memory.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <linux/dma-debug.h>
  58. #include <linux/debugfs.h>
  59. #include <linux/userfaultfd_k.h>
  60. #include <asm/io.h>
  61. #include <asm/pgalloc.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/tlb.h>
  64. #include <asm/tlbflush.h>
  65. #include <asm/pgtable.h>
  66. #include "internal.h"
  67. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  68. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  69. #endif
  70. #ifndef CONFIG_NEED_MULTIPLE_NODES
  71. /* use the per-pgdat data instead for discontigmem - mbligh */
  72. unsigned long max_mapnr;
  73. struct page *mem_map;
  74. EXPORT_SYMBOL(max_mapnr);
  75. EXPORT_SYMBOL(mem_map);
  76. #endif
  77. /*
  78. * A number of key systems in x86 including ioremap() rely on the assumption
  79. * that high_memory defines the upper bound on direct map memory, then end
  80. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  81. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  82. * and ZONE_HIGHMEM.
  83. */
  84. void * high_memory;
  85. EXPORT_SYMBOL(high_memory);
  86. /*
  87. * Randomize the address space (stacks, mmaps, brk, etc.).
  88. *
  89. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  90. * as ancient (libc5 based) binaries can segfault. )
  91. */
  92. int randomize_va_space __read_mostly =
  93. #ifdef CONFIG_COMPAT_BRK
  94. 1;
  95. #else
  96. 2;
  97. #endif
  98. static int __init disable_randmaps(char *s)
  99. {
  100. randomize_va_space = 0;
  101. return 1;
  102. }
  103. __setup("norandmaps", disable_randmaps);
  104. unsigned long zero_pfn __read_mostly;
  105. unsigned long highest_memmap_pfn __read_mostly;
  106. EXPORT_SYMBOL(zero_pfn);
  107. /*
  108. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  109. */
  110. static int __init init_zero_pfn(void)
  111. {
  112. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  113. return 0;
  114. }
  115. core_initcall(init_zero_pfn);
  116. #if defined(SPLIT_RSS_COUNTING)
  117. void sync_mm_rss(struct mm_struct *mm)
  118. {
  119. int i;
  120. for (i = 0; i < NR_MM_COUNTERS; i++) {
  121. if (current->rss_stat.count[i]) {
  122. add_mm_counter(mm, i, current->rss_stat.count[i]);
  123. current->rss_stat.count[i] = 0;
  124. }
  125. }
  126. current->rss_stat.events = 0;
  127. }
  128. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  129. {
  130. struct task_struct *task = current;
  131. if (likely(task->mm == mm))
  132. task->rss_stat.count[member] += val;
  133. else
  134. add_mm_counter(mm, member, val);
  135. }
  136. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  137. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  138. /* sync counter once per 64 page faults */
  139. #define TASK_RSS_EVENTS_THRESH (64)
  140. static void check_sync_rss_stat(struct task_struct *task)
  141. {
  142. if (unlikely(task != current))
  143. return;
  144. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  145. sync_mm_rss(task->mm);
  146. }
  147. #else /* SPLIT_RSS_COUNTING */
  148. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  149. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  150. static void check_sync_rss_stat(struct task_struct *task)
  151. {
  152. }
  153. #endif /* SPLIT_RSS_COUNTING */
  154. #ifdef HAVE_GENERIC_MMU_GATHER
  155. static bool tlb_next_batch(struct mmu_gather *tlb)
  156. {
  157. struct mmu_gather_batch *batch;
  158. batch = tlb->active;
  159. if (batch->next) {
  160. tlb->active = batch->next;
  161. return true;
  162. }
  163. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  164. return false;
  165. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  166. if (!batch)
  167. return false;
  168. tlb->batch_count++;
  169. batch->next = NULL;
  170. batch->nr = 0;
  171. batch->max = MAX_GATHER_BATCH;
  172. tlb->active->next = batch;
  173. tlb->active = batch;
  174. return true;
  175. }
  176. /* tlb_gather_mmu
  177. * Called to initialize an (on-stack) mmu_gather structure for page-table
  178. * tear-down from @mm. The @fullmm argument is used when @mm is without
  179. * users and we're going to destroy the full address space (exit/execve).
