aio.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #define pr_fmt(fmt) "%s: " fmt, __func__
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/errno.h>
  15. #include <linux/time.h>
  16. #include <linux/aio_abi.h>
  17. #include <linux/export.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/uio.h>
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/percpu.h>
  28. #include <linux/slab.h>
  29. #include <linux/timer.h>
  30. #include <linux/aio.h>
  31. #include <linux/highmem.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/security.h>
  34. #include <linux/eventfd.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/compat.h>
  37. #include <linux/migrate.h>
  38. #include <linux/ramfs.h>
  39. #include <linux/percpu-refcount.h>
  40. #include <linux/mount.h>
  41. #include <asm/kmap_types.h>
  42. #include <asm/uaccess.h>
  43. #include "internal.h"
  44. #define AIO_RING_MAGIC 0xa10a10a1
  45. #define AIO_RING_COMPAT_FEATURES 1
  46. #define AIO_RING_INCOMPAT_FEATURES 0
  47. struct aio_ring {
  48. unsigned id; /* kernel internal index number */
  49. unsigned nr; /* number of io_events */
  50. unsigned head; /* Written to by userland or under ring_lock
  51. * mutex by aio_read_events_ring(). */
  52. unsigned tail;
  53. unsigned magic;
  54. unsigned compat_features;
  55. unsigned incompat_features;
  56. unsigned header_length; /* size of aio_ring */
  57. struct io_event io_events[0];
  58. }; /* 128 bytes + ring size */
  59. #define AIO_RING_PAGES 8
  60. struct kioctx_table {
  61. struct rcu_head rcu;
  62. unsigned nr;
  63. struct kioctx *table[];
  64. };
  65. struct kioctx_cpu {
  66. unsigned reqs_available;
  67. };
  68. struct ctx_rq_wait {
  69. struct completion comp;
  70. atomic_t count;
  71. };
  72. struct kioctx {
  73. struct percpu_ref users;
  74. atomic_t dead;
  75. struct percpu_ref reqs;
  76. unsigned long user_id;
  77. struct __percpu kioctx_cpu *cpu;
  78. /*
  79. * For percpu reqs_available, number of slots we move to/from global
  80. * counter at a time:
  81. */
  82. unsigned req_batch;
  83. /*
  84. * This is what userspace passed to io_setup(), it's not used for
  85. * anything but counting against the global max_reqs quota.
  86. *
  87. * The real limit is nr_events - 1, which will be larger (see
  88. * aio_setup_ring())
  89. */
  90. unsigned max_reqs;
  91. /* Size of ringbuffer, in units of struct io_event */
  92. unsigned nr_events;
  93. unsigned long mmap_base;
  94. unsigned long mmap_size;
  95. struct page **ring_pages;
  96. long nr_pages;
  97. struct work_struct free_work;
  98. /*
  99. * signals when all in-flight requests are done
  100. */
  101. struct ctx_rq_wait *rq_wait;
  102. struct {
  103. /*
  104. * This counts the number of available slots in the ringbuffer,
  105. * so we avoid overflowing it: it's decremented (if positive)
  106. * when allocating a kiocb and incremented when the resulting
  107. * io_event is pulled off the ringbuffer.
  108. *
  109. * We batch accesses to it with a percpu version.
  110. */
  111. atomic_t reqs_available;
  112. } ____cacheline_aligned_in_smp;
  113. struct {
  114. spinlock_t ctx_lock;
  115. struct list_head active_reqs; /* used for cancellation */
  116. } ____cacheline_aligned_in_smp;
  117. struct {
  118. struct mutex ring_lock;
  119. wait_queue_head_t wait;
  120. } ____cacheline_aligned_in_smp;
  121. struct {
  122. unsigned tail;
  123. unsigned completed_events;
  124. spinlock_t completion_lock;
  125. } ____cacheline_aligned_in_smp;
  126. struct page *internal_pages[AIO_RING_PAGES];
  127. struct file *aio_ring_file;
  128. unsigned id;
  129. };
  130. /*
  131. * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
  132. * cancelled or completed (this makes a certain amount of sense because
  133. * successful cancellation - io_cancel() - does deliver the completion to
  134. * userspace).
  135. *
  136. * And since most things don't implement kiocb cancellation and we'd really like
  137. * kiocb completion to be lockless when possible, we use ki_cancel to
  138. * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
  139. * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
  140. */
  141. #define KIOCB_CANCELLED ((void *) (~0ULL))
  142. struct aio_kiocb {
  143. struct kiocb common;
  144. struct kioctx *ki_ctx;
  145. kiocb_cancel_fn *ki_cancel;
  146. struct iocb __user *ki_user_iocb; /* user's aiocb */
  147. __u64 ki_user_data; /* user's data for completion */
  148. struct list_head ki_list; /* the aio core uses this
  149. * for cancellation */
  150. /*
  151. * If the aio_resfd field of the userspace iocb is not zero,
  152. * this is the underlying eventfd context to deliver events to.
  153. */
  154. struct eventfd_ctx *ki_eventfd;
  155. };
  156. /*------ sysctl variables----*/
  157. static DEFINE_SPINLOCK(aio_nr_lock);
  158. unsigned long aio_nr; /* current system wide number of aio requests */
  159. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  160. /*----end sysctl variables---*/
  161. static struct kmem_cache *kiocb_cachep;
  162. static struct kmem_cache *kioctx_cachep;
  163. static struct vfsmount *aio_mnt;
  164. static const struct file_operations aio_ring_fops;
  165. static const struct address_space_operations aio_ctx_aops;
  166. static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
  167. {
  168. struct qstr this = QSTR_INIT("[aio]", 5);
  169. struct file *file;
  170. struct path path;
  171. struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
  172. if (IS_ERR(inode))
  173. return ERR_CAST(inode);
  174. inode->i_mapping->a_ops = &aio_ctx_aops;
  175. inode->i_mapping->private_data = ctx;
  176. inode->i_size = PAGE_SIZE * nr_pages;
  177. path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
  178. if (!path.dentry) {
  179. iput(inode);
  180. return ERR_PTR(-ENOMEM);
  181. }
  182. path.mnt = mntget(aio_mnt);
  183. d_instantiate(path.dentry, inode);
  184. file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
  185. if (IS_ERR(file)) {
  186. path_put(&path);
  187. return file;
  188. }
  189. file->f_flags = O_RDWR;
  190. return file;
  191. }
  192. static struct dentry *aio_mount(struct file_system_type *fs_type,
  193. int flags, const char *dev_name, void *data)
  194. {
  195. static const struct dentry_operations ops = {
  196. .d_dname = simple_dname,
  197. };
  198. return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
  199. }
  200. /* aio_setup
  201. * Creates the slab caches used by the aio routines, panic on
  202. * failure as this is done early during the boot sequence.
