pmem.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. /*
  2. * Persistent Memory Driver
  3. *
  4. * Copyright (c) 2014-2015, Intel Corporation.
  5. * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
  6. * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. */
  17. #include <asm/cacheflush.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/hdreg.h>
  20. #include <linux/init.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/module.h>
  23. #include <linux/moduleparam.h>
  24. #include <linux/badblocks.h>
  25. #include <linux/memremap.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/pfn_t.h>
  28. #include <linux/slab.h>
  29. #include <linux/pmem.h>
  30. #include <linux/nd.h>
  31. #include "pfn.h"
  32. #include "nd.h"
  33. struct pmem_device {
  34. struct request_queue *pmem_queue;
  35. struct gendisk *pmem_disk;
  36. struct nd_namespace_common *ndns;
  37. /* One contiguous memory region per device */
  38. phys_addr_t phys_addr;
  39. /* when non-zero this device is hosting a 'pfn' instance */
  40. phys_addr_t data_offset;
  41. u64 pfn_flags;
  42. void __pmem *virt_addr;
  43. /* immutable base size of the namespace */
  44. size_t size;
  45. /* trim size when namespace capacity has been section aligned */
  46. u32 pfn_pad;
  47. struct badblocks bb;
  48. };
  49. static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
  50. {
  51. if (bb->count) {
  52. sector_t first_bad;
  53. int num_bad;
  54. return !!badblocks_check(bb, sector, len / 512, &first_bad,
  55. &num_bad);
  56. }
  57. return false;
  58. }
  59. static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
  60. unsigned int len)
  61. {
  62. struct device *dev = disk_to_dev(pmem->pmem_disk);
  63. sector_t sector;
  64. long cleared;
  65. sector = (offset - pmem->data_offset) / 512;
  66. cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
  67. if (cleared > 0 && cleared / 512) {
  68. dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
  69. __func__, (unsigned long long) sector,
  70. cleared / 512, cleared / 512 > 1 ? "s" : "");
  71. badblocks_clear(&pmem->bb, sector, cleared / 512);
  72. }
  73. invalidate_pmem(pmem->virt_addr + offset, len);
  74. }
  75. static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
  76. unsigned int len, unsigned int off, int rw,
  77. sector_t sector)
  78. {
  79. int rc = 0;
  80. bool bad_pmem = false;
  81. void *mem = kmap_atomic(page);
  82. phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
  83. void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
  84. if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
  85. bad_pmem = true;
  86. if (rw == READ) {
  87. if (unlikely(bad_pmem))
  88. rc = -EIO;
  89. else {
  90. rc = memcpy_from_pmem(mem + off, pmem_addr, len);
  91. flush_dcache_page(page);
  92. }
  93. } else {
  94. flush_dcache_page(page);
  95. memcpy_to_pmem(pmem_addr, mem + off, len);
  96. if (unlikely(bad_pmem)) {
  97. pmem_clear_poison(pmem, pmem_off, len);
  98. memcpy_to_pmem(pmem_addr, mem + off, len);
  99. }
  100. }
  101. kunmap_atomic(mem);
  102. return rc;
  103. }
  104. static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
  105. {
  106. int rc = 0;
  107. bool do_acct;
  108. unsigned long start;
  109. struct bio_vec bvec;
  110. struct bvec_iter iter;
  111. struct block_device *bdev = bio->bi_bdev;
  112. struct pmem_device *pmem = bdev->bd_disk->private_data;
  113. do_acct = nd_iostat_start(bio, &start);
  114. bio_for_each_segment(bvec, bio, iter) {
  115. rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
  116. bvec.bv_offset, bio_data_dir(bio),
  117. iter.bi_sector);
  118. if (rc) {
  119. bio->bi_error = rc;
  120. break;
  121. }
  122. }
  123. if (do_acct)
  124. nd_iostat_end(bio, start);
  125. if (bio_data_dir(bio))
  126. wmb_pmem();
  127. bio_endio(bio);
  128. return BLK_QC_T_NONE;
  129. }
  130. static int pmem_rw_page(struct block_device *bdev, sector_t sector,
  131. struct page *page, int rw)
  132. {
  133. struct pmem_device *pmem = bdev->bd_disk->private_data;
  134. int rc;
  135. rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
  136. if (rw & WRITE)
  137. wmb_pmem();
  138. /*
  139. * The ->rw_page interface is subtle and tricky. The core
  140. * retries on any error, so we can only invoke page_endio() in
  141. * the successful completion case. Otherwise, we'll see crashes
  142. * caused by double completion.
