core.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/blkdev.h>
  15. #include <linux/blk-mq.h>
  16. #include <linux/delay.h>
  17. #include <linux/errno.h>
  18. #include <linux/hdreg.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/list_sort.h>
  22. #include <linux/slab.h>
  23. #include <linux/types.h>
  24. #include <linux/pr.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/nvme_ioctl.h>
  27. #include <linux/t10-pi.h>
  28. #include <scsi/sg.h>
  29. #include <asm/unaligned.h>
  30. #include "nvme.h"
  31. #define NVME_MINORS (1U << MINORBITS)
  32. unsigned char admin_timeout = 60;
  33. module_param(admin_timeout, byte, 0644);
  34. MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  35. EXPORT_SYMBOL_GPL(admin_timeout);
  36. unsigned char nvme_io_timeout = 30;
  37. module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
  38. MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  39. EXPORT_SYMBOL_GPL(nvme_io_timeout);
  40. unsigned char shutdown_timeout = 5;
  41. module_param(shutdown_timeout, byte, 0644);
  42. MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  43. static int nvme_major;
  44. module_param(nvme_major, int, 0);
  45. static int nvme_char_major;
  46. module_param(nvme_char_major, int, 0);
  47. static LIST_HEAD(nvme_ctrl_list);
  48. static DEFINE_SPINLOCK(dev_list_lock);
  49. static struct class *nvme_class;
  50. static void nvme_free_ns(struct kref *kref)
  51. {
  52. struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
  53. if (ns->type == NVME_NS_LIGHTNVM)
  54. nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
  55. spin_lock(&dev_list_lock);
  56. ns->disk->private_data = NULL;
  57. spin_unlock(&dev_list_lock);
  58. put_disk(ns->disk);
  59. ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
  60. nvme_put_ctrl(ns->ctrl);
  61. kfree(ns);
  62. }
  63. static void nvme_put_ns(struct nvme_ns *ns)
  64. {
  65. kref_put(&ns->kref, nvme_free_ns);
  66. }
  67. static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
  68. {
  69. struct nvme_ns *ns;
  70. spin_lock(&dev_list_lock);
  71. ns = disk->private_data;
  72. if (ns) {
  73. if (!kref_get_unless_zero(&ns->kref))
  74. goto fail;
  75. if (!try_module_get(ns->ctrl->ops->module))
  76. goto fail_put_ns;
  77. }
  78. spin_unlock(&dev_list_lock);
  79. return ns;
  80. fail_put_ns:
  81. kref_put(&ns->kref, nvme_free_ns);
  82. fail:
  83. spin_unlock(&dev_list_lock);
  84. return NULL;
  85. }
  86. void nvme_requeue_req(struct request *req)
  87. {
  88. unsigned long flags;
  89. blk_mq_requeue_request(req);
  90. spin_lock_irqsave(req->q->queue_lock, flags);
  91. if (!blk_queue_stopped(req->q))
  92. blk_mq_kick_requeue_list(req->q);
  93. spin_unlock_irqrestore(req->q->queue_lock, flags);
  94. }
  95. EXPORT_SYMBOL_GPL(nvme_requeue_req);
  96. struct request *nvme_alloc_request(struct request_queue *q,
  97. struct nvme_command *cmd, unsigned int flags)
  98. {
  99. bool write = cmd->common.opcode & 1;
  100. struct request *req;
  101. req = blk_mq_alloc_request(q, write, flags);
  102. if (IS_ERR(req))
  103. return req;
  104. req->cmd_type = REQ_TYPE_DRV_PRIV;
  105. req->cmd_flags |= REQ_FAILFAST_DRIVER;
  106. req->__data_len = 0;
  107. req->__sector = (sector_t) -1;
  108. req->bio = req->biotail = NULL;
  109. req->cmd = (unsigned char *)cmd;
  110. req->cmd_len = sizeof(struct nvme_command);
  111. return req;
  112. }
  113. EXPORT_SYMBOL_GPL(nvme_alloc_request);
  114. static inline void nvme_setup_flush(struct nvme_ns *ns,
  115. struct nvme_command *cmnd)
  116. {
  117. memset(cmnd, 0, sizeof(*cmnd));
  118. cmnd->common.opcode = nvme_cmd_flush;
  119. cmnd->common.nsid = cpu_to_le32(ns->ns_id);
  120. }
  121. static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
  122. struct nvme_command *cmnd)
  123. {
  124. struct nvme_dsm_range *range;
  125. struct page *page;
  126. int offset;
  127. unsigned int nr_bytes = blk_rq_bytes(req);
  128. range = kmalloc(sizeof(*range), GFP_ATOMIC);
  129. if (!range)
  130. return BLK_MQ_RQ_QUEUE_BUSY;
  131. range->cattr = cpu_to_le32(0);
  132. range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
  133. range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
  134. memset(cmnd, 0, sizeof(*cmnd));
  135. cmnd->dsm.opcode = nvme_cmd_dsm;
  136. cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
  137. cmnd->dsm.nr = 0;
  138. cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
  139. req->completion_data = range;
  140. page = virt_to_page(range);
  141. offset = offset_in_page(range);
  142. blk_add_request_payload(req, page, offset, sizeof(*range));
  143. /*
  144. * we set __data_len back to the size of the area to be discarded
  145. * on disk. This allows us to report completion on the full amount
  146. * of blocks described by the request.
