intel_ringbuffer.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. int __intel_ring_space(int head, int tail, int size)
  36. {
  37. int space = head - tail;
  38. if (space <= 0)
  39. space += size;
  40. return space - I915_RING_FREE_SPACE;
  41. }
  42. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  43. {
  44. if (ringbuf->last_retired_head != -1) {
  45. ringbuf->head = ringbuf->last_retired_head;
  46. ringbuf->last_retired_head = -1;
  47. }
  48. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  49. ringbuf->tail, ringbuf->size);
  50. }
  51. bool intel_engine_stopped(struct intel_engine_cs *engine)
  52. {
  53. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  54. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  55. }
  56. static void __intel_ring_advance(struct intel_engine_cs *engine)
  57. {
  58. struct intel_ringbuffer *ringbuf = engine->buffer;
  59. ringbuf->tail &= ringbuf->size - 1;
  60. if (intel_engine_stopped(engine))
  61. return;
  62. engine->write_tail(engine, ringbuf->tail);
  63. }
  64. static int
  65. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  66. u32 invalidate_domains,
  67. u32 flush_domains)
  68. {
  69. struct intel_engine_cs *engine = req->engine;
  70. u32 cmd;
  71. int ret;
  72. cmd = MI_FLUSH;
  73. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  74. cmd |= MI_NO_WRITE_FLUSH;
  75. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  76. cmd |= MI_READ_FLUSH;
  77. ret = intel_ring_begin(req, 2);
  78. if (ret)
  79. return ret;
  80. intel_ring_emit(engine, cmd);
  81. intel_ring_emit(engine, MI_NOOP);
  82. intel_ring_advance(engine);
  83. return 0;
  84. }
  85. static int
  86. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  87. u32 invalidate_domains,
  88. u32 flush_domains)
  89. {
  90. struct intel_engine_cs *engine = req->engine;
  91. struct drm_device *dev = engine->dev;
  92. u32 cmd;
  93. int ret;
  94. /*
  95. * read/write caches:
  96. *
  97. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  98. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  99. * also flushed at 2d versus 3d pipeline switches.
  100. *
  101. * read-only caches:
  102. *
  103. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  104. * MI_READ_FLUSH is set, and is always flushed on 965.
  105. *
  106. * I915_GEM_DOMAIN_COMMAND may not exist?
  107. *
  108. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  109. * invalidated when MI_EXE_FLUSH is set.
  110. *
  111. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  112. * invalidated with every MI_FLUSH.
  113. *
  114. * TLBs:
  115. *
  116. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  117. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  118. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  119. * are flushed at any MI_FLUSH.
  120. */
  121. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  122. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  123. cmd &= ~MI_NO_WRITE_FLUSH;
  124. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  125. cmd |= MI_EXE_FLUSH;
  126. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  127. (IS_G4X(dev) || IS_GEN5(dev)))
  128. cmd |= MI_INVALIDATE_ISP;
  129. ret = intel_ring_begin(req, 2);
  130. if (ret)
  131. return ret;
  132. intel_ring_emit(engine, cmd);
  133. intel_ring_emit(engine, MI_NOOP);
  134. intel_ring_advance(engine);
  135. return 0;
  136. }
  137. /**
  138. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  139. * implementing two workarounds on gen6. From section 1.4.7.1
  140. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  141. *
  142. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  143. * produced by non-pipelined state commands), software needs to first
  144. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  145. * 0.
  146. *
  147. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  148. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  149. *
  150. * And the workaround for these two requires this workaround first:
  151. *
  152. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  153. * BEFORE the pipe-control with a post-sync op and no write-cache
  154. * flushes.
  155. *
  156. * And this last workaround is tricky because of the requirements on
  157. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  158. * volume 2 part 1:
  159. *
  160. * "1 of the following must also be set:
  161. * - Render Target Cache Flush Enable ([12] of DW1)
  162. * - Depth Cache Flush Enable ([0] of DW1)
  163. * - Stall at Pixel Scoreboard ([1] of DW1)
  164. * - Depth Stall ([13] of DW1)
  165. * - Post-Sync Operation ([13] of DW1)
  166. * - Notify Enable ([8] of DW1)"
  167. *
  168. * The cache flushes require the workaround flush that triggered this
  169. * one, so we can't use it. Depth stall would trigger the same.
  170. * Post-sync nonzero is what triggered this second workaround, so we
  171. * can't use that one either. Notify enable is IRQs, which aren't
  172. * really our business. That leaves only stall at scoreboard.
  173. */
  174. static int
  175. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  176. {
  177. struct intel_engine_cs *engine = req->engine;
  178. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  179. int ret;
  180. ret = intel_ring_begin(req, 6);
  181. if (ret)
  182. return ret;
  183. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  184. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  185. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  186. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  187. intel_ring_emit(engine, 0); /* low dword */
  188. intel_ring_emit(engine, 0); /* high dword */
  189. intel_ring_emit(engine, MI_NOOP);
  190. intel_ring_advance(engine);
  191. ret = intel_ring_begin(req, 6);
  192. if (ret)
  193. return ret;
  194. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  195. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  196. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  197. intel_ring_emit(engine, 0);
  198. intel_ring_emit(engine, 0);
  199. intel_ring_emit(engine, MI_NOOP);
  200. intel_ring_advance(engine);
  201. return 0;
  202. }
  203. static int
  204. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  205. u32 invalidate_domains, u32 flush_domains)
  206. {
  207. struct intel_engine_cs *engine = req->engine;
  208. u32 flags = 0;
  209. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  210. int ret;
  211. /* Force SNB workarounds for PIPE_CONTROL flushes */
  212. ret = intel_emit_post_sync_nonzero_flush(req);
  213. if (ret)
  214. return ret;
  215. /* Just flush everything. Experiments have shown that reducing the
  216. * number of bits based on the write domains has little performance
  217. * impact.
  218. */
  219. if (flush_domains) {
  220. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  221. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  222. /*
  223. * Ensure that any following seqno writes only happen
  224. * when the render cache is indeed flushed.
  225. */
  226. flags |= PIPE_CONTROL_CS_STALL;
  227. }
  228. if (invalidate_domains) {
  229. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  230. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  231. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  232. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  233. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  234. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  235. /*
  236. * TLB invalidate requires a post-sync write.
  237. */
  238. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  239. }
  240. ret = intel_ring_begin(req, 4);
  241. if (ret)
  242. return ret;
  243. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  244. intel_ring_emit(engine, flags);
  245. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  246. intel_ring_emit(engine, 0);
  247. intel_ring_advance(engine);
  248. return 0;
  249. }
  250. static int
  251. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  252. {
  253. struct intel_engine_cs *engine = req->engine;
  254. int ret;
  255. ret = intel_ring_begin(req, 4);
  256. if (ret)
  257. return ret;
  258. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  259. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  260. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  261. intel_ring_emit(engine, 0);
  262. intel_ring_emit(engine, 0);
  263. intel_ring_advance(engine);
  264. return 0;
  265. }
  266. static int
  267. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  268. u32 invalidate_domains, u32 flush_domains)
  269. {
  270. struct intel_engine_cs *engine = req->engine;
  271. u32 flags = 0;
  272. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  273. int ret;
  274. /*
  275. * Ensure that any following seqno writes only happen when the render
  276. * cache is indeed flushed.
  277. *
  278. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  279. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  280. * don't try to be clever and just set it unconditionally.
  281. */
  282. flags |= PIPE_CONTROL_CS_STALL;
  283. /* Just flush everything. Experiments have shown that reducing the
  284. * number of bits based on the write domains has little performance
  285. * impact.
  286. */
  287. if (flush_domains) {
  288. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  289. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  290. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  291. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  292. }
  293. if (invalidate_domains) {
  294. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  295. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  296. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  297. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  298. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  299. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  300. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  301. /*
  302. * TLB invalidate requires a post-sync write.
  303. */
  304. flags |= PIPE_CONTROL_QW_WRITE;
  305. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  306. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  307. /* Workaround: we must issue a pipe_control with CS-stall bit
  308. * set before a pipe_control command that has the state cache
  309. * invalidate bit set. */
  310. gen7_render_ring_cs_stall_wa(req);
  311. }
  312. ret = intel_ring_begin(req, 4);
  313. if (ret)
  314. return ret;
  315. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  316. intel_ring_emit(engine, flags);
  317. intel_ring_emit(engine, scratch_addr);
  318. intel_ring_emit(engine, 0);
  319. intel_ring_advance(engine);
  320. return 0;
  321. }
  322. static int
  323. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  324. u32 flags, u32 scratch_addr)
  325. {
  326. struct intel_engine_cs *engine = req->engine;
  327. int ret;
  328. ret = intel_ring_begin(req, 6);
  329. if (ret)
  330. return ret;
  331. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  332. intel_ring_emit(engine, flags);
  333. intel_ring_emit(engine, scratch_addr);
  334. intel_ring_emit(engine, 0);
  335. intel_ring_emit(engine, 0);
  336. intel_ring_emit(engine, 0);
  337. intel_ring_advance(engine);
  338. return 0;
  339. }
  340. static int
  341. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  342. u32 invalidate_domains, u32 flush_domains)
  343. {
  344. u32 flags = 0;
  345. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  346. int ret;
  347. flags |= PIPE_CONTROL_CS_STALL;
  348. if (flush_domains) {
  349. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  350. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  351. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  352. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  353. }
  354. if (invalidate_domains) {
  355. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  356. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  357. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  358. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  359. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  360. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  361. flags |= PIPE_CONTROL_QW_WRITE;
  362. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  363. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  364. ret = gen8_emit_pipe_control(req,
  365. PIPE_CONTROL_CS_STALL |
  366. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  367. 0);
  368. if (ret)
  369. return ret;
  370. }
  371. return gen8_emit_pipe_control(req, flags, scratch_addr);
  372. }
  373. static void ring_write_tail(struct intel_engine_cs *engine,
  374. u32 value)
  375. {
  376. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  377. I915_WRITE_TAIL(engine, value);
  378. }
  379. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  380. {
  381. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  382. u64 acthd;
  383. if (INTEL_INFO(engine->dev)->gen >= 8)
  384. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  385. RING_ACTHD_UDW(engine->mmio_base));
  386. else if (INTEL_INFO(engine->dev)->gen >= 4)
  387. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  388. else
  389. acthd = I915_READ(ACTHD);
  390. return acthd;
  391. }
  392. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  393. {
  394. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  395. u32 addr;
  396. addr = dev_priv->status_page_dmah->busaddr;
  397. if (INTEL_INFO(engine->dev)->gen >= 4)
  398. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  399. I915_WRITE(HWS_PGA, addr);
  400. }
  401. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  402. {
  403. struct drm_device *dev = engine->dev;
  404. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  405. i915_reg_t mmio;
  406. /* The ring status page addresses are no longer next to the rest of
  407. * the ring registers as of gen7.