  180. */
  181. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  182. {
  183. tlb->mm = mm;
  184. /* Is it from 0 to ~0? */
  185. tlb->fullmm = !(start | (end+1));
  186. tlb->need_flush_all = 0;
  187. tlb->local.next = NULL;
  188. tlb->local.nr = 0;
  189. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  190. tlb->active = &tlb->local;
  191. tlb->batch_count = 0;
  192. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  193. tlb->batch = NULL;
  194. #endif
  195. __tlb_reset_range(tlb);
  196. }
  197. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  198. {
  199. if (!tlb->end)
  200. return;
  201. tlb_flush(tlb);
  202. mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
  203. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  204. tlb_table_flush(tlb);
  205. #endif
  206. __tlb_reset_range(tlb);
  207. }
  208. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  209. {
  210. struct mmu_gather_batch *batch;
  211. for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
  212. free_pages_and_swap_cache(batch->pages, batch->nr);
  213. batch->nr = 0;
  214. }
  215. tlb->active = &tlb->local;
  216. }
  217. void tlb_flush_mmu(struct mmu_gather *tlb)
  218. {
  219. tlb_flush_mmu_tlbonly(tlb);
  220. tlb_flush_mmu_free(tlb);
  221. }
  222. /* tlb_finish_mmu
  223. * Called at the end of the shootdown operation to free up any resources
  224. * that were required.
  225. */
  226. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  227. {
  228. struct mmu_gather_batch *batch, *next;
  229. tlb_flush_mmu(tlb);
  230. /* keep the page table cache within bounds */
  231. check_pgt_cache();
  232. for (batch = tlb->local.next; batch; batch = next) {
  233. next = batch->next;
  234. free_pages((unsigned long)batch, 0);
  235. }
  236. tlb->local.next = NULL;
  237. }
  238. /* __tlb_remove_page
  239. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  240. * handling the additional races in SMP caused by other CPUs caching valid
  241. * mappings in their TLBs. Returns the number of free page slots left.
  242. * When out of page slots we must call tlb_flush_mmu().
  243. */
  244. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  245. {
  246. struct mmu_gather_batch *batch;
  247. VM_BUG_ON(!tlb->end);
  248. batch = tlb->active;
  249. batch->pages[batch->nr++] = page;
  250. if (batch->nr == batch->max) {
  251. if (!tlb_next_batch(tlb))
  252. return 0;
  253. batch = tlb->active;
  254. }
  255. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  256. return batch->max - batch->nr;
  257. }
  258. #endif /* HAVE_GENERIC_MMU_GATHER */
  259. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  260. /*
  261. * See the comment near struct mmu_table_batch.
  262. */
  263. static void tlb_remove_table_smp_sync(void *arg)
  264. {
  265. /* Simply deliver the interrupt */
  266. }
  267. static void tlb_remove_table_one(void *table)
  268. {
  269. /*
  270. * This isn't an RCU grace period and hence the page-tables cannot be
  271. * assumed to be actually RCU-freed.
  272. *
  273. * It is however sufficient for software page-table walkers that rely on
  274. * IRQ disabling. See the comment near struct mmu_table_batch.
  275. */
  276. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  277. __tlb_remove_table(table);
  278. }
  279. static void tlb_remove_table_rcu(struct rcu_head *head)
  280. {
  281. struct mmu_table_batch *batch;
  282. int i;
  283. batch = container_of(head, struct mmu_table_batch, rcu);
  284. for (i = 0; i < batch->nr; i++)
  285. __tlb_remove_table(batch->tables[i]);
  286. free_page((unsigned long)batch);
  287. }
  288. void tlb_table_flush(struct mmu_gather *tlb)
  289. {
  290. struct mmu_table_batch **batch = &tlb->batch;
  291. if (*batch) {
  292. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  293. *batch = NULL;
  294. }
  295. }
  296. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  297. {
  298. struct mmu_table_batch **batch = &tlb->batch;
  299. /*
  300. * When there's less then two users of this mm there cannot be a
  301. * concurrent page-table walk.
  302. */
  303. if (atomic_read(&tlb->mm->mm_users) < 2) {
  304. __tlb_remove_table(table);
  305. return;
  306. }
  307. if (*batch == NULL) {
  308. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  309. if (*batch == NULL) {
  310. tlb_remove_table_one(table);
  311. return;
  312. }
  313. (*batch)->nr = 0;
  314. }
  315. (*batch)->tables[(*batch)->nr++] = table;
  316. if ((*batch)->nr == MAX_TABLE_BATCH)
  317. tlb_table_flush(tlb);
  318. }
  319. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  320. /*
  321. * Note: this doesn't free the actual pages themselves. That
  322. * has been handled earlier when unmapping all the memory regions.