  147. */
  148. req->__data_len = nr_bytes;
  149. return 0;
  150. }
  151. static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
  152. struct nvme_command *cmnd)
  153. {
  154. u16 control = 0;
  155. u32 dsmgmt = 0;
  156. if (req->cmd_flags & REQ_FUA)
  157. control |= NVME_RW_FUA;
  158. if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
  159. control |= NVME_RW_LR;
  160. if (req->cmd_flags & REQ_RAHEAD)
  161. dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
  162. memset(cmnd, 0, sizeof(*cmnd));
  163. cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
  164. cmnd->rw.command_id = req->tag;
  165. cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
  166. cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
  167. cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
  168. if (ns->ms) {
  169. switch (ns->pi_type) {
  170. case NVME_NS_DPS_PI_TYPE3:
  171. control |= NVME_RW_PRINFO_PRCHK_GUARD;
  172. break;
  173. case NVME_NS_DPS_PI_TYPE1:
  174. case NVME_NS_DPS_PI_TYPE2:
  175. control |= NVME_RW_PRINFO_PRCHK_GUARD |
  176. NVME_RW_PRINFO_PRCHK_REF;
  177. cmnd->rw.reftag = cpu_to_le32(
  178. nvme_block_nr(ns, blk_rq_pos(req)));
  179. break;
  180. }
  181. if (!blk_integrity_rq(req))
  182. control |= NVME_RW_PRINFO_PRACT;
  183. }
  184. cmnd->rw.control = cpu_to_le16(control);
  185. cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
  186. }
  187. int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
  188. struct nvme_command *cmd)
  189. {
  190. int ret = 0;
  191. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  192. memcpy(cmd, req->cmd, sizeof(*cmd));
  193. else if (req->cmd_flags & REQ_FLUSH)
  194. nvme_setup_flush(ns, cmd);
  195. else if (req->cmd_flags & REQ_DISCARD)
  196. ret = nvme_setup_discard(ns, req, cmd);
  197. else
  198. nvme_setup_rw(ns, req, cmd);
  199. return ret;
  200. }
  201. EXPORT_SYMBOL_GPL(nvme_setup_cmd);
  202. /*
  203. * Returns 0 on success. If the result is negative, it's a Linux error code;
  204. * if the result is positive, it's an NVM Express status code
  205. */
  206. int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
  207. struct nvme_completion *cqe, void *buffer, unsigned bufflen,
  208. unsigned timeout)
  209. {
  210. struct request *req;
  211. int ret;
  212. req = nvme_alloc_request(q, cmd, 0);
  213. if (IS_ERR(req))
  214. return PTR_ERR(req);
  215. req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
  216. req->special = cqe;
  217. if (buffer && bufflen) {
  218. ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
  219. if (ret)
  220. goto out;
  221. }
  222. blk_execute_rq(req->q, NULL, req, 0);
  223. ret = req->errors;
  224. out:
  225. blk_mq_free_request(req);
  226. return ret;
  227. }
  228. int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
  229. void *buffer, unsigned bufflen)
  230. {
  231. return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
  232. }
  233. EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
  234. int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
  235. void __user *ubuffer, unsigned bufflen,
  236. void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
  237. u32 *result, unsigned timeout)
  238. {
  239. bool write = cmd->common.opcode & 1;
  240. struct nvme_completion cqe;
  241. struct nvme_ns *ns = q->queuedata;
  242. struct gendisk *disk = ns ? ns->disk : NULL;
  243. struct request *req;
  244. struct bio *bio = NULL;
  245. void *meta = NULL;
  246. int ret;
  247. req = nvme_alloc_request(q, cmd, 0);
  248. if (IS_ERR(req))
  249. return PTR_ERR(req);
  250. req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
  251. req->special = &cqe;
  252. if (ubuffer && bufflen) {
  253. ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
  254. GFP_KERNEL);
  255. if (ret)
  256. goto out;
  257. bio = req->bio;
  258. if (!disk)
  259. goto submit;
  260. bio->bi_bdev = bdget_disk(disk, 0);
  261. if (!bio->bi_bdev) {
  262. ret = -ENODEV;
  263. goto out_unmap;
  264. }
  265. if (meta_buffer && meta_len) {
  266. struct bio_integrity_payload *bip;
  267. meta = kmalloc(meta_len, GFP_KERNEL);
  268. if (!meta) {
  269. ret = -ENOMEM;
  270. goto out_unmap;
  271. }
  272. if (write) {
  273. if (copy_from_user(meta, meta_buffer,
  274. meta_len)) {
  275. ret = -EFAULT;
  276. goto out_free_meta;
  277. }
  278. }
  279. bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
  280. if (IS_ERR(bip)) {
  281. ret = PTR_ERR(bip);
  282. goto out_free_meta;
  283. }
  284. bip->bip_iter.bi_size = meta_len;
  285. bip->bip_iter.bi_sector = meta_seed;
  286. ret = bio_integrity_add_page(bio, virt_to_page(meta),
  287. meta_len, offset_in_page(meta));
  288. if (ret != meta_len) {
  289. ret = -ENOMEM;
  290. goto out_free_meta;
  291. }
  292. }
  293. }
  294. submit:
  295. blk_execute_rq(req->q, disk, req, 0);
  296. ret = req->errors;
  297. if (result)
  298. *result = le32_to_cpu(cqe.result);
  299. if (meta && !ret && !write) {
  300. if (copy_to_user(meta_buffer, meta, meta_len))
  301. ret = -EFAULT;
  302. }
  303. out_free_meta:
  304. kfree(meta);
  305. out_unmap:
  306. if (bio) {
  307. if (disk && bio->bi_bdev)
  308. bdput(bio->bi_bdev);
  309. blk_rq_unmap_user(bio);
  310. }
  311. out:
  312. blk_mq_free_request(req);
  313. return ret;
  314. }
  315. int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
  316. void __user *ubuffer, unsigned bufflen, u32 *result,
  317. unsigned timeout)
  318. {
  319. return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
  320. result, timeout);
  321. }
  322. int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
  323. {
  324. struct nvme_command c = { };
  325. int error;
  326. /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
  327. c.identify.opcode = nvme_admin_identify;
  328. c.identify.cns = cpu_to_le32(1);
  329. *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
  330. if (!*id)
  331. return -ENOMEM;
  332. error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
  333. sizeof(struct nvme_id_ctrl));
  334. if (error)
  335. kfree(*id);
  336. return error;
  337. }
  338. static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
  339. {
  340. struct nvme_command c = { };
  341. c.identify.opcode = nvme_admin_identify;
  342. c.identify.cns = cpu_to_le32(2);
  343. c.identify.nsid = cpu_to_le32(nsid);
  344. return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
  345. }
  346. int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
  347. struct nvme_id_ns **id)
  348. {
  349. struct nvme_command c = { };
  350. int error;
  351. /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
  352. c.identify.opcode = nvme_admin_identify,
  353. c.identify.nsid = cpu_to_le32(nsid),
  354. *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
  355. if (!*id)
  356. return -ENOMEM;
  357. error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
  358. sizeof(struct nvme_id_ns));
  359. if (error)
  360. kfree(*id);
  361. return error;
  362. }
  363. int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
  364. dma_addr_t dma_addr, u32 *result)
  365. {