  408. */
  409. if (IS_GEN7(dev)) {
  410. switch (engine->id) {
  411. case RCS:
  412. mmio = RENDER_HWS_PGA_GEN7;
  413. break;
  414. case BCS:
  415. mmio = BLT_HWS_PGA_GEN7;
  416. break;
  417. /*
  418. * VCS2 actually doesn't exist on Gen7. Only shut up
  419. * gcc switch check warning
  420. */
  421. case VCS2:
  422. case VCS:
  423. mmio = BSD_HWS_PGA_GEN7;
  424. break;
  425. case VECS:
  426. mmio = VEBOX_HWS_PGA_GEN7;
  427. break;
  428. }
  429. } else if (IS_GEN6(engine->dev)) {
  430. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  431. } else {
  432. /* XXX: gen8 returns to sanity */
  433. mmio = RING_HWS_PGA(engine->mmio_base);
  434. }
  435. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  436. POSTING_READ(mmio);
  437. /*
  438. * Flush the TLB for this page
  439. *
  440. * FIXME: These two bits have disappeared on gen8, so a question
  441. * arises: do we still need this and if so how should we go about
  442. * invalidating the TLB?
  443. */
  444. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  445. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  446. /* ring should be idle before issuing a sync flush*/
  447. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  448. I915_WRITE(reg,
  449. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  450. INSTPM_SYNC_FLUSH));
  451. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  452. 1000))
  453. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  454. engine->name);
  455. }
  456. }
  457. static bool stop_ring(struct intel_engine_cs *engine)
  458. {
  459. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  460. if (!IS_GEN2(engine->dev)) {
  461. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  462. if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
  463. DRM_ERROR("%s : timed out trying to stop ring\n",
  464. engine->name);
  465. /* Sometimes we observe that the idle flag is not
  466. * set even though the ring is empty. So double
  467. * check before giving up.
  468. */
  469. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  470. return false;
  471. }
  472. }
  473. I915_WRITE_CTL(engine, 0);
  474. I915_WRITE_HEAD(engine, 0);
  475. engine->write_tail(engine, 0);
  476. if (!IS_GEN2(engine->dev)) {
  477. (void)I915_READ_CTL(engine);
  478. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  479. }
  480. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  481. }
  482. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  483. {
  484. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  485. }
  486. static int init_ring_common(struct intel_engine_cs *engine)
  487. {
  488. struct drm_device *dev = engine->dev;
  489. struct drm_i915_private *dev_priv = dev->dev_private;
  490. struct intel_ringbuffer *ringbuf = engine->buffer;
  491. struct drm_i915_gem_object *obj = ringbuf->obj;
  492. int ret = 0;
  493. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  494. if (!stop_ring(engine)) {
  495. /* G45 ring initialization often fails to reset head to zero */
  496. DRM_DEBUG_KMS("%s head not reset to zero "
  497. "ctl %08x head %08x tail %08x start %08x\n",
  498. engine->name,
  499. I915_READ_CTL(engine),
  500. I915_READ_HEAD(engine),
  501. I915_READ_TAIL(engine),
  502. I915_READ_START(engine));
  503. if (!stop_ring(engine)) {
  504. DRM_ERROR("failed to set %s head to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. engine->name,
  507. I915_READ_CTL(engine),
  508. I915_READ_HEAD(engine),
  509. I915_READ_TAIL(engine),
  510. I915_READ_START(engine));
  511. ret = -EIO;
  512. goto out;
  513. }
  514. }
  515. if (I915_NEED_GFX_HWS(dev))
  516. intel_ring_setup_status_page(engine);
  517. else
  518. ring_setup_phys_status_page(engine);
  519. /* Enforce ordering by reading HEAD register back */
  520. I915_READ_HEAD(engine);
  521. /* Initialize the ring. This must happen _after_ we've cleared the ring
  522. * registers with the above sequence (the readback of the HEAD registers
  523. * also enforces ordering), otherwise the hw might lose the new ring
  524. * register values. */
  525. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  526. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  527. if (I915_READ_HEAD(engine))
  528. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  529. engine->name, I915_READ_HEAD(engine));
  530. I915_WRITE_HEAD(engine, 0);
  531. (void)I915_READ_HEAD(engine);
  532. I915_WRITE_CTL(engine,
  533. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  534. | RING_VALID);
  535. /* If the head is still not zero, the ring is dead */
  536. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  537. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  538. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  539. DRM_ERROR("%s initialization failed "
  540. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  541. engine->name,
  542. I915_READ_CTL(engine),
  543. I915_READ_CTL(engine) & RING_VALID,
  544. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  545. I915_READ_START(engine),
  546. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  547. ret = -EIO;
  548. goto out;
  549. }
  550. ringbuf->last_retired_head = -1;
  551. ringbuf->head = I915_READ_HEAD(engine);
  552. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  553. intel_ring_update_space(ringbuf);
  554. intel_engine_init_hangcheck(engine);
  555. out:
  556. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  557. return ret;
  558. }
  559. void
  560. intel_fini_pipe_control(struct intel_engine_cs *engine)
  561. {
  562. struct drm_device *dev = engine->dev;
  563. if (engine->scratch.obj == NULL)
  564. return;
  565. if (INTEL_INFO(dev)->gen >= 5) {
  566. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  567. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  568. }
  569. drm_gem_object_unreference(&engine->scratch.obj->base);
  570. engine->scratch.obj = NULL;
  571. }
  572. int
  573. intel_init_pipe_control(struct intel_engine_cs *engine)
  574. {
  575. int ret;
  576. WARN_ON(engine->scratch.obj);
  577. engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
  578. if (engine->scratch.obj == NULL) {
  579. DRM_ERROR("Failed to allocate seqno page\n");
  580. ret = -ENOMEM;
  581. goto err;
  582. }
  583. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  584. I915_CACHE_LLC);
  585. if (ret)
  586. goto err_unref;
  587. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  588. if (ret)
  589. goto err_unref;
  590. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  591. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  592. if (engine->scratch.cpu_page == NULL) {
  593. ret = -ENOMEM;
  594. goto err_unpin;
  595. }
  596. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  597. engine->name, engine->scratch.gtt_offset);
  598. return 0;
  599. err_unpin:
  600. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  601. err_unref:
  602. drm_gem_object_unreference(&engine->scratch.obj->base);
  603. err:
  604. return ret;
  605. }
  606. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  607. {
  608. int ret, i;
  609. struct intel_engine_cs *engine = req->engine;
  610. struct drm_device *dev = engine->dev;
  611. struct drm_i915_private *dev_priv = dev->dev_private;
  612. struct i915_workarounds *w = &dev_priv->workarounds;
  613. if (w->count == 0)
  614. return 0;
  615. engine->gpu_caches_dirty = true;
  616. ret = intel_ring_flush_all_caches(req);
  617. if (ret)
  618. return ret;
  619. ret = intel_ring_begin(req, (w->count * 2 + 2));
  620. if (ret)
  621. return ret;
  622. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  623. for (i = 0; i < w->count; i++) {
  624. intel_ring_emit_reg(engine, w->reg[i].addr);
  625. intel_ring_emit(engine, w->reg[i].value);
  626. }
  627. intel_ring_emit(engine, MI_NOOP);
  628. intel_ring_advance(engine);
  629. engine->gpu_caches_dirty = true;
  630. ret = intel_ring_flush_all_caches(req);
  631. if (ret)
  632. return ret;
  633. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  634. return 0;
  635. }
  636. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  637. {
  638. int ret;
  639. ret = intel_ring_workarounds_emit(req);
  640. if (ret != 0)
  641. return ret;
  642. ret = i915_gem_render_state_init(req);
  643. if (ret)
  644. return ret;
  645. return 0;
  646. }
  647. static int wa_add(struct drm_i915_private *dev_priv,
  648. i915_reg_t addr,
  649. const u32 mask, const u32 val)
  650. {
  651. const u32 idx = dev_priv->workarounds.count;
  652. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  653. return -ENOSPC;
  654. dev_priv->workarounds.reg[idx].addr = addr;
  655. dev_priv->workarounds.reg[idx].value = val;
  656. dev_priv->workarounds.reg[idx].mask = mask;
  657. dev_priv->workarounds.count++;
  658. return 0;
  659. }
  660. #define WA_REG(addr, mask, val) do { \
  661. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  662. if (r) \
  663. return r; \
  664. } while (0)
  665. #define WA_SET_BIT_MASKED(addr, mask) \
  666. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  667. #define WA_CLR_BIT_MASKED(addr, mask) \
  668. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  669. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  670. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  671. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  672. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  673. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  674. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  675. i915_reg_t reg)
  676. {
  677. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  678. struct i915_workarounds *wa = &dev_priv->workarounds;
  679. const uint32_t index = wa->hw_whitelist_count[engine->id];
  680. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  681. return -EINVAL;
  682. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  683. i915_mmio_reg_offset(reg));
  684. wa->hw_whitelist_count[engine->id]++;
  685. return 0;
  686. }
  687. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  688. {
  689. struct drm_device *dev = engine->dev;
  690. struct drm_i915_private *dev_priv = dev->dev_private;
  691. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  692. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  693. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  694. /* WaDisablePartialInstShootdown:bdw,chv */
  695. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  696. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  697. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  698. * workaround for for a possible hang in the unlikely event a TLB
  699. * invalidation occurs during a PSD flush.
  700. */
  701. /* WaForceEnableNonCoherent:bdw,chv */
  702. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  703. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  704. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  705. HDC_FORCE_NON_COHERENT);
  706. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  707. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  708. * polygons in the same 8x4 pixel/sample area to be processed without
  709. * stalling waiting for the earlier ones to write to Hierarchical Z
  710. * buffer."
  711. *
  712. * This optimization is off by default for BDW and CHV; turn it on.
  713. */
  714. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  715. /* Wa4x4STCOptimizationDisable:bdw,chv */
  716. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  717. /*
  718. * BSpec recommends 8x4 when MSAA is used,
  719. * however in practice 16x4 seems fastest.