  323. */
  324. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  325. unsigned long addr)
  326. {
  327. pgtable_t token = pmd_pgtable(*pmd);
  328. pmd_clear(pmd);
  329. pte_free_tlb(tlb, token, addr);
  330. atomic_long_dec(&tlb->mm->nr_ptes);
  331. }
  332. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  333. unsigned long addr, unsigned long end,
  334. unsigned long floor, unsigned long ceiling)
  335. {
  336. pmd_t *pmd;
  337. unsigned long next;
  338. unsigned long start;
  339. start = addr;
  340. pmd = pmd_offset(pud, addr);
  341. do {
  342. next = pmd_addr_end(addr, end);
  343. if (pmd_none_or_clear_bad(pmd))
  344. continue;
  345. free_pte_range(tlb, pmd, addr);
  346. } while (pmd++, addr = next, addr != end);
  347. start &= PUD_MASK;
  348. if (start < floor)
  349. return;
  350. if (ceiling) {
  351. ceiling &= PUD_MASK;
  352. if (!ceiling)
  353. return;
  354. }
  355. if (end - 1 > ceiling - 1)
  356. return;
  357. pmd = pmd_offset(pud, start);
  358. pud_clear(pud);
  359. pmd_free_tlb(tlb, pmd, start);
  360. mm_dec_nr_pmds(tlb->mm);
  361. }
  362. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  363. unsigned long addr, unsigned long end,
  364. unsigned long floor, unsigned long ceiling)
  365. {
  366. pud_t *pud;
  367. unsigned long next;
  368. unsigned long start;
  369. start = addr;
  370. pud = pud_offset(pgd, addr);
  371. do {
  372. next = pud_addr_end(addr, end);
  373. if (pud_none_or_clear_bad(pud))
  374. continue;
  375. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  376. } while (pud++, addr = next, addr != end);
  377. start &= PGDIR_MASK;
  378. if (start < floor)
  379. return;
  380. if (ceiling) {
  381. ceiling &= PGDIR_MASK;
  382. if (!ceiling)
  383. return;
  384. }
  385. if (end - 1 > ceiling - 1)
  386. return;
  387. pud = pud_offset(pgd, start);
  388. pgd_clear(pgd);
  389. pud_free_tlb(tlb, pud, start);
  390. }
  391. /*
  392. * This function frees user-level page tables of a process.
  393. */
  394. void free_pgd_range(struct mmu_gather *tlb,
  395. unsigned long addr, unsigned long end,
  396. unsigned long floor, unsigned long ceiling)
  397. {
  398. pgd_t *pgd;
  399. unsigned long next;
  400. /*
  401. * The next few lines have given us lots of grief...
  402. *
  403. * Why are we testing PMD* at this top level? Because often
  404. * there will be no work to do at all, and we'd prefer not to
  405. * go all the way down to the bottom just to discover that.
  406. *
  407. * Why all these "- 1"s? Because 0 represents both the bottom
  408. * of the address space and the top of it (using -1 for the
  409. * top wouldn't help much: the masks would do the wrong thing).
  410. * The rule is that addr 0 and floor 0 refer to the bottom of
  411. * the address space, but end 0 and ceiling 0 refer to the top
  412. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  413. * that end 0 case should be mythical).
  414. *
  415. * Wherever addr is brought up or ceiling brought down, we must
  416. * be careful to reject "the opposite 0" before it confuses the
  417. * subsequent tests. But what about where end is brought down
  418. * by PMD_SIZE below? no, end can't go down to 0 there.
  419. *
  420. * Whereas we round start (addr) and ceiling down, by different
  421. * masks at different levels, in order to test whether a table
  422. * now has no other vmas using it, so can be freed, we don't
  423. * bother to round floor or end up - the tests don't need that.