  366. struct nvme_command c;
  367. struct nvme_completion cqe;
  368. int ret;
  369. memset(&c, 0, sizeof(c));
  370. c.features.opcode = nvme_admin_get_features;
  371. c.features.nsid = cpu_to_le32(nsid);
  372. c.features.prp1 = cpu_to_le64(dma_addr);
  373. c.features.fid = cpu_to_le32(fid);
  374. ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
  375. if (ret >= 0)
  376. *result = le32_to_cpu(cqe.result);
  377. return ret;
  378. }
  379. int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
  380. dma_addr_t dma_addr, u32 *result)
  381. {
  382. struct nvme_command c;
  383. struct nvme_completion cqe;
  384. int ret;
  385. memset(&c, 0, sizeof(c));
  386. c.features.opcode = nvme_admin_set_features;
  387. c.features.prp1 = cpu_to_le64(dma_addr);
  388. c.features.fid = cpu_to_le32(fid);
  389. c.features.dword11 = cpu_to_le32(dword11);
  390. ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
  391. if (ret >= 0)
  392. *result = le32_to_cpu(cqe.result);
  393. return ret;
  394. }
  395. int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
  396. {
  397. struct nvme_command c = { };
  398. int error;
  399. c.common.opcode = nvme_admin_get_log_page,
  400. c.common.nsid = cpu_to_le32(0xFFFFFFFF),
  401. c.common.cdw10[0] = cpu_to_le32(
  402. (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
  403. NVME_LOG_SMART),
  404. *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
  405. if (!*log)
  406. return -ENOMEM;
  407. error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
  408. sizeof(struct nvme_smart_log));
  409. if (error)
  410. kfree(*log);
  411. return error;
  412. }
  413. int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
  414. {
  415. u32 q_count = (*count - 1) | ((*count - 1) << 16);
  416. u32 result;
  417. int status, nr_io_queues;
  418. status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
  419. &result);
  420. if (status)
  421. return status;
  422. nr_io_queues = min(result & 0xffff, result >> 16) + 1;
  423. *count = min(*count, nr_io_queues);
  424. return 0;
  425. }
  426. EXPORT_SYMBOL_GPL(nvme_set_queue_count);
  427. static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
  428. {
  429. struct nvme_user_io io;
  430. struct nvme_command c;
  431. unsigned length, meta_len;
  432. void __user *metadata;
  433. if (copy_from_user(&io, uio, sizeof(io)))
  434. return -EFAULT;
  435. if (io.flags)
  436. return -EINVAL;
  437. switch (io.opcode) {
  438. case nvme_cmd_write:
  439. case nvme_cmd_read:
  440. case nvme_cmd_compare:
  441. break;
  442. default:
  443. return -EINVAL;
  444. }
  445. length = (io.nblocks + 1) << ns->lba_shift;
  446. meta_len = (io.nblocks + 1) * ns->ms;
  447. metadata = (void __user *)(uintptr_t)io.metadata;
  448. if (ns->ext) {
  449. length += meta_len;
  450. meta_len = 0;
  451. } else if (meta_len) {
  452. if ((io.metadata & 3) || !io.metadata)
  453. return -EINVAL;
  454. }
  455. memset(&c, 0, sizeof(c));
  456. c.rw.opcode = io.opcode;
  457. c.rw.flags = io.flags;
  458. c.rw.nsid = cpu_to_le32(ns->ns_id);
  459. c.rw.slba = cpu_to_le64(io.slba);
  460. c.rw.length = cpu_to_le16(io.nblocks);
  461. c.rw.control = cpu_to_le16(io.control);
  462. c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
  463. c.rw.reftag = cpu_to_le32(io.reftag);
  464. c.rw.apptag = cpu_to_le16(io.apptag);
  465. c.rw.appmask = cpu_to_le16(io.appmask);
  466. return __nvme_submit_user_cmd(ns->queue, &c,
  467. (void __user *)(uintptr_t)io.addr, length,
  468. metadata, meta_len, io.slba, NULL, 0);
  469. }
  470. static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
  471. struct nvme_passthru_cmd __user *ucmd)
  472. {
  473. struct nvme_passthru_cmd cmd;
  474. struct nvme_command c;
  475. unsigned timeout = 0;
  476. int status;
  477. if (!capable(CAP_SYS_ADMIN))
  478. return -EACCES;
  479. if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
  480. return -EFAULT;
  481. if (cmd.flags)
  482. return -EINVAL;
  483. memset(&c, 0, sizeof(c));
  484. c.common.opcode = cmd.opcode;
  485. c.common.flags = cmd.flags;
  486. c.common.nsid = cpu_to_le32(cmd.nsid);
  487. c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
  488. c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
  489. c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
  490. c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
  491. c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
  492. c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
  493. c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
  494. c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
  495. if (cmd.timeout_ms)
  496. timeout = msecs_to_jiffies(cmd.timeout_ms);
  497. status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
  498. (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
  499. &cmd.result, timeout);
  500. if (status >= 0) {
  501. if (put_user(cmd.result, &ucmd->result))
  502. return -EFAULT;
  503. }
  504. return status;
  505. }
  506. static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
  507. unsigned int cmd, unsigned long arg)
  508. {
  509. struct nvme_ns *ns = bdev->bd_disk->private_data;
  510. switch (cmd) {
  511. case NVME_IOCTL_ID:
  512. force_successful_syscall_return();
  513. return ns->ns_id;
  514. case NVME_IOCTL_ADMIN_CMD:
  515. return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
  516. case NVME_IOCTL_IO_CMD:
  517. return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
  518. case NVME_IOCTL_SUBMIT_IO:
  519. return nvme_submit_io(ns, (void __user *)arg);
  520. #ifdef CONFIG_BLK_DEV_NVME_SCSI
  521. case SG_GET_VERSION_NUM:
  522. return nvme_sg_get_version_num((void __user *)arg);
  523. case SG_IO:
  524. return nvme_sg_io(ns, (void __user *)arg);
  525. #endif
  526. default:
  527. return -ENOTTY;
  528. }
  529. }
  530. #ifdef CONFIG_COMPAT
  531. static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
  532. unsigned int cmd, unsigned long arg)
  533. {
  534. switch (cmd) {
  535. case SG_IO:
  536. return -ENOIOCTLCMD;
  537. }
  538. return nvme_ioctl(bdev, mode, cmd, arg);
  539. }
  540. #else
  541. #define nvme_compat_ioctl NULL
  542. #endif
  543. static int nvme_open(struct block_device *bdev, fmode_t mode)
  544. {
  545. return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
  546. }
  547. static void nvme_release(struct gendisk *disk, fmode_t mode)
  548. {
  549. struct nvme_ns *ns = disk->private_data;
  550. module_put(ns->ctrl->ops->module);
  551. nvme_put_ns(ns);
  552. }
  553. static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  554. {
  555. /* some standard values */
  556. geo->heads = 1 << 6;
  557. geo->sectors = 1 << 5;
  558. geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
  559. return 0;
  560. }
  561. #ifdef CONFIG_BLK_DEV_INTEGRITY
  562. static void nvme_init_integrity(struct nvme_ns *ns)
  563. {
  564. struct blk_integrity integrity;
  565. switch (ns->pi_type) {
  566. case NVME_NS_DPS_PI_TYPE3:
  567. integrity.profile = &t10_pi_type3_crc;
  568. break;
  569. case NVME_NS_DPS_PI_TYPE1:
  570. case NVME_NS_DPS_PI_TYPE2:
  571. integrity.profile = &t10_pi_type1_crc;