  720. *
  721. * Note that PS/WM thread counts depend on the WIZ hashing
  722. * disable bit, which we don't touch here, but it's good
  723. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  724. */
  725. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  726. GEN6_WIZ_HASHING_MASK,
  727. GEN6_WIZ_HASHING_16x4);
  728. return 0;
  729. }
  730. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  731. {
  732. int ret;
  733. struct drm_device *dev = engine->dev;
  734. struct drm_i915_private *dev_priv = dev->dev_private;
  735. ret = gen8_init_workarounds(engine);
  736. if (ret)
  737. return ret;
  738. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  739. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  740. /* WaDisableDopClockGating:bdw */
  741. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  742. DOP_CLOCK_GATING_DISABLE);
  743. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  744. GEN8_SAMPLER_POWER_BYPASS_DIS);
  745. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  746. /* WaForceContextSaveRestoreNonCoherent:bdw */
  747. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  748. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  749. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  750. return 0;
  751. }
  752. static int chv_init_workarounds(struct intel_engine_cs *engine)
  753. {
  754. int ret;
  755. struct drm_device *dev = engine->dev;
  756. struct drm_i915_private *dev_priv = dev->dev_private;
  757. ret = gen8_init_workarounds(engine);
  758. if (ret)
  759. return ret;
  760. /* WaDisableThreadStallDopClockGating:chv */
  761. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  762. /* Improve HiZ throughput on CHV. */
  763. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  764. return 0;
  765. }
  766. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  767. {
  768. struct drm_device *dev = engine->dev;
  769. struct drm_i915_private *dev_priv = dev->dev_private;
  770. uint32_t tmp;
  771. int ret;
  772. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  773. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  774. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  775. /* WaDisableKillLogic:bxt,skl */
  776. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  777. ECOCHK_DIS_TLB);
  778. /* WaClearFlowControlGpgpuContextSave:skl,bxt */
  779. /* WaDisablePartialInstShootdown:skl,bxt */
  780. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  781. FLOW_CONTROL_ENABLE |
  782. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  783. /* Syncing dependencies between camera and graphics:skl,bxt */
  784. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  785. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  786. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  787. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  788. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  789. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  790. GEN9_DG_MIRROR_FIX_ENABLE);
  791. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  792. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  793. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  794. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  795. GEN9_RHWO_OPTIMIZATION_DISABLE);
  796. /*
  797. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  798. * but we do that in per ctx batchbuffer as there is an issue
  799. * with this register not getting restored on ctx restore
  800. */
  801. }
  802. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  803. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
  804. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  805. GEN9_ENABLE_YV12_BUGFIX |
  806. GEN9_ENABLE_GPGPU_PREEMPTION);
  807. /* Wa4x4STCOptimizationDisable:skl,bxt */
  808. /* WaDisablePartialResolveInVc:skl,bxt */
  809. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  810. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  811. /* WaCcsTlbPrefetchDisable:skl,bxt */
  812. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  813. GEN9_CCS_TLB_PREFETCH_ENABLE);
  814. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  815. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  816. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  817. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  818. PIXEL_MASK_CAMMING_DISABLE);
  819. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  820. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  821. if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
  822. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  823. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  824. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  825. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  826. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  827. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  828. GEN8_SAMPLER_POWER_BYPASS_DIS);
  829. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  830. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  831. /* WaOCLCoherentLineFlush:skl,bxt */
  832. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  833. GEN8_LQSC_FLUSH_COHERENT_LINES));
  834. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
  835. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  836. if (ret)
  837. return ret;
  838. /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
  839. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  840. if (ret)
  841. return ret;
  842. return 0;
  843. }
  844. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  845. {
  846. struct drm_device *dev = engine->dev;
  847. struct drm_i915_private *dev_priv = dev->dev_private;
  848. u8 vals[3] = { 0, 0, 0 };
  849. unsigned int i;
  850. for (i = 0; i < 3; i++) {
  851. u8 ss;
  852. /*
  853. * Only consider slices where one, and only one, subslice has 7
  854. * EUs
  855. */
  856. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  857. continue;
  858. /*
  859. * subslice_7eu[i] != 0 (because of the check above) and
  860. * ss_max == 4 (maximum number of subslices possible per slice)
  861. *
  862. * -> 0 <= ss <= 3;
  863. */
  864. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  865. vals[i] = 3 - ss;
  866. }
  867. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  868. return 0;
  869. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  870. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  871. GEN9_IZ_HASHING_MASK(2) |
  872. GEN9_IZ_HASHING_MASK(1) |
  873. GEN9_IZ_HASHING_MASK(0),
  874. GEN9_IZ_HASHING(2, vals[2]) |
  875. GEN9_IZ_HASHING(1, vals[1]) |
  876. GEN9_IZ_HASHING(0, vals[0]));
  877. return 0;
  878. }
  879. static int skl_init_workarounds(struct intel_engine_cs *engine)
  880. {
  881. int ret;
  882. struct drm_device *dev = engine->dev;
  883. struct drm_i915_private *dev_priv = dev->dev_private;
  884. ret = gen9_init_workarounds(engine);
  885. if (ret)
  886. return ret;
  887. /*
  888. * Actual WA is to disable percontext preemption granularity control
  889. * until D0 which is the default case so this is equivalent to
  890. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  891. */
  892. if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
  893. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  894. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  895. }
  896. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  897. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  898. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  899. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  900. }
  901. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  902. * involving this register should also be added to WA batch as required.
  903. */
  904. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  905. /* WaDisableLSQCROPERFforOCL:skl */
  906. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  907. GEN8_LQSC_RO_PERF_DIS);
  908. /* WaEnableGapsTsvCreditFix:skl */
  909. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  910. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  911. GEN9_GAPS_TSV_CREDIT_DISABLE));
  912. }
  913. /* WaDisablePowerCompilerClockGating:skl */
  914. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  915. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  916. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  917. /* This is tied to WaForceContextSaveRestoreNonCoherent */
  918. if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
  919. /*
  920. *Use Force Non-Coherent whenever executing a 3D context. This
  921. * is a workaround for a possible hang in the unlikely event
  922. * a TLB invalidation occurs during a PSD flush.
  923. */
  924. /* WaForceEnableNonCoherent:skl */
  925. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  926. HDC_FORCE_NON_COHERENT);
  927. /* WaDisableHDCInvalidation:skl */
  928. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  929. BDW_DISABLE_HDC_INVALIDATION);
  930. }
  931. /* WaBarrierPerformanceFixDisable:skl */
  932. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  933. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  934. HDC_FENCE_DEST_SLM_DISABLE |
  935. HDC_BARRIER_PERFORMANCE_DISABLE);
  936. /* WaDisableSbeCacheDispatchPortSharing:skl */
  937. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  938. WA_SET_BIT_MASKED(
  939. GEN7_HALF_SLICE_CHICKEN1,
  940. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  941. /* WaDisableLSQCROPERFforOCL:skl */
  942. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  943. if (ret)
  944. return ret;
  945. return skl_tune_iz_hashing(engine);
  946. }
  947. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  948. {
  949. int ret;
  950. struct drm_device *dev = engine->dev;
  951. struct drm_i915_private *dev_priv = dev->dev_private;
  952. ret = gen9_init_workarounds(engine);
  953. if (ret)
  954. return ret;
  955. /* WaStoreMultiplePTEenable:bxt */
  956. /* This is a requirement according to Hardware specification */
  957. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  958. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  959. /* WaSetClckGatingDisableMedia:bxt */
  960. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  961. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  962. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  963. }
  964. /* WaDisableThreadStallDopClockGating:bxt */
  965. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  966. STALL_DOP_GATING_DISABLE);
  967. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  968. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  969. WA_SET_BIT_MASKED(
  970. GEN7_HALF_SLICE_CHICKEN1,
  971. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  972. }
  973. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  974. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  975. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  976. /* WaDisableLSQCROPERFforOCL:bxt */
  977. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  978. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  979. if (ret)
  980. return ret;
  981. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  982. if (ret)
  983. return ret;
  984. }
  985. return 0;
  986. }
  987. int init_workarounds_ring(struct intel_engine_cs *engine)
  988. {
  989. struct drm_device *dev = engine->dev;
  990. struct drm_i915_private *dev_priv = dev->dev_private;
  991. WARN_ON(engine->id != RCS);
  992. dev_priv->workarounds.count = 0;
  993. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  994. if (IS_BROADWELL(dev))
  995. return bdw_init_workarounds(engine);
  996. if (IS_CHERRYVIEW(dev))
  997. return chv_init_workarounds(engine);
  998. if (IS_SKYLAKE(dev))
  999. return skl_init_workarounds(engine);
  1000. if (IS_BROXTON(dev))
  1001. return bxt_init_workarounds(engine);
  1002. return 0;
  1003. }
  1004. static int init_render_ring(struct intel_engine_cs *engine)
  1005. {
  1006. struct drm_device *dev = engine->dev;
  1007. struct drm_i915_private *dev_priv = dev->dev_private;
  1008. int ret = init_ring_common(engine);
  1009. if (ret)
  1010. return ret;
  1011. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1012. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  1013. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1014. /* We need to disable the AsyncFlip performance optimisations in order
  1015. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1016. * programmed to '1' on all products.
  1017. *
  1018. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1019. */
  1020. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1021. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1022. /* Required for the hardware to program scanline values for waiting */
  1023. /* WaEnableFlushTlbInvalidationMode:snb */
  1024. if (INTEL_INFO(dev)->gen == 6)
  1025. I915_WRITE(GFX_MODE,
  1026. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1027. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1028. if (IS_GEN7(dev))
  1029. I915_WRITE(GFX_MODE_GEN7,
  1030. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1031. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1032. if (IS_GEN6(dev)) {
  1033. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1034. * "If this bit is set, STCunit will have LRA as replacement
  1035. * policy. [...] This bit must be reset. LRA replacement
  1036. * policy is not supported."
  1037. */
  1038. I915_WRITE(CACHE_MODE_0,
  1039. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1040. }
  1041. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1042. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1043. if (HAS_L3_DPF(dev))
  1044. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
  1045. return init_workarounds_ring(engine);
  1046. }
  1047. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1048. {
  1049. struct drm_device *dev = engine->dev;
  1050. struct drm_i915_private *dev_priv = dev->dev_private;
  1051. if (dev_priv->semaphore_obj) {
  1052. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1053. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1054. dev_priv->semaphore_obj = NULL;
  1055. }
  1056. intel_fini_pipe_control(engine);
  1057. }
  1058. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1059. unsigned int num_dwords)
  1060. {
  1061. #define MBOX_UPDATE_DWORDS 8
  1062. struct intel_engine_cs *signaller = signaller_req->engine;
  1063. struct drm_device *dev = signaller->dev;
  1064. struct drm_i915_private *dev_priv = dev->dev_private;
  1065. struct intel_engine_cs *waiter;
  1066. enum intel_engine_id id;
  1067. int ret, num_rings;
  1068. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1069. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1070. #undef MBOX_UPDATE_DWORDS
  1071. ret = intel_ring_begin(signaller_req, num_dwords);
  1072. if (ret)
  1073. return ret;
  1074. for_each_engine_id(waiter, dev_priv, id) {
  1075. u32 seqno;
  1076. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1077. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1078. continue;
  1079. seqno = i915_gem_request_get_seqno(signaller_req);
  1080. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1081. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1082. PIPE_CONTROL_QW_WRITE |
  1083. PIPE_CONTROL_FLUSH_ENABLE);
  1084. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1085. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1086. intel_ring_emit(signaller, seqno);
  1087. intel_ring_emit(signaller, 0);
  1088. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1089. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1090. intel_ring_emit(signaller, 0);
  1091. }
  1092. return 0;
  1093. }
  1094. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1095. unsigned int num_dwords)
  1096. {
  1097. #define MBOX_UPDATE_DWORDS 6
  1098. struct intel_engine_cs *signaller = signaller_req->engine;
  1099. struct drm_device *dev = signaller->dev;
  1100. struct drm_i915_private *dev_priv = dev->dev_private;
  1101. struct intel_engine_cs *waiter;
  1102. enum intel_engine_id id;
  1103. int ret, num_rings;
  1104. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1105. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1106. #undef MBOX_UPDATE_DWORDS
  1107. ret = intel_ring_begin(signaller_req, num_dwords);
  1108. if (ret)
  1109. return ret;
  1110. for_each_engine_id(waiter, dev_priv, id) {
  1111. u32 seqno;
  1112. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1113. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1114. continue;
  1115. seqno = i915_gem_request_get_seqno(signaller_req);
  1116. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1117. MI_FLUSH_DW_OP_STOREDW);
  1118. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1119. MI_FLUSH_DW_USE_GTT);
  1120. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1121. intel_ring_emit(signaller, seqno);
  1122. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1123. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1124. intel_ring_emit(signaller, 0);
  1125. }
  1126. return 0;
  1127. }
  1128. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1129. unsigned int num_dwords)
  1130. {
  1131. struct intel_engine_cs *signaller = signaller_req->engine;
  1132. struct drm_device *dev = signaller->dev;
  1133. struct drm_i915_private *dev_priv = dev->dev_private;
  1134. struct intel_engine_cs *useless;
  1135. enum intel_engine_id id;
  1136. int ret, num_rings;
  1137. #define MBOX_UPDATE_DWORDS 3
  1138. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1139. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1140. #undef MBOX_UPDATE_DWORDS
  1141. ret = intel_ring_begin(signaller_req, num_dwords);
  1142. if (ret)
  1143. return ret;
  1144. for_each_engine_id(useless, dev_priv, id) {
  1145. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1146. if (i915_mmio_reg_valid(mbox_reg)) {
  1147. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1148. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1149. intel_ring_emit_reg(signaller, mbox_reg);
  1150. intel_ring_emit(signaller, seqno);
  1151. }
  1152. }
  1153. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1154. if (num_rings % 2 == 0)
  1155. intel_ring_emit(signaller, MI_NOOP);
  1156. return 0;
  1157. }
  1158. /**
  1159. * gen6_add_request - Update the semaphore mailbox registers
  1160. *
  1161. * @request - request to write to the ring
  1162. *
  1163. * Update the mailbox registers in the *other* rings with the current seqno.