  424. */
  425. addr &= PMD_MASK;
  426. if (addr < floor) {
  427. addr += PMD_SIZE;
  428. if (!addr)
  429. return;
  430. }
  431. if (ceiling) {
  432. ceiling &= PMD_MASK;
  433. if (!ceiling)
  434. return;
  435. }
  436. if (end - 1 > ceiling - 1)
  437. end -= PMD_SIZE;
  438. if (addr > end - 1)
  439. return;
  440. pgd = pgd_offset(tlb->mm, addr);
  441. do {
  442. next = pgd_addr_end(addr, end);
  443. if (pgd_none_or_clear_bad(pgd))
  444. continue;
  445. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  446. } while (pgd++, addr = next, addr != end);
  447. }
  448. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  449. unsigned long floor, unsigned long ceiling)
  450. {
  451. while (vma) {
  452. struct vm_area_struct *next = vma->vm_next;
  453. unsigned long addr = vma->vm_start;
  454. /*
  455. * Hide vma from rmap and truncate_pagecache before freeing
  456. * pgtables
  457. */
  458. unlink_anon_vmas(vma);
  459. unlink_file_vma(vma);
  460. if (is_vm_hugetlb_page(vma)) {
  461. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  462. floor, next? next->vm_start: ceiling);
  463. } else {
  464. /*
  465. * Optimization: gather nearby vmas into one call down
  466. */
  467. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  468. && !is_vm_hugetlb_page(next)) {
  469. vma = next;
  470. next = vma->vm_next;
  471. unlink_anon_vmas(vma);
  472. unlink_file_vma(vma);
  473. }
  474. free_pgd_range(tlb, addr, vma->vm_end,
  475. floor, next? next->vm_start: ceiling);
  476. }
  477. vma = next;
  478. }
  479. }
  480. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  481. pmd_t *pmd, unsigned long address)
  482. {
  483. spinlock_t *ptl;
  484. pgtable_t new = pte_alloc_one(mm, address);
  485. int wait_split_huge_page;
  486. if (!new)
  487. return -ENOMEM;
  488. /*
  489. * Ensure all pte setup (eg. pte page lock and page clearing) are
  490. * visible before the pte is made visible to other CPUs by being
  491. * put into page tables.
  492. *
  493. * The other side of the story is the pointer chasing in the page
  494. * table walking code (when walking the page table without locking;
  495. * ie. most of the time). Fortunately, these data accesses consist
  496. * of a chain of data-dependent loads, meaning most CPUs (alpha
  497. * being the notable exception) will already guarantee loads are
  498. * seen in-order. See the alpha page table accessors for the
  499. * smp_read_barrier_depends() barriers in page table walking code.
  500. */
  501. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  502. ptl = pmd_lock(mm, pmd);
  503. wait_split_huge_page = 0;
  504. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  505. atomic_long_inc(&mm->nr_ptes);
  506. pmd_populate(mm, pmd, new);
  507. new = NULL;
  508. } else if (unlikely(pmd_trans_splitting(*pmd)))
  509. wait_split_huge_page = 1;
  510. spin_unlock(ptl);
  511. if (new)
  512. pte_free(mm, new);
  513. if (wait_split_huge_page)
  514. wait_split_huge_page(vma->anon_vma, pmd);
  515. return 0;
  516. }
  517. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  518. {
  519. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  520. if (!new)
  521. return -ENOMEM;
  522. smp_wmb(); /* See comment in __pte_alloc */
  523. spin_lock(&init_mm.page_table_lock);
  524. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  525. pmd_populate_kernel(&init_mm, pmd, new);
  526. new = NULL;
  527. } else
  528. VM_BUG_ON(pmd_trans_splitting(*pmd));
  529. spin_unlock(&init_mm.page_table_lock);
  530. if (new)
  531. pte_free_kernel(&init_mm, new);
  532. return 0;
  533. }
  534. static inline void init_rss_vec(int *rss)
  535. {
  536. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  537. }
  538. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  539. {
  540. int i;
  541. if (current->mm == mm)
  542. sync_mm_rss(mm);
  543. for (i = 0; i < NR_MM_COUNTERS; i++)
  544. if (rss[i])
  545. add_mm_counter(mm, i, rss[i]);
  546. }
  547. /*
  548. * This function is called to print an error when a bad pte
  549. * is found. For example, we might have a PFN-mapped pte in
  550. * a region that doesn't allow it.
  551. *
  552. * The calling function must still handle the error.
  553. */
  554. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  555. pte_t pte, struct page *page)
  556. {
  557. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  558. pud_t *pud = pud_offset(pgd, addr);
  559. pmd_t *pmd = pmd_offset(pud, addr);
  560. struct address_space *mapping;
  561. pgoff_t index;
  562. static unsigned long resume;
  563. static unsigned long nr_shown;
  564. static unsigned long nr_unshown;
  565. /*
  566. * Allow a burst of 60 reports, then keep quiet for that minute;
  567. * or allow a steady drip of one report per second.
