len += len;
  718. goto out;
  719. }
  720. /*
  721. * If there's a deferred page already there then send it.
  722. */
  723. if (sdio->cur_page) {
  724. ret = dio_send_cur_page(dio, sdio, map_bh);
  725. put_page(sdio->cur_page);
  726. sdio->cur_page = NULL;
  727. if (ret)
  728. return ret;
  729. }
  730. get_page(page); /* It is in dio */
  731. sdio->cur_page = page;
  732. sdio->cur_page_offset = offset;
  733. sdio->cur_page_len = len;
  734. sdio->cur_page_block = blocknr;
  735. sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
  736. out:
  737. /*
  738. * If sdio->boundary then we want to schedule the IO now to
  739. * avoid metadata seeks.
  740. */
  741. if (sdio->boundary) {
  742. ret = dio_send_cur_page(dio, sdio, map_bh);
  743. dio_bio_submit(dio, sdio);
  744. put_page(sdio->cur_page);
  745. sdio->cur_page = NULL;
  746. }
  747. return ret;
  748. }
  749. /*
  750. * Clean any dirty buffers in the blockdev mapping which alias newly-created
  751. * file blocks. Only called for S_ISREG files - blockdevs do not set
  752. * buffer_new
  753. */
  754. static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
  755. {
  756. unsigned i;
  757. unsigned nblocks;
  758. nblocks = map_bh->b_size >> dio->inode->i_blkbits;
  759. for (i = 0; i < nblocks; i++) {
  760. unmap_underlying_metadata(map_bh->b_bdev,
  761. map_bh->b_blocknr + i);
  762. }
  763. }
  764. /*
  765. * If we are not writing the entire block and get_block() allocated
  766. * the block for us, we need to fill-in the unused portion of the
  767. * block with zeros. This happens only if user-buffer, fileoffset or
  768. * io length is not filesystem block-size multiple.
  769. *
  770. * `end' is zero if we're doing the start of the IO, 1 at the end of the
  771. * IO.
  772. */
  773. static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
  774. int end, struct buffer_head *map_bh)
  775. {
  776. unsigned dio_blocks_per_fs_block;
  777. unsigned this_chunk_blocks; /* In dio_blocks */
  778. unsigned this_chunk_bytes;
  779. struct page *page;
  780. sdio->start_zero_done = 1;
  781. if (!sdio->blkfactor || !buffer_new(map_bh))
  782. return;
  783. dio_blocks_per_fs_block = 1 << sdio->blkfactor;
  784. this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
  785. if (!this_chunk_blocks)
  786. return;
  787. /*
  788. * We need to zero out part of an fs block. It is either at the
  789. * beginning or the end of the fs block.
  790. */
  791. if (end)
  792. this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
  793. this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
  794. page = ZERO_PAGE(0);
  795. if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
  796. sdio->next_block_for_io, map_bh))
  797. return;
  798. sdio->next_block_for_io += this_chunk_blocks;
  799. }
  800. /*
  801. * Walk the user pages, and the file, mapping blocks to disk and generating
  802. * a sequence of (page,offset,len,block) mappings. These mappings are injected
  803. * into submit_page_section(), which takes care of the next stage of submission
  804. *
  805. * Direct IO against a blockdev is different from a file. Because we can
  806. * happily perform page-sized but 512-byte aligned IOs. It is important that
  807. * blockdev IO be able to have fine alignment and large sizes.
  808. *
  809. * So what we do is to permit the ->get_block function to populate bh.b_size
  810. * with the size of IO which is permitted at this offset and this i_blkbits.
  811. *
  812. * For best results, the blockdev should be set up with 512-byte i_blkbits and
  813. * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
  814. * fine alignment but still allows this function to work in PAGE_SIZE units.