  1164. * This acts like a signal in the canonical semaphore.
  1165. */
  1166. static int
  1167. gen6_add_request(struct drm_i915_gem_request *req)
  1168. {
  1169. struct intel_engine_cs *engine = req->engine;
  1170. int ret;
  1171. if (engine->semaphore.signal)
  1172. ret = engine->semaphore.signal(req, 4);
  1173. else
  1174. ret = intel_ring_begin(req, 4);
  1175. if (ret)
  1176. return ret;
  1177. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1178. intel_ring_emit(engine,
  1179. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1180. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1181. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1182. __intel_ring_advance(engine);
  1183. return 0;
  1184. }
  1185. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1186. u32 seqno)
  1187. {
  1188. struct drm_i915_private *dev_priv = dev->dev_private;
  1189. return dev_priv->last_seqno < seqno;
  1190. }
  1191. /**
  1192. * intel_ring_sync - sync the waiter to the signaller on seqno
  1193. *
  1194. * @waiter - ring that is waiting
  1195. * @signaller - ring which has, or will signal
  1196. * @seqno - seqno which the waiter will block on
  1197. */
  1198. static int
  1199. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1200. struct intel_engine_cs *signaller,
  1201. u32 seqno)
  1202. {
  1203. struct intel_engine_cs *waiter = waiter_req->engine;
  1204. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1205. int ret;
  1206. ret = intel_ring_begin(waiter_req, 4);
  1207. if (ret)
  1208. return ret;
  1209. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1210. MI_SEMAPHORE_GLOBAL_GTT |
  1211. MI_SEMAPHORE_POLL |
  1212. MI_SEMAPHORE_SAD_GTE_SDD);
  1213. intel_ring_emit(waiter, seqno);
  1214. intel_ring_emit(waiter,
  1215. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1216. intel_ring_emit(waiter,
  1217. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1218. intel_ring_advance(waiter);
  1219. return 0;
  1220. }
  1221. static int
  1222. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1223. struct intel_engine_cs *signaller,
  1224. u32 seqno)
  1225. {
  1226. struct intel_engine_cs *waiter = waiter_req->engine;
  1227. u32 dw1 = MI_SEMAPHORE_MBOX |
  1228. MI_SEMAPHORE_COMPARE |
  1229. MI_SEMAPHORE_REGISTER;
  1230. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1231. int ret;
  1232. /* Throughout all of the GEM code, seqno passed implies our current
  1233. * seqno is >= the last seqno executed. However for hardware the
  1234. * comparison is strictly greater than.
  1235. */
  1236. seqno -= 1;
  1237. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1238. ret = intel_ring_begin(waiter_req, 4);
  1239. if (ret)
  1240. return ret;
  1241. /* If seqno wrap happened, omit the wait with no-ops */
  1242. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1243. intel_ring_emit(waiter, dw1 | wait_mbox);
  1244. intel_ring_emit(waiter, seqno);
  1245. intel_ring_emit(waiter, 0);
  1246. intel_ring_emit(waiter, MI_NOOP);
  1247. } else {
  1248. intel_ring_emit(waiter, MI_NOOP);
  1249. intel_ring_emit(waiter, MI_NOOP);
  1250. intel_ring_emit(waiter, MI_NOOP);
  1251. intel_ring_emit(waiter, MI_NOOP);
  1252. }
  1253. intel_ring_advance(waiter);
  1254. return 0;
  1255. }
  1256. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1257. do { \
  1258. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1259. PIPE_CONTROL_DEPTH_STALL); \
  1260. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1261. intel_ring_emit(ring__, 0); \
  1262. intel_ring_emit(ring__, 0); \
  1263. } while (0)
  1264. static int
  1265. pc_render_add_request(struct drm_i915_gem_request *req)
  1266. {
  1267. struct intel_engine_cs *engine = req->engine;
  1268. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1269. int ret;
  1270. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1271. * incoherent with writes to memory, i.e. completely fubar,
  1272. * so we need to use PIPE_NOTIFY instead.
  1273. *
  1274. * However, we also need to workaround the qword write
  1275. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1276. * memory before requesting an interrupt.
  1277. */
  1278. ret = intel_ring_begin(req, 32);
  1279. if (ret)
  1280. return ret;
  1281. intel_ring_emit(engine,
  1282. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1283. PIPE_CONTROL_WRITE_FLUSH |
  1284. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1285. intel_ring_emit(engine,
  1286. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1287. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1288. intel_ring_emit(engine, 0);
  1289. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1290. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1291. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1292. scratch_addr += 2 * CACHELINE_BYTES;
  1293. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1294. scratch_addr += 2 * CACHELINE_BYTES;
  1295. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1296. scratch_addr += 2 * CACHELINE_BYTES;
  1297. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1298. scratch_addr += 2 * CACHELINE_BYTES;
  1299. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1300. intel_ring_emit(engine,
  1301. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1302. PIPE_CONTROL_WRITE_FLUSH |
  1303. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1304. PIPE_CONTROL_NOTIFY);
  1305. intel_ring_emit(engine,
  1306. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1307. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1308. intel_ring_emit(engine, 0);
  1309. __intel_ring_advance(engine);
  1310. return 0;
  1311. }
  1312. static void
  1313. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1314. {
  1315. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  1316. /* Workaround to force correct ordering between irq and seqno writes on
  1317. * ivb (and maybe also on snb) by reading from a CS register (like
  1318. * ACTHD) before reading the status page.
  1319. *
  1320. * Note that this effectively stalls the read by the time it takes to
  1321. * do a memory transaction, which more or less ensures that the write
  1322. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1323. * Alternatively we could delay the interrupt from the CS ring to give
  1324. * the write time to land, but that would incur a delay after every
  1325. * batch i.e. much more frequent than a delay when waiting for the
  1326. * interrupt (with the same net latency).
  1327. *
  1328. * Also note that to prevent whole machine hangs on gen7, we have to
  1329. * take the spinlock to guard against concurrent cacheline access.
  1330. */
  1331. spin_lock_irq(&dev_priv->uncore.lock);
  1332. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1333. spin_unlock_irq(&dev_priv->uncore.lock);
  1334. }
  1335. static u32
  1336. ring_get_seqno(struct intel_engine_cs *engine)
  1337. {
  1338. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1339. }
  1340. static void
  1341. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1342. {
  1343. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1344. }
  1345. static u32
  1346. pc_render_get_seqno(struct intel_engine_cs *engine)
  1347. {
  1348. return engine->scratch.cpu_page[0];
  1349. }
  1350. static void
  1351. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1352. {
  1353. engine->scratch.cpu_page[0] = seqno;
  1354. }
  1355. static bool
  1356. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1357. {
  1358. struct drm_device *dev = engine->dev;
  1359. struct drm_i915_private *dev_priv = dev->dev_private;
  1360. unsigned long flags;
  1361. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1362. return false;
  1363. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1364. if (engine->irq_refcount++ == 0)
  1365. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1366. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1367. return true;
  1368. }
  1369. static void
  1370. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1371. {
  1372. struct drm_device *dev = engine->dev;
  1373. struct drm_i915_private *dev_priv = dev->dev_private;
  1374. unsigned long flags;
  1375. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1376. if (--engine->irq_refcount == 0)
  1377. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1378. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1379. }
  1380. static bool
  1381. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1382. {
  1383. struct drm_device *dev = engine->dev;
  1384. struct drm_i915_private *dev_priv = dev->dev_private;
  1385. unsigned long flags;
  1386. if (!intel_irqs_enabled(dev_priv))
  1387. return false;
  1388. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1389. if (engine->irq_refcount++ == 0) {
  1390. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1391. I915_WRITE(IMR, dev_priv->irq_mask);
  1392. POSTING_READ(IMR);
  1393. }
  1394. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1395. return true;
  1396. }
  1397. static void
  1398. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1399. {
  1400. struct drm_device *dev = engine->dev;
  1401. struct drm_i915_private *dev_priv = dev->dev_private;
  1402. unsigned long flags;
  1403. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1404. if (--engine->irq_refcount == 0) {
  1405. dev_priv->irq_mask |= engine->irq_enable_mask;
  1406. I915_WRITE(IMR, dev_priv->irq_mask);
  1407. POSTING_READ(IMR);
  1408. }
  1409. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1410. }
  1411. static bool
  1412. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1413. {
  1414. struct drm_device *dev = engine->dev;
  1415. struct drm_i915_private *dev_priv = dev->dev_private;
  1416. unsigned long flags;
  1417. if (!intel_irqs_enabled(dev_priv))
  1418. return false;
  1419. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1420. if (engine->irq_refcount++ == 0) {
  1421. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1422. I915_WRITE16(IMR, dev_priv->irq_mask);
  1423. POSTING_READ16(IMR);
  1424. }
  1425. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1426. return true;
  1427. }
  1428. static void
  1429. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1430. {
  1431. struct drm_device *dev = engine->dev;
  1432. struct drm_i915_private *dev_priv = dev->dev_private;
  1433. unsigned long flags;
  1434. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1435. if (--engine->irq_refcount == 0) {
  1436. dev_priv->irq_mask |= engine->irq_enable_mask;
  1437. I915_WRITE16(IMR, dev_priv->irq_mask);
  1438. POSTING_READ16(IMR);
  1439. }
  1440. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1441. }
  1442. static int
  1443. bsd_ring_flush(struct drm_i915_gem_request *req,
  1444. u32 invalidate_domains,
  1445. u32 flush_domains)
  1446. {
  1447. struct intel_engine_cs *engine = req->engine;
  1448. int ret;
  1449. ret = intel_ring_begin(req, 2);
  1450. if (ret)
  1451. return ret;
  1452. intel_ring_emit(engine, MI_FLUSH);
  1453. intel_ring_emit(engine, MI_NOOP);
  1454. intel_ring_advance(engine);
  1455. return 0;
  1456. }
  1457. static int
  1458. i9xx_add_request(struct drm_i915_gem_request *req)
  1459. {
  1460. struct intel_engine_cs *engine = req->engine;
  1461. int ret;
  1462. ret = intel_ring_begin(req, 4);
  1463. if (ret)
  1464. return ret;
  1465. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1466. intel_ring_emit(engine,
  1467. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1468. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1469. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1470. __intel_ring_advance(engine);
  1471. return 0;
  1472. }
  1473. static bool
  1474. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1475. {
  1476. struct drm_device *dev = engine->dev;
  1477. struct drm_i915_private *dev_priv = dev->dev_private;
  1478. unsigned long flags;
  1479. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1480. return false;
  1481. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1482. if (engine->irq_refcount++ == 0) {
  1483. if (HAS_L3_DPF(dev) && engine->id == RCS)
  1484. I915_WRITE_IMR(engine,
  1485. ~(engine->irq_enable_mask |
  1486. GT_PARITY_ERROR(dev)));
  1487. else
  1488. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1489. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1490. }
  1491. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1492. return true;