  568. */
  569. if (nr_shown == 60) {
  570. if (time_before(jiffies, resume)) {
  571. nr_unshown++;
  572. return;
  573. }
  574. if (nr_unshown) {
  575. printk(KERN_ALERT
  576. "BUG: Bad page map: %lu messages suppressed\n",
  577. nr_unshown);
  578. nr_unshown = 0;
  579. }
  580. nr_shown = 0;
  581. }
  582. if (nr_shown++ == 0)
  583. resume = jiffies + 60 * HZ;
  584. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  585. index = linear_page_index(vma, addr);
  586. printk(KERN_ALERT
  587. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  588. current->comm,
  589. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  590. if (page)
  591. dump_page(page, "bad pte");
  592. printk(KERN_ALERT
  593. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  594. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  595. /*
  596. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  597. */
  598. pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
  599. vma->vm_file,
  600. vma->vm_ops ? vma->vm_ops->fault : NULL,
  601. vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
  602. mapping ? mapping->a_ops->readpage : NULL);
  603. dump_stack();
  604. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  605. }
  606. /*
  607. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  608. *
  609. * "Special" mappings do not wish to be associated with a "struct page" (either
  610. * it doesn't exist, or it exists but they don't want to touch it). In this
  611. * case, NULL is returned here. "Normal" mappings do have a struct page.
  612. *
  613. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  614. * pte bit, in which case this function is trivial. Secondly, an architecture
  615. * may not have a spare pte bit, which requires a more complicated scheme,
  616. * described below.
  617. *
  618. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  619. * special mapping (even if there are underlying and valid "struct pages").
  620. * COWed pages of a VM_PFNMAP are always normal.
  621. *
  622. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  623. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  624. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  625. * mapping will always honor the rule
  626. *
  627. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  628. *
  629. * And for normal mappings this is false.
  630. *
  631. * This restricts such mappings to be a linear translation from virtual address
  632. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  633. * as the vma is not a COW mapping; in that case, we know that all ptes are
  634. * special (because none can have been COWed).
  635. *
  636. *
  637. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  638. *
  639. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  640. * page" backing, however the difference is that _all_ pages with a struct
  641. * page (that is, those where pfn_valid is true) are refcounted and considered
  642. * normal pages by the VM. The disadvantage is that pages are refcounted
  643. * (which can be slower and simply not an option for some PFNMAP users). The
  644. * advantage is that we don't have to follow the strict linearity rule of
  645. * PFNMAP mappings in order to support COWable mappings.
  646. *
  647. */
  648. #ifdef __HAVE_ARCH_PTE_SPECIAL
  649. # define HAVE_PTE_SPECIAL 1
  650. #else
  651. # define HAVE_PTE_SPECIAL 0
  652. #endif
  653. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  654. pte_t pte)
  655. {
  656. unsigned long pfn = pte_pfn(pte);
  657. if (HAVE_PTE_SPECIAL) {
  658. if (likely(!pte_special(pte)))
  659. goto check_pfn;
  660. if (vma->vm_ops && vma->vm_ops->find_special_page)
  661. return vma->vm_ops->find_special_page(vma, addr);
  662. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  663. return NULL;
  664. if (!is_zero_pfn(pfn))
  665. print_bad_pte(vma, addr, pte, NULL);
  666. return NULL;
  667. }
  668. /* !HAVE_PTE_SPECIAL case follows: */
  669. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  670. if (vma->vm_flags & VM_MIXEDMAP) {
  671. if (!pfn_valid(pfn))
  672. return NULL;
  673. goto out;
  674. } else {
  675. unsigned long off;
  676. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  677. if (pfn == vma->vm_pgoff + off)
  678. return NULL;
  679. if (!is_cow_mapping(vma->vm_flags))
  680. return NULL;
  681. }
  682. }
  683. if (is_zero_pfn(pfn))
  684. return NULL;
  685. check_pfn:
  686. if (unlikely(pfn > highest_memmap_pfn)) {
  687. print_bad_pte(vma, addr, pte, NULL);
  688. return NULL;
  689. }
  690. /*
  691. * NOTE! We still have PageReserved() pages in the page tables.
  692. * eg. VDSO mappings can cause them to exist.
  693. */
  694. out:
  695. return pfn_to_page(pfn);
  696. }
  697. /*
  698. * copy one vm_area from one task to the other. Assumes the page tables
  699. * already present in the new task to be cleared in the whole range
  700. * covered by this vma.
