pci.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/bitops.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/blk-mq.h>
  18. #include <linux/cpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/errno.h>
  21. #include <linux/fs.h>
  22. #include <linux/genhd.h>
  23. #include <linux/hdreg.h>
  24. #include <linux/idr.h>
  25. #include <linux/init.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/io.h>
  28. #include <linux/kdev_t.h>
  29. #include <linux/kernel.h>
  30. #include <linux/mm.h>
  31. #include <linux/module.h>
  32. #include <linux/moduleparam.h>
  33. #include <linux/mutex.h>
  34. #include <linux/pci.h>
  35. #include <linux/poison.h>
  36. #include <linux/ptrace.h>
  37. #include <linux/sched.h>
  38. #include <linux/slab.h>
  39. #include <linux/t10-pi.h>
  40. #include <linux/timer.h>
  41. #include <linux/types.h>
  42. #include <linux/io-64-nonatomic-lo-hi.h>
  43. #include <asm/unaligned.h>
  44. #include "nvme.h"
  45. #define NVME_Q_DEPTH 1024
  46. #define NVME_AQ_DEPTH 256
  47. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  48. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  49. /*
  50. * We handle AEN commands ourselves and don't even let the
  51. * block layer know about them.
  52. */
  53. #define NVME_NR_AEN_COMMANDS 1
  54. #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
  55. static int use_threaded_interrupts;
  56. module_param(use_threaded_interrupts, int, 0);
  57. static bool use_cmb_sqes = true;
  58. module_param(use_cmb_sqes, bool, 0644);
  59. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  60. static struct workqueue_struct *nvme_workq;
  61. struct nvme_dev;
  62. struct nvme_queue;
  63. static int nvme_reset(struct nvme_dev *dev);
  64. static void nvme_process_cq(struct nvme_queue *nvmeq);
  65. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  66. /*
  67. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  68. */
  69. struct nvme_dev {
  70. struct nvme_queue **queues;
  71. struct blk_mq_tag_set tagset;
  72. struct blk_mq_tag_set admin_tagset;
  73. u32 __iomem *dbs;
  74. struct device *dev;
  75. struct dma_pool *prp_page_pool;
  76. struct dma_pool *prp_small_pool;
  77. unsigned queue_count;
  78. unsigned online_queues;
  79. unsigned max_qid;
  80. int q_depth;
  81. u32 db_stride;
  82. struct msix_entry *entry;
  83. void __iomem *bar;
  84. struct work_struct reset_work;
  85. struct work_struct scan_work;
  86. struct work_struct remove_work;
  87. struct work_struct async_work;
  88. struct timer_list watchdog_timer;
  89. struct mutex shutdown_lock;
  90. bool subsystem;
  91. void __iomem *cmb;
  92. dma_addr_t cmb_dma_addr;
  93. u64 cmb_size;
  94. u32 cmbsz;
  95. unsigned long flags;
  96. #define NVME_CTRL_RESETTING 0
  97. #define NVME_CTRL_REMOVING 1
  98. struct nvme_ctrl ctrl;
  99. struct completion ioq_wait;
  100. };
  101. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  102. {
  103. return container_of(ctrl, struct nvme_dev, ctrl);
  104. }
  105. /*
  106. * An NVM Express queue. Each device has at least two (one for admin
  107. * commands and one for I/O commands).
  108. */
  109. struct nvme_queue {
  110. struct device *q_dmadev;
  111. struct nvme_dev *dev;
  112. char irqname[24]; /* nvme4294967295-65535\0 */
  113. spinlock_t q_lock;
  114. struct nvme_command *sq_cmds;
  115. struct nvme_command __iomem *sq_cmds_io;
  116. volatile struct nvme_completion *cqes;
  117. struct blk_mq_tags **tags;
  118. dma_addr_t sq_dma_addr;
  119. dma_addr_t cq_dma_addr;
  120. u32 __iomem *q_db;
  121. u16 q_depth;
  122. s16 cq_vector;
  123. u16 sq_tail;
  124. u16 cq_head;
  125. u16 qid;
  126. u8 cq_phase;
  127. u8 cqe_seen;
  128. };
  129. /*
  130. * The nvme_iod describes the data in an I/O, including the list of PRP
  131. * entries. You can't see it in this data structure because C doesn't let
  132. * me express that. Use nvme_init_iod to ensure there's enough space
  133. * allocated to store the PRP list.
  134. */
  135. struct nvme_iod {
  136. struct nvme_queue *nvmeq;
  137. int aborted;
  138. int npages; /* In the PRP list. 0 means small pool in use */
  139. int nents; /* Used in scatterlist */
  140. int length; /* Of data, in bytes */
  141. dma_addr_t first_dma;
  142. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  143. struct scatterlist *sg;
  144. struct scatterlist inline_sg[0];
  145. };
  146. /*
  147. * Check we didin't inadvertently grow the command struct
  148. */
  149. static inline void _nvme_check_size(void)
  150. {
  151. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  152. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  153. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  154. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  155. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  156. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  157. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  158. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  159. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  160. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  161. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  162. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  163. }
  164. /*
  165. * Max size of iod being embedded in the request payload
  166. */
  167. #define NVME_INT_PAGES 2
  168. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  169. /*
  170. * Will slightly overestimate the number of pages needed. This is OK
  171. * as it only leads to a small amount of wasted memory for the lifetime of
  172. * the I/O.
  173. */
  174. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  175. {
  176. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  177. dev->ctrl.page_size);
  178. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  179. }
  180. static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
  181. unsigned int size, unsigned int nseg)
  182. {
  183. return sizeof(__le64 *) * nvme_npages(size, dev) +
  184. sizeof(struct scatterlist) * nseg;
  185. }
  186. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  187. {
  188. return sizeof(struct nvme_iod) +
  189. nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
  190. }
  191. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  192. unsigned int hctx_idx)
  193. {
  194. struct nvme_dev *dev = data;
  195. struct nvme_queue *nvmeq = dev->queues[0];
  196. WARN_ON(hctx_idx != 0);
  197. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  198. WARN_ON(nvmeq->tags);
  199. hctx->driver_data = nvmeq;
  200. nvmeq->tags = &dev->admin_tagset.tags[0];
  201. return 0;
  202. }
  203. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  204. {
  205. struct nvme_queue *nvmeq = hctx->driver_data;
  206. nvmeq->tags = NULL;
  207. }
  208. static int nvme_admin_init_request(void *data, struct request *req,
  209. unsigned int hctx_idx, unsigned int rq_idx,
  210. unsigned int numa_node)
  211. {
  212. struct nvme_dev *dev = data;
  213. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  214. struct nvme_queue *nvmeq = dev->queues[0];
  215. BUG_ON(!nvmeq);
  216. iod->nvmeq = nvmeq;
  217. return 0;
  218. }
  219. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  220. unsigned int hctx_idx)
  221. {
  222. struct nvme_dev *dev = data;
  223. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  224. if (!nvmeq->tags)
  225. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  226. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  227. hctx->driver_data = nvmeq;
  228. return 0;
  229. }
  230. static int nvme_init_request(void *data, struct request *req,
  231. unsigned int hctx_idx, unsigned int rq_idx,
  232. unsigned int numa_node)
  233. {
  234. struct nvme_dev *dev = data;
  235. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  236. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  237. BUG_ON(!nvmeq);
  238. iod->nvmeq = nvmeq;
  239. return 0;
  240. }
  241. static void nvme_queue_scan(struct nvme_dev *dev)
  242. {
  243. /*
  244. * Do not queue new scan work when a controller is reset during
  245. * removal.