  143. */
  144. if (rc == 0)
  145. page_endio(page, rw & WRITE, 0);
  146. return rc;
  147. }
  148. static long pmem_direct_access(struct block_device *bdev, sector_t sector,
  149. void __pmem **kaddr, pfn_t *pfn)
  150. {
  151. struct pmem_device *pmem = bdev->bd_disk->private_data;
  152. resource_size_t offset = sector * 512 + pmem->data_offset;
  153. *kaddr = pmem->virt_addr + offset;
  154. *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
  155. return pmem->size - pmem->pfn_pad - offset;
  156. }
  157. static const struct block_device_operations pmem_fops = {
  158. .owner = THIS_MODULE,
  159. .rw_page = pmem_rw_page,
  160. .direct_access = pmem_direct_access,
  161. .revalidate_disk = nvdimm_revalidate_disk,
  162. };
  163. static struct pmem_device *pmem_alloc(struct device *dev,
  164. struct resource *res, int id)
  165. {
  166. struct pmem_device *pmem;
  167. struct request_queue *q;
  168. pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
  169. if (!pmem)
  170. return ERR_PTR(-ENOMEM);
  171. pmem->phys_addr = res->start;
  172. pmem->size = resource_size(res);
  173. if (!arch_has_wmb_pmem())
  174. dev_warn(dev, "unable to guarantee persistence of writes\n");
  175. if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
  176. dev_name(dev))) {
  177. dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
  178. &pmem->phys_addr, pmem->size);
  179. return ERR_PTR(-EBUSY);
  180. }
  181. q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
  182. if (!q)
  183. return ERR_PTR(-ENOMEM);
  184. pmem->pfn_flags = PFN_DEV;
  185. if (pmem_should_map_pages(dev)) {
  186. pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
  187. &q->q_usage_counter, NULL);
  188. pmem->pfn_flags |= PFN_MAP;
  189. } else
  190. pmem->virt_addr = (void __pmem *) devm_memremap(dev,
  191. pmem->phys_addr, pmem->size,
  192. ARCH_MEMREMAP_PMEM);
  193. if (IS_ERR(pmem->virt_addr)) {
  194. blk_cleanup_queue(q);
  195. return (void __force *) pmem->virt_addr;
  196. }
  197. pmem->pmem_queue = q;
  198. return pmem;
  199. }
  200. static void pmem_detach_disk(struct pmem_device *pmem)
  201. {
  202. if (!pmem->pmem_disk)
  203. return;
  204. del_gendisk(pmem->pmem_disk);
  205. put_disk(pmem->pmem_disk);
  206. blk_cleanup_queue(pmem->pmem_queue);
  207. }
  208. static int pmem_attach_disk(struct device *dev,
  209. struct nd_namespace_common *ndns, struct pmem_device *pmem)
  210. {
  211. struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
  212. int nid = dev_to_node(dev);
  213. struct resource bb_res;
  214. struct gendisk *disk;
  215. blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
  216. blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
  217. blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
  218. blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
  219. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
  220. disk = alloc_disk_node(0, nid);
  221. if (!disk) {
  222. blk_cleanup_queue(pmem->pmem_queue);
  223. return -ENOMEM;
  224. }
  225. disk->fops = &pmem_fops;
  226. disk->private_data = pmem;
  227. disk->queue = pmem->pmem_queue;
  228. disk->flags = GENHD_FL_EXT_DEVT;
  229. nvdimm_namespace_disk_name(ndns, disk->disk_name);
  230. disk->driverfs_dev = dev;
  231. set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
  232. / 512);
  233. pmem->pmem_disk = disk;
  234. devm_exit_badblocks(dev, &pmem->bb);
  235. if (devm_init_badblocks(dev, &pmem->bb))