  203. */
  204. static int __init aio_setup(void)
  205. {
  206. static struct file_system_type aio_fs = {
  207. .name = "aio",
  208. .mount = aio_mount,
  209. .kill_sb = kill_anon_super,
  210. };
  211. aio_mnt = kern_mount(&aio_fs);
  212. if (IS_ERR(aio_mnt))
  213. panic("Failed to create aio fs mount.");
  214. kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  215. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  216. pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
  217. return 0;
  218. }
  219. __initcall(aio_setup);
  220. static void put_aio_ring_file(struct kioctx *ctx)
  221. {
  222. struct file *aio_ring_file = ctx->aio_ring_file;
  223. if (aio_ring_file) {
  224. truncate_setsize(aio_ring_file->f_inode, 0);
  225. /* Prevent further access to the kioctx from migratepages */
  226. spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
  227. aio_ring_file->f_inode->i_mapping->private_data = NULL;
  228. ctx->aio_ring_file = NULL;
  229. spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
  230. fput(aio_ring_file);
  231. }
  232. }
  233. static void aio_free_ring(struct kioctx *ctx)
  234. {
  235. int i;
  236. /* Disconnect the kiotx from the ring file. This prevents future
  237. * accesses to the kioctx from page migration.
  238. */
  239. put_aio_ring_file(ctx);
  240. for (i = 0; i < ctx->nr_pages; i++) {
  241. struct page *page;
  242. pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
  243. page_count(ctx->ring_pages[i]));
  244. page = ctx->ring_pages[i];
  245. if (!page)
  246. continue;
  247. ctx->ring_pages[i] = NULL;
  248. put_page(page);
  249. }
  250. if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
  251. kfree(ctx->ring_pages);
  252. ctx->ring_pages = NULL;
  253. }
  254. }
  255. static int aio_ring_mremap(struct vm_area_struct *vma)
  256. {
  257. struct file *file = vma->vm_file;
  258. struct mm_struct *mm = vma->vm_mm;
  259. struct kioctx_table *table;
  260. int i, res = -EINVAL;
  261. spin_lock(&mm->ioctx_lock);
  262. rcu_read_lock();
  263. table = rcu_dereference(mm->ioctx_table);
  264. for (i = 0; i < table->nr; i++) {
  265. struct kioctx *ctx;
  266. ctx = table->table[i];
  267. if (ctx && ctx->aio_ring_file == file) {
  268. if (!atomic_read(&ctx->dead)) {
  269. ctx->user_id = ctx->mmap_base = vma->vm_start;
  270. res = 0;
  271. }
  272. break;
  273. }
  274. }
  275. rcu_read_unlock();
  276. spin_unlock(&mm->ioctx_lock);
  277. return res;
  278. }
  279. static const struct vm_operations_struct aio_ring_vm_ops = {
  280. .mremap = aio_ring_mremap,
  281. #if IS_ENABLED(CONFIG_MMU)
  282. .fault = filemap_fault,
  283. .map_pages = filemap_map_pages,
  284. .page_mkwrite = filemap_page_mkwrite,
  285. #endif
  286. };
  287. static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
  288. {
  289. vma->vm_flags |= VM_DONTEXPAND;
  290. vma->vm_ops = &aio_ring_vm_ops;
  291. return 0;
  292. }
  293. static const struct file_operations aio_ring_fops = {
  294. .mmap = aio_ring_mmap,
  295. };
  296. #if IS_ENABLED(CONFIG_MIGRATION)
  297. static int aio_migratepage(struct address_space *mapping, struct page *new,
  298. struct page *old, enum migrate_mode mode)
  299. {
  300. struct kioctx *ctx;
  301. unsigned long flags;
  302. pgoff_t idx;
  303. int rc;
  304. rc = 0;
  305. /* mapping->private_lock here protects against the kioctx teardown. */
  306. spin_lock(&mapping->private_lock);
  307. ctx = mapping->private_data;
  308. if (!ctx) {
  309. rc = -EINVAL;
  310. goto out;
  311. }
  312. /* The ring_lock mutex. The prevents aio_read_events() from writing
  313. * to the ring's head, and prevents page migration from mucking in
  314. * a partially initialized kiotx.
  315. */
  316. if (!mutex_trylock(&ctx->ring_lock)) {
  317. rc = -EAGAIN;
  318. goto out;
  319. }
  320. idx = old->index;
  321. if (idx < (pgoff_t)ctx->nr_pages) {
  322. /* Make sure the old page hasn't already been changed */
  323. if (ctx->ring_pages[idx] != old)
  324. rc = -EAGAIN;
  325. } else
  326. rc = -EINVAL;
  327. if (rc != 0)
  328. goto out_unlock;
  329. /* Writeback must be complete */
  330. BUG_ON(PageWriteback(old));
  331. get_page(new);
  332. rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
  333. if (rc != MIGRATEPAGE_SUCCESS) {
  334. put_page(new);
  335. goto out_unlock;
  336. }
  337. /* Take completion_lock to prevent other writes to the ring buffer
  338. * while the old page is copied to the new. This prevents new
  339. * events from being lost.