  572. break;
  573. default:
  574. integrity.profile = NULL;
  575. break;
  576. }
  577. integrity.tuple_size = ns->ms;
  578. blk_integrity_register(ns->disk, &integrity);
  579. blk_queue_max_integrity_segments(ns->queue, 1);
  580. }
  581. #else
  582. static void nvme_init_integrity(struct nvme_ns *ns)
  583. {
  584. }
  585. #endif /* CONFIG_BLK_DEV_INTEGRITY */
  586. static void nvme_config_discard(struct nvme_ns *ns)
  587. {
  588. struct nvme_ctrl *ctrl = ns->ctrl;
  589. u32 logical_block_size = queue_logical_block_size(ns->queue);
  590. if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
  591. ns->queue->limits.discard_zeroes_data = 1;
  592. else
  593. ns->queue->limits.discard_zeroes_data = 0;
  594. ns->queue->limits.discard_alignment = logical_block_size;
  595. ns->queue->limits.discard_granularity = logical_block_size;
  596. blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
  597. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
  598. }
  599. static int nvme_revalidate_disk(struct gendisk *disk)
  600. {
  601. struct nvme_ns *ns = disk->private_data;
  602. struct nvme_id_ns *id;
  603. u8 lbaf, pi_type;
  604. u16 old_ms;
  605. unsigned short bs;
  606. if (test_bit(NVME_NS_DEAD, &ns->flags)) {
  607. set_capacity(disk, 0);
  608. return -ENODEV;
  609. }
  610. if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
  611. dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
  612. __func__);
  613. return -ENODEV;
  614. }
  615. if (id->ncap == 0) {
  616. kfree(id);
  617. return -ENODEV;
  618. }
  619. if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
  620. if (nvme_nvm_register(ns->queue, disk->disk_name)) {
  621. dev_warn(disk_to_dev(ns->disk),
  622. "%s: LightNVM init failure\n", __func__);
  623. kfree(id);
  624. return -ENODEV;
  625. }
  626. ns->type = NVME_NS_LIGHTNVM;
  627. }
  628. if (ns->ctrl->vs >= NVME_VS(1, 1))
  629. memcpy(ns->eui, id->eui64, sizeof(ns->eui));
  630. if (ns->ctrl->vs >= NVME_VS(1, 2))
  631. memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
  632. old_ms = ns->ms;
  633. lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
  634. ns->lba_shift = id->lbaf[lbaf].ds;
  635. ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
  636. ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
  637. /*
  638. * If identify namespace failed, use default 512 byte block size so
  639. * block layer can use before failing read/write for 0 capacity.
  640. */
  641. if (ns->lba_shift == 0)
  642. ns->lba_shift = 9;
  643. bs = 1 << ns->lba_shift;
  644. /* XXX: PI implementation requires metadata equal t10 pi tuple size */
  645. pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
  646. id->dps & NVME_NS_DPS_PI_MASK : 0;
  647. blk_mq_freeze_queue(disk->queue);
  648. if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
  649. ns->ms != old_ms ||
  650. bs != queue_logical_block_size(disk->queue) ||
  651. (ns->ms && ns->ext)))
  652. blk_integrity_unregister(disk);
  653. ns->pi_type = pi_type;
  654. blk_queue_logical_block_size(ns->queue, bs);
  655. if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
  656. nvme_init_integrity(ns);
  657. if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
  658. set_capacity(disk, 0);
  659. else
  660. set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
  661. if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
  662. nvme_config_discard(ns);
  663. blk_mq_unfreeze_queue(disk->queue);
  664. kfree(id);
  665. return 0;
  666. }
  667. static char nvme_pr_type(enum pr_type type)
  668. {
  669. switch (type) {
  670. case PR_WRITE_EXCLUSIVE:
  671. return 1;
  672. case PR_EXCLUSIVE_ACCESS:
  673. return 2;
  674. case PR_WRITE_EXCLUSIVE_REG_ONLY:
  675. return 3;
  676. case PR_EXCLUSIVE_ACCESS_REG_ONLY:
  677. return 4;
  678. case PR_WRITE_EXCLUSIVE_ALL_REGS:
  679. return 5;
  680. case PR_EXCLUSIVE_ACCESS_ALL_REGS:
  681. return 6;
  682. default:
  683. return 0;
  684. }
  685. };
  686. static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
  687. u64 key, u64 sa_key, u8 op)
  688. {
  689. struct nvme_ns *ns = bdev->bd_disk->private_data;
  690. struct nvme_command c;
  691. u8 data[16] = { 0, };
  692. put_unaligned_le64(key, &data[0]);
  693. put_unaligned_le64(sa_key, &data[8]);
  694. memset(&c, 0, sizeof(c));
  695. c.common.opcode = op;
  696. c.common.nsid = cpu_to_le32(ns->ns_id);
  697. c.common.cdw10[0] = cpu_to_le32(cdw10);
  698. return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
  699. }
  700. static int nvme_pr_register(struct block_device *bdev, u64 old,
  701. u64 new, unsigned flags)
  702. {
  703. u32 cdw10;
  704. if (flags & ~PR_FL_IGNORE_KEY)
  705. return -EOPNOTSUPP;
  706. cdw10 = old ? 2 : 0;
  707. cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
  708. cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
  709. return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
  710. }
  711. static int nvme_pr_reserve(struct block_device *bdev, u64 key,
  712. enum pr_type type, unsigned flags)
  713. {
  714. u32 cdw10;
  715. if (flags & ~PR_FL_IGNORE_KEY)
  716. return -EOPNOTSUPP;
  717. cdw10 = nvme_pr_type(type) << 8;
  718. cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
  719. return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
  720. }
  721. static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
  722. enum pr_type type, bool abort)
  723. {
  724. u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
  725. return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
  726. }
  727. static int nvme_pr_clear(struct block_device *bdev, u64 key)
  728. {
  729. u32 cdw10 = 1 | (key ? 1 << 3 : 0);
  730. return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
  731. }
  732. static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
  733. {
  734. u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
  735. return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
  736. }
  737. static const struct pr_ops nvme_pr_ops = {
  738. .pr_register = nvme_pr_register,
  739. .pr_reserve = nvme_pr_reserve,
  740. .pr_release = nvme_pr_release,
  741. .pr_preempt = nvme_pr_preempt,
  742. .pr_clear = nvme_pr_clear,
  743. };
  744. static const struct block_device_operations nvme_fops = {
  745. .owner = THIS_MODULE,
  746. .ioctl = nvme_ioctl,
  747. .compat_ioctl = nvme_compat_ioctl,
  748. .open = nvme_open,
  749. .release = nvme_release,
  750. .getgeo = nvme_getgeo,
  751. .revalidate_disk= nvme_revalidate_disk,
  752. .pr_ops = &nvme_pr_ops,
  753. };
  754. static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
  755. {
  756. unsigned long timeout =
  757. ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
  758. u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
  759. int ret;
  760. while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
  761. if ((csts & NVME_CSTS_RDY) == bit)
  762. break;
  763. msleep(100);
  764. if (fatal_signal_pending(current))
  765. return -EINTR;
  766. if (time_after(jiffies, timeout)) {
  767. dev_err(ctrl->device,
  768. "Device not ready; aborting %s\n", enabled ?