  246. */
  247. if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
  248. return;
  249. queue_work(nvme_workq, &dev->scan_work);
  250. }
  251. static void nvme_complete_async_event(struct nvme_dev *dev,
  252. struct nvme_completion *cqe)
  253. {
  254. u16 status = le16_to_cpu(cqe->status) >> 1;
  255. u32 result = le32_to_cpu(cqe->result);
  256. if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
  257. ++dev->ctrl.event_limit;
  258. queue_work(nvme_workq, &dev->async_work);
  259. }
  260. if (status != NVME_SC_SUCCESS)
  261. return;
  262. switch (result & 0xff07) {
  263. case NVME_AER_NOTICE_NS_CHANGED:
  264. dev_info(dev->ctrl.device, "rescanning\n");
  265. nvme_queue_scan(dev);
  266. default:
  267. dev_warn(dev->ctrl.device, "async event result %08x\n", result);
  268. }
  269. }
  270. /**
  271. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  272. * @nvmeq: The queue to use
  273. * @cmd: The command to send
  274. *
  275. * Safe to use from interrupt context
  276. */
  277. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  278. struct nvme_command *cmd)
  279. {
  280. u16 tail = nvmeq->sq_tail;
  281. if (nvmeq->sq_cmds_io)
  282. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  283. else
  284. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  285. if (++tail == nvmeq->q_depth)
  286. tail = 0;
  287. writel(tail, nvmeq->q_db);
  288. nvmeq->sq_tail = tail;
  289. }
  290. static __le64 **iod_list(struct request *req)
  291. {
  292. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  293. return (__le64 **)(iod->sg + req->nr_phys_segments);
  294. }
  295. static int nvme_init_iod(struct request *rq, unsigned size,
  296. struct nvme_dev *dev)
  297. {
  298. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  299. int nseg = rq->nr_phys_segments;
  300. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  301. iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
  302. if (!iod->sg)
  303. return BLK_MQ_RQ_QUEUE_BUSY;
  304. } else {
  305. iod->sg = iod->inline_sg;
  306. }
  307. iod->aborted = 0;
  308. iod->npages = -1;
  309. iod->nents = 0;
  310. iod->length = size;
  311. return 0;
  312. }
  313. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  314. {
  315. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  316. const int last_prp = dev->ctrl.page_size / 8 - 1;
  317. int i;
  318. __le64 **list = iod_list(req);
  319. dma_addr_t prp_dma = iod->first_dma;
  320. if (req->cmd_flags & REQ_DISCARD)
  321. kfree(req->completion_data);
  322. if (iod->npages == 0)
  323. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  324. for (i = 0; i < iod->npages; i++) {
  325. __le64 *prp_list = list[i];
  326. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  327. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  328. prp_dma = next_prp_dma;
  329. }
  330. if (iod->sg != iod->inline_sg)
  331. kfree(iod->sg);
  332. }
  333. #ifdef CONFIG_BLK_DEV_INTEGRITY
  334. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  335. {
  336. if (be32_to_cpu(pi->ref_tag) == v)
  337. pi->ref_tag = cpu_to_be32(p);
  338. }
  339. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  340. {
  341. if (be32_to_cpu(pi->ref_tag) == p)
  342. pi->ref_tag = cpu_to_be32(v);
  343. }
  344. /**
  345. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  346. *
  347. * The virtual start sector is the one that was originally submitted by the
  348. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  349. * start sector may be different. Remap protection information to match the
  350. * physical LBA on writes, and back to the original seed on reads.
  351. *
  352. * Type 0 and 3 do not have a ref tag, so no remapping required.
  353. */
  354. static void nvme_dif_remap(struct request *req,
  355. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  356. {
  357. struct nvme_ns *ns = req->rq_disk->private_data;
  358. struct bio_integrity_payload *bip;
  359. struct t10_pi_tuple *pi;
  360. void *p, *pmap;
  361. u32 i, nlb, ts, phys, virt;
  362. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  363. return;
  364. bip = bio_integrity(req->bio);
  365. if (!bip)
  366. return;
  367. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  368. p = pmap;
  369. virt = bip_get_seed(bip);
  370. phys = nvme_block_nr(ns, blk_rq_pos(req));
  371. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  372. ts = ns->disk->queue->integrity.tuple_size;
  373. for (i = 0; i < nlb; i++, virt++, phys++) {
  374. pi = (struct t10_pi_tuple *)p;
  375. dif_swap(phys, virt, pi);
  376. p += ts;
  377. }
  378. kunmap_atomic(pmap);
  379. }
  380. #else /* CONFIG_BLK_DEV_INTEGRITY */
  381. static void nvme_dif_remap(struct request *req,
  382. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  383. {
  384. }
  385. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  386. {
  387. }
  388. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  389. {
  390. }
  391. #endif
  392. static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
  393. int total_len)
  394. {
  395. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  396. struct dma_pool *pool;
  397. int length = total_len;
  398. struct scatterlist *sg = iod->sg;
  399. int dma_len = sg_dma_len(sg);
  400. u64 dma_addr = sg_dma_address(sg);
  401. u32 page_size = dev->ctrl.page_size;
  402. int offset = dma_addr & (page_size - 1);
  403. __le64 *prp_list;
  404. __le64 **list = iod_list(req);
  405. dma_addr_t prp_dma;
  406. int nprps, i;
  407. length -= (page_size - offset);
  408. if (length <= 0)
  409. return true;
  410. dma_len -= (page_size - offset);
  411. if (dma_len) {
  412. dma_addr += (page_size - offset);
  413. } else {
  414. sg = sg_next(sg);
  415. dma_addr = sg_dma_address(sg);
  416. dma_len = sg_dma_len(sg);
  417. }
  418. if (length <= page_size) {
  419. iod->first_dma = dma_addr;
  420. return true;
  421. }
  422. nprps = DIV_ROUND_UP(length, page_size);
  423. if (nprps <= (256 / 8)) {
  424. pool = dev->prp_small_pool;
  425. iod->npages = 0;
  426. } else {
  427. pool = dev->prp_page_pool;
  428. iod->npages = 1;
  429. }
  430. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  431. if (!prp_list) {
  432. iod->first_dma = dma_addr;
  433. iod->npages = -1;
  434. return false;
  435. }
  436. list[0] = prp_list;
  437. iod->first_dma = prp_dma;
  438. i = 0;
  439. for (;;) {
  440. if (i == page_size >> 3) {
  441. __le64 *old_prp_list = prp_list;
  442. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  443. if (!prp_list)
  444. return false;
  445. list[iod->npages++] = prp_list;
  446. prp_list[0] = old_prp_list[i - 1];
  447. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  448. i = 1;
  449. }
  450. prp_list[i++] = cpu_to_le64(dma_addr);
  451. dma_len -= page_size;
  452. dma_addr += page_size;
  453. length -= page_size;
  454. if (length <= 0)
  455. break;
  456. if (dma_len > 0)
  457. continue;
  458. BUG_ON(dma_len < 0);
  459. sg = sg_next(sg);
  460. dma_addr = sg_dma_address(sg);
  461. dma_len = sg_dma_len(sg);
  462. }
  463. return true;
  464. }
  465. static int nvme_map_data(struct nvme_dev *dev, struct request *req,
  466. unsigned size, struct nvme_command *cmnd)
  467. {
  468. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  469. struct request_queue *q = req->q;
  470. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  471. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  472. int ret = BLK_MQ_RQ_QUEUE_ERROR;
  473. sg_init_table(iod->sg, req->nr_phys_segments);
  474. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  475. if (!iod->nents)
  476. goto out;
  477. ret = BLK_MQ_RQ_QUEUE_BUSY;
  478. if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
  479. goto out;
  480. if (!nvme_setup_prps(dev, req, size))
  481. goto out_unmap;
  482. ret = BLK_MQ_RQ_QUEUE_ERROR;
  483. if (blk_integrity_rq(req)) {
  484. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  485. goto out_unmap;
  486. sg_init_table(&iod->meta_sg, 1);
  487. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  488. goto out_unmap;
  489. if (rq_data_dir(req))
  490. nvme_dif_remap(req, nvme_dif_prep);
  491. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  492. goto out_unmap;
  493. }
  494. cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  495. cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
  496. if (blk_integrity_rq(req))
  497. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  498. return BLK_MQ_RQ_QUEUE_OK;
  499. out_unmap:
  500. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  501. out:
  502. return ret;
  503. }
  504. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  505. {
  506. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  507. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  508. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  509. if (iod->nents) {
  510. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  511. if (blk_integrity_rq(req)) {
  512. if (!rq_data_dir(req))
  513. nvme_dif_remap(req, nvme_dif_complete);
  514. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  515. }
  516. }
  517. nvme_free_iod(dev, req);
  518. }
  519. /*
  520. * NOTE: ns is NULL when called on the admin queue.