  236. return -ENOMEM;
  237. bb_res.start = nsio->res.start + pmem->data_offset;
  238. bb_res.end = nsio->res.end;
  239. if (is_nd_pfn(dev)) {
  240. struct nd_pfn *nd_pfn = to_nd_pfn(dev);
  241. struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
  242. bb_res.start += __le32_to_cpu(pfn_sb->start_pad);
  243. bb_res.end -= __le32_to_cpu(pfn_sb->end_trunc);
  244. }
  245. nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb,
  246. &bb_res);
  247. disk->bb = &pmem->bb;
  248. add_disk(disk);
  249. revalidate_disk(disk);
  250. return 0;
  251. }
  252. static int pmem_rw_bytes(struct nd_namespace_common *ndns,
  253. resource_size_t offset, void *buf, size_t size, int rw)
  254. {
  255. struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
  256. if (unlikely(offset + size > pmem->size)) {
  257. dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
  258. return -EFAULT;
  259. }
  260. if (rw == READ) {
  261. unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
  262. if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
  263. return -EIO;
  264. return memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
  265. } else {
  266. memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
  267. wmb_pmem();
  268. }
  269. return 0;
  270. }
  271. static int nd_pfn_init(struct nd_pfn *nd_pfn)
  272. {
  273. struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
  274. struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
  275. struct nd_namespace_common *ndns = nd_pfn->ndns;
  276. u32 start_pad = 0, end_trunc = 0;
  277. resource_size_t start, size;
  278. struct nd_namespace_io *nsio;
  279. struct nd_region *nd_region;
  280. unsigned long npfns;
  281. phys_addr_t offset;
  282. u64 checksum;
  283. int rc;
  284. if (!pfn_sb)
  285. return -ENOMEM;
  286. nd_pfn->pfn_sb = pfn_sb;
  287. rc = nd_pfn_validate(nd_pfn);
  288. if (rc == -ENODEV)
  289. /* no info block, do init */;
  290. else
  291. return rc;
  292. nd_region = to_nd_region(nd_pfn->dev.parent);
  293. if (nd_region->ro) {
  294. dev_info(&nd_pfn->dev,
  295. "%s is read-only, unable to init metadata\n",
  296. dev_name(&nd_region->dev));
  297. goto err;
  298. }
  299. memset(pfn_sb, 0, sizeof(*pfn_sb));
  300. /*
  301. * Check if pmem collides with 'System RAM' when section aligned and
  302. * trim it accordingly
  303. */
  304. nsio = to_nd_namespace_io(&ndns->dev);
  305. start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
  306. size = resource_size(&nsio->res);
  307. if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
  308. IORES_DESC_NONE) == REGION_MIXED) {
  309. start = nsio->res.start;
  310. start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
  311. }
  312. start = nsio->res.start;
  313. size = PHYS_SECTION_ALIGN_UP(start + size) - start;
  314. if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
  315. IORES_DESC_NONE) == REGION_MIXED) {
  316. size = resource_size(&nsio->res);
  317. end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
  318. }
  319. if (start_pad + end_trunc)
  320. dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
  321. dev_name(&ndns->dev), start_pad + end_trunc);
  322. /*
  323. * Note, we use 64 here for the standard size of struct page,
  324. * debugging options may cause it to be larger in which case the
  325. * implementation will limit the pfns advertised through
  326. * ->direct_access() to those that are included in the memmap.