  769. "initialisation" : "reset");
  770. return -ENODEV;
  771. }
  772. }
  773. return ret;
  774. }
  775. /*
  776. * If the device has been passed off to us in an enabled state, just clear
  777. * the enabled bit. The spec says we should set the 'shutdown notification
  778. * bits', but doing so may cause the device to complete commands to the
  779. * admin queue ... and we don't know what memory that might be pointing at!
  780. */
  781. int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
  782. {
  783. int ret;
  784. ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
  785. ctrl->ctrl_config &= ~NVME_CC_ENABLE;
  786. ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
  787. if (ret)
  788. return ret;
  789. return nvme_wait_ready(ctrl, cap, false);
  790. }
  791. EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
  792. int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
  793. {
  794. /*
  795. * Default to a 4K page size, with the intention to update this
  796. * path in the future to accomodate architectures with differing
  797. * kernel and IO page sizes.
  798. */
  799. unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
  800. int ret;
  801. if (page_shift < dev_page_min) {
  802. dev_err(ctrl->device,
  803. "Minimum device page size %u too large for host (%u)\n",
  804. 1 << dev_page_min, 1 << page_shift);
  805. return -ENODEV;
  806. }
  807. ctrl->page_size = 1 << page_shift;
  808. ctrl->ctrl_config = NVME_CC_CSS_NVM;
  809. ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
  810. ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
  811. ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
  812. ctrl->ctrl_config |= NVME_CC_ENABLE;
  813. ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
  814. if (ret)
  815. return ret;
  816. return nvme_wait_ready(ctrl, cap, true);
  817. }
  818. EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
  819. int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
  820. {
  821. unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
  822. u32 csts;
  823. int ret;
  824. ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
  825. ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
  826. ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
  827. if (ret)
  828. return ret;
  829. while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
  830. if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
  831. break;
  832. msleep(100);
  833. if (fatal_signal_pending(current))
  834. return -EINTR;
  835. if (time_after(jiffies, timeout)) {
  836. dev_err(ctrl->device,
  837. "Device shutdown incomplete; abort shutdown\n");
  838. return -ENODEV;
  839. }
  840. }
  841. return ret;
  842. }
  843. EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
  844. static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
  845. struct request_queue *q)
  846. {
  847. if (ctrl->max_hw_sectors) {
  848. u32 max_segments =
  849. (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
  850. blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
  851. blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
  852. }
  853. if (ctrl->stripe_size)
  854. blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
  855. if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
  856. blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
  857. blk_queue_virt_boundary(q, ctrl->page_size - 1);
  858. }
  859. /*
  860. * Initialize the cached copies of the Identify data and various controller
  861. * register in our nvme_ctrl structure. This should be called as soon as
  862. * the admin queue is fully up and running.
  863. */
  864. int nvme_init_identify(struct nvme_ctrl *ctrl)
  865. {
  866. struct nvme_id_ctrl *id;
  867. u64 cap;
  868. int ret, page_shift;
  869. ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
  870. if (ret) {
  871. dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
  872. return ret;
  873. }
  874. ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
  875. if (ret) {
  876. dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
  877. return ret;
  878. }
  879. page_shift = NVME_CAP_MPSMIN(cap) + 12;
  880. if (ctrl->vs >= NVME_VS(1, 1))
  881. ctrl->subsystem = NVME_CAP_NSSRC(cap);
  882. ret = nvme_identify_ctrl(ctrl, &id);
  883. if (ret) {
  884. dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
  885. return -EIO;
  886. }
  887. ctrl->vid = le16_to_cpu(id->vid);
  888. ctrl->oncs = le16_to_cpup(&id->oncs);
  889. atomic_set(&ctrl->abort_limit, id->acl + 1);
  890. ctrl->vwc = id->vwc;
  891. ctrl->cntlid = le16_to_cpup(&id->cntlid);
  892. memcpy(ctrl->serial, id->sn, sizeof(id->sn));
  893. memcpy(ctrl->model, id->mn, sizeof(id->mn));
  894. memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
  895. if (id->mdts)
  896. ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
  897. else
  898. ctrl->max_hw_sectors = UINT_MAX;
  899. if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
  900. unsigned int max_hw_sectors;
  901. ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
  902. max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
  903. if (ctrl->max_hw_sectors) {
  904. ctrl->max_hw_sectors = min(max_hw_sectors,
  905. ctrl->max_hw_sectors);
  906. } else {
  907. ctrl->max_hw_sectors = max_hw_sectors;
  908. }
  909. }
  910. nvme_set_queue_limits(ctrl, ctrl->admin_q);
  911. kfree(id);
  912. return 0;
  913. }
  914. EXPORT_SYMBOL_GPL(nvme_init_identify);
  915. static int nvme_dev_open(struct inode *inode, struct file *file)
  916. {
  917. struct nvme_ctrl *ctrl;
  918. int instance = iminor(inode);
  919. int ret = -ENODEV;
  920. spin_lock(&dev_list_lock);
  921. list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
  922. if (ctrl->instance != instance)
  923. continue;
  924. if (!ctrl->admin_q) {
  925. ret = -EWOULDBLOCK;
  926. break;
  927. }
  928. if (!kref_get_unless_zero(&ctrl->kref))
  929. break;
  930. file->private_data = ctrl;
  931. ret = 0;
  932. break;
  933. }
  934. spin_unlock(&dev_list_lock);
  935. return ret;
  936. }
  937. static int nvme_dev_release(struct inode *inode, struct file *file)
  938. {
  939. nvme_put_ctrl(file->private_data);
  940. return 0;
  941. }
  942. static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
  943. {
  944. struct nvme_ns *ns;
  945. int ret;
  946. mutex_lock(&ctrl->namespaces_mutex);
  947. if (list_empty(&ctrl->namespaces)) {
  948. ret = -ENOTTY;
  949. goto out_unlock;
  950. }
  951. ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
  952. if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