  1493. }
  1494. static void
  1495. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1496. {
  1497. struct drm_device *dev = engine->dev;
  1498. struct drm_i915_private *dev_priv = dev->dev_private;
  1499. unsigned long flags;
  1500. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1501. if (--engine->irq_refcount == 0) {
  1502. if (HAS_L3_DPF(dev) && engine->id == RCS)
  1503. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
  1504. else
  1505. I915_WRITE_IMR(engine, ~0);
  1506. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1507. }
  1508. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1509. }
  1510. static bool
  1511. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1512. {
  1513. struct drm_device *dev = engine->dev;
  1514. struct drm_i915_private *dev_priv = dev->dev_private;
  1515. unsigned long flags;
  1516. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1517. return false;
  1518. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1519. if (engine->irq_refcount++ == 0) {
  1520. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1521. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1522. }
  1523. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1524. return true;
  1525. }
  1526. static void
  1527. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1528. {
  1529. struct drm_device *dev = engine->dev;
  1530. struct drm_i915_private *dev_priv = dev->dev_private;
  1531. unsigned long flags;
  1532. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1533. if (--engine->irq_refcount == 0) {
  1534. I915_WRITE_IMR(engine, ~0);
  1535. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1536. }
  1537. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1538. }
  1539. static bool
  1540. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1541. {
  1542. struct drm_device *dev = engine->dev;
  1543. struct drm_i915_private *dev_priv = dev->dev_private;
  1544. unsigned long flags;
  1545. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1546. return false;
  1547. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1548. if (engine->irq_refcount++ == 0) {
  1549. if (HAS_L3_DPF(dev) && engine->id == RCS) {
  1550. I915_WRITE_IMR(engine,
  1551. ~(engine->irq_enable_mask |
  1552. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1553. } else {
  1554. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1555. }
  1556. POSTING_READ(RING_IMR(engine->mmio_base));
  1557. }
  1558. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1559. return true;
  1560. }
  1561. static void
  1562. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1563. {
  1564. struct drm_device *dev = engine->dev;
  1565. struct drm_i915_private *dev_priv = dev->dev_private;
  1566. unsigned long flags;
  1567. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1568. if (--engine->irq_refcount == 0) {
  1569. if (HAS_L3_DPF(dev) && engine->id == RCS) {
  1570. I915_WRITE_IMR(engine,
  1571. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1572. } else {
  1573. I915_WRITE_IMR(engine, ~0);
  1574. }
  1575. POSTING_READ(RING_IMR(engine->mmio_base));
  1576. }
  1577. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1578. }
  1579. static int
  1580. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1581. u64 offset, u32 length,
  1582. unsigned dispatch_flags)
  1583. {
  1584. struct intel_engine_cs *engine = req->engine;
  1585. int ret;
  1586. ret = intel_ring_begin(req, 2);
  1587. if (ret)
  1588. return ret;
  1589. intel_ring_emit(engine,
  1590. MI_BATCH_BUFFER_START |
  1591. MI_BATCH_GTT |
  1592. (dispatch_flags & I915_DISPATCH_SECURE ?
  1593. 0 : MI_BATCH_NON_SECURE_I965));
  1594. intel_ring_emit(engine, offset);
  1595. intel_ring_advance(engine);
  1596. return 0;
  1597. }
  1598. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1599. #define I830_BATCH_LIMIT (256*1024)
  1600. #define I830_TLB_ENTRIES (2)
  1601. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1602. static int
  1603. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1604. u64 offset, u32 len,
  1605. unsigned dispatch_flags)
  1606. {
  1607. struct intel_engine_cs *engine = req->engine;
  1608. u32 cs_offset = engine->scratch.gtt_offset;
  1609. int ret;
  1610. ret = intel_ring_begin(req, 6);
  1611. if (ret)
  1612. return ret;
  1613. /* Evict the invalid PTE TLBs */
  1614. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1615. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1616. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1617. intel_ring_emit(engine, cs_offset);
  1618. intel_ring_emit(engine, 0xdeadbeef);
  1619. intel_ring_emit(engine, MI_NOOP);
  1620. intel_ring_advance(engine);
  1621. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1622. if (len > I830_BATCH_LIMIT)
  1623. return -ENOSPC;
  1624. ret = intel_ring_begin(req, 6 + 2);
  1625. if (ret)
  1626. return ret;
  1627. /* Blit the batch (which has now all relocs applied) to the
  1628. * stable batch scratch bo area (so that the CS never
  1629. * stumbles over its tlb invalidation bug) ...
  1630. */
  1631. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1632. intel_ring_emit(engine,
  1633. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1634. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1635. intel_ring_emit(engine, cs_offset);
  1636. intel_ring_emit(engine, 4096);
  1637. intel_ring_emit(engine, offset);
  1638. intel_ring_emit(engine, MI_FLUSH);
  1639. intel_ring_emit(engine, MI_NOOP);
  1640. intel_ring_advance(engine);
  1641. /* ... and execute it. */
  1642. offset = cs_offset;
  1643. }
  1644. ret = intel_ring_begin(req, 2);
  1645. if (ret)
  1646. return ret;
  1647. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1648. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1649. 0 : MI_BATCH_NON_SECURE));
  1650. intel_ring_advance(engine);
  1651. return 0;
  1652. }
  1653. static int
  1654. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1655. u64 offset, u32 len,
  1656. unsigned dispatch_flags)
  1657. {
  1658. struct intel_engine_cs *engine = req->engine;
  1659. int ret;
  1660. ret = intel_ring_begin(req, 2);
  1661. if (ret)
  1662. return ret;
  1663. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1664. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1665. 0 : MI_BATCH_NON_SECURE));
  1666. intel_ring_advance(engine);
  1667. return 0;
  1668. }
  1669. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1670. {
  1671. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  1672. if (!dev_priv->status_page_dmah)
  1673. return;
  1674. drm_pci_free(engine->dev, dev_priv->status_page_dmah);
  1675. engine->status_page.page_addr = NULL;
  1676. }
  1677. static void cleanup_status_page(struct intel_engine_cs *engine)
  1678. {
  1679. struct drm_i915_gem_object *obj;
  1680. obj = engine->status_page.obj;
  1681. if (obj == NULL)
  1682. return;
  1683. kunmap(sg_page(obj->pages->sgl));
  1684. i915_gem_object_ggtt_unpin(obj);
  1685. drm_gem_object_unreference(&obj->base);
  1686. engine->status_page.obj = NULL;
  1687. }
  1688. static int init_status_page(struct intel_engine_cs *engine)
  1689. {
  1690. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1691. if (obj == NULL) {
  1692. unsigned flags;
  1693. int ret;
  1694. obj = i915_gem_alloc_object(engine->dev, 4096);
  1695. if (obj == NULL) {
  1696. DRM_ERROR("Failed to allocate status page\n");
  1697. return -ENOMEM;
  1698. }
  1699. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1700. if (ret)
  1701. goto err_unref;
  1702. flags = 0;
  1703. if (!HAS_LLC(engine->dev))
  1704. /* On g33, we cannot place HWS above 256MiB, so
  1705. * restrict its pinning to the low mappable arena.
  1706. * Though this restriction is not documented for
  1707. * gen4, gen5, or byt, they also behave similarly
  1708. * and hang if the HWS is placed at the top of the
  1709. * GTT. To generalise, it appears that all !llc
  1710. * platforms have issues with us placing the HWS
  1711. * above the mappable region (even though we never
  1712. * actualy map it).
  1713. */
  1714. flags |= PIN_MAPPABLE;
  1715. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1716. if (ret) {
  1717. err_unref:
  1718. drm_gem_object_unreference(&obj->base);
  1719. return ret;
  1720. }
  1721. engine->status_page.obj = obj;
  1722. }
  1723. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1724. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1725. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1726. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1727. engine->name, engine->status_page.gfx_addr);
  1728. return 0;
  1729. }
  1730. static int init_phys_status_page(struct intel_engine_cs *engine)
  1731. {
  1732. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  1733. if (!dev_priv->status_page_dmah) {
  1734. dev_priv->status_page_dmah =
  1735. drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
  1736. if (!dev_priv->status_page_dmah)
  1737. return -ENOMEM;
  1738. }
  1739. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1740. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1741. return 0;
  1742. }
  1743. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1744. {
  1745. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1746. i915_gem_object_unpin_map(ringbuf->obj);
  1747. else
  1748. iounmap(ringbuf->virtual_start);
  1749. ringbuf->virtual_start = NULL;
  1750. ringbuf->vma = NULL;
  1751. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1752. }
  1753. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1754. struct intel_ringbuffer *ringbuf)
  1755. {
  1756. struct drm_i915_private *dev_priv = to_i915(dev);
  1757. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  1758. struct drm_i915_gem_object *obj = ringbuf->obj;
  1759. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1760. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1761. void *addr;
  1762. int ret;
  1763. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1764. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1765. if (ret)
  1766. return ret;
  1767. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1768. if (ret)
  1769. goto err_unpin;
  1770. addr = i915_gem_object_pin_map(obj);
  1771. if (IS_ERR(addr)) {
  1772. ret = PTR_ERR(addr);
  1773. goto err_unpin;
  1774. }
  1775. } else {
  1776. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1777. flags | PIN_MAPPABLE);
  1778. if (ret)
  1779. return ret;
  1780. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1781. if (ret)
  1782. goto err_unpin;
  1783. /* Access through the GTT requires the device to be awake. */
  1784. assert_rpm_wakelock_held(dev_priv);
  1785. addr = ioremap_wc(ggtt->mappable_base +
  1786. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1787. if (addr == NULL) {
  1788. ret = -ENOMEM;
  1789. goto err_unpin;
  1790. }
  1791. }
  1792. ringbuf->virtual_start = addr;
  1793. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1794. return 0;
  1795. err_unpin:
  1796. i915_gem_object_ggtt_unpin(obj);
  1797. return ret;
  1798. }
  1799. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1800. {
  1801. drm_gem_object_unreference(&ringbuf->obj->base);
  1802. ringbuf->obj = NULL;
  1803. }
  1804. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1805. struct intel_ringbuffer *ringbuf)
  1806. {
  1807. struct drm_i915_gem_object *obj;
  1808. obj = NULL;
  1809. if (!HAS_LLC(dev))
  1810. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1811. if (obj == NULL)
  1812. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1813. if (obj == NULL)
  1814. return -ENOMEM;
  1815. /* mark ring buffers as read-only from GPU side by default */
  1816. obj->gt_ro = 1;
  1817. ringbuf->obj = obj;
  1818. return 0;
  1819. }
  1820. struct intel_ringbuffer *
  1821. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1822. {
  1823. struct intel_ringbuffer *ring;
  1824. int ret;
  1825. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1826. if (ring == NULL) {
  1827. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1828. engine->name);
  1829. return ERR_PTR(-ENOMEM);
  1830. }
  1831. ring->engine = engine;
  1832. list_add(&ring->link, &engine->buffers);
  1833. ring->size = size;
  1834. /* Workaround an erratum on the i830 which causes a hang if
  1835. * the TAIL pointer points to within the last 2 cachelines
  1836. * of the buffer.