  815. */
  816. static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
  817. struct buffer_head *map_bh)
  818. {
  819. const unsigned blkbits = sdio->blkbits;
  820. int ret = 0;
  821. while (sdio->block_in_file < sdio->final_block_in_request) {
  822. struct page *page;
  823. size_t from, to;
  824. page = dio_get_page(dio, sdio);
  825. if (IS_ERR(page)) {
  826. ret = PTR_ERR(page);
  827. goto out;
  828. }
  829. from = sdio->head ? 0 : sdio->from;
  830. to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
  831. sdio->head++;
  832. while (from < to) {
  833. unsigned this_chunk_bytes; /* # of bytes mapped */
  834. unsigned this_chunk_blocks; /* # of blocks */
  835. unsigned u;
  836. if (sdio->blocks_available == 0) {
  837. /*
  838. * Need to go and map some more disk
  839. */
  840. unsigned long blkmask;
  841. unsigned long dio_remainder;
  842. ret = get_more_blocks(dio, sdio, map_bh);
  843. if (ret) {
  844. put_page(page);
  845. goto out;
  846. }
  847. if (!buffer_mapped(map_bh))
  848. goto do_holes;
  849. sdio->blocks_available =
  850. map_bh->b_size >> sdio->blkbits;
  851. sdio->next_block_for_io =
  852. map_bh->b_blocknr << sdio->blkfactor;
  853. if (buffer_new(map_bh))
  854. clean_blockdev_aliases(dio, map_bh);
  855. if (!sdio->blkfactor)
  856. goto do_holes;
  857. blkmask = (1 << sdio->blkfactor) - 1;
  858. dio_remainder = (sdio->block_in_file & blkmask);
  859. /*
  860. * If we are at the start of IO and that IO
  861. * starts partway into a fs-block,
  862. * dio_remainder will be non-zero. If the IO
  863. * is a read then we can simply advance the IO
  864. * cursor to the first block which is to be
  865. * read. But if the IO is a write and the
  866. * block was newly allocated we cannot do that;
  867. * the start of the fs block must be zeroed out
  868. * on-disk
  869. */
  870. if (!buffer_new(map_bh))
  871. sdio->next_block_for_io += dio_remainder;
  872. sdio->blocks_available -= dio_remainder;
  873. }
  874. do_holes:
  875. /* Handle holes */
  876. if (!buffer_mapped(map_bh)) {
  877. loff_t i_size_aligned;
  878. /* AKPM: eargh, -ENOTBLK is a hack */
  879. if (dio->rw & WRITE) {
  880. put_page(page);
  881. return -ENOTBLK;
  882. }
  883. /*
  884. * Be sure to account for a partial block as the
  885. * last block in the file
  886. */
  887. i_size_aligned = ALIGN(i_size_read(dio->inode),
  888. 1 << blkbits);
  889. if (sdio->block_in_file >=
  890. i_size_aligned >> blkbits) {
  891. /* We hit eof */
  892. put_page(page);
  893. goto out;
  894. }
  895. zero_user(page, from, 1 << blkbits);
  896. sdio->block_in_file++;
  897. from += 1 << blkbits;
  898. dio->result += 1 << blkbits;
  899. goto next_block;
  900. }
  901. /*
  902. * If we're performing IO which has an alignment which
  903. * is finer than the underlying fs, go check to see if
  904. * we must zero out the start of this block.
  905. */
  906. if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
  907. dio_zero_block(dio, sdio, 0, map_bh);
  908. /*
  909. * Work out, in this_chunk_blocks, how much disk we
  910. * can add to this page
  911. */
  912. this_chunk_blocks = sdio->blocks_available;
  913. u = (to - from) >> blkbits;
  914. if (this_chunk_blocks > u)
  915. this_chunk_blocks = u;
  916. u = sdio->final_block_in_request - sdio->block_in_file;
  917. if (this_chunk_blocks > u)
  918. this_chunk_blocks = u;
  919. this_chunk_bytes = this_chunk_blocks << blkbits;
  920. BUG_ON(this_chunk_bytes == 0);
  921. if (this_chunk_blocks == sdio->blocks_available)
  922. sdio->boundary = buffer_boundary(map_bh);
  923. ret = submit_page_section(dio, sdio, page,
  924. from,
  925. this_chunk_bytes,
  926. sdio->next_block_for_io,
  927. map_bh);
  928. if (ret) {
  929. put_page(page);
  930. goto out;
  931. }
  932. sdio->next_block_for_io += this_chunk_blocks;
  933. sdio->block_in_file += this_chunk_blocks;
  934. from += this_chunk_bytes;
  935. dio->result += this_chunk_bytes;
  936. sdio->blocks_available -= this_chunk_blocks;
  937. next_block:
  938. BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
  939. if (sdio->block_in_file == sdio->final_block_in_request)
  940. break;
  941. }
  942. /* Drop the ref which was taken in get_user_pages() */
  943. put_page(page);
  944. }
  945. out:
  946. return ret;
  947. }
  948. static inline int drop_refcount(struct dio *dio)
  949. {
  950. int ret2;
  951. unsigned long flags;
  952. /*
  953. * Sync will always be dropping the final ref and completing the
  954. * operation. AIO can if it was a broken operation described above or
  955. * in fact if all the bios race to complete before we get here. In
  956. * that case dio_complete() translates the EIOCBQUEUED into the proper
  957. * return code that the caller will hand to ->complete().
  958. *
  959. * This is managed by the bio_lock instead of being an atomic_t so that
  960. * completion paths can drop their ref and use the remaining count to
  961. * decide to wake the submission path atomically.
  962. */
  963. spin_lock_irqsave(&dio->bio_lock, flags);
  964. ret2 = --dio->refcount;
  965. spin_unlock_irqrestore(&dio->bio_lock, flags);
  966. return ret2;
  967. }
  968. /*
  969. * This is a library function for use by filesystem drivers.