  953. dev_warn(ctrl->device,
  954. "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
  955. ret = -EINVAL;
  956. goto out_unlock;
  957. }
  958. dev_warn(ctrl->device,
  959. "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
  960. kref_get(&ns->kref);
  961. mutex_unlock(&ctrl->namespaces_mutex);
  962. ret = nvme_user_cmd(ctrl, ns, argp);
  963. nvme_put_ns(ns);
  964. return ret;
  965. out_unlock:
  966. mutex_unlock(&ctrl->namespaces_mutex);
  967. return ret;
  968. }
  969. static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
  970. unsigned long arg)
  971. {
  972. struct nvme_ctrl *ctrl = file->private_data;
  973. void __user *argp = (void __user *)arg;
  974. switch (cmd) {
  975. case NVME_IOCTL_ADMIN_CMD:
  976. return nvme_user_cmd(ctrl, NULL, argp);
  977. case NVME_IOCTL_IO_CMD:
  978. return nvme_dev_user_cmd(ctrl, argp);
  979. case NVME_IOCTL_RESET:
  980. dev_warn(ctrl->device, "resetting controller\n");
  981. return ctrl->ops->reset_ctrl(ctrl);
  982. case NVME_IOCTL_SUBSYS_RESET:
  983. return nvme_reset_subsystem(ctrl);
  984. default:
  985. return -ENOTTY;
  986. }
  987. }
  988. static const struct file_operations nvme_dev_fops = {
  989. .owner = THIS_MODULE,
  990. .open = nvme_dev_open,
  991. .release = nvme_dev_release,
  992. .unlocked_ioctl = nvme_dev_ioctl,
  993. .compat_ioctl = nvme_dev_ioctl,
  994. };
  995. static ssize_t nvme_sysfs_reset(struct device *dev,
  996. struct device_attribute *attr, const char *buf,
  997. size_t count)
  998. {
  999. struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
  1000. int ret;
  1001. ret = ctrl->ops->reset_ctrl(ctrl);
  1002. if (ret < 0)
  1003. return ret;
  1004. return count;
  1005. }
  1006. static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
  1007. static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
  1008. char *buf)
  1009. {
  1010. struct nvme_ns *ns = dev_to_disk(dev)->private_data;
  1011. struct nvme_ctrl *ctrl = ns->ctrl;
  1012. int serial_len = sizeof(ctrl->serial);
  1013. int model_len = sizeof(ctrl->model);
  1014. if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
  1015. return sprintf(buf, "eui.%16phN\n", ns->uuid);
  1016. if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
  1017. return sprintf(buf, "eui.%8phN\n", ns->eui);
  1018. while (ctrl->serial[serial_len - 1] == ' ')
  1019. serial_len--;
  1020. while (ctrl->model[model_len - 1] == ' ')
  1021. model_len--;
  1022. return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
  1023. serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
  1024. }
  1025. static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
  1026. static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
  1027. char *buf)
  1028. {
  1029. struct nvme_ns *ns = dev_to_disk(dev)->private_data;
  1030. return sprintf(buf, "%pU\n", ns->uuid);
  1031. }
  1032. static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
  1033. static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
  1034. char *buf)
  1035. {
  1036. struct nvme_ns *ns = dev_to_disk(dev)->private_data;
  1037. return sprintf(buf, "%8phd\n", ns->eui);
  1038. }
  1039. static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
  1040. static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
  1041. char *buf)
  1042. {
  1043. struct nvme_ns *ns = dev_to_disk(dev)->private_data;
  1044. return sprintf(buf, "%d\n", ns->ns_id);
  1045. }
  1046. static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
  1047. static struct attribute *nvme_ns_attrs[] = {
  1048. &dev_attr_wwid.attr,
  1049. &dev_attr_uuid.attr,
  1050. &dev_attr_eui.attr,
  1051. &dev_attr_nsid.attr,
  1052. NULL,
  1053. };
  1054. static umode_t nvme_attrs_are_visible(struct kobject *kobj,
  1055. struct attribute *a, int n)
  1056. {
  1057. struct device *dev = container_of(kobj, struct device, kobj);
  1058. struct nvme_ns *ns = dev_to_disk(dev)->private_data;
  1059. if (a == &dev_attr_uuid.attr) {
  1060. if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
  1061. return 0;
  1062. }
  1063. if (a == &dev_attr_eui.attr) {
  1064. if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
  1065. return 0;
  1066. }
  1067. return a->mode;
  1068. }
  1069. static const struct attribute_group nvme_ns_attr_group = {
  1070. .attrs = nvme_ns_attrs,
  1071. .is_visible = nvme_attrs_are_visible,
  1072. };
  1073. #define nvme_show_str_function(field) \
  1074. static ssize_t field##_show(struct device *dev, \
  1075. struct device_attribute *attr, char *buf) \
  1076. { \
  1077. struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
  1078. return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
  1079. } \
  1080. static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
  1081. #define nvme_show_int_function(field) \
  1082. static ssize_t field##_show(struct device *dev, \
  1083. struct device_attribute *attr, char *buf) \
  1084. { \
  1085. struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
  1086. return sprintf(buf, "%d\n", ctrl->field); \
  1087. } \
  1088. static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
  1089. nvme_show_str_function(model);
  1090. nvme_show_str_function(serial);
  1091. nvme_show_str_function(firmware_rev);
  1092. nvme_show_int_function(cntlid);
  1093. static struct attribute *nvme_dev_attrs[] = {
  1094. &dev_attr_reset_controller.attr,
  1095. &dev_attr_model.attr,
  1096. &dev_attr_serial.attr,
  1097. &dev_attr_firmware_rev.attr,
  1098. &dev_attr_cntlid.attr,
  1099. NULL
  1100. };
  1101. static struct attribute_group nvme_dev_attrs_group = {
  1102. .attrs = nvme_dev_attrs,
  1103. };
  1104. static const struct attribute_group *nvme_dev_attr_groups[] = {
  1105. &nvme_dev_attrs_group,
  1106. NULL,
  1107. };
  1108. static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
  1109. {
  1110. struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
  1111. struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
  1112. return nsa->ns_id - nsb->ns_id;
  1113. }
  1114. static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
  1115. {
  1116. struct nvme_ns *ns;
  1117. lockdep_assert_held(&ctrl->namespaces_mutex);
  1118. list_for_each_entry(ns, &ctrl->namespaces, list) {
  1119. if (ns->ns_id == nsid)
  1120. return ns;
  1121. if (ns->ns_id > nsid)
  1122. break;
  1123. }
  1124. return NULL;
  1125. }
  1126. static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
  1127. {
  1128. struct nvme_ns *ns;
  1129. struct gendisk *disk;
  1130. int node = dev_to_node(ctrl->dev);
  1131. lockdep_assert_held(&ctrl->namespaces_mutex);