  521. */
  522. static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  523. const struct blk_mq_queue_data *bd)
  524. {
  525. struct nvme_ns *ns = hctx->queue->queuedata;
  526. struct nvme_queue *nvmeq = hctx->driver_data;
  527. struct nvme_dev *dev = nvmeq->dev;
  528. struct request *req = bd->rq;
  529. struct nvme_command cmnd;
  530. unsigned map_len;
  531. int ret = BLK_MQ_RQ_QUEUE_OK;
  532. /*
  533. * If formated with metadata, require the block layer provide a buffer
  534. * unless this namespace is formated such that the metadata can be
  535. * stripped/generated by the controller with PRACT=1.
  536. */
  537. if (ns && ns->ms && !blk_integrity_rq(req)) {
  538. if (!(ns->pi_type && ns->ms == 8) &&
  539. req->cmd_type != REQ_TYPE_DRV_PRIV) {
  540. blk_mq_end_request(req, -EFAULT);
  541. return BLK_MQ_RQ_QUEUE_OK;
  542. }
  543. }
  544. map_len = nvme_map_len(req);
  545. ret = nvme_init_iod(req, map_len, dev);
  546. if (ret)
  547. return ret;
  548. ret = nvme_setup_cmd(ns, req, &cmnd);
  549. if (ret)
  550. goto out;
  551. if (req->nr_phys_segments)
  552. ret = nvme_map_data(dev, req, map_len, &cmnd);
  553. if (ret)
  554. goto out;
  555. cmnd.common.command_id = req->tag;
  556. blk_mq_start_request(req);
  557. spin_lock_irq(&nvmeq->q_lock);
  558. if (unlikely(nvmeq->cq_vector < 0)) {
  559. if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
  560. ret = BLK_MQ_RQ_QUEUE_BUSY;
  561. else
  562. ret = BLK_MQ_RQ_QUEUE_ERROR;
  563. spin_unlock_irq(&nvmeq->q_lock);
  564. goto out;
  565. }
  566. __nvme_submit_cmd(nvmeq, &cmnd);
  567. nvme_process_cq(nvmeq);
  568. spin_unlock_irq(&nvmeq->q_lock);
  569. return BLK_MQ_RQ_QUEUE_OK;
  570. out:
  571. nvme_free_iod(dev, req);
  572. return ret;
  573. }
  574. static void nvme_complete_rq(struct request *req)
  575. {
  576. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  577. struct nvme_dev *dev = iod->nvmeq->dev;
  578. int error = 0;
  579. nvme_unmap_data(dev, req);
  580. if (unlikely(req->errors)) {
  581. if (nvme_req_needs_retry(req, req->errors)) {
  582. nvme_requeue_req(req);
  583. return;
  584. }
  585. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  586. error = req->errors;
  587. else
  588. error = nvme_error_status(req->errors);
  589. }
  590. if (unlikely(iod->aborted)) {
  591. dev_warn(dev->ctrl.device,
  592. "completing aborted command with status: %04x\n",
  593. req->errors);
  594. }
  595. blk_mq_end_request(req, error);
  596. }
  597. /* We read the CQE phase first to check if the rest of the entry is valid */
  598. static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
  599. u16 phase)
  600. {
  601. return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
  602. }
  603. static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
  604. {
  605. u16 head, phase;
  606. head = nvmeq->cq_head;
  607. phase = nvmeq->cq_phase;
  608. while (nvme_cqe_valid(nvmeq, head, phase)) {
  609. struct nvme_completion cqe = nvmeq->cqes[head];
  610. struct request *req;
  611. if (++head == nvmeq->q_depth) {
  612. head = 0;
  613. phase = !phase;
  614. }
  615. if (tag && *tag == cqe.command_id)
  616. *tag = -1;
  617. if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
  618. dev_warn(nvmeq->dev->ctrl.device,
  619. "invalid id %d completed on queue %d\n",
  620. cqe.command_id, le16_to_cpu(cqe.sq_id));
  621. continue;
  622. }
  623. /*
  624. * AEN requests are special as they don't time out and can
  625. * survive any kind of queue freeze and often don't respond to
  626. * aborts. We don't even bother to allocate a struct request
  627. * for them but rather special case them here.
  628. */
  629. if (unlikely(nvmeq->qid == 0 &&
  630. cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
  631. nvme_complete_async_event(nvmeq->dev, &cqe);
  632. continue;
  633. }
  634. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
  635. if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
  636. memcpy(req->special, &cqe, sizeof(cqe));
  637. blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
  638. }
  639. /* If the controller ignores the cq head doorbell and continuously
  640. * writes to the queue, it is theoretically possible to wrap around
  641. * the queue twice and mistakenly return IRQ_NONE. Linux only
  642. * requires that 0.1% of your interrupts are handled, so this isn't
  643. * a big problem.
  644. */
  645. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  646. return;
  647. if (likely(nvmeq->cq_vector >= 0))
  648. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  649. nvmeq->cq_head = head;
  650. nvmeq->cq_phase = phase;
  651. nvmeq->cqe_seen = 1;
  652. }
  653. static void nvme_process_cq(struct nvme_queue *nvmeq)
  654. {
  655. __nvme_process_cq(nvmeq, NULL);
  656. }
  657. static irqreturn_t nvme_irq(int irq, void *data)
  658. {
  659. irqreturn_t result;
  660. struct nvme_queue *nvmeq = data;
  661. spin_lock(&nvmeq->q_lock);
  662. nvme_process_cq(nvmeq);
  663. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  664. nvmeq->cqe_seen = 0;
  665. spin_unlock(&nvmeq->q_lock);
  666. return result;
  667. }
  668. static irqreturn_t nvme_irq_check(int irq, void *data)
  669. {
  670. struct nvme_queue *nvmeq = data;
  671. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  672. return IRQ_WAKE_THREAD;
  673. return IRQ_NONE;
  674. }
  675. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  676. {
  677. struct nvme_queue *nvmeq = hctx->driver_data;
  678. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
  679. spin_lock_irq(&nvmeq->q_lock);
  680. __nvme_process_cq(nvmeq, &tag);
  681. spin_unlock_irq(&nvmeq->q_lock);
  682. if (tag == -1)
  683. return 1;
  684. }
  685. return 0;
  686. }
  687. static void nvme_async_event_work(struct work_struct *work)
  688. {
  689. struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
  690. struct nvme_queue *nvmeq = dev->queues[0];
  691. struct nvme_command c;
  692. memset(&c, 0, sizeof(c));
  693. c.common.opcode = nvme_admin_async_event;
  694. spin_lock_irq(&nvmeq->q_lock);
  695. while (dev->ctrl.event_limit > 0) {
  696. c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
  697. --dev->ctrl.event_limit;
  698. __nvme_submit_cmd(nvmeq, &c);
  699. }
  700. spin_unlock_irq(&nvmeq->q_lock);
  701. }
  702. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  703. {
  704. struct nvme_command c;
  705. memset(&c, 0, sizeof(c));
  706. c.delete_queue.opcode = opcode;
  707. c.delete_queue.qid = cpu_to_le16(id);
  708. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  709. }
  710. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  711. struct nvme_queue *nvmeq)
  712. {
  713. struct nvme_command c;
  714. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  715. /*
  716. * Note: we (ab)use the fact the the prp fields survive if no data
  717. * is attached to the request.