  340. */
  341. spin_lock_irqsave(&ctx->completion_lock, flags);
  342. migrate_page_copy(new, old);
  343. BUG_ON(ctx->ring_pages[idx] != old);
  344. ctx->ring_pages[idx] = new;
  345. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  346. /* The old page is no longer accessible. */
  347. put_page(old);
  348. out_unlock:
  349. mutex_unlock(&ctx->ring_lock);
  350. out:
  351. spin_unlock(&mapping->private_lock);
  352. return rc;
  353. }
  354. #endif
  355. static const struct address_space_operations aio_ctx_aops = {
  356. .set_page_dirty = __set_page_dirty_no_writeback,
  357. #if IS_ENABLED(CONFIG_MIGRATION)
  358. .migratepage = aio_migratepage,
  359. #endif
  360. };
  361. static int aio_setup_ring(struct kioctx *ctx)
  362. {
  363. struct aio_ring *ring;
  364. unsigned nr_events = ctx->max_reqs;
  365. struct mm_struct *mm = current->mm;
  366. unsigned long size, unused;
  367. int nr_pages;
  368. int i;
  369. struct file *file;
  370. /* Compensate for the ring buffer's head/tail overlap entry */
  371. nr_events += 2; /* 1 is required, 2 for good luck */
  372. size = sizeof(struct aio_ring);
  373. size += sizeof(struct io_event) * nr_events;
  374. nr_pages = PFN_UP(size);
  375. if (nr_pages < 0)
  376. return -EINVAL;
  377. file = aio_private_file(ctx, nr_pages);
  378. if (IS_ERR(file)) {
  379. ctx->aio_ring_file = NULL;
  380. return -ENOMEM;
  381. }
  382. ctx->aio_ring_file = file;
  383. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
  384. / sizeof(struct io_event);
  385. ctx->ring_pages = ctx->internal_pages;
  386. if (nr_pages > AIO_RING_PAGES) {
  387. ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
  388. GFP_KERNEL);
  389. if (!ctx->ring_pages) {
  390. put_aio_ring_file(ctx);
  391. return -ENOMEM;
  392. }
  393. }
  394. for (i = 0; i < nr_pages; i++) {
  395. struct page *page;
  396. page = find_or_create_page(file->f_inode->i_mapping,
  397. i, GFP_HIGHUSER | __GFP_ZERO);
  398. if (!page)
  399. break;
  400. pr_debug("pid(%d) page[%d]->count=%d\n",
  401. current->pid, i, page_count(page));
  402. SetPageUptodate(page);
  403. unlock_page(page);
  404. ctx->ring_pages[i] = page;
  405. }
  406. ctx->nr_pages = i;
  407. if (unlikely(i != nr_pages)) {
  408. aio_free_ring(ctx);
  409. return -ENOMEM;
  410. }
  411. ctx->mmap_size = nr_pages * PAGE_SIZE;
  412. pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
  413. if (down_write_killable(&mm->mmap_sem)) {
  414. ctx->mmap_size = 0;
  415. aio_free_ring(ctx);
  416. return -EINTR;
  417. }
  418. ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
  419. PROT_READ | PROT_WRITE,
  420. MAP_SHARED, 0, &unused);
  421. up_write(&mm->mmap_sem);
  422. if (IS_ERR((void *)ctx->mmap_base)) {
  423. ctx->mmap_size = 0;
  424. aio_free_ring(ctx);
  425. return -ENOMEM;
  426. }
  427. pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
  428. ctx->user_id = ctx->mmap_base;
  429. ctx->nr_events = nr_events; /* trusted copy */
  430. ring = kmap_atomic(ctx->ring_pages[0]);
  431. ring->nr = nr_events; /* user copy */
  432. ring->id = ~0U;
  433. ring->head = ring->tail = 0;
  434. ring->magic = AIO_RING_MAGIC;
  435. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  436. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  437. ring->header_length = sizeof(struct aio_ring);
  438. kunmap_atomic(ring);
  439. flush_dcache_page(ctx->ring_pages[0]);
  440. return 0;
  441. }
  442. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  443. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  444. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  445. void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
  446. {
  447. struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
  448. struct kioctx *ctx = req->ki_ctx;
  449. unsigned long flags;
  450. spin_lock_irqsave(&ctx->ctx_lock, flags);
  451. if (!req->ki_list.next)
  452. list_add(&req->ki_list, &ctx->active_reqs);
  453. req->ki_cancel = cancel;
  454. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  455. }
  456. EXPORT_SYMBOL(kiocb_set_cancel_fn);
  457. static int kiocb_cancel(struct aio_kiocb *kiocb)
  458. {
  459. kiocb_cancel_fn *old, *cancel;
  460. /*
  461. * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
  462. * actually has a cancel function, hence the cmpxchg()
  463. */
  464. cancel = ACCESS_ONCE(kiocb->ki_cancel);
  465. do {
  466. if (!cancel || cancel == KIOCB_CANCELLED)
  467. return -EINVAL;
  468. old = cancel;
  469. cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
  470. } while (cancel != old);
  471. return cancel(&kiocb->common);
  472. }
  473. static void free_ioctx(struct work_struct *work)
  474. {
  475. struct kioctx *ctx = container_of(work, struct kioctx, free_work);
  476. pr_debug("freeing %p\n", ctx);
  477. aio_free_ring(ctx);
  478. free_percpu(ctx->cpu);
  479. percpu_ref_exit(&ctx->reqs);
  480. percpu_ref_exit(&ctx->users);
  481. kmem_cache_free(kioctx_cachep, ctx);
  482. }
  483. static void free_ioctx_reqs(struct percpu_ref *ref)
  484. {
  485. struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
  486. /* At this point we know that there are no any in-flight requests */
  487. if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
  488. complete(&ctx->rq_wait->comp);
  489. INIT_WORK(&ctx->free_work, free_ioctx);
  490. schedule_work(&ctx->free_work);
  491. }
  492. /*
  493. * When this function runs, the kioctx has been removed from the "hash table"
  494. * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
  495. * now it's safe to cancel any that need to be.
  496. */
  497. static void free_ioctx_users(struct percpu_ref *ref)
  498. {
  499. struct kioctx *ctx = container_of(ref, struct kioctx, users);
  500. struct aio_kiocb *req;
  501. spin_lock_irq(&ctx->ctx_lock);
  502. while (!list_empty(&ctx->active_reqs)) {
  503. req = list_first_entry(&ctx->active_reqs,
  504. struct aio_kiocb, ki_list);
  505. list_del_init(&req->ki_list);
  506. kiocb_cancel(req);
  507. }
  508. spin_unlock_irq(&ctx->ctx_lock);
  509. percpu_ref_kill(&ctx->reqs);
  510. percpu_ref_put(&ctx->reqs);
  511. }
  512. static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
  513. {
  514. unsigned i, new_nr;
  515. struct kioctx_table *table, *old;
  516. struct aio_ring *ring;
  517. spin_lock(&mm->ioctx_lock);
  518. table = rcu_dereference_raw(mm->ioctx_table);
  519. while (1) {
  520. if (table)
  521. for (i = 0; i < table->nr; i++)
  522. if (!table->table[i]) {
  523. ctx->id = i;
  524. table->table[i] = ctx;
  525. spin_unlock(&mm->ioctx_lock);
  526. /* While kioctx setup is in progress,
  527. * we are protected from page migration
  528. * changes ring_pages by ->ring_lock.
  529. */
  530. ring = kmap_atomic(ctx->ring_pages[0]);
  531. ring->id = ctx->id;
  532. kunmap_atomic(ring);
  533. return 0;
  534. }
  535. new_nr = (table ? table->nr : 1) * 4;
  536. spin_unlock(&mm->ioctx_lock);
  537. table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
  538. new_nr, GFP_KERNEL);
  539. if (!table)
  540. return -ENOMEM;
  541. table->nr = new_nr;
  542. spin_lock(&mm->ioctx_lock);
  543. old = rcu_dereference_raw(mm->ioctx_table);
  544. if (!old) {
  545. rcu_assign_pointer(mm->ioctx_table, table);
  546. } else if (table->nr > old->nr) {
  547. memcpy(table->table, old->table,
  548. old->nr * sizeof(struct kioctx *));
  549. rcu_assign_pointer(mm->ioctx_table, table);
  550. kfree_rcu(old, rcu);
  551. } else {
  552. kfree(table);
  553. table = old;
  554. }
  555. }
  556. }
  557. static void aio_nr_sub(unsigned nr)
  558. {
  559. spin_lock(&aio_nr_lock);
  560. if (WARN_ON(aio_nr - nr > aio_nr))
  561. aio_nr = 0;
  562. else
  563. aio_nr -= nr;
  564. spin_unlock(&aio_nr_lock);
  565. }
  566. /* ioctx_alloc
  567. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  568. */
  569. static struct kioctx *ioctx_alloc(unsigned nr_events)
  570. {
  571. struct mm_struct *mm = current->mm;
  572. struct kioctx *ctx;
  573. int err = -ENOMEM;
  574. /*
  575. * We keep track of the number of available ringbuffer slots, to prevent
  576. * overflow (reqs_available), and we also use percpu counters for this.