  1132. ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
  1133. if (!ns)
  1134. return;
  1135. ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
  1136. if (ns->instance < 0)
  1137. goto out_free_ns;
  1138. ns->queue = blk_mq_init_queue(ctrl->tagset);
  1139. if (IS_ERR(ns->queue))
  1140. goto out_release_instance;
  1141. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
  1142. ns->queue->queuedata = ns;
  1143. ns->ctrl = ctrl;
  1144. disk = alloc_disk_node(0, node);
  1145. if (!disk)
  1146. goto out_free_queue;
  1147. kref_init(&ns->kref);
  1148. ns->ns_id = nsid;
  1149. ns->disk = disk;
  1150. ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
  1151. blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
  1152. nvme_set_queue_limits(ctrl, ns->queue);
  1153. disk->major = nvme_major;
  1154. disk->first_minor = 0;
  1155. disk->fops = &nvme_fops;
  1156. disk->private_data = ns;
  1157. disk->queue = ns->queue;
  1158. disk->driverfs_dev = ctrl->device;
  1159. disk->flags = GENHD_FL_EXT_DEVT;
  1160. sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
  1161. if (nvme_revalidate_disk(ns->disk))
  1162. goto out_free_disk;
  1163. list_add_tail(&ns->list, &ctrl->namespaces);
  1164. kref_get(&ctrl->kref);
  1165. if (ns->type == NVME_NS_LIGHTNVM)
  1166. return;
  1167. add_disk(ns->disk);
  1168. if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
  1169. &nvme_ns_attr_group))
  1170. pr_warn("%s: failed to create sysfs group for identification\n",
  1171. ns->disk->disk_name);
  1172. return;
  1173. out_free_disk:
  1174. kfree(disk);
  1175. out_free_queue:
  1176. blk_cleanup_queue(ns->queue);
  1177. out_release_instance:
  1178. ida_simple_remove(&ctrl->ns_ida, ns->instance);
  1179. out_free_ns:
  1180. kfree(ns);
  1181. }
  1182. static void nvme_ns_remove(struct nvme_ns *ns)
  1183. {
  1184. if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
  1185. return;
  1186. if (ns->disk->flags & GENHD_FL_UP) {
  1187. if (blk_get_integrity(ns->disk))
  1188. blk_integrity_unregister(ns->disk);
  1189. sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
  1190. &nvme_ns_attr_group);
  1191. del_gendisk(ns->disk);
  1192. blk_mq_abort_requeue_list(ns->queue);
  1193. blk_cleanup_queue(ns->queue);
  1194. }
  1195. mutex_lock(&ns->ctrl->namespaces_mutex);
  1196. list_del_init(&ns->list);
  1197. mutex_unlock(&ns->ctrl->namespaces_mutex);
  1198. nvme_put_ns(ns);
  1199. }
  1200. static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
  1201. {
  1202. struct nvme_ns *ns;
  1203. ns = nvme_find_ns(ctrl, nsid);
  1204. if (ns) {
  1205. if (revalidate_disk(ns->disk))
  1206. nvme_ns_remove(ns);
  1207. } else
  1208. nvme_alloc_ns(ctrl, nsid);
  1209. }
  1210. static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
  1211. {
  1212. struct nvme_ns *ns;
  1213. __le32 *ns_list;
  1214. unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
  1215. int ret = 0;
  1216. ns_list = kzalloc(0x1000, GFP_KERNEL);
  1217. if (!ns_list)
  1218. return -ENOMEM;
  1219. for (i = 0; i < num_lists; i++) {
  1220. ret = nvme_identify_ns_list(ctrl, prev, ns_list);
  1221. if (ret)
  1222. goto out;
  1223. for (j = 0; j < min(nn, 1024U); j++) {
  1224. nsid = le32_to_cpu(ns_list[j]);
  1225. if (!nsid)
  1226. goto out;
  1227. nvme_validate_ns(ctrl, nsid);
  1228. while (++prev < nsid) {
  1229. ns = nvme_find_ns(ctrl, prev);
  1230. if (ns)
  1231. nvme_ns_remove(ns);
  1232. }
  1233. }
  1234. nn -= j;
  1235. }
  1236. out:
  1237. kfree(ns_list);
  1238. return ret;
  1239. }
  1240. static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
  1241. {
  1242. struct nvme_ns *ns, *next;
  1243. unsigned i;
  1244. lockdep_assert_held(&ctrl->namespaces_mutex);
  1245. for (i = 1; i <= nn; i++)
  1246. nvme_validate_ns(ctrl, i);
  1247. list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
  1248. if (ns->ns_id > nn)
  1249. nvme_ns_remove(ns);
  1250. }
  1251. }
  1252. void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
  1253. {
  1254. struct nvme_id_ctrl *id;
  1255. unsigned nn;
  1256. if (nvme_identify_ctrl(ctrl, &id))
  1257. return;
  1258. mutex_lock(&ctrl->namespaces_mutex);
  1259. nn = le32_to_cpu(id->nn);
  1260. if (ctrl->vs >= NVME_VS(1, 1) &&
  1261. !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
  1262. if (!nvme_scan_ns_list(ctrl, nn))
  1263. goto done;
  1264. }
  1265. __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
  1266. done:
  1267. list_sort(NULL, &ctrl->namespaces, ns_cmp);
  1268. mutex_unlock(&ctrl->namespaces_mutex);
  1269. kfree(id);
  1270. }
  1271. EXPORT_SYMBOL_GPL(nvme_scan_namespaces);
  1272. void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
  1273. {
  1274. struct nvme_ns *ns, *next;
  1275. list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
  1276. nvme_ns_remove(ns);
  1277. }
  1278. EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
  1279. static DEFINE_IDA(nvme_instance_ida);
  1280. static int nvme_set_instance(struct nvme_ctrl *ctrl)
  1281. {
  1282. int instance, error;
  1283. do {
  1284. if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
  1285. return -ENODEV;
  1286. spin_lock(&dev_list_lock);
  1287. error = ida_get_new(&nvme_instance_ida, &instance);
  1288. spin_unlock(&dev_list_lock);
  1289. } while (error == -EAGAIN);
  1290. if (error)
  1291. return -ENODEV;
  1292. ctrl->instance = instance;
  1293. return 0;
  1294. }
  1295. static void nvme_release_instance(struct nvme_ctrl *ctrl)
  1296. {
  1297. spin_lock(&dev_list_lock);
  1298. ida_remove(&nvme_instance_ida, ctrl->instance);
  1299. spin_unlock(&dev_list_lock);
  1300. }
  1301. void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
  1302. {
  1303. device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
  1304. spin_lock(&dev_list_lock);
  1305. list_del(&ctrl->node);
  1306. spin_unlock(&dev_list_lock);
  1307. }
  1308. EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
  1309. static void nvme_free_ctrl(struct kref *kref)
  1310. {
  1311. struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
  1312. put_device(ctrl->device);
  1313. nvme_release_instance(ctrl);
  1314. ida_destroy(&ctrl->ns_ida);
  1315. ctrl->ops->free_ctrl(ctrl);
  1316. }
  1317. void nvme_put_ctrl(struct nvme_ctrl *ctrl)
  1318. {
  1319. kref_put(&ctrl->kref, nvme_free_ctrl);
  1320. }
  1321. EXPORT_SYMBOL_GPL(nvme_put_ctrl);
  1322. /*
  1323. * Initialize a NVMe controller structures. This needs to be called during
  1324. * earliest initialization so that we have the initialized structured around
  1325. * during probing.