  718. */
  719. memset(&c, 0, sizeof(c));
  720. c.create_cq.opcode = nvme_admin_create_cq;
  721. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  722. c.create_cq.cqid = cpu_to_le16(qid);
  723. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  724. c.create_cq.cq_flags = cpu_to_le16(flags);
  725. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  726. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  727. }
  728. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  729. struct nvme_queue *nvmeq)
  730. {
  731. struct nvme_command c;
  732. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  733. /*
  734. * Note: we (ab)use the fact the the prp fields survive if no data
  735. * is attached to the request.
  736. */
  737. memset(&c, 0, sizeof(c));
  738. c.create_sq.opcode = nvme_admin_create_sq;
  739. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  740. c.create_sq.sqid = cpu_to_le16(qid);
  741. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  742. c.create_sq.sq_flags = cpu_to_le16(flags);
  743. c.create_sq.cqid = cpu_to_le16(qid);
  744. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  745. }
  746. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  747. {
  748. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  749. }
  750. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  751. {
  752. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  753. }
  754. static void abort_endio(struct request *req, int error)
  755. {
  756. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  757. struct nvme_queue *nvmeq = iod->nvmeq;
  758. u16 status = req->errors;
  759. dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
  760. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  761. blk_mq_free_request(req);
  762. }
  763. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  764. {
  765. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  766. struct nvme_queue *nvmeq = iod->nvmeq;
  767. struct nvme_dev *dev = nvmeq->dev;
  768. struct request *abort_req;
  769. struct nvme_command cmd;
  770. /*
  771. * Shutdown immediately if controller times out while starting. The
  772. * reset work will see the pci device disabled when it gets the forced
  773. * cancellation error. All outstanding requests are completed on
  774. * shutdown, so we return BLK_EH_HANDLED.
  775. */
  776. if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
  777. dev_warn(dev->ctrl.device,
  778. "I/O %d QID %d timeout, disable controller\n",
  779. req->tag, nvmeq->qid);
  780. nvme_dev_disable(dev, false);
  781. req->errors = NVME_SC_CANCELLED;
  782. return BLK_EH_HANDLED;
  783. }
  784. /*
  785. * Shutdown the controller immediately and schedule a reset if the
  786. * command was already aborted once before and still hasn't been
  787. * returned to the driver, or if this is the admin queue.
  788. */
  789. if (!nvmeq->qid || iod->aborted) {
  790. dev_warn(dev->ctrl.device,
  791. "I/O %d QID %d timeout, reset controller\n",
  792. req->tag, nvmeq->qid);
  793. nvme_dev_disable(dev, false);
  794. queue_work(nvme_workq, &dev->reset_work);
  795. /*
  796. * Mark the request as handled, since the inline shutdown
  797. * forces all outstanding requests to complete.
  798. */
  799. req->errors = NVME_SC_CANCELLED;
  800. return BLK_EH_HANDLED;
  801. }
  802. iod->aborted = 1;
  803. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  804. atomic_inc(&dev->ctrl.abort_limit);
  805. return BLK_EH_RESET_TIMER;
  806. }
  807. memset(&cmd, 0, sizeof(cmd));
  808. cmd.abort.opcode = nvme_admin_abort_cmd;
  809. cmd.abort.cid = req->tag;
  810. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  811. dev_warn(nvmeq->dev->ctrl.device,
  812. "I/O %d QID %d timeout, aborting\n",
  813. req->tag, nvmeq->qid);
  814. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  815. BLK_MQ_REQ_NOWAIT);
  816. if (IS_ERR(abort_req)) {
  817. atomic_inc(&dev->ctrl.abort_limit);
  818. return BLK_EH_RESET_TIMER;
  819. }
  820. abort_req->timeout = ADMIN_TIMEOUT;
  821. abort_req->end_io_data = NULL;
  822. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  823. /*
  824. * The aborted req will be completed on receiving the abort req.
  825. * We enable the timer again. If hit twice, it'll cause a device reset,
  826. * as the device then is in a faulty state.
  827. */
  828. return BLK_EH_RESET_TIMER;
  829. }
  830. static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
  831. {
  832. struct nvme_queue *nvmeq = data;
  833. int status;
  834. if (!blk_mq_request_started(req))
  835. return;
  836. dev_dbg_ratelimited(nvmeq->dev->ctrl.device,
  837. "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
  838. status = NVME_SC_ABORT_REQ;
  839. if (blk_queue_dying(req->q))
  840. status |= NVME_SC_DNR;
  841. blk_mq_complete_request(req, status);
  842. }
  843. static void nvme_free_queue(struct nvme_queue *nvmeq)
  844. {
  845. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  846. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  847. if (nvmeq->sq_cmds)
  848. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  849. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  850. kfree(nvmeq);
  851. }
  852. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  853. {
  854. int i;
  855. for (i = dev->queue_count - 1; i >= lowest; i--) {
  856. struct nvme_queue *nvmeq = dev->queues[i];
  857. dev->queue_count--;
  858. dev->queues[i] = NULL;
  859. nvme_free_queue(nvmeq);
  860. }
  861. }
  862. /**
  863. * nvme_suspend_queue - put queue into suspended state
  864. * @nvmeq - queue to suspend
  865. */
  866. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  867. {
  868. int vector;
  869. spin_lock_irq(&nvmeq->q_lock);
  870. if (nvmeq->cq_vector == -1) {
  871. spin_unlock_irq(&nvmeq->q_lock);
  872. return 1;
  873. }
  874. vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
  875. nvmeq->dev->online_queues--;
  876. nvmeq->cq_vector = -1;
  877. spin_unlock_irq(&nvmeq->q_lock);
  878. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  879. blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
  880. irq_set_affinity_hint(vector, NULL);
  881. free_irq(vector, nvmeq);
  882. return 0;
  883. }
  884. static void nvme_clear_queue(struct nvme_queue *nvmeq)
  885. {
  886. spin_lock_irq(&nvmeq->q_lock);
  887. if (nvmeq->tags && *nvmeq->tags)
  888. blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
  889. spin_unlock_irq(&nvmeq->q_lock);
  890. }
  891. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  892. {
  893. struct nvme_queue *nvmeq = dev->queues[0];
  894. if (!nvmeq)
  895. return;
  896. if (nvme_suspend_queue(nvmeq))
  897. return;
  898. if (shutdown)
  899. nvme_shutdown_ctrl(&dev->ctrl);
  900. else
  901. nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
  902. dev->bar + NVME_REG_CAP));
  903. spin_lock_irq(&nvmeq->q_lock);
  904. nvme_process_cq(nvmeq);
  905. spin_unlock_irq(&nvmeq->q_lock);
  906. }
  907. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  908. int entry_size)
  909. {
  910. int q_depth = dev->q_depth;
  911. unsigned q_size_aligned = roundup(q_depth * entry_size,
  912. dev->ctrl.page_size);
  913. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  914. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  915. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  916. q_depth = div_u64(mem_per_q, entry_size);
  917. /*
  918. * Ensure the reduced q_depth is above some threshold where it
  919. * would be better to map queues in system memory with the
  920. * original depth
  921. */
  922. if (q_depth < 64)
  923. return -ENOMEM;
  924. }
  925. return q_depth;
  926. }
  927. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  928. int qid, int depth)
  929. {
  930. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  931. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  932. dev->ctrl.page_size);