  577. *
  578. * So since up to half the slots might be on other cpu's percpu counters
  579. * and unavailable, double nr_events so userspace sees what they
  580. * expected: additionally, we move req_batch slots to/from percpu
  581. * counters at a time, so make sure that isn't 0:
  582. */
  583. nr_events = max(nr_events, num_possible_cpus() * 4);
  584. nr_events *= 2;
  585. /* Prevent overflows */
  586. if (nr_events > (0x10000000U / sizeof(struct io_event))) {
  587. pr_debug("ENOMEM: nr_events too high\n");
  588. return ERR_PTR(-EINVAL);
  589. }
  590. if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
  591. return ERR_PTR(-EAGAIN);
  592. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  593. if (!ctx)
  594. return ERR_PTR(-ENOMEM);
  595. ctx->max_reqs = nr_events;
  596. spin_lock_init(&ctx->ctx_lock);
  597. spin_lock_init(&ctx->completion_lock);
  598. mutex_init(&ctx->ring_lock);
  599. /* Protect against page migration throughout kiotx setup by keeping
  600. * the ring_lock mutex held until setup is complete. */
  601. mutex_lock(&ctx->ring_lock);
  602. init_waitqueue_head(&ctx->wait);
  603. INIT_LIST_HEAD(&ctx->active_reqs);
  604. if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
  605. goto err;
  606. if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
  607. goto err;
  608. ctx->cpu = alloc_percpu(struct kioctx_cpu);
  609. if (!ctx->cpu)
  610. goto err;
  611. err = aio_setup_ring(ctx);
  612. if (err < 0)
  613. goto err;
  614. atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
  615. ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
  616. if (ctx->req_batch < 1)
  617. ctx->req_batch = 1;
  618. /* limit the number of system wide aios */
  619. spin_lock(&aio_nr_lock);
  620. if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
  621. aio_nr + nr_events < aio_nr) {
  622. spin_unlock(&aio_nr_lock);
  623. err = -EAGAIN;
  624. goto err_ctx;
  625. }
  626. aio_nr += ctx->max_reqs;
  627. spin_unlock(&aio_nr_lock);
  628. percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
  629. percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
  630. err = ioctx_add_table(ctx, mm);
  631. if (err)
  632. goto err_cleanup;
  633. /* Release the ring_lock mutex now that all setup is complete. */
  634. mutex_unlock(&ctx->ring_lock);
  635. pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  636. ctx, ctx->user_id, mm, ctx->nr_events);
  637. return ctx;
  638. err_cleanup:
  639. aio_nr_sub(ctx->max_reqs);
  640. err_ctx:
  641. atomic_set(&ctx->dead, 1);
  642. if (ctx->mmap_size)
  643. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  644. aio_free_ring(ctx);
  645. err:
  646. mutex_unlock(&ctx->ring_lock);
  647. free_percpu(ctx->cpu);
  648. percpu_ref_exit(&ctx->reqs);
  649. percpu_ref_exit(&ctx->users);
  650. kmem_cache_free(kioctx_cachep, ctx);
  651. pr_debug("error allocating ioctx %d\n", err);
  652. return ERR_PTR(err);
  653. }
  654. /* kill_ioctx
  655. * Cancels all outstanding aio requests on an aio context. Used
  656. * when the processes owning a context have all exited to encourage
  657. * the rapid destruction of the kioctx.
  658. */
  659. static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
  660. struct ctx_rq_wait *wait)
  661. {
  662. struct kioctx_table *table;
  663. spin_lock(&mm->ioctx_lock);
  664. if (atomic_xchg(&ctx->dead, 1)) {
  665. spin_unlock(&mm->ioctx_lock);
  666. return -EINVAL;
  667. }
  668. table = rcu_dereference_raw(mm->ioctx_table);
  669. WARN_ON(ctx != table->table[ctx->id]);
  670. table->table[ctx->id] = NULL;
  671. spin_unlock(&mm->ioctx_lock);
  672. /* percpu_ref_kill() will do the necessary call_rcu() */
  673. wake_up_all(&ctx->wait);
  674. /*
  675. * It'd be more correct to do this in free_ioctx(), after all
  676. * the outstanding kiocbs have finished - but by then io_destroy
  677. * has already returned, so io_setup() could potentially return
  678. * -EAGAIN with no ioctxs actually in use (as far as userspace
  679. * could tell).
  680. */
  681. aio_nr_sub(ctx->max_reqs);
  682. if (ctx->mmap_size)
  683. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  684. ctx->rq_wait = wait;
  685. percpu_ref_kill(&ctx->users);
  686. return 0;
  687. }
  688. /*
  689. * exit_aio: called when the last user of mm goes away. At this point, there is
  690. * no way for any new requests to be submited or any of the io_* syscalls to be
  691. * called on the context.
  692. *
  693. * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
  694. * them.
  695. */
  696. void exit_aio(struct mm_struct *mm)
  697. {
  698. struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
  699. struct ctx_rq_wait wait;
  700. int i, skipped;
  701. if (!table)
  702. return;
  703. atomic_set(&wait.count, table->nr);
  704. init_completion(&wait.comp);
  705. skipped = 0;
  706. for (i = 0; i < table->nr; ++i) {
  707. struct kioctx *ctx = table->table[i];
  708. if (!ctx) {
  709. skipped++;
  710. continue;
  711. }
  712. /*
  713. * We don't need to bother with munmap() here - exit_mmap(mm)
  714. * is coming and it'll unmap everything. And we simply can't,
  715. * this is not necessarily our ->mm.
  716. * Since kill_ioctx() uses non-zero ->mmap_size as indicator
  717. * that it needs to unmap the area, just set it to 0.