  970. *
  971. * The locking rules are governed by the flags parameter:
  972. * - if the flags value contains DIO_LOCKING we use a fancy locking
  973. * scheme for dumb filesystems.
  974. * For writes this function is called under i_mutex and returns with
  975. * i_mutex held, for reads, i_mutex is not held on entry, but it is
  976. * taken and dropped again before returning.
  977. * - if the flags value does NOT contain DIO_LOCKING we don't use any
  978. * internal locking but rather rely on the filesystem to synchronize
  979. * direct I/O reads/writes versus each other and truncate.
  980. *
  981. * To help with locking against truncate we incremented the i_dio_count
  982. * counter before starting direct I/O, and decrement it once we are done.
  983. * Truncate can wait for it to reach zero to provide exclusion. It is
  984. * expected that filesystem provide exclusion between new direct I/O
  985. * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
  986. * but other filesystems need to take care of this on their own.
  987. *
  988. * NOTE: if you pass "sdio" to anything by pointer make sure that function
  989. * is always inlined. Otherwise gcc is unable to split the structure into
  990. * individual fields and will generate much worse code. This is important
  991. * for the whole file.
  992. */
  993. static inline ssize_t
  994. do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
  995. struct block_device *bdev, struct iov_iter *iter,
  996. get_block_t get_block, dio_iodone_t end_io,
  997. dio_submit_t submit_io, int flags)
  998. {
  999. unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
  1000. unsigned blkbits = i_blkbits;
  1001. unsigned blocksize_mask = (1 << blkbits) - 1;
  1002. ssize_t retval = -EINVAL;
  1003. size_t count = iov_iter_count(iter);
  1004. loff_t offset = iocb->ki_pos;
  1005. loff_t end = offset + count;
  1006. struct dio *dio;
  1007. struct dio_submit sdio = { 0, };
  1008. struct buffer_head map_bh = { 0, };
  1009. struct blk_plug plug;
  1010. unsigned long align = offset | iov_iter_alignment(iter);
  1011. /*
  1012. * Avoid references to bdev if not absolutely needed to give
  1013. * the early prefetch in the caller enough time.
  1014. */
  1015. if (align & blocksize_mask) {
  1016. if (bdev)
  1017. blkbits = blksize_bits(bdev_logical_block_size(bdev));
  1018. blocksize_mask = (1 << blkbits) - 1;
  1019. if (align & blocksize_mask)
  1020. goto out;
  1021. }
  1022. /* watch out for a 0 len io from a tricksy fs */
  1023. if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
  1024. return 0;
  1025. dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
  1026. retval = -ENOMEM;
  1027. if (!dio)
  1028. goto out;
  1029. /*
  1030. * Believe it or not, zeroing out the page array caused a .5%
  1031. * performance regression in a database benchmark. So, we take
  1032. * care to only zero out what's needed.
  1033. */
  1034. memset(dio, 0, offsetof(struct dio, pages));
  1035. dio->flags = flags;
  1036. if (dio->flags & DIO_LOCKING) {
  1037. if (iov_iter_rw(iter) == READ) {
  1038. struct address_space *mapping =
  1039. iocb->ki_filp->f_mapping;
  1040. /* will be released by direct_io_worker */
  1041. inode_lock(inode);
  1042. retval = filemap_write_and_wait_range(mapping, offset,
  1043. end - 1);
  1044. if (retval) {
  1045. inode_unlock(inode);
  1046. kmem_cache_free(dio_cache, dio);
  1047. goto out;
  1048. }
  1049. }
  1050. }
  1051. /* Once we sampled i_size check for reads beyond EOF */
  1052. dio->i_size = i_size_read(inode);
  1053. if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
  1054. if (dio->flags & DIO_LOCKING)
  1055. inode_unlock(inode);
  1056. kmem_cache_free(dio_cache, dio);
  1057. retval = 0;
  1058. goto out;
  1059. }
  1060. /*
  1061. * For file extending writes updating i_size before data writeouts
  1062. * complete can expose uninitialized blocks in dumb filesystems.
  1063. * In that case we need to wait for I/O completion even if asked
  1064. * for an asynchronous write.
  1065. */
  1066. if (is_sync_kiocb(iocb))
  1067. dio->is_async = false;
  1068. else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
  1069. iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
  1070. dio->is_async = false;
  1071. else
  1072. dio->is_async = true;
  1073. dio->inode = inode;
  1074. dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
  1075. /*
  1076. * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
  1077. * so that we can call ->fsync.
  1078. */
  1079. if (dio->is_async && iov_iter_rw(iter) == WRITE &&
  1080. ((iocb->ki_filp->f_flags & O_DSYNC) ||
  1081. IS_SYNC(iocb->ki_filp->f_mapping->host))) {
  1082. retval = dio_set_defer_completion(dio);
  1083. if (retval) {
  1084. /*
  1085. * We grab i_mutex only for reads so we don't have
  1086. * to release it here
  1087. */
  1088. kmem_cache_free(dio_cache, dio);
  1089. goto out;
  1090. }
  1091. }
  1092. /*
  1093. * Will be decremented at I/O completion time.