  327. */
  328. start += start_pad;
  329. npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
  330. if (nd_pfn->mode == PFN_MODE_PMEM)
  331. offset = ALIGN(start + SZ_8K + 64 * npfns, nd_pfn->align)
  332. - start;
  333. else if (nd_pfn->mode == PFN_MODE_RAM)
  334. offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
  335. else
  336. goto err;
  337. if (offset + start_pad + end_trunc >= pmem->size) {
  338. dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
  339. dev_name(&ndns->dev));
  340. goto err;
  341. }
  342. npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
  343. pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
  344. pfn_sb->dataoff = cpu_to_le64(offset);
  345. pfn_sb->npfns = cpu_to_le64(npfns);
  346. memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
  347. memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
  348. memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
  349. pfn_sb->version_major = cpu_to_le16(1);
  350. pfn_sb->version_minor = cpu_to_le16(1);
  351. pfn_sb->start_pad = cpu_to_le32(start_pad);
  352. pfn_sb->end_trunc = cpu_to_le32(end_trunc);
  353. checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
  354. pfn_sb->checksum = cpu_to_le64(checksum);
  355. rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
  356. if (rc)
  357. goto err;
  358. return 0;
  359. err:
  360. nd_pfn->pfn_sb = NULL;
  361. kfree(pfn_sb);
  362. return -ENXIO;
  363. }
  364. static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
  365. {
  366. struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
  367. struct pmem_device *pmem;
  368. /* free pmem disk */
  369. pmem = dev_get_drvdata(&nd_pfn->dev);
  370. pmem_detach_disk(pmem);
  371. /* release nd_pfn resources */
  372. kfree(nd_pfn->pfn_sb);
  373. nd_pfn->pfn_sb = NULL;
  374. return 0;
  375. }
  376. /*
  377. * We hotplug memory at section granularity, pad the reserved area from
  378. * the previous section base to the namespace base address.
  379. */
  380. static unsigned long init_altmap_base(resource_size_t base)
  381. {
  382. unsigned long base_pfn = PHYS_PFN(base);
  383. return PFN_SECTION_ALIGN_DOWN(base_pfn);
  384. }
  385. static unsigned long init_altmap_reserve(resource_size_t base)
  386. {
  387. unsigned long reserve = PHYS_PFN(SZ_8K);
  388. unsigned long base_pfn = PHYS_PFN(base);
  389. reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
  390. return reserve;
  391. }
  392. static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
  393. {
  394. int rc;
  395. struct resource res;
  396. struct request_queue *q;
  397. struct pmem_device *pmem;
  398. struct vmem_altmap *altmap;
  399. struct device *dev = &nd_pfn->dev;
  400. struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
  401. struct nd_namespace_common *ndns = nd_pfn->ndns;
  402. u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
  403. u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
  404. struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
  405. resource_size_t base = nsio->res.start + start_pad;
  406. struct vmem_altmap __altmap = {
  407. .base_pfn = init_altmap_base(base),
  408. .reserve = init_altmap_reserve(base),
  409. };
  410. pmem = dev_get_drvdata(dev);
  411. pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
  412. pmem->pfn_pad = start_pad + end_trunc;
  413. nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
  414. if (nd_pfn->mode == PFN_MODE_RAM) {
  415. if (pmem->data_offset < SZ_8K)
  416. return -EINVAL;
  417. nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
  418. altmap = NULL;
  419. } else if (nd_pfn->mode == PFN_MODE_PMEM) {
  420. nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
  421. / PAGE_SIZE;
  422. if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
  423. dev_info(&nd_pfn->dev,
  424. "number of pfns truncated from %lld to %ld\n",
  425. le64_to_cpu(nd_pfn->pfn_sb->npfns),
  426. nd_pfn->npfns);
  427. altmap = & __altmap;
  428. altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
  429. altmap->alloc = 0;
  430. } else {
  431. rc = -ENXIO;
  432. goto err;
  433. }
  434. /* establish pfn range for lookup, and switch to direct map */
  435. q = pmem->pmem_queue;
  436. memcpy(&res, &nsio->res, sizeof(res));