  718. */
  719. ctx->mmap_size = 0;
  720. kill_ioctx(mm, ctx, &wait);
  721. }
  722. if (!atomic_sub_and_test(skipped, &wait.count)) {
  723. /* Wait until all IO for the context are done. */
  724. wait_for_completion(&wait.comp);
  725. }
  726. RCU_INIT_POINTER(mm->ioctx_table, NULL);
  727. kfree(table);
  728. }
  729. static void put_reqs_available(struct kioctx *ctx, unsigned nr)
  730. {
  731. struct kioctx_cpu *kcpu;
  732. unsigned long flags;
  733. local_irq_save(flags);
  734. kcpu = this_cpu_ptr(ctx->cpu);
  735. kcpu->reqs_available += nr;
  736. while (kcpu->reqs_available >= ctx->req_batch * 2) {
  737. kcpu->reqs_available -= ctx->req_batch;
  738. atomic_add(ctx->req_batch, &ctx->reqs_available);
  739. }
  740. local_irq_restore(flags);
  741. }
  742. static bool get_reqs_available(struct kioctx *ctx)
  743. {
  744. struct kioctx_cpu *kcpu;
  745. bool ret = false;
  746. unsigned long flags;
  747. local_irq_save(flags);
  748. kcpu = this_cpu_ptr(ctx->cpu);
  749. if (!kcpu->reqs_available) {
  750. int old, avail = atomic_read(&ctx->reqs_available);
  751. do {
  752. if (avail < ctx->req_batch)
  753. goto out;
  754. old = avail;
  755. avail = atomic_cmpxchg(&ctx->reqs_available,
  756. avail, avail - ctx->req_batch);
  757. } while (avail != old);
  758. kcpu->reqs_available += ctx->req_batch;
  759. }
  760. ret = true;
  761. kcpu->reqs_available--;
  762. out:
  763. local_irq_restore(flags);
  764. return ret;
  765. }
  766. /* refill_reqs_available
  767. * Updates the reqs_available reference counts used for tracking the
  768. * number of free slots in the completion ring. This can be called
  769. * from aio_complete() (to optimistically update reqs_available) or
  770. * from aio_get_req() (the we're out of events case). It must be
  771. * called holding ctx->completion_lock.
  772. */
  773. static void refill_reqs_available(struct kioctx *ctx, unsigned head,
  774. unsigned tail)
  775. {
  776. unsigned events_in_ring, completed;
  777. /* Clamp head since userland can write to it. */
  778. head %= ctx->nr_events;
  779. if (head <= tail)
  780. events_in_ring = tail - head;
  781. else
  782. events_in_ring = ctx->nr_events - (head - tail);
  783. completed = ctx->completed_events;
  784. if (events_in_ring < completed)
  785. completed -= events_in_ring;
  786. else
  787. completed = 0;
  788. if (!completed)
  789. return;
  790. ctx->completed_events -= completed;
  791. put_reqs_available(ctx, completed);
  792. }
  793. /* user_refill_reqs_available
  794. * Called to refill reqs_available when aio_get_req() encounters an
  795. * out of space in the completion ring.
  796. */
  797. static void user_refill_reqs_available(struct kioctx *ctx)
  798. {
  799. spin_lock_irq(&ctx->completion_lock);
  800. if (ctx->completed_events) {
  801. struct aio_ring *ring;
  802. unsigned head;
  803. /* Access of ring->head may race with aio_read_events_ring()
  804. * here, but that's okay since whether we read the old version
  805. * or the new version, and either will be valid. The important
  806. * part is that head cannot pass tail since we prevent
  807. * aio_complete() from updating tail by holding
  808. * ctx->completion_lock. Even if head is invalid, the check
  809. * against ctx->completed_events below will make sure we do the
  810. * safe/right thing.
  811. */
  812. ring = kmap_atomic(ctx->ring_pages[0]);
  813. head = ring->head;
  814. kunmap_atomic(ring);
  815. refill_reqs_available(ctx, head, ctx->tail);
  816. }
  817. spin_unlock_irq(&ctx->completion_lock);
  818. }
  819. /* aio_get_req
  820. * Allocate a slot for an aio request.
  821. * Returns NULL if no requests are free.
  822. */
  823. static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
  824. {
  825. struct aio_kiocb *req;
  826. if (!get_reqs_available(ctx)) {
  827. user_refill_reqs_available(ctx);
  828. if (!get_reqs_available(ctx))
  829. return NULL;
  830. }
  831. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
  832. if (unlikely(!req))
  833. goto out_put;
  834. percpu_ref_get(&ctx->reqs);
  835. req->ki_ctx = ctx;
  836. return req;
  837. out_put:
  838. put_reqs_available(ctx, 1);
  839. return NULL;
  840. }
  841. static void kiocb_free(struct aio_kiocb *req)
  842. {
  843. if (req->common.ki_filp)
  844. fput(req->common.ki_filp);
  845. if (req->ki_eventfd != NULL)
  846. eventfd_ctx_put(req->ki_eventfd);
  847. kmem_cache_free(kiocb_cachep, req);
  848. }
  849. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  850. {
  851. struct aio_ring __user *ring = (void __user *)ctx_id;
  852. struct mm_struct *mm = current->mm;
  853. struct kioctx *ctx, *ret = NULL;
  854. struct kioctx_table *table;
  855. unsigned id;
  856. if (get_user(id, &ring->id))
  857. return NULL;
  858. rcu_read_lock();
  859. table = rcu_dereference(mm->ioctx_table);
  860. if (!table || id >= table->nr)
  861. goto out;
  862. ctx = table->table[id];
  863. if (ctx && ctx->user_id == ctx_id) {
  864. percpu_ref_get(&ctx->users);
  865. ret = ctx;
  866. }
  867. out:
  868. rcu_read_unlock();
  869. return ret;
  870. }
  871. /* aio_complete
  872. * Called when the io request on the given iocb is complete.
  873. */
  874. static void aio_complete(struct kiocb *kiocb, long res, long res2)
  875. {
  876. struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
  877. struct kioctx *ctx = iocb->ki_ctx;
  878. struct aio_ring *ring;
  879. struct io_event *ev_page, *event;
  880. unsigned tail, pos, head;
  881. unsigned long flags;
  882. /*
  883. * Special case handling for sync iocbs:
  884. * - events go directly into the iocb for fast handling
  885. * - the sync task with the iocb in its stack holds the single iocb
  886. * ref, no other paths have a way to get another ref
  887. * - the sync task helpfully left a reference to itself in the iocb
  888. */
  889. BUG_ON(is_sync_kiocb(kiocb));
  890. if (iocb->ki_list.next) {
  891. unsigned long flags;
  892. spin_lock_irqsave(&ctx->ctx_lock, flags);
  893. list_del(&iocb->ki_list);
  894. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  895. }
  896. /*
  897. * Add a completion event to the ring buffer. Must be done holding
  898. * ctx->completion_lock to prevent other code from messing with the tail
  899. * pointer since we might be called from irq context.