  1837. */
  1838. ring->effective_size = size;
  1839. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1840. ring->effective_size -= 2 * CACHELINE_BYTES;
  1841. ring->last_retired_head = -1;
  1842. intel_ring_update_space(ring);
  1843. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1844. if (ret) {
  1845. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1846. engine->name, ret);
  1847. list_del(&ring->link);
  1848. kfree(ring);
  1849. return ERR_PTR(ret);
  1850. }
  1851. return ring;
  1852. }
  1853. void
  1854. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1855. {
  1856. intel_destroy_ringbuffer_obj(ring);
  1857. list_del(&ring->link);
  1858. kfree(ring);
  1859. }
  1860. static int intel_init_ring_buffer(struct drm_device *dev,
  1861. struct intel_engine_cs *engine)
  1862. {
  1863. struct intel_ringbuffer *ringbuf;
  1864. int ret;
  1865. WARN_ON(engine->buffer);
  1866. engine->dev = dev;
  1867. INIT_LIST_HEAD(&engine->active_list);
  1868. INIT_LIST_HEAD(&engine->request_list);
  1869. INIT_LIST_HEAD(&engine->execlist_queue);
  1870. INIT_LIST_HEAD(&engine->buffers);
  1871. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1872. memset(engine->semaphore.sync_seqno, 0,
  1873. sizeof(engine->semaphore.sync_seqno));
  1874. init_waitqueue_head(&engine->irq_queue);
  1875. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1876. if (IS_ERR(ringbuf)) {
  1877. ret = PTR_ERR(ringbuf);
  1878. goto error;
  1879. }
  1880. engine->buffer = ringbuf;
  1881. if (I915_NEED_GFX_HWS(dev)) {
  1882. ret = init_status_page(engine);
  1883. if (ret)
  1884. goto error;
  1885. } else {
  1886. WARN_ON(engine->id != RCS);
  1887. ret = init_phys_status_page(engine);
  1888. if (ret)
  1889. goto error;
  1890. }
  1891. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1892. if (ret) {
  1893. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1894. engine->name, ret);
  1895. intel_destroy_ringbuffer_obj(ringbuf);
  1896. goto error;
  1897. }
  1898. ret = i915_cmd_parser_init_ring(engine);
  1899. if (ret)
  1900. goto error;
  1901. return 0;
  1902. error:
  1903. intel_cleanup_engine(engine);
  1904. return ret;
  1905. }
  1906. void intel_cleanup_engine(struct intel_engine_cs *engine)
  1907. {
  1908. struct drm_i915_private *dev_priv;
  1909. if (!intel_engine_initialized(engine))
  1910. return;
  1911. dev_priv = to_i915(engine->dev);
  1912. if (engine->buffer) {
  1913. intel_stop_engine(engine);
  1914. WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1915. intel_unpin_ringbuffer_obj(engine->buffer);
  1916. intel_ringbuffer_free(engine->buffer);
  1917. engine->buffer = NULL;
  1918. }
  1919. if (engine->cleanup)
  1920. engine->cleanup(engine);
  1921. if (I915_NEED_GFX_HWS(engine->dev)) {
  1922. cleanup_status_page(engine);
  1923. } else {
  1924. WARN_ON(engine->id != RCS);
  1925. cleanup_phys_status_page(engine);
  1926. }
  1927. i915_cmd_parser_fini_ring(engine);
  1928. i915_gem_batch_pool_fini(&engine->batch_pool);
  1929. engine->dev = NULL;
  1930. }
  1931. int intel_engine_idle(struct intel_engine_cs *engine)
  1932. {
  1933. struct drm_i915_gem_request *req;
  1934. /* Wait upon the last request to be completed */
  1935. if (list_empty(&engine->request_list))
  1936. return 0;
  1937. req = list_entry(engine->request_list.prev,
  1938. struct drm_i915_gem_request,
  1939. list);
  1940. /* Make sure we do not trigger any retires */
  1941. return __i915_wait_request(req,
  1942. req->i915->mm.interruptible,
  1943. NULL, NULL);
  1944. }
  1945. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1946. {
  1947. request->ringbuf = request->engine->buffer;
  1948. return 0;
  1949. }
  1950. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1951. {
  1952. /*
  1953. * The first call merely notes the reserve request and is common for
  1954. * all back ends. The subsequent localised _begin() call actually
  1955. * ensures that the reservation is available. Without the begin, if
  1956. * the request creator immediately submitted the request without
  1957. * adding any commands to it then there might not actually be
  1958. * sufficient room for the submission commands.
  1959. */
  1960. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1961. return intel_ring_begin(request, 0);
  1962. }
  1963. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1964. {
  1965. GEM_BUG_ON(ringbuf->reserved_size);
  1966. ringbuf->reserved_size = size;
  1967. }
  1968. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1969. {
  1970. GEM_BUG_ON(!ringbuf->reserved_size);
  1971. ringbuf->reserved_size = 0;
  1972. }
  1973. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1974. {
  1975. GEM_BUG_ON(!ringbuf->reserved_size);
  1976. ringbuf->reserved_size = 0;
  1977. }
  1978. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1979. {
  1980. GEM_BUG_ON(ringbuf->reserved_size);
  1981. }
  1982. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1983. {
  1984. struct intel_ringbuffer *ringbuf = req->ringbuf;
  1985. struct intel_engine_cs *engine = req->engine;
  1986. struct drm_i915_gem_request *target;
  1987. intel_ring_update_space(ringbuf);
  1988. if (ringbuf->space >= bytes)
  1989. return 0;
  1990. /*
  1991. * Space is reserved in the ringbuffer for finalising the request,
  1992. * as that cannot be allowed to fail. During request finalisation,
  1993. * reserved_space is set to 0 to stop the overallocation and the
  1994. * assumption is that then we never need to wait (which has the
  1995. * risk of failing with EINTR).
  1996. *
  1997. * See also i915_gem_request_alloc() and i915_add_request().
  1998. */
  1999. GEM_BUG_ON(!ringbuf->reserved_size);
  2000. list_for_each_entry(target, &engine->request_list, list) {
  2001. unsigned space;
  2002. /*
  2003. * The request queue is per-engine, so can contain requests
  2004. * from multiple ringbuffers. Here, we must ignore any that
  2005. * aren't from the ringbuffer we're considering.
  2006. */
  2007. if (target->ringbuf != ringbuf)
  2008. continue;
  2009. /* Would completion of this request free enough space? */
  2010. space = __intel_ring_space(target->postfix, ringbuf->tail,
  2011. ringbuf->size);
  2012. if (space >= bytes)
  2013. break;
  2014. }
  2015. if (WARN_ON(&target->list == &engine->request_list))
  2016. return -ENOSPC;
  2017. return i915_wait_request(target);
  2018. }
  2019. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  2020. {
  2021. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2022. int remain_actual = ringbuf->size - ringbuf->tail;
  2023. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2024. int bytes = num_dwords * sizeof(u32);
  2025. int total_bytes, wait_bytes;
  2026. bool need_wrap = false;
  2027. total_bytes = bytes + ringbuf->reserved_size;
  2028. if (unlikely(bytes > remain_usable)) {
  2029. /*
  2030. * Not enough space for the basic request. So need to flush
  2031. * out the remainder and then wait for base + reserved.
  2032. */
  2033. wait_bytes = remain_actual + total_bytes;
  2034. need_wrap = true;
  2035. } else if (unlikely(total_bytes > remain_usable)) {
  2036. /*
  2037. * The base request will fit but the reserved space
  2038. * falls off the end. So we don't need an immediate wrap
  2039. * and only need to effectively wait for the reserved
  2040. * size space from the start of ringbuffer.
  2041. */
  2042. wait_bytes = remain_actual + ringbuf->reserved_size;
  2043. } else {
  2044. /* No wrapping required, just waiting. */
  2045. wait_bytes = total_bytes;
  2046. }
  2047. if (wait_bytes > ringbuf->space) {
  2048. int ret = wait_for_space(req, wait_bytes);
  2049. if (unlikely(ret))
  2050. return ret;
  2051. intel_ring_update_space(ringbuf);
  2052. if (unlikely(ringbuf->space < wait_bytes))
  2053. return -EAGAIN;
  2054. }
  2055. if (unlikely(need_wrap)) {
  2056. GEM_BUG_ON(remain_actual > ringbuf->space);
  2057. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  2058. /* Fill the tail with MI_NOOP */
  2059. memset(ringbuf->virtual_start + ringbuf->tail,
  2060. 0, remain_actual);
  2061. ringbuf->tail = 0;
  2062. ringbuf->space -= remain_actual;
  2063. }
  2064. ringbuf->space -= bytes;
  2065. GEM_BUG_ON(ringbuf->space < 0);
  2066. return 0;
  2067. }
  2068. /* Align the ring tail to a cacheline boundary */
  2069. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2070. {
  2071. struct intel_engine_cs *engine = req->engine;
  2072. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2073. int ret;
  2074. if (num_dwords == 0)
  2075. return 0;
  2076. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2077. ret = intel_ring_begin(req, num_dwords);
  2078. if (ret)
  2079. return ret;
  2080. while (num_dwords--)
  2081. intel_ring_emit(engine, MI_NOOP);
  2082. intel_ring_advance(engine);
  2083. return 0;
  2084. }
  2085. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2086. {
  2087. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  2088. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2089. * so long as the semaphore value in the register/page is greater
  2090. * than the sync value), so whenever we reset the seqno,
  2091. * so long as we reset the tracking semaphore value to 0, it will
  2092. * always be before the next request's seqno. If we don't reset
  2093. * the semaphore value, then when the seqno moves backwards all
  2094. * future waits will complete instantly (causing rendering corruption).