  933. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  934. nvmeq->sq_cmds_io = dev->cmb + offset;
  935. } else {
  936. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  937. &nvmeq->sq_dma_addr, GFP_KERNEL);
  938. if (!nvmeq->sq_cmds)
  939. return -ENOMEM;
  940. }
  941. return 0;
  942. }
  943. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  944. int depth)
  945. {
  946. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
  947. if (!nvmeq)
  948. return NULL;
  949. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  950. &nvmeq->cq_dma_addr, GFP_KERNEL);
  951. if (!nvmeq->cqes)
  952. goto free_nvmeq;
  953. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  954. goto free_cqdma;
  955. nvmeq->q_dmadev = dev->dev;
  956. nvmeq->dev = dev;
  957. snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
  958. dev->ctrl.instance, qid);
  959. spin_lock_init(&nvmeq->q_lock);
  960. nvmeq->cq_head = 0;
  961. nvmeq->cq_phase = 1;
  962. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  963. nvmeq->q_depth = depth;
  964. nvmeq->qid = qid;
  965. nvmeq->cq_vector = -1;
  966. dev->queues[qid] = nvmeq;
  967. dev->queue_count++;
  968. return nvmeq;
  969. free_cqdma:
  970. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  971. nvmeq->cq_dma_addr);
  972. free_nvmeq:
  973. kfree(nvmeq);
  974. return NULL;
  975. }
  976. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  977. const char *name)
  978. {
  979. if (use_threaded_interrupts)
  980. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  981. nvme_irq_check, nvme_irq, IRQF_SHARED,
  982. name, nvmeq);
  983. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  984. IRQF_SHARED, name, nvmeq);
  985. }
  986. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  987. {
  988. struct nvme_dev *dev = nvmeq->dev;
  989. spin_lock_irq(&nvmeq->q_lock);
  990. nvmeq->sq_tail = 0;
  991. nvmeq->cq_head = 0;
  992. nvmeq->cq_phase = 1;
  993. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  994. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  995. dev->online_queues++;
  996. spin_unlock_irq(&nvmeq->q_lock);
  997. }
  998. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  999. {
  1000. struct nvme_dev *dev = nvmeq->dev;
  1001. int result;
  1002. nvmeq->cq_vector = qid - 1;
  1003. result = adapter_alloc_cq(dev, qid, nvmeq);
  1004. if (result < 0)
  1005. return result;
  1006. result = adapter_alloc_sq(dev, qid, nvmeq);
  1007. if (result < 0)
  1008. goto release_cq;
  1009. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1010. if (result < 0)
  1011. goto release_sq;
  1012. nvme_init_queue(nvmeq, qid);
  1013. return result;
  1014. release_sq:
  1015. adapter_delete_sq(dev, qid);
  1016. release_cq:
  1017. adapter_delete_cq(dev, qid);
  1018. return result;
  1019. }
  1020. static struct blk_mq_ops nvme_mq_admin_ops = {
  1021. .queue_rq = nvme_queue_rq,
  1022. .complete = nvme_complete_rq,
  1023. .map_queue = blk_mq_map_queue,
  1024. .init_hctx = nvme_admin_init_hctx,
  1025. .exit_hctx = nvme_admin_exit_hctx,
  1026. .init_request = nvme_admin_init_request,
  1027. .timeout = nvme_timeout,
  1028. };
  1029. static struct blk_mq_ops nvme_mq_ops = {
  1030. .queue_rq = nvme_queue_rq,
  1031. .complete = nvme_complete_rq,
  1032. .map_queue = blk_mq_map_queue,
  1033. .init_hctx = nvme_init_hctx,
  1034. .init_request = nvme_init_request,
  1035. .timeout = nvme_timeout,
  1036. .poll = nvme_poll,
  1037. };
  1038. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1039. {
  1040. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1041. /*
  1042. * If the controller was reset during removal, it's possible
  1043. * user requests may be waiting on a stopped queue. Start the
  1044. * queue to flush these to completion.
  1045. */
  1046. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  1047. blk_cleanup_queue(dev->ctrl.admin_q);
  1048. blk_mq_free_tag_set(&dev->admin_tagset);
  1049. }
  1050. }
  1051. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1052. {
  1053. if (!dev->ctrl.admin_q) {
  1054. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1055. dev->admin_tagset.nr_hw_queues = 1;
  1056. /*
  1057. * Subtract one to leave an empty queue entry for 'Full Queue'
  1058. * condition. See NVM-Express 1.2 specification, section 4.1.2.
  1059. */
  1060. dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
  1061. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1062. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1063. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1064. dev->admin_tagset.driver_data = dev;
  1065. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1066. return -ENOMEM;
  1067. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1068. if (IS_ERR(dev->ctrl.admin_q)) {
  1069. blk_mq_free_tag_set(&dev->admin_tagset);
  1070. return -ENOMEM;
  1071. }
  1072. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1073. nvme_dev_remove_admin(dev);
  1074. dev->ctrl.admin_q = NULL;
  1075. return -ENODEV;
  1076. }
  1077. } else
  1078. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  1079. return 0;
  1080. }
  1081. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1082. {
  1083. int result;
  1084. u32 aqa;
  1085. u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1086. struct nvme_queue *nvmeq;
  1087. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
  1088. NVME_CAP_NSSRC(cap) : 0;
  1089. if (dev->subsystem &&
  1090. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1091. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1092. result = nvme_disable_ctrl(&dev->ctrl, cap);
  1093. if (result < 0)
  1094. return result;
  1095. nvmeq = dev->queues[0];
  1096. if (!nvmeq) {
  1097. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
  1098. if (!nvmeq)
  1099. return -ENOMEM;
  1100. }
  1101. aqa = nvmeq->q_depth - 1;
  1102. aqa |= aqa << 16;
  1103. writel(aqa, dev->bar + NVME_REG_AQA);
  1104. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1105. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1106. result = nvme_enable_ctrl(&dev->ctrl, cap);
  1107. if (result)
  1108. goto free_nvmeq;
  1109. nvmeq->cq_vector = 0;
  1110. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1111. if (result) {
  1112. nvmeq->cq_vector = -1;
  1113. goto free_nvmeq;
  1114. }
  1115. return result;
  1116. free_nvmeq:
  1117. nvme_free_queues(dev, 0);
  1118. return result;
  1119. }
  1120. static void nvme_watchdog_timer(unsigned long data)
  1121. {
  1122. struct nvme_dev *dev = (struct nvme_dev *)data;
  1123. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1124. /*
  1125. * Skip controllers currently under reset.
  1126. */
  1127. if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
  1128. ((csts & NVME_CSTS_CFS) ||
  1129. (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
  1130. if (queue_work(nvme_workq, &dev->reset_work)) {
  1131. dev_warn(dev->dev,
  1132. "Failed status: 0x%x, reset controller.\n",
  1133. csts);
  1134. }
  1135. return;
  1136. }
  1137. mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
  1138. }
  1139. static int nvme_create_io_queues(struct nvme_dev *dev)
  1140. {
  1141. unsigned i, max;
  1142. int ret = 0;
  1143. for (i = dev->queue_count; i <= dev->max_qid; i++) {
  1144. if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
  1145. ret = -ENOMEM;
  1146. break;
  1147. }
  1148. }
  1149. max = min(dev->max_qid, dev->queue_count - 1);
  1150. for (i = dev->online_queues; i <= max; i++) {
  1151. ret = nvme_create_queue(dev->queues[i], i);
  1152. if (ret) {
  1153. nvme_free_queues(dev, i);
  1154. break;
  1155. }
  1156. }
  1157. /*
  1158. * Ignore failing Create SQ/CQ commands, we can continue with less
  1159. * than the desired aount of queues, and even a controller without
  1160. * I/O queues an still be used to issue admin commands. This might
  1161. * be useful to upgrade a buggy firmware for example.