  1094. */
  1095. if (!(dio->flags & DIO_SKIP_DIO_COUNT))
  1096. inode_dio_begin(inode);
  1097. retval = 0;
  1098. sdio.blkbits = blkbits;
  1099. sdio.blkfactor = i_blkbits - blkbits;
  1100. sdio.block_in_file = offset >> blkbits;
  1101. sdio.get_block = get_block;
  1102. dio->end_io = end_io;
  1103. sdio.submit_io = submit_io;
  1104. sdio.final_block_in_bio = -1;
  1105. sdio.next_block_for_io = -1;
  1106. dio->iocb = iocb;
  1107. spin_lock_init(&dio->bio_lock);
  1108. dio->refcount = 1;
  1109. dio->should_dirty = (iter->type == ITER_IOVEC);
  1110. sdio.iter = iter;
  1111. sdio.final_block_in_request =
  1112. (offset + iov_iter_count(iter)) >> blkbits;
  1113. /*
  1114. * In case of non-aligned buffers, we may need 2 more
  1115. * pages since we need to zero out first and last block.
  1116. */
  1117. if (unlikely(sdio.blkfactor))
  1118. sdio.pages_in_io = 2;
  1119. sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
  1120. blk_start_plug(&plug);
  1121. retval = do_direct_IO(dio, &sdio, &map_bh);
  1122. if (retval)
  1123. dio_cleanup(dio, &sdio);
  1124. if (retval == -ENOTBLK) {
  1125. /*
  1126. * The remaining part of the request will be
  1127. * be handled by buffered I/O when we return
  1128. */
  1129. retval = 0;
  1130. }
  1131. /*
  1132. * There may be some unwritten disk at the end of a part-written
  1133. * fs-block-sized block. Go zero that now.
  1134. */
  1135. dio_zero_block(dio, &sdio, 1, &map_bh);
  1136. if (sdio.cur_page) {
  1137. ssize_t ret2;
  1138. ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
  1139. if (retval == 0)
  1140. retval = ret2;
  1141. put_page(sdio.cur_page);
  1142. sdio.cur_page = NULL;
  1143. }
  1144. if (sdio.bio)
  1145. dio_bio_submit(dio, &sdio);
  1146. blk_finish_plug(&plug);
  1147. /*
  1148. * It is possible that, we return short IO due to end of file.
  1149. * In that case, we need to release all the pages we got hold on.
  1150. */
  1151. dio_cleanup(dio, &sdio);
  1152. /*
  1153. * All block lookups have been performed. For READ requests
  1154. * we can let i_mutex go now that its achieved its purpose
  1155. * of protecting us from looking up uninitialized blocks.
  1156. */
  1157. if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
  1158. inode_unlock(dio->inode);
  1159. /*
  1160. * The only time we want to leave bios in flight is when a successful
  1161. * partial aio read or full aio write have been setup. In that case
  1162. * bio completion will call aio_complete. The only time it's safe to
  1163. * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
  1164. * This had *better* be the only place that raises -EIOCBQUEUED.
  1165. */
  1166. BUG_ON(retval == -EIOCBQUEUED);
  1167. if (dio->is_async && retval == 0 && dio->result &&
  1168. (iov_iter_rw(iter) == READ || dio->result == count))
  1169. retval = -EIOCBQUEUED;
  1170. else
  1171. dio_await_completion(dio);
  1172. if (drop_refcount(dio) == 0) {
  1173. retval = dio_complete(dio, retval, false);
  1174. } else
  1175. BUG_ON(retval != -EIOCBQUEUED);
  1176. out:
  1177. return retval;
  1178. }
  1179. ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
  1180. struct block_device *bdev, struct iov_iter *iter,
  1181. get_block_t get_block,
  1182. dio_iodone_t end_io, dio_submit_t submit_io,
  1183. int flags)
  1184. {
  1185. /*
  1186. * The block device state is needed in the end to finally
  1187. * submit everything. Since it's likely to be cache cold
  1188. * prefetch it here as first thing to hide some of the
  1189. * latency.
  1190. *
  1191. * Attempt to prefetch the pieces we likely need later.
  1192. */
  1193. prefetch(&bdev->bd_disk->part_tbl);
  1194. prefetch(bdev->bd_queue);
  1195. prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
  1196. return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
  1197. end_io, submit_io, flags);
  1198. }
  1199. EXPORT_SYMBOL(__blockdev_direct_IO);
  1200. static __init int dio_init(void)
  1201. {
  1202. dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
  1203. return 0;
  1204. }
  1205. module_init(dio_init)