  2095. */
  2096. if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
  2097. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2098. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2099. if (HAS_VEBOX(dev_priv))
  2100. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2101. }
  2102. if (dev_priv->semaphore_obj) {
  2103. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2104. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2105. void *semaphores = kmap(page);
  2106. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2107. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2108. kunmap(page);
  2109. }
  2110. memset(engine->semaphore.sync_seqno, 0,
  2111. sizeof(engine->semaphore.sync_seqno));
  2112. engine->set_seqno(engine, seqno);
  2113. engine->last_submitted_seqno = seqno;
  2114. engine->hangcheck.seqno = seqno;
  2115. }
  2116. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2117. u32 value)
  2118. {
  2119. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  2120. /* Every tail move must follow the sequence below */
  2121. /* Disable notification that the ring is IDLE. The GT
  2122. * will then assume that it is busy and bring it out of rc6.
  2123. */
  2124. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2125. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2126. /* Clear the context id. Here be magic! */
  2127. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2128. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2129. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2130. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2131. 50))
  2132. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2133. /* Now that the ring is fully powered up, update the tail */
  2134. I915_WRITE_TAIL(engine, value);
  2135. POSTING_READ(RING_TAIL(engine->mmio_base));
  2136. /* Let the ring send IDLE messages to the GT again,
  2137. * and so let it sleep to conserve power when idle.
  2138. */
  2139. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2140. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2141. }
  2142. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2143. u32 invalidate, u32 flush)
  2144. {
  2145. struct intel_engine_cs *engine = req->engine;
  2146. uint32_t cmd;
  2147. int ret;
  2148. ret = intel_ring_begin(req, 4);
  2149. if (ret)
  2150. return ret;
  2151. cmd = MI_FLUSH_DW;
  2152. if (INTEL_INFO(engine->dev)->gen >= 8)
  2153. cmd += 1;
  2154. /* We always require a command barrier so that subsequent
  2155. * commands, such as breadcrumb interrupts, are strictly ordered
  2156. * wrt the contents of the write cache being flushed to memory
  2157. * (and thus being coherent from the CPU).
  2158. */
  2159. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2160. /*
  2161. * Bspec vol 1c.5 - video engine command streamer:
  2162. * "If ENABLED, all TLBs will be invalidated once the flush
  2163. * operation is complete. This bit is only valid when the
  2164. * Post-Sync Operation field is a value of 1h or 3h."
  2165. */
  2166. if (invalidate & I915_GEM_GPU_DOMAINS)
  2167. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2168. intel_ring_emit(engine, cmd);
  2169. intel_ring_emit(engine,
  2170. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2171. if (INTEL_INFO(engine->dev)->gen >= 8) {
  2172. intel_ring_emit(engine, 0); /* upper addr */
  2173. intel_ring_emit(engine, 0); /* value */
  2174. } else {
  2175. intel_ring_emit(engine, 0);
  2176. intel_ring_emit(engine, MI_NOOP);
  2177. }
  2178. intel_ring_advance(engine);
  2179. return 0;
  2180. }
  2181. static int
  2182. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2183. u64 offset, u32 len,
  2184. unsigned dispatch_flags)
  2185. {
  2186. struct intel_engine_cs *engine = req->engine;
  2187. bool ppgtt = USES_PPGTT(engine->dev) &&
  2188. !(dispatch_flags & I915_DISPATCH_SECURE);
  2189. int ret;
  2190. ret = intel_ring_begin(req, 4);
  2191. if (ret)
  2192. return ret;
  2193. /* FIXME(BDW): Address space and security selectors. */
  2194. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2195. (dispatch_flags & I915_DISPATCH_RS ?
  2196. MI_BATCH_RESOURCE_STREAMER : 0));
  2197. intel_ring_emit(engine, lower_32_bits(offset));
  2198. intel_ring_emit(engine, upper_32_bits(offset));
  2199. intel_ring_emit(engine, MI_NOOP);
  2200. intel_ring_advance(engine);
  2201. return 0;
  2202. }
  2203. static int
  2204. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2205. u64 offset, u32 len,
  2206. unsigned dispatch_flags)
  2207. {
  2208. struct intel_engine_cs *engine = req->engine;
  2209. int ret;
  2210. ret = intel_ring_begin(req, 2);
  2211. if (ret)
  2212. return ret;
  2213. intel_ring_emit(engine,
  2214. MI_BATCH_BUFFER_START |
  2215. (dispatch_flags & I915_DISPATCH_SECURE ?
  2216. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2217. (dispatch_flags & I915_DISPATCH_RS ?
  2218. MI_BATCH_RESOURCE_STREAMER : 0));
  2219. /* bit0-7 is the length on GEN6+ */
  2220. intel_ring_emit(engine, offset);
  2221. intel_ring_advance(engine);
  2222. return 0;
  2223. }
  2224. static int
  2225. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2226. u64 offset, u32 len,
  2227. unsigned dispatch_flags)
  2228. {
  2229. struct intel_engine_cs *engine = req->engine;
  2230. int ret;
  2231. ret = intel_ring_begin(req, 2);
  2232. if (ret)
  2233. return ret;
  2234. intel_ring_emit(engine,
  2235. MI_BATCH_BUFFER_START |
  2236. (dispatch_flags & I915_DISPATCH_SECURE ?
  2237. 0 : MI_BATCH_NON_SECURE_I965));
  2238. /* bit0-7 is the length on GEN6+ */
  2239. intel_ring_emit(engine, offset);
  2240. intel_ring_advance(engine);
  2241. return 0;
  2242. }
  2243. /* Blitter support (SandyBridge+) */
  2244. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2245. u32 invalidate, u32 flush)
  2246. {
  2247. struct intel_engine_cs *engine = req->engine;
  2248. struct drm_device *dev = engine->dev;
  2249. uint32_t cmd;
  2250. int ret;
  2251. ret = intel_ring_begin(req, 4);
  2252. if (ret)
  2253. return ret;
  2254. cmd = MI_FLUSH_DW;
  2255. if (INTEL_INFO(dev)->gen >= 8)
  2256. cmd += 1;
  2257. /* We always require a command barrier so that subsequent
  2258. * commands, such as breadcrumb interrupts, are strictly ordered
  2259. * wrt the contents of the write cache being flushed to memory
  2260. * (and thus being coherent from the CPU).
  2261. */
  2262. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2263. /*
  2264. * Bspec vol 1c.3 - blitter engine command streamer:
  2265. * "If ENABLED, all TLBs will be invalidated once the flush
  2266. * operation is complete. This bit is only valid when the
  2267. * Post-Sync Operation field is a value of 1h or 3h."
  2268. */
  2269. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2270. cmd |= MI_INVALIDATE_TLB;
  2271. intel_ring_emit(engine, cmd);
  2272. intel_ring_emit(engine,
  2273. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2274. if (INTEL_INFO(dev)->gen >= 8) {
  2275. intel_ring_emit(engine, 0); /* upper addr */
  2276. intel_ring_emit(engine, 0); /* value */
  2277. } else {
  2278. intel_ring_emit(engine, 0);
  2279. intel_ring_emit(engine, MI_NOOP);
  2280. }
  2281. intel_ring_advance(engine);
  2282. return 0;
  2283. }
  2284. int intel_init_render_ring_buffer(struct drm_device *dev)
  2285. {
  2286. struct drm_i915_private *dev_priv = dev->dev_private;
  2287. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2288. struct drm_i915_gem_object *obj;
  2289. int ret;
  2290. engine->name = "render ring";
  2291. engine->id = RCS;
  2292. engine->exec_id = I915_EXEC_RENDER;
  2293. engine->hw_id = 0;
  2294. engine->mmio_base = RENDER_RING_BASE;
  2295. if (INTEL_INFO(dev)->gen >= 8) {
  2296. if (i915_semaphore_is_enabled(dev)) {
  2297. obj = i915_gem_alloc_object(dev, 4096);
  2298. if (obj == NULL) {
  2299. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2300. i915.semaphores = 0;
  2301. } else {
  2302. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2303. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2304. if (ret != 0) {
  2305. drm_gem_object_unreference(&obj->base);
  2306. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2307. i915.semaphores = 0;
  2308. } else
  2309. dev_priv->semaphore_obj = obj;
  2310. }
  2311. }
  2312. engine->init_context = intel_rcs_ctx_init;
  2313. engine->add_request = gen6_add_request;
  2314. engine->flush = gen8_render_ring_flush;
  2315. engine->irq_get = gen8_ring_get_irq;
  2316. engine->irq_put = gen8_ring_put_irq;
  2317. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2318. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2319. engine->get_seqno = ring_get_seqno;
  2320. engine->set_seqno = ring_set_seqno;
  2321. if (i915_semaphore_is_enabled(dev)) {
  2322. WARN_ON(!dev_priv->semaphore_obj);
  2323. engine->semaphore.sync_to = gen8_ring_sync;
  2324. engine->semaphore.signal = gen8_rcs_signal;
  2325. GEN8_RING_SEMAPHORE_INIT(engine);
  2326. }
  2327. } else if (INTEL_INFO(dev)->gen >= 6) {
  2328. engine->init_context = intel_rcs_ctx_init;
  2329. engine->add_request = gen6_add_request;
  2330. engine->flush = gen7_render_ring_flush;
  2331. if (INTEL_INFO(dev)->gen == 6)
  2332. engine->flush = gen6_render_ring_flush;
  2333. engine->irq_get = gen6_ring_get_irq;
  2334. engine->irq_put = gen6_ring_put_irq;
  2335. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2336. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2337. engine->get_seqno = ring_get_seqno;
  2338. engine->set_seqno = ring_set_seqno;
  2339. if (i915_semaphore_is_enabled(dev)) {
  2340. engine->semaphore.sync_to = gen6_ring_sync;
  2341. engine->semaphore.signal = gen6_signal;
  2342. /*
  2343. * The current semaphore is only applied on pre-gen8
  2344. * platform. And there is no VCS2 ring on the pre-gen8
  2345. * platform. So the semaphore between RCS and VCS2 is
  2346. * initialized as INVALID. Gen8 will initialize the
  2347. * sema between VCS2 and RCS later.