  1326. */
  1327. int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
  1328. const struct nvme_ctrl_ops *ops, unsigned long quirks)
  1329. {
  1330. int ret;
  1331. INIT_LIST_HEAD(&ctrl->namespaces);
  1332. mutex_init(&ctrl->namespaces_mutex);
  1333. kref_init(&ctrl->kref);
  1334. ctrl->dev = dev;
  1335. ctrl->ops = ops;
  1336. ctrl->quirks = quirks;
  1337. ret = nvme_set_instance(ctrl);
  1338. if (ret)
  1339. goto out;
  1340. ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
  1341. MKDEV(nvme_char_major, ctrl->instance),
  1342. ctrl, nvme_dev_attr_groups,
  1343. "nvme%d", ctrl->instance);
  1344. if (IS_ERR(ctrl->device)) {
  1345. ret = PTR_ERR(ctrl->device);
  1346. goto out_release_instance;
  1347. }
  1348. get_device(ctrl->device);
  1349. ida_init(&ctrl->ns_ida);
  1350. spin_lock(&dev_list_lock);
  1351. list_add_tail(&ctrl->node, &nvme_ctrl_list);
  1352. spin_unlock(&dev_list_lock);
  1353. return 0;
  1354. out_release_instance:
  1355. nvme_release_instance(ctrl);
  1356. out:
  1357. return ret;
  1358. }
  1359. EXPORT_SYMBOL_GPL(nvme_init_ctrl);
  1360. /**
  1361. * nvme_kill_queues(): Ends all namespace queues
  1362. * @ctrl: the dead controller that needs to end
  1363. *
  1364. * Call this function when the driver determines it is unable to get the
  1365. * controller in a state capable of servicing IO.
  1366. */
  1367. void nvme_kill_queues(struct nvme_ctrl *ctrl)
  1368. {
  1369. struct nvme_ns *ns;
  1370. mutex_lock(&ctrl->namespaces_mutex);
  1371. list_for_each_entry(ns, &ctrl->namespaces, list) {
  1372. if (!kref_get_unless_zero(&ns->kref))
  1373. continue;
  1374. /*
  1375. * Revalidating a dead namespace sets capacity to 0. This will
  1376. * end buffered writers dirtying pages that can't be synced.
  1377. */
  1378. if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
  1379. revalidate_disk(ns->disk);
  1380. blk_set_queue_dying(ns->queue);
  1381. blk_mq_abort_requeue_list(ns->queue);
  1382. blk_mq_start_stopped_hw_queues(ns->queue, true);
  1383. nvme_put_ns(ns);
  1384. }
  1385. mutex_unlock(&ctrl->namespaces_mutex);
  1386. }
  1387. EXPORT_SYMBOL_GPL(nvme_kill_queues);
  1388. void nvme_stop_queues(struct nvme_ctrl *ctrl)
  1389. {
  1390. struct nvme_ns *ns;
  1391. mutex_lock(&ctrl->namespaces_mutex);
  1392. list_for_each_entry(ns, &ctrl->namespaces, list) {
  1393. spin_lock_irq(ns->queue->queue_lock);
  1394. queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
  1395. spin_unlock_irq(ns->queue->queue_lock);
  1396. blk_mq_cancel_requeue_work(ns->queue);
  1397. blk_mq_stop_hw_queues(ns->queue);
  1398. }
  1399. mutex_unlock(&ctrl->namespaces_mutex);
  1400. }
  1401. EXPORT_SYMBOL_GPL(nvme_stop_queues);
  1402. void nvme_start_queues(struct nvme_ctrl *ctrl)
  1403. {
  1404. struct nvme_ns *ns;
  1405. mutex_lock(&ctrl->namespaces_mutex);
  1406. list_for_each_entry(ns, &ctrl->namespaces, list) {
  1407. queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
  1408. blk_mq_start_stopped_hw_queues(ns->queue, true);
  1409. blk_mq_kick_requeue_list(ns->queue);
  1410. }
  1411. mutex_unlock(&ctrl->namespaces_mutex);
  1412. }
  1413. EXPORT_SYMBOL_GPL(nvme_start_queues);
  1414. int __init nvme_core_init(void)
  1415. {
  1416. int result;
  1417. result = register_blkdev(nvme_major, "nvme");
  1418. if (result < 0)
  1419. return result;
  1420. else if (result > 0)
  1421. nvme_major = result;
  1422. result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
  1423. &nvme_dev_fops);
  1424. if (result < 0)
  1425. goto unregister_blkdev;
  1426. else if (result > 0)
  1427. nvme_char_major = result;
  1428. nvme_class = class_create(THIS_MODULE, "nvme");
  1429. if (IS_ERR(nvme_class)) {
  1430. result = PTR_ERR(nvme_class);
  1431. goto unregister_chrdev;
  1432. }
  1433. return 0;
  1434. unregister_chrdev:
  1435. __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
  1436. unregister_blkdev:
  1437. unregister_blkdev(nvme_major, "nvme");
  1438. return result;
  1439. }
  1440. void nvme_core_exit(void)
  1441. {
  1442. unregister_blkdev(nvme_major, "nvme");
  1443. class_destroy(nvme_class);
  1444. __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
  1445. }
  1446. MODULE_LICENSE("GPL");
  1447. MODULE_VERSION("1.0");
  1448. module_init(nvme_core_init);
  1449. module_exit(nvme_core_exit);