  437. res.start += start_pad;
  438. res.end -= end_trunc;
  439. devm_memunmap(dev, (void __force *) pmem->virt_addr);
  440. pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
  441. &q->q_usage_counter, altmap);
  442. pmem->pfn_flags |= PFN_MAP;
  443. if (IS_ERR(pmem->virt_addr)) {
  444. rc = PTR_ERR(pmem->virt_addr);
  445. goto err;
  446. }
  447. /* attach pmem disk in "pfn-mode" */
  448. rc = pmem_attach_disk(dev, ndns, pmem);
  449. if (rc)
  450. goto err;
  451. return rc;
  452. err:
  453. nvdimm_namespace_detach_pfn(ndns);
  454. return rc;
  455. }
  456. static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
  457. {
  458. struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
  459. int rc;
  460. if (!nd_pfn->uuid || !nd_pfn->ndns)
  461. return -ENODEV;
  462. rc = nd_pfn_init(nd_pfn);
  463. if (rc)
  464. return rc;
  465. /* we need a valid pfn_sb before we can init a vmem_altmap */
  466. return __nvdimm_namespace_attach_pfn(nd_pfn);
  467. }
  468. static int nd_pmem_probe(struct device *dev)
  469. {
  470. struct nd_region *nd_region = to_nd_region(dev->parent);
  471. struct nd_namespace_common *ndns;
  472. struct nd_namespace_io *nsio;
  473. struct pmem_device *pmem;
  474. ndns = nvdimm_namespace_common_probe(dev);
  475. if (IS_ERR(ndns))
  476. return PTR_ERR(ndns);
  477. nsio = to_nd_namespace_io(&ndns->dev);
  478. pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
  479. if (IS_ERR(pmem))
  480. return PTR_ERR(pmem);
  481. pmem->ndns = ndns;
  482. dev_set_drvdata(dev, pmem);
  483. ndns->rw_bytes = pmem_rw_bytes;
  484. if (devm_init_badblocks(dev, &pmem->bb))
  485. return -ENOMEM;
  486. nvdimm_badblocks_populate(nd_region, &pmem->bb, &nsio->res);
  487. if (is_nd_btt(dev)) {
  488. /* btt allocates its own request_queue */
  489. blk_cleanup_queue(pmem->pmem_queue);
  490. pmem->pmem_queue = NULL;
  491. return nvdimm_namespace_attach_btt(ndns);
  492. }
  493. if (is_nd_pfn(dev))
  494. return nvdimm_namespace_attach_pfn(ndns);
  495. if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
  496. /*
  497. * We'll come back as either btt-pmem, or pfn-pmem, so
  498. * drop the queue allocation for now.
  499. */
  500. blk_cleanup_queue(pmem->pmem_queue);
  501. return -ENXIO;
  502. }
  503. return pmem_attach_disk(dev, ndns, pmem);
  504. }
  505. static int nd_pmem_remove(struct device *dev)
  506. {
  507. struct pmem_device *pmem = dev_get_drvdata(dev);
  508. if (is_nd_btt(dev))
  509. nvdimm_namespace_detach_btt(pmem->ndns);
  510. else if (is_nd_pfn(dev))
  511. nvdimm_namespace_detach_pfn(pmem->ndns);
  512. else
  513. pmem_detach_disk(pmem);
  514. return 0;
  515. }
  516. static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
  517. {
  518. struct pmem_device *pmem = dev_get_drvdata(dev);
  519. struct nd_namespace_common *ndns = pmem->ndns;
  520. struct nd_region *nd_region = to_nd_region(dev->parent);
  521. struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
  522. struct resource res = {
  523. .start = nsio->res.start + pmem->data_offset,
  524. .end = nsio->res.end,
  525. };
  526. if (event != NVDIMM_REVALIDATE_POISON)
  527. return;
  528. if (is_nd_pfn(dev)) {
  529. struct nd_pfn *nd_pfn = to_nd_pfn(dev);
  530. struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
  531. res.start += __le32_to_cpu(pfn_sb->start_pad);
  532. res.end -= __le32_to_cpu(pfn_sb->end_trunc);
  533. }
  534. nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
  535. }
  536. MODULE_ALIAS("pmem");
  537. MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
  538. MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
  539. static struct nd_device_driver nd_pmem_driver = {
  540. .probe = nd_pmem_probe,
  541. .remove = nd_pmem_remove,
  542. .notify = nd_pmem_notify,
  543. .drv = {
  544. .name = "nd_pmem",
  545. },
  546. .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
  547. };
  548. static int __init pmem_init(void)
  549. {
  550. return nd_driver_register(&nd_pmem_driver);
  551. }
  552. module_init(pmem_init);
  553. static void pmem_exit(void)
  554. {
  555. driver_unregister(&nd_pmem_driver.drv);
  556. }
  557. module_exit(pmem_exit);
  558. MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
  559. MODULE_LICENSE("GPL v2");