  1162. */
  1163. return ret >= 0 ? 0 : ret;
  1164. }
  1165. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1166. {
  1167. u64 szu, size, offset;
  1168. u32 cmbloc;
  1169. resource_size_t bar_size;
  1170. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1171. void __iomem *cmb;
  1172. dma_addr_t dma_addr;
  1173. if (!use_cmb_sqes)
  1174. return NULL;
  1175. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1176. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1177. return NULL;
  1178. cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1179. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1180. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1181. offset = szu * NVME_CMB_OFST(cmbloc);
  1182. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
  1183. if (offset > bar_size)
  1184. return NULL;
  1185. /*
  1186. * Controllers may support a CMB size larger than their BAR,
  1187. * for example, due to being behind a bridge. Reduce the CMB to
  1188. * the reported size of the BAR
  1189. */
  1190. if (size > bar_size - offset)
  1191. size = bar_size - offset;
  1192. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
  1193. cmb = ioremap_wc(dma_addr, size);
  1194. if (!cmb)
  1195. return NULL;
  1196. dev->cmb_dma_addr = dma_addr;
  1197. dev->cmb_size = size;
  1198. return cmb;
  1199. }
  1200. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1201. {
  1202. if (dev->cmb) {
  1203. iounmap(dev->cmb);
  1204. dev->cmb = NULL;
  1205. }
  1206. }
  1207. static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1208. {
  1209. return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1210. }
  1211. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1212. {
  1213. struct nvme_queue *adminq = dev->queues[0];
  1214. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1215. int result, i, vecs, nr_io_queues, size;
  1216. nr_io_queues = num_possible_cpus();
  1217. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1218. if (result < 0)
  1219. return result;
  1220. /*
  1221. * Degraded controllers might return an error when setting the queue
  1222. * count. We still want to be able to bring them online and offer
  1223. * access to the admin queue, as that might be only way to fix them up.
  1224. */
  1225. if (result > 0) {
  1226. dev_err(dev->ctrl.device,
  1227. "Could not set queue count (%d)\n", result);
  1228. return 0;
  1229. }
  1230. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1231. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1232. sizeof(struct nvme_command));
  1233. if (result > 0)
  1234. dev->q_depth = result;
  1235. else
  1236. nvme_release_cmb(dev);
  1237. }
  1238. size = db_bar_size(dev, nr_io_queues);
  1239. if (size > 8192) {
  1240. iounmap(dev->bar);
  1241. do {
  1242. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1243. if (dev->bar)
  1244. break;
  1245. if (!--nr_io_queues)
  1246. return -ENOMEM;
  1247. size = db_bar_size(dev, nr_io_queues);
  1248. } while (1);
  1249. dev->dbs = dev->bar + 4096;
  1250. adminq->q_db = dev->dbs;
  1251. }
  1252. /* Deregister the admin queue's interrupt */
  1253. free_irq(dev->entry[0].vector, adminq);
  1254. /*
  1255. * If we enable msix early due to not intx, disable it again before
  1256. * setting up the full range we need.
  1257. */
  1258. if (pdev->msi_enabled)
  1259. pci_disable_msi(pdev);
  1260. else if (pdev->msix_enabled)
  1261. pci_disable_msix(pdev);
  1262. for (i = 0; i < nr_io_queues; i++)
  1263. dev->entry[i].entry = i;
  1264. vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
  1265. if (vecs < 0) {
  1266. vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
  1267. if (vecs < 0) {
  1268. vecs = 1;
  1269. } else {
  1270. for (i = 0; i < vecs; i++)
  1271. dev->entry[i].vector = i + pdev->irq;
  1272. }
  1273. }
  1274. /*
  1275. * Should investigate if there's a performance win from allocating
  1276. * more queues than interrupt vectors; it might allow the submission
  1277. * path to scale better, even if the receive path is limited by the
  1278. * number of interrupts.
  1279. */
  1280. nr_io_queues = vecs;
  1281. dev->max_qid = nr_io_queues;
  1282. result = queue_request_irq(dev, adminq, adminq->irqname);
  1283. if (result) {
  1284. adminq->cq_vector = -1;
  1285. goto free_queues;
  1286. }
  1287. return nvme_create_io_queues(dev);
  1288. free_queues:
  1289. nvme_free_queues(dev, 1);
  1290. return result;
  1291. }
  1292. static void nvme_set_irq_hints(struct nvme_dev *dev)
  1293. {
  1294. struct nvme_queue *nvmeq;
  1295. int i;
  1296. for (i = 0; i < dev->online_queues; i++) {
  1297. nvmeq = dev->queues[i];
  1298. if (!nvmeq->tags || !(*nvmeq->tags))
  1299. continue;
  1300. irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
  1301. blk_mq_tags_cpumask(*nvmeq->tags));
  1302. }
  1303. }
  1304. static void nvme_dev_scan(struct work_struct *work)
  1305. {
  1306. struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
  1307. if (!dev->tagset.tags)
  1308. return;
  1309. nvme_scan_namespaces(&dev->ctrl);
  1310. nvme_set_irq_hints(dev);
  1311. }
  1312. static void nvme_del_queue_end(struct request *req, int error)
  1313. {
  1314. struct nvme_queue *nvmeq = req->end_io_data;
  1315. blk_mq_free_request(req);
  1316. complete(&nvmeq->dev->ioq_wait);
  1317. }
  1318. static void nvme_del_cq_end(struct request *req, int error)
  1319. {
  1320. struct nvme_queue *nvmeq = req->end_io_data;
  1321. if (!error) {
  1322. unsigned long flags;
  1323. /*
  1324. * We might be called with the AQ q_lock held
  1325. * and the I/O queue q_lock should always
  1326. * nest inside the AQ one.
  1327. */
  1328. spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
  1329. SINGLE_DEPTH_NESTING);
  1330. nvme_process_cq(nvmeq);
  1331. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1332. }
  1333. nvme_del_queue_end(req, error);
  1334. }
  1335. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1336. {
  1337. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1338. struct request *req;
  1339. struct nvme_command cmd;
  1340. memset(&cmd, 0, sizeof(cmd));
  1341. cmd.delete_queue.opcode = opcode;
  1342. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1343. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
  1344. if (IS_ERR(req))
  1345. return PTR_ERR(req);
  1346. req->timeout = ADMIN_TIMEOUT;
  1347. req->end_io_data = nvmeq;
  1348. blk_execute_rq_nowait(q, NULL, req, false,
  1349. opcode == nvme_admin_delete_cq ?
  1350. nvme_del_cq_end : nvme_del_queue_end);
  1351. return 0;
  1352. }
  1353. static void nvme_disable_io_queues(struct nvme_dev *dev)
  1354. {
  1355. int pass;
  1356. unsigned long timeout;
  1357. u8 opcode = nvme_admin_delete_sq;
  1358. for (pass = 0; pass < 2; pass++) {
  1359. int sent = 0, i = dev->queue_count - 1;
  1360. reinit_completion(&dev->ioq_wait);
  1361. retry:
  1362. timeout = ADMIN_TIMEOUT;
  1363. for (; i > 0; i--) {
  1364. struct nvme_queue *nvmeq = dev->queues[i];
  1365. if (!pass)
  1366. nvme_suspend_queue(nvmeq);
  1367. if (nvme_delete_queue(nvmeq, opcode))
  1368. break;
  1369. ++sent;
  1370. }
  1371. while (sent--) {
  1372. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1373. if (timeout == 0)
  1374. return;
  1375. if (i)
  1376. goto retry;
  1377. }
  1378. opcode = nvme_admin_delete_cq;
  1379. }
  1380. }
  1381. /*
  1382. * Return: error value if an error occurred setting up the queues or calling
  1383. * Identify Device. 0 if these succeeded, even if adding some of the
  1384. * namespaces failed. At the moment, these failures are silent. TBD which
  1385. * failures should be reported.
  1386. */
  1387. static int nvme_dev_add(struct nvme_dev *dev)
  1388. {
  1389. if (!dev->ctrl.tagset) {
  1390. dev->tagset.ops = &nvme_mq_ops;
  1391. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1392. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1393. dev->tagset.numa_node = dev_to_node(dev->dev);
  1394. dev->tagset.queue_depth =
  1395. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1396. dev->tagset.cmd_size = nvme_cmd_size(dev);
  1397. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1398. dev->tagset.driver_data = dev;
  1399. if (blk_mq_alloc_tag_set(&dev->tagset))
  1400. return 0;
  1401. dev->ctrl.tagset = &dev->tagset;
  1402. } else {
  1403. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1404. /* Free previously allocated queues that are no longer usable */
  1405. nvme_free_queues(dev, dev->online_queues);
  1406. }
  1407. nvme_queue_scan(dev);
  1408. return 0;
  1409. }
  1410. static int nvme_pci_enable(struct nvme_dev *dev)
  1411. {
  1412. u64 cap;
  1413. int result = -ENOMEM;
  1414. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1415. if (pci_enable_device_mem(pdev))
  1416. return result;
  1417. pci_set_master(pdev);
  1418. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1419. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1420. goto disable;
  1421. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1422. result = -ENODEV;
  1423. goto disable;
  1424. }
  1425. /*
  1426. * Some devices and/or platforms don't advertise or work with INTx
  1427. * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
  1428. * adjust this later.