  900. */
  901. spin_lock_irqsave(&ctx->completion_lock, flags);
  902. tail = ctx->tail;
  903. pos = tail + AIO_EVENTS_OFFSET;
  904. if (++tail >= ctx->nr_events)
  905. tail = 0;
  906. ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  907. event = ev_page + pos % AIO_EVENTS_PER_PAGE;
  908. event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
  909. event->data = iocb->ki_user_data;
  910. event->res = res;
  911. event->res2 = res2;
  912. kunmap_atomic(ev_page);
  913. flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  914. pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
  915. ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
  916. res, res2);
  917. /* after flagging the request as done, we
  918. * must never even look at it again
  919. */
  920. smp_wmb(); /* make event visible before updating tail */
  921. ctx->tail = tail;
  922. ring = kmap_atomic(ctx->ring_pages[0]);
  923. head = ring->head;
  924. ring->tail = tail;
  925. kunmap_atomic(ring);
  926. flush_dcache_page(ctx->ring_pages[0]);
  927. ctx->completed_events++;
  928. if (ctx->completed_events > 1)
  929. refill_reqs_available(ctx, head, tail);
  930. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  931. pr_debug("added to ring %p at [%u]\n", iocb, tail);
  932. /*
  933. * Check if the user asked us to deliver the result through an
  934. * eventfd. The eventfd_signal() function is safe to be called
  935. * from IRQ context.
  936. */
  937. if (iocb->ki_eventfd != NULL)
  938. eventfd_signal(iocb->ki_eventfd, 1);
  939. /* everything turned out well, dispose of the aiocb. */
  940. kiocb_free(iocb);
  941. /*
  942. * We have to order our ring_info tail store above and test
  943. * of the wait list below outside the wait lock. This is
  944. * like in wake_up_bit() where clearing a bit has to be
  945. * ordered with the unlocked test.
  946. */
  947. smp_mb();
  948. if (waitqueue_active(&ctx->wait))
  949. wake_up(&ctx->wait);
  950. percpu_ref_put(&ctx->reqs);
  951. }
  952. /* aio_read_events_ring
  953. * Pull an event off of the ioctx's event ring. Returns the number of
  954. * events fetched
  955. */
  956. static long aio_read_events_ring(struct kioctx *ctx,
  957. struct io_event __user *event, long nr)
  958. {
  959. struct aio_ring *ring;
  960. unsigned head, tail, pos;
  961. long ret = 0;
  962. int copy_ret;
  963. /*
  964. * The mutex can block and wake us up and that will cause
  965. * wait_event_interruptible_hrtimeout() to schedule without sleeping
  966. * and repeat. This should be rare enough that it doesn't cause
  967. * peformance issues. See the comment in read_events() for more detail.
  968. */
  969. sched_annotate_sleep();
  970. mutex_lock(&ctx->ring_lock);
  971. /* Access to ->ring_pages here is protected by ctx->ring_lock. */
  972. ring = kmap_atomic(ctx->ring_pages[0]);
  973. head = ring->head;
  974. tail = ring->tail;
  975. kunmap_atomic(ring);
  976. /*
  977. * Ensure that once we've read the current tail pointer, that
  978. * we also see the events that were stored up to the tail.
  979. */
  980. smp_rmb();
  981. pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
  982. if (head == tail)
  983. goto out;
  984. head %= ctx->nr_events;
  985. tail %= ctx->nr_events;
  986. while (ret < nr) {
  987. long avail;
  988. struct io_event *ev;
  989. struct page *page;
  990. avail = (head <= tail ? tail : ctx->nr_events) - head;
  991. if (head == tail)
  992. break;
  993. avail = min(avail, nr - ret);
  994. avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
  995. ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
  996. pos = head + AIO_EVENTS_OFFSET;
  997. page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
  998. pos %= AIO_EVENTS_PER_PAGE;
  999. ev = kmap(page);
  1000. copy_ret = copy_to_user(event + ret, ev + pos,
  1001. sizeof(*ev) * avail);
  1002. kunmap(page);
  1003. if (unlikely(copy_ret)) {
  1004. ret = -EFAULT;
  1005. goto out;
  1006. }
  1007. ret += avail;
  1008. head += avail;
  1009. head %= ctx->nr_events;
  1010. }
  1011. ring = kmap_atomic(ctx->ring_pages[0]);
  1012. ring->head = head;
  1013. kunmap_atomic(ring);
  1014. flush_dcache_page(ctx->ring_pages[0]);
  1015. pr_debug("%li h%u t%u\n", ret, head, tail);
  1016. out:
  1017. mutex_unlock(&ctx->ring_lock);
  1018. return ret;
  1019. }
  1020. static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
  1021. struct io_event __user *event, long *i)
  1022. {
  1023. long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
  1024. if (ret > 0)
  1025. *i += ret;
  1026. if (unlikely(atomic_read(&ctx->dead)))
  1027. ret = -EINVAL;
  1028. if (!*i)
  1029. *i = ret;
  1030. return ret < 0 || *i >= min_nr;
  1031. }
  1032. static long read_events(struct kioctx *ctx, long min_nr, long nr,
  1033. struct io_event __user *event,
  1034. struct timespec __user *timeout)
  1035. {
  1036. ktime_t until = { .tv64 = KTIME_MAX };
  1037. long ret = 0;
  1038. if (timeout) {
  1039. struct timespec ts;
  1040. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  1041. return -EFAULT;
  1042. until = timespec_to_ktime(ts);
  1043. }
  1044. /*
  1045. * Note that aio_read_events() is being called as the conditional - i.e.
  1046. * we're calling it after prepare_to_wait() has set task state to
  1047. * TASK_INTERRUPTIBLE.
  1048. *
  1049. * But aio_read_events() can block, and if it blocks it's going to flip
  1050. * the task state back to TASK_RUNNING.
  1051. *
  1052. * This should be ok, provided it doesn't flip the state back to
  1053. * TASK_RUNNING and return 0 too much - that causes us to spin. That
  1054. * will only happen if the mutex_lock() call blocks, and we then find
  1055. * the ringbuffer empty. So in practice we should be ok, but it's
  1056. * something to be aware of when touching this code.
  1057. */
  1058. if (until.tv64 == 0)
  1059. aio_read_events(ctx, min_nr, nr, event, &ret);
  1060. else
  1061. wait_event_interruptible_hrtimeout(ctx->wait,
  1062. aio_read_events(ctx, min_nr, nr, event, &ret),
  1063. until);
  1064. if (!ret && signal_pending(current))
  1065. ret = -EINTR;
  1066. return ret;
  1067. }
  1068. /* sys_io_setup:
  1069. * Create an aio_context capable of receiving at least nr_events.
  1070. * ctxp must not point to an aio_context that already exists, and
  1071. * must be initialized to 0 prior to the call. On successful
  1072. * creation of the aio_context, *ctxp is filled in with the resulting
  1073. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1074. * if the specified nr_events exceeds internal limits. May fail
  1075. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1076. * of available events. May fail with -ENOMEM if insufficient kernel
  1077. * resources are available. May fail with -EFAULT if an invalid
  1078. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1079. * implemented.