  2348. */
  2349. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2350. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2351. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2352. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2353. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2354. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2355. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2356. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2357. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2358. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2359. }
  2360. } else if (IS_GEN5(dev)) {
  2361. engine->add_request = pc_render_add_request;
  2362. engine->flush = gen4_render_ring_flush;
  2363. engine->get_seqno = pc_render_get_seqno;
  2364. engine->set_seqno = pc_render_set_seqno;
  2365. engine->irq_get = gen5_ring_get_irq;
  2366. engine->irq_put = gen5_ring_put_irq;
  2367. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2368. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2369. } else {
  2370. engine->add_request = i9xx_add_request;
  2371. if (INTEL_INFO(dev)->gen < 4)
  2372. engine->flush = gen2_render_ring_flush;
  2373. else
  2374. engine->flush = gen4_render_ring_flush;
  2375. engine->get_seqno = ring_get_seqno;
  2376. engine->set_seqno = ring_set_seqno;
  2377. if (IS_GEN2(dev)) {
  2378. engine->irq_get = i8xx_ring_get_irq;
  2379. engine->irq_put = i8xx_ring_put_irq;
  2380. } else {
  2381. engine->irq_get = i9xx_ring_get_irq;
  2382. engine->irq_put = i9xx_ring_put_irq;
  2383. }
  2384. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2385. }
  2386. engine->write_tail = ring_write_tail;
  2387. if (IS_HASWELL(dev))
  2388. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2389. else if (IS_GEN8(dev))
  2390. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2391. else if (INTEL_INFO(dev)->gen >= 6)
  2392. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2393. else if (INTEL_INFO(dev)->gen >= 4)
  2394. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2395. else if (IS_I830(dev) || IS_845G(dev))
  2396. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2397. else
  2398. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2399. engine->init_hw = init_render_ring;
  2400. engine->cleanup = render_ring_cleanup;
  2401. /* Workaround batchbuffer to combat CS tlb bug. */
  2402. if (HAS_BROKEN_CS_TLB(dev)) {
  2403. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2404. if (obj == NULL) {
  2405. DRM_ERROR("Failed to allocate batch bo\n");
  2406. return -ENOMEM;
  2407. }
  2408. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2409. if (ret != 0) {
  2410. drm_gem_object_unreference(&obj->base);
  2411. DRM_ERROR("Failed to ping batch bo\n");
  2412. return ret;
  2413. }
  2414. engine->scratch.obj = obj;
  2415. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2416. }
  2417. ret = intel_init_ring_buffer(dev, engine);
  2418. if (ret)
  2419. return ret;
  2420. if (INTEL_INFO(dev)->gen >= 5) {
  2421. ret = intel_init_pipe_control(engine);
  2422. if (ret)
  2423. return ret;
  2424. }
  2425. return 0;
  2426. }
  2427. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2428. {
  2429. struct drm_i915_private *dev_priv = dev->dev_private;
  2430. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2431. engine->name = "bsd ring";
  2432. engine->id = VCS;
  2433. engine->exec_id = I915_EXEC_BSD;
  2434. engine->hw_id = 1;
  2435. engine->write_tail = ring_write_tail;
  2436. if (INTEL_INFO(dev)->gen >= 6) {
  2437. engine->mmio_base = GEN6_BSD_RING_BASE;
  2438. /* gen6 bsd needs a special wa for tail updates */
  2439. if (IS_GEN6(dev))
  2440. engine->write_tail = gen6_bsd_ring_write_tail;
  2441. engine->flush = gen6_bsd_ring_flush;
  2442. engine->add_request = gen6_add_request;
  2443. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2444. engine->get_seqno = ring_get_seqno;
  2445. engine->set_seqno = ring_set_seqno;
  2446. if (INTEL_INFO(dev)->gen >= 8) {
  2447. engine->irq_enable_mask =
  2448. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2449. engine->irq_get = gen8_ring_get_irq;
  2450. engine->irq_put = gen8_ring_put_irq;
  2451. engine->dispatch_execbuffer =
  2452. gen8_ring_dispatch_execbuffer;
  2453. if (i915_semaphore_is_enabled(dev)) {
  2454. engine->semaphore.sync_to = gen8_ring_sync;
  2455. engine->semaphore.signal = gen8_xcs_signal;
  2456. GEN8_RING_SEMAPHORE_INIT(engine);
  2457. }
  2458. } else {
  2459. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2460. engine->irq_get = gen6_ring_get_irq;
  2461. engine->irq_put = gen6_ring_put_irq;
  2462. engine->dispatch_execbuffer =
  2463. gen6_ring_dispatch_execbuffer;
  2464. if (i915_semaphore_is_enabled(dev)) {
  2465. engine->semaphore.sync_to = gen6_ring_sync;
  2466. engine->semaphore.signal = gen6_signal;
  2467. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2468. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2469. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2470. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2471. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2472. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2473. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2474. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2475. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2476. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2477. }
  2478. }
  2479. } else {
  2480. engine->mmio_base = BSD_RING_BASE;
  2481. engine->flush = bsd_ring_flush;
  2482. engine->add_request = i9xx_add_request;
  2483. engine->get_seqno = ring_get_seqno;
  2484. engine->set_seqno = ring_set_seqno;
  2485. if (IS_GEN5(dev)) {
  2486. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2487. engine->irq_get = gen5_ring_get_irq;
  2488. engine->irq_put = gen5_ring_put_irq;
  2489. } else {
  2490. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2491. engine->irq_get = i9xx_ring_get_irq;
  2492. engine->irq_put = i9xx_ring_put_irq;
  2493. }
  2494. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2495. }
  2496. engine->init_hw = init_ring_common;
  2497. return intel_init_ring_buffer(dev, engine);
  2498. }
  2499. /**
  2500. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2501. */
  2502. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2503. {
  2504. struct drm_i915_private *dev_priv = dev->dev_private;
  2505. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2506. engine->name = "bsd2 ring";
  2507. engine->id = VCS2;
  2508. engine->exec_id = I915_EXEC_BSD;
  2509. engine->hw_id = 4;
  2510. engine->write_tail = ring_write_tail;
  2511. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2512. engine->flush = gen6_bsd_ring_flush;
  2513. engine->add_request = gen6_add_request;
  2514. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2515. engine->get_seqno = ring_get_seqno;
  2516. engine->set_seqno = ring_set_seqno;
  2517. engine->irq_enable_mask =
  2518. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2519. engine->irq_get = gen8_ring_get_irq;
  2520. engine->irq_put = gen8_ring_put_irq;
  2521. engine->dispatch_execbuffer =
  2522. gen8_ring_dispatch_execbuffer;
  2523. if (i915_semaphore_is_enabled(dev)) {
  2524. engine->semaphore.sync_to = gen8_ring_sync;
  2525. engine->semaphore.signal = gen8_xcs_signal;
  2526. GEN8_RING_SEMAPHORE_INIT(engine);
  2527. }
  2528. engine->init_hw = init_ring_common;
  2529. return intel_init_ring_buffer(dev, engine);
  2530. }
  2531. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2532. {
  2533. struct drm_i915_private *dev_priv = dev->dev_private;
  2534. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2535. engine->name = "blitter ring";
  2536. engine->id = BCS;
  2537. engine->exec_id = I915_EXEC_BLT;
  2538. engine->hw_id = 2;
  2539. engine->mmio_base = BLT_RING_BASE;
  2540. engine->write_tail = ring_write_tail;
  2541. engine->flush = gen6_ring_flush;
  2542. engine->add_request = gen6_add_request;
  2543. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2544. engine->get_seqno = ring_get_seqno;
  2545. engine->set_seqno = ring_set_seqno;
  2546. if (INTEL_INFO(dev)->gen >= 8) {
  2547. engine->irq_enable_mask =
  2548. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2549. engine->irq_get = gen8_ring_get_irq;
  2550. engine->irq_put = gen8_ring_put_irq;
  2551. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2552. if (i915_semaphore_is_enabled(dev)) {
  2553. engine->semaphore.sync_to = gen8_ring_sync;
  2554. engine->semaphore.signal = gen8_xcs_signal;
  2555. GEN8_RING_SEMAPHORE_INIT(engine);
  2556. }
  2557. } else {
  2558. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2559. engine->irq_get = gen6_ring_get_irq;
  2560. engine->irq_put = gen6_ring_put_irq;
  2561. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2562. if (i915_semaphore_is_enabled(dev)) {
  2563. engine->semaphore.signal = gen6_signal;
  2564. engine->semaphore.sync_to = gen6_ring_sync;
  2565. /*
  2566. * The current semaphore is only applied on pre-gen8
  2567. * platform. And there is no VCS2 ring on the pre-gen8
  2568. * platform. So the semaphore between BCS and VCS2 is
  2569. * initialized as INVALID. Gen8 will initialize the
  2570. * sema between BCS and VCS2 later.
  2571. */
  2572. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2573. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2574. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2575. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2576. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2577. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2578. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2579. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2580. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2581. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2582. }
  2583. }
  2584. engine->init_hw = init_ring_common;
  2585. return intel_init_ring_buffer(dev, engine);
  2586. }
  2587. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2588. {
  2589. struct drm_i915_private *dev_priv = dev->dev_private;
  2590. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2591. engine->name = "video enhancement ring";
  2592. engine->id = VECS;
  2593. engine->exec_id = I915_EXEC_VEBOX;
  2594. engine->hw_id = 3;
  2595. engine->mmio_base = VEBOX_RING_BASE;
  2596. engine->write_tail = ring_write_tail;
  2597. engine->flush = gen6_ring_flush;
  2598. engine->add_request = gen6_add_request;
  2599. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2600. engine->get_seqno = ring_get_seqno;
  2601. engine->set_seqno = ring_set_seqno;
  2602. if (INTEL_INFO(dev)->gen >= 8) {
  2603. engine->irq_enable_mask =
  2604. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2605. engine->irq_get = gen8_ring_get_irq;
  2606. engine->irq_put = gen8_ring_put_irq;
  2607. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2608. if (i915_semaphore_is_enabled(dev)) {
  2609. engine->semaphore.sync_to = gen8_ring_sync;
  2610. engine->semaphore.signal = gen8_xcs_signal;
  2611. GEN8_RING_SEMAPHORE_INIT(engine);
  2612. }
  2613. } else {
  2614. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2615. engine->irq_get = hsw_vebox_get_irq;
  2616. engine->irq_put = hsw_vebox_put_irq;
  2617. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2618. if (i915_semaphore_is_enabled(dev)) {
  2619. engine->semaphore.sync_to = gen6_ring_sync;
  2620. engine->semaphore.signal = gen6_signal;
  2621. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2622. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2623. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2624. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2625. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2626. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2627. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2628. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2629. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2630. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2631. }
  2632. }
  2633. engine->init_hw = init_ring_common;
  2634. return intel_init_ring_buffer(dev, engine);
  2635. }
  2636. int
  2637. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2638. {
  2639. struct intel_engine_cs *engine = req->engine;
  2640. int ret;
  2641. if (!engine->gpu_caches_dirty)
  2642. return 0;
  2643. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2644. if (ret)
  2645. return ret;
  2646. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2647. engine->gpu_caches_dirty = false;
  2648. return 0;
  2649. }
  2650. int
  2651. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2652. {
  2653. struct intel_engine_cs *engine = req->engine;
  2654. uint32_t flush_domains;
  2655. int ret;
  2656. flush_domains = 0;
  2657. if (engine->gpu_caches_dirty)
  2658. flush_domains = I915_GEM_GPU_DOMAINS;
  2659. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2660. if (ret)
  2661. return ret;
  2662. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2663. engine->gpu_caches_dirty = false;
  2664. return 0;
  2665. }
  2666. void
  2667. intel_stop_engine(struct intel_engine_cs *engine)
  2668. {
  2669. int ret;
  2670. if (!intel_engine_initialized(engine))
  2671. return;
  2672. ret = intel_engine_idle(engine);
  2673. if (ret)
  2674. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2675. engine->name, ret);
  2676. stop_ring(engine);
  2677. }