  1429. */
  1430. if (pci_enable_msix(pdev, dev->entry, 1)) {
  1431. pci_enable_msi(pdev);
  1432. dev->entry[0].vector = pdev->irq;
  1433. }
  1434. if (!dev->entry[0].vector) {
  1435. result = -ENODEV;
  1436. goto disable;
  1437. }
  1438. cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1439. dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
  1440. dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
  1441. dev->dbs = dev->bar + 4096;
  1442. /*
  1443. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1444. * some MacBook7,1 to avoid controller resets and data loss.
  1445. */
  1446. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1447. dev->q_depth = 2;
  1448. dev_warn(dev->dev, "detected Apple NVMe controller, set "
  1449. "queue depth=%u to work around controller resets\n",
  1450. dev->q_depth);
  1451. }
  1452. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
  1453. dev->cmb = nvme_map_cmb(dev);
  1454. pci_enable_pcie_error_reporting(pdev);
  1455. pci_save_state(pdev);
  1456. return 0;
  1457. disable:
  1458. pci_disable_device(pdev);
  1459. return result;
  1460. }
  1461. static void nvme_dev_unmap(struct nvme_dev *dev)
  1462. {
  1463. if (dev->bar)
  1464. iounmap(dev->bar);
  1465. pci_release_regions(to_pci_dev(dev->dev));
  1466. }
  1467. static void nvme_pci_disable(struct nvme_dev *dev)
  1468. {
  1469. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1470. if (pdev->msi_enabled)
  1471. pci_disable_msi(pdev);
  1472. else if (pdev->msix_enabled)
  1473. pci_disable_msix(pdev);
  1474. if (pci_is_enabled(pdev)) {
  1475. pci_disable_pcie_error_reporting(pdev);
  1476. pci_disable_device(pdev);
  1477. }
  1478. }
  1479. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1480. {
  1481. int i;
  1482. u32 csts = -1;
  1483. del_timer_sync(&dev->watchdog_timer);
  1484. mutex_lock(&dev->shutdown_lock);
  1485. if (pci_is_enabled(to_pci_dev(dev->dev))) {
  1486. nvme_stop_queues(&dev->ctrl);
  1487. csts = readl(dev->bar + NVME_REG_CSTS);
  1488. }
  1489. if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
  1490. for (i = dev->queue_count - 1; i >= 0; i--) {
  1491. struct nvme_queue *nvmeq = dev->queues[i];
  1492. nvme_suspend_queue(nvmeq);
  1493. }
  1494. } else {
  1495. nvme_disable_io_queues(dev);
  1496. nvme_disable_admin_queue(dev, shutdown);
  1497. }
  1498. nvme_pci_disable(dev);
  1499. for (i = dev->queue_count - 1; i >= 0; i--)
  1500. nvme_clear_queue(dev->queues[i]);
  1501. mutex_unlock(&dev->shutdown_lock);
  1502. }
  1503. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1504. {
  1505. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1506. PAGE_SIZE, PAGE_SIZE, 0);
  1507. if (!dev->prp_page_pool)
  1508. return -ENOMEM;
  1509. /* Optimisation for I/Os between 4k and 128k */
  1510. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1511. 256, 256, 0);
  1512. if (!dev->prp_small_pool) {
  1513. dma_pool_destroy(dev->prp_page_pool);
  1514. return -ENOMEM;
  1515. }
  1516. return 0;
  1517. }
  1518. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1519. {
  1520. dma_pool_destroy(dev->prp_page_pool);
  1521. dma_pool_destroy(dev->prp_small_pool);
  1522. }
  1523. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1524. {
  1525. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1526. put_device(dev->dev);
  1527. if (dev->tagset.tags)
  1528. blk_mq_free_tag_set(&dev->tagset);
  1529. if (dev->ctrl.admin_q)
  1530. blk_put_queue(dev->ctrl.admin_q);
  1531. kfree(dev->queues);
  1532. kfree(dev->entry);
  1533. kfree(dev);
  1534. }
  1535. static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
  1536. {
  1537. dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
  1538. kref_get(&dev->ctrl.kref);
  1539. nvme_dev_disable(dev, false);
  1540. if (!schedule_work(&dev->remove_work))
  1541. nvme_put_ctrl(&dev->ctrl);
  1542. }
  1543. static void nvme_reset_work(struct work_struct *work)
  1544. {
  1545. struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
  1546. int result = -ENODEV;
  1547. if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
  1548. goto out;
  1549. /*
  1550. * If we're called to reset a live controller first shut it down before
  1551. * moving on.
  1552. */
  1553. if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
  1554. nvme_dev_disable(dev, false);
  1555. set_bit(NVME_CTRL_RESETTING, &dev->flags);
  1556. result = nvme_pci_enable(dev);
  1557. if (result)
  1558. goto out;
  1559. result = nvme_configure_admin_queue(dev);
  1560. if (result)
  1561. goto out;
  1562. nvme_init_queue(dev->queues[0], 0);
  1563. result = nvme_alloc_admin_tags(dev);
  1564. if (result)
  1565. goto out;
  1566. result = nvme_init_identify(&dev->ctrl);
  1567. if (result)
  1568. goto out;
  1569. result = nvme_setup_io_queues(dev);
  1570. if (result)
  1571. goto out;
  1572. dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
  1573. queue_work(nvme_workq, &dev->async_work);
  1574. mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
  1575. /*
  1576. * Keep the controller around but remove all namespaces if we don't have
  1577. * any working I/O queue.