  1080. */
  1081. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  1082. {
  1083. struct kioctx *ioctx = NULL;
  1084. unsigned long ctx;
  1085. long ret;
  1086. ret = get_user(ctx, ctxp);
  1087. if (unlikely(ret))
  1088. goto out;
  1089. ret = -EINVAL;
  1090. if (unlikely(ctx || nr_events == 0)) {
  1091. pr_debug("EINVAL: ctx %lu nr_events %u\n",
  1092. ctx, nr_events);
  1093. goto out;
  1094. }
  1095. ioctx = ioctx_alloc(nr_events);
  1096. ret = PTR_ERR(ioctx);
  1097. if (!IS_ERR(ioctx)) {
  1098. ret = put_user(ioctx->user_id, ctxp);
  1099. if (ret)
  1100. kill_ioctx(current->mm, ioctx, NULL);
  1101. percpu_ref_put(&ioctx->users);
  1102. }
  1103. out:
  1104. return ret;
  1105. }
  1106. /* sys_io_destroy:
  1107. * Destroy the aio_context specified. May cancel any outstanding
  1108. * AIOs and block on completion. Will fail with -ENOSYS if not
  1109. * implemented. May fail with -EINVAL if the context pointed to
  1110. * is invalid.
  1111. */
  1112. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  1113. {
  1114. struct kioctx *ioctx = lookup_ioctx(ctx);
  1115. if (likely(NULL != ioctx)) {
  1116. struct ctx_rq_wait wait;
  1117. int ret;
  1118. init_completion(&wait.comp);
  1119. atomic_set(&wait.count, 1);
  1120. /* Pass requests_done to kill_ioctx() where it can be set
  1121. * in a thread-safe way. If we try to set it here then we have
  1122. * a race condition if two io_destroy() called simultaneously.
  1123. */
  1124. ret = kill_ioctx(current->mm, ioctx, &wait);
  1125. percpu_ref_put(&ioctx->users);
  1126. /* Wait until all IO for the context are done. Otherwise kernel
  1127. * keep using user-space buffers even if user thinks the context
  1128. * is destroyed.
  1129. */
  1130. if (!ret)
  1131. wait_for_completion(&wait.comp);
  1132. return ret;
  1133. }
  1134. pr_debug("EINVAL: invalid context id\n");
  1135. return -EINVAL;
  1136. }
  1137. typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
  1138. static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
  1139. struct iovec **iovec,
  1140. bool compat,
  1141. struct iov_iter *iter)
  1142. {
  1143. #ifdef CONFIG_COMPAT
  1144. if (compat)
  1145. return compat_import_iovec(rw,
  1146. (struct compat_iovec __user *)buf,
  1147. len, UIO_FASTIOV, iovec, iter);
  1148. #endif
  1149. return import_iovec(rw, (struct iovec __user *)buf,
  1150. len, UIO_FASTIOV, iovec, iter);
  1151. }
  1152. /*
  1153. * aio_run_iocb:
  1154. * Performs the initial checks and io submission.
  1155. */
  1156. static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
  1157. char __user *buf, size_t len, bool compat)
  1158. {
  1159. struct file *file = req->ki_filp;
  1160. ssize_t ret;
  1161. int rw;
  1162. fmode_t mode;
  1163. rw_iter_op *iter_op;
  1164. struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
  1165. struct iov_iter iter;
  1166. switch (opcode) {
  1167. case IOCB_CMD_PREAD:
  1168. case IOCB_CMD_PREADV:
  1169. mode = FMODE_READ;
  1170. rw = READ;
  1171. iter_op = file->f_op->read_iter;
  1172. goto rw_common;
  1173. case IOCB_CMD_PWRITE:
  1174. case IOCB_CMD_PWRITEV:
  1175. mode = FMODE_WRITE;
  1176. rw = WRITE;
  1177. iter_op = file->f_op->write_iter;
  1178. goto rw_common;
  1179. rw_common:
  1180. if (unlikely(!(file->f_mode & mode)))
  1181. return -EBADF;
  1182. if (!iter_op)
  1183. return -EINVAL;
  1184. if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
  1185. ret = aio_setup_vectored_rw(rw, buf, len,
  1186. &iovec, compat, &iter);
  1187. else {
  1188. ret = import_single_range(rw, buf, len, iovec, &iter);
  1189. iovec = NULL;
  1190. }
  1191. if (!ret)
  1192. ret = rw_verify_area(rw, file, &req->ki_pos,
  1193. iov_iter_count(&iter));
  1194. if (ret < 0) {
  1195. kfree(iovec);
  1196. return ret;
  1197. }
  1198. if (rw == WRITE)
  1199. file_start_write(file);
  1200. ret = iter_op(req, &iter);
  1201. if (rw == WRITE)
  1202. file_end_write(file);
  1203. kfree(iovec);
  1204. break;
  1205. case IOCB_CMD_FDSYNC:
  1206. if (!file->f_op->aio_fsync)
  1207. return -EINVAL;
  1208. ret = file->f_op->aio_fsync(req, 1);
  1209. break;
  1210. case IOCB_CMD_FSYNC:
  1211. if (!file->f_op->aio_fsync)
  1212. return -EINVAL;
  1213. ret = file->f_op->aio_fsync(req, 0);
  1214. break;
  1215. default:
  1216. pr_debug("EINVAL: no operation provided\n");
  1217. return -EINVAL;
  1218. }
  1219. if (ret != -EIOCBQUEUED) {
  1220. /*
  1221. * There's no easy way to restart the syscall since other AIO's
  1222. * may be already running. Just fail this IO with EINTR.
  1223. */
  1224. if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
  1225. ret == -ERESTARTNOHAND ||
  1226. ret == -ERESTART_RESTARTBLOCK))
  1227. ret = -EINTR;
  1228. aio_complete(req, ret, 0);
  1229. }
  1230. return 0;
  1231. }
  1232. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1233. struct iocb *iocb, bool compat)
  1234. {
  1235. struct aio_kiocb *req;
  1236. ssize_t ret;
  1237. /* enforce forwards compatibility on users */
  1238. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1239. pr_debug("EINVAL: reserve field set\n");
  1240. return -EINVAL;
  1241. }
  1242. /* prevent overflows */
  1243. if (unlikely(
  1244. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1245. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1246. ((ssize_t)iocb->aio_nbytes < 0)
  1247. )) {
  1248. pr_debug("EINVAL: overflow check\n");
  1249. return -EINVAL;
  1250. }
  1251. req = aio_get_req(ctx);
  1252. if (unlikely(!req))
  1253. return -EAGAIN;
  1254. req->common.ki_filp = fget(iocb->aio_fildes);
  1255. if (unlikely(!req->common.ki_filp)) {
  1256. ret = -EBADF;
  1257. goto out_put_req;
  1258. }
  1259. req->common.ki_pos = iocb->aio_offset;
  1260. req->common.ki_complete = aio_complete;
  1261. req->common.ki_flags = iocb_flags(req->common.ki_filp);
  1262. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1263. /*
  1264. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1265. * instance of the file* now. The file descriptor must be
  1266. * an eventfd() fd, and will be signaled for each completed
  1267. * event using the eventfd_signal() function.