  1578. */
  1579. if (dev->online_queues < 2) {
  1580. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1581. nvme_remove_namespaces(&dev->ctrl);
  1582. } else {
  1583. nvme_start_queues(&dev->ctrl);
  1584. nvme_dev_add(dev);
  1585. }
  1586. clear_bit(NVME_CTRL_RESETTING, &dev->flags);
  1587. return;
  1588. out:
  1589. nvme_remove_dead_ctrl(dev, result);
  1590. }
  1591. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  1592. {
  1593. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  1594. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1595. nvme_kill_queues(&dev->ctrl);
  1596. if (pci_get_drvdata(pdev))
  1597. pci_stop_and_remove_bus_device_locked(pdev);
  1598. nvme_put_ctrl(&dev->ctrl);
  1599. }
  1600. static int nvme_reset(struct nvme_dev *dev)
  1601. {
  1602. if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
  1603. return -ENODEV;
  1604. if (!queue_work(nvme_workq, &dev->reset_work))
  1605. return -EBUSY;
  1606. flush_work(&dev->reset_work);
  1607. return 0;
  1608. }
  1609. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  1610. {
  1611. *val = readl(to_nvme_dev(ctrl)->bar + off);
  1612. return 0;
  1613. }
  1614. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  1615. {
  1616. writel(val, to_nvme_dev(ctrl)->bar + off);
  1617. return 0;
  1618. }
  1619. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  1620. {
  1621. *val = readq(to_nvme_dev(ctrl)->bar + off);
  1622. return 0;
  1623. }
  1624. static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
  1625. {
  1626. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1627. return !dev->bar || dev->online_queues < 2;
  1628. }
  1629. static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
  1630. {
  1631. return nvme_reset(to_nvme_dev(ctrl));
  1632. }
  1633. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  1634. .module = THIS_MODULE,
  1635. .reg_read32 = nvme_pci_reg_read32,
  1636. .reg_write32 = nvme_pci_reg_write32,
  1637. .reg_read64 = nvme_pci_reg_read64,
  1638. .io_incapable = nvme_pci_io_incapable,
  1639. .reset_ctrl = nvme_pci_reset_ctrl,
  1640. .free_ctrl = nvme_pci_free_ctrl,
  1641. };
  1642. static int nvme_dev_map(struct nvme_dev *dev)
  1643. {
  1644. int bars;
  1645. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1646. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1647. if (!bars)
  1648. return -ENODEV;
  1649. if (pci_request_selected_regions(pdev, bars, "nvme"))
  1650. return -ENODEV;
  1651. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1652. if (!dev->bar)
  1653. goto release;
  1654. return 0;
  1655. release:
  1656. pci_release_regions(pdev);
  1657. return -ENODEV;
  1658. }
  1659. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1660. {
  1661. int node, result = -ENOMEM;
  1662. struct nvme_dev *dev;
  1663. node = dev_to_node(&pdev->dev);
  1664. if (node == NUMA_NO_NODE)
  1665. set_dev_node(&pdev->dev, 0);
  1666. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  1667. if (!dev)
  1668. return -ENOMEM;
  1669. dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
  1670. GFP_KERNEL, node);
  1671. if (!dev->entry)
  1672. goto free;
  1673. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  1674. GFP_KERNEL, node);
  1675. if (!dev->queues)
  1676. goto free;
  1677. dev->dev = get_device(&pdev->dev);
  1678. pci_set_drvdata(pdev, dev);
  1679. result = nvme_dev_map(dev);
  1680. if (result)
  1681. goto free;
  1682. INIT_WORK(&dev->scan_work, nvme_dev_scan);
  1683. INIT_WORK(&dev->reset_work, nvme_reset_work);
  1684. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  1685. INIT_WORK(&dev->async_work, nvme_async_event_work);
  1686. setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
  1687. (unsigned long)dev);
  1688. mutex_init(&dev->shutdown_lock);
  1689. init_completion(&dev->ioq_wait);
  1690. result = nvme_setup_prp_pools(dev);
  1691. if (result)
  1692. goto put_pci;
  1693. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  1694. id->driver_data);
  1695. if (result)
  1696. goto release_pools;
  1697. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  1698. queue_work(nvme_workq, &dev->reset_work);
  1699. return 0;
  1700. release_pools:
  1701. nvme_release_prp_pools(dev);
  1702. put_pci:
  1703. put_device(dev->dev);
  1704. nvme_dev_unmap(dev);
  1705. free:
  1706. kfree(dev->queues);
  1707. kfree(dev->entry);
  1708. kfree(dev);
  1709. return result;
  1710. }
  1711. static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
  1712. {
  1713. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1714. if (prepare)
  1715. nvme_dev_disable(dev, false);
  1716. else
  1717. queue_work(nvme_workq, &dev->reset_work);
  1718. }
  1719. static void nvme_shutdown(struct pci_dev *pdev)
  1720. {
  1721. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1722. nvme_dev_disable(dev, true);
  1723. }
  1724. /*
  1725. * The driver's remove may be called on a device in a partially initialized
  1726. * state. This function must not have any dependencies on the device state in
  1727. * order to proceed.
  1728. */
  1729. static void nvme_remove(struct pci_dev *pdev)
  1730. {
  1731. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1732. del_timer_sync(&dev->watchdog_timer);
  1733. set_bit(NVME_CTRL_REMOVING, &dev->flags);
  1734. pci_set_drvdata(pdev, NULL);
  1735. flush_work(&dev->async_work);
  1736. flush_work(&dev->scan_work);
  1737. nvme_remove_namespaces(&dev->ctrl);
  1738. nvme_uninit_ctrl(&dev->ctrl);
  1739. nvme_dev_disable(dev, true);
  1740. flush_work(&dev->reset_work);
  1741. nvme_dev_remove_admin(dev);
  1742. nvme_free_queues(dev, 0);
  1743. nvme_release_cmb(dev);
  1744. nvme_release_prp_pools(dev);
  1745. nvme_dev_unmap(dev);
  1746. nvme_put_ctrl(&dev->ctrl);
  1747. }
  1748. #ifdef CONFIG_PM_SLEEP
  1749. static int nvme_suspend(struct device *dev)
  1750. {
  1751. struct pci_dev *pdev = to_pci_dev(dev);
  1752. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1753. nvme_dev_disable(ndev, true);
  1754. return 0;
  1755. }
  1756. static int nvme_resume(struct device *dev)
  1757. {
  1758. struct pci_dev *pdev = to_pci_dev(dev);
  1759. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1760. queue_work(nvme_workq, &ndev->reset_work);
  1761. return 0;
  1762. }
  1763. #endif
  1764. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  1765. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  1766. pci_channel_state_t state)
  1767. {
  1768. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1769. /*
  1770. * A frozen channel requires a reset. When detected, this method will
  1771. * shutdown the controller to quiesce. The controller will be restarted
  1772. * after the slot reset through driver's slot_reset callback.
  1773. */
  1774. dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
  1775. switch (state) {
  1776. case pci_channel_io_normal:
  1777. return PCI_ERS_RESULT_CAN_RECOVER;
  1778. case pci_channel_io_frozen:
  1779. nvme_dev_disable(dev, false);
  1780. return PCI_ERS_RESULT_NEED_RESET;
  1781. case pci_channel_io_perm_failure:
  1782. return PCI_ERS_RESULT_DISCONNECT;
  1783. }
  1784. return PCI_ERS_RESULT_NEED_RESET;
  1785. }
  1786. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  1787. {
  1788. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1789. dev_info(dev->ctrl.device, "restart after slot reset\n");
  1790. pci_restore_state(pdev);
  1791. queue_work(nvme_workq, &dev->reset_work);
  1792. return PCI_ERS_RESULT_RECOVERED;
  1793. }
  1794. static void nvme_error_resume(struct pci_dev *pdev)
  1795. {
  1796. pci_cleanup_aer_uncorrect_error_status(pdev);
  1797. }
  1798. static const struct pci_error_handlers nvme_err_handler = {
  1799. .error_detected = nvme_error_detected,
  1800. .slot_reset = nvme_slot_reset,
  1801. .resume = nvme_error_resume,
  1802. .reset_notify = nvme_reset_notify,
  1803. };
  1804. /* Move to pci_ids.h later */
  1805. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  1806. static const struct pci_device_id nvme_id_table[] = {
  1807. { PCI_VDEVICE(INTEL, 0x0953),
  1808. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  1809. NVME_QUIRK_DISCARD_ZEROES, },
  1810. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  1811. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  1812. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  1813. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  1814. { 0, }
  1815. };
  1816. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  1817. static struct pci_driver nvme_driver = {
  1818. .name = "nvme",
  1819. .id_table = nvme_id_table,
  1820. .probe = nvme_probe,
  1821. .remove = nvme_remove,
  1822. .shutdown = nvme_shutdown,
  1823. .driver = {
  1824. .pm = &nvme_dev_pm_ops,
  1825. },
  1826. .err_handler = &nvme_err_handler,
  1827. };
  1828. static int __init nvme_init(void)
  1829. {
  1830. int result;
  1831. nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
  1832. if (!nvme_workq)
  1833. return -ENOMEM;
  1834. result = pci_register_driver(&nvme_driver);
  1835. if (result)
  1836. destroy_workqueue(nvme_workq);
  1837. return result;
  1838. }
  1839. static void __exit nvme_exit(void)
  1840. {
  1841. pci_unregister_driver(&nvme_driver);
  1842. destroy_workqueue(nvme_workq);
  1843. _nvme_check_size();
  1844. }
  1845. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  1846. MODULE_LICENSE("GPL");
  1847. MODULE_VERSION("1.0");
  1848. module_init(nvme_init);
  1849. module_exit(nvme_exit);