  1268. */
  1269. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1270. if (IS_ERR(req->ki_eventfd)) {
  1271. ret = PTR_ERR(req->ki_eventfd);
  1272. req->ki_eventfd = NULL;
  1273. goto out_put_req;
  1274. }
  1275. req->common.ki_flags |= IOCB_EVENTFD;
  1276. }
  1277. ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
  1278. if (unlikely(ret)) {
  1279. pr_debug("EFAULT: aio_key\n");
  1280. goto out_put_req;
  1281. }
  1282. req->ki_user_iocb = user_iocb;
  1283. req->ki_user_data = iocb->aio_data;
  1284. ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
  1285. (char __user *)(unsigned long)iocb->aio_buf,
  1286. iocb->aio_nbytes,
  1287. compat);
  1288. if (ret)
  1289. goto out_put_req;
  1290. return 0;
  1291. out_put_req:
  1292. put_reqs_available(ctx, 1);
  1293. percpu_ref_put(&ctx->reqs);
  1294. kiocb_free(req);
  1295. return ret;
  1296. }
  1297. long do_io_submit(aio_context_t ctx_id, long nr,
  1298. struct iocb __user *__user *iocbpp, bool compat)
  1299. {
  1300. struct kioctx *ctx;
  1301. long ret = 0;
  1302. int i = 0;
  1303. struct blk_plug plug;
  1304. if (unlikely(nr < 0))
  1305. return -EINVAL;
  1306. if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
  1307. nr = LONG_MAX/sizeof(*iocbpp);
  1308. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1309. return -EFAULT;
  1310. ctx = lookup_ioctx(ctx_id);
  1311. if (unlikely(!ctx)) {
  1312. pr_debug("EINVAL: invalid context id\n");
  1313. return -EINVAL;
  1314. }
  1315. blk_start_plug(&plug);
  1316. /*
  1317. * AKPM: should this return a partial result if some of the IOs were
  1318. * successfully submitted?
  1319. */
  1320. for (i=0; i<nr; i++) {
  1321. struct iocb __user *user_iocb;
  1322. struct iocb tmp;
  1323. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1324. ret = -EFAULT;
  1325. break;
  1326. }
  1327. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1328. ret = -EFAULT;
  1329. break;
  1330. }
  1331. ret = io_submit_one(ctx, user_iocb, &tmp, compat);
  1332. if (ret)
  1333. break;
  1334. }
  1335. blk_finish_plug(&plug);
  1336. percpu_ref_put(&ctx->users);
  1337. return i ? i : ret;
  1338. }
  1339. /* sys_io_submit:
  1340. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1341. * the number of iocbs queued. May return -EINVAL if the aio_context
  1342. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1343. * *iocbpp[0] is not properly initialized, if the operation specified
  1344. * is invalid for the file descriptor in the iocb. May fail with
  1345. * -EFAULT if any of the data structures point to invalid data. May
  1346. * fail with -EBADF if the file descriptor specified in the first
  1347. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1348. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1349. * fail with -ENOSYS if not implemented.
  1350. */
  1351. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1352. struct iocb __user * __user *, iocbpp)
  1353. {
  1354. return do_io_submit(ctx_id, nr, iocbpp, 0);
  1355. }
  1356. /* lookup_kiocb
  1357. * Finds a given iocb for cancellation.
  1358. */
  1359. static struct aio_kiocb *
  1360. lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
  1361. {
  1362. struct aio_kiocb *kiocb;
  1363. assert_spin_locked(&ctx->ctx_lock);
  1364. if (key != KIOCB_KEY)
  1365. return NULL;
  1366. /* TODO: use a hash or array, this sucks. */
  1367. list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
  1368. if (kiocb->ki_user_iocb == iocb)
  1369. return kiocb;
  1370. }
  1371. return NULL;
  1372. }
  1373. /* sys_io_cancel:
  1374. * Attempts to cancel an iocb previously passed to io_submit. If
  1375. * the operation is successfully cancelled, the resulting event is
  1376. * copied into the memory pointed to by result without being placed
  1377. * into the completion queue and 0 is returned. May fail with
  1378. * -EFAULT if any of the data structures pointed to are invalid.
  1379. * May fail with -EINVAL if aio_context specified by ctx_id is
  1380. * invalid. May fail with -EAGAIN if the iocb specified was not
  1381. * cancelled. Will fail with -ENOSYS if not implemented.
  1382. */
  1383. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1384. struct io_event __user *, result)
  1385. {
  1386. struct kioctx *ctx;
  1387. struct aio_kiocb *kiocb;
  1388. u32 key;
  1389. int ret;
  1390. ret = get_user(key, &iocb->aio_key);
  1391. if (unlikely(ret))
  1392. return -EFAULT;
  1393. ctx = lookup_ioctx(ctx_id);
  1394. if (unlikely(!ctx))
  1395. return -EINVAL;
  1396. spin_lock_irq(&ctx->ctx_lock);
  1397. kiocb = lookup_kiocb(ctx, iocb, key);
  1398. if (kiocb)
  1399. ret = kiocb_cancel(kiocb);
  1400. else
  1401. ret = -EINVAL;
  1402. spin_unlock_irq(&ctx->ctx_lock);
  1403. if (!ret) {
  1404. /*
  1405. * The result argument is no longer used - the io_event is
  1406. * always delivered via the ring buffer. -EINPROGRESS indicates
  1407. * cancellation is progress:
  1408. */
  1409. ret = -EINPROGRESS;
  1410. }
  1411. percpu_ref_put(&ctx->users);
  1412. return ret;
  1413. }
  1414. /* io_getevents:
  1415. * Attempts to read at least min_nr events and up to nr events from
  1416. * the completion queue for the aio_context specified by ctx_id. If
  1417. * it succeeds, the number of read events is returned. May fail with
  1418. * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
  1419. * out of range, if timeout is out of range. May fail with -EFAULT
  1420. * if any of the memory specified is invalid. May return 0 or
  1421. * < min_nr if the timeout specified by timeout has elapsed
  1422. * before sufficient events are available, where timeout == NULL
  1423. * specifies an infinite timeout. Note that the timeout pointed to by
  1424. * timeout is relative. Will fail with -ENOSYS if not implemented.
  1425. */
  1426. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1427. long, min_nr,
  1428. long, nr,
  1429. struct io_event __user *, events,
  1430. struct timespec __user *, timeout)
  1431. {
  1432. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1433. long ret = -EINVAL;
  1434. if (likely(ioctx)) {
  1435. if (likely(min_nr <= nr && min_nr >= 0))
  1436. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1437. percpu_ref_put(&ioctx->users);
  1438. }
  1439. return ret;
  1440. }