  701. */
  702. static inline unsigned long
  703. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  704. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  705. unsigned long addr, int *rss)
  706. {
  707. unsigned long vm_flags = vma->vm_flags;
  708. pte_t pte = *src_pte;
  709. struct page *page;
  710. /* pte contains position in swap or file, so copy. */
  711. if (unlikely(!pte_present(pte))) {
  712. swp_entry_t entry = pte_to_swp_entry(pte);
  713. if (likely(!non_swap_entry(entry))) {
  714. if (swap_duplicate(entry) < 0)
  715. return entry.val;
  716. /* make sure dst_mm is on swapoff's mmlist. */
  717. if (unlikely(list_empty(&dst_mm->mmlist))) {
  718. spin_lock(&mmlist_lock);
  719. if (list_empty(&dst_mm->mmlist))
  720. list_add(&dst_mm->mmlist,
  721. &src_mm->mmlist);
  722. spin_unlock(&mmlist_lock);
  723. }
  724. rss[MM_SWAPENTS]++;
  725. } else if (is_migration_entry(entry)) {
  726. page = migration_entry_to_page(entry);
  727. if (PageAnon(page))
  728. rss[MM_ANONPAGES]++;
  729. else
  730. rss[MM_FILEPAGES]++;
  731. if (is_write_migration_entry(entry) &&
  732. is_cow_mapping(vm_flags)) {
  733. /*
  734. * COW mappings require pages in both
  735. * parent and child to be set to read.
  736. */
  737. make_migration_entry_read(&entry);
  738. pte = swp_entry_to_pte(entry);
  739. if (pte_swp_soft_dirty(*src_pte))
  740. pte = pte_swp_mksoft_dirty(pte);
  741. set_pte_at(src_mm, addr, src_pte, pte);
  742. }
  743. }
  744. goto out_set_pte;
  745. }
  746. /*
  747. * If it's a COW mapping, write protect it both
  748. * in the parent and the child
  749. */
  750. if (is_cow_mapping(vm_flags)) {
  751. ptep_set_wrprotect(src_mm, addr, src_pte);
  752. pte = pte_wrprotect(pte);
  753. }
  754. /*
  755. * If it's a shared mapping, mark it clean in
  756. * the child
  757. */
  758. if (vm_flags & VM_SHARED)
  759. pte = pte_mkclean(pte);
  760. pte = pte_mkold(pte);
  761. page = vm_normal_page(vma, addr, pte);
  762. if (page) {
  763. get_page(page);
  764. page_dup_rmap(page);
  765. if (PageAnon(page))
  766. rss[MM_ANONPAGES]++;
  767. else
  768. rss[MM_FILEPAGES]++;
  769. }
  770. out_set_pte:
  771. set_pte_at(dst_mm, addr, dst_pte, pte);
  772. return 0;
  773. }
  774. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  775. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  776. unsigned long addr, unsigned long end)
  777. {
  778. pte_t *orig_src_pte, *orig_dst_pte;
  779. pte_t *src_pte, *dst_pte;
  780. spinlock_t *src_ptl, *dst_ptl;
  781. int progress = 0;
  782. int rss[NR_MM_COUNTERS];
  783. swp_entry_t entry = (swp_entry_t){0};
  784. again:
  785. init_rss_vec(rss);
  786. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  787. if (!dst_pte)
  788. return -ENOMEM;
  789. src_pte = pte_offset_map(src_pmd, addr);
  790. src_ptl = pte_lockptr(src_mm, src_pmd);
  791. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  792. orig_src_pte = src_pte;
  793. orig_dst_pte = dst_pte;
  794. arch_enter_lazy_mmu_mode();
  795. do {
  796. /*
  797. * We are holding two locks at this point - either of them
  798. * could generate latencies in another task on another CPU.
  799. */
  800. if (progress >= 32) {
  801. progress = 0;
  802. if (need_resched() ||
  803. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  804. break;
  805. }
  806. if (pte_none(*src_pte)) {
  807. progress++;
  808. continue;
  809. }
  810. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  811. vma, addr, rss);
  812. if (entry.val)
  813. break;
  814. progress += 8;
  815. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  816. arch_leave_lazy_mmu_mode();
  817. spin_unlock(src_ptl);
  818. pte_unmap(orig_src_pte);
  819. add_mm_rss_vec(dst_mm, rss);
  820. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  821. cond_resched();
  822. if (entry.val) {
  823. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  824. return -ENOMEM;
  825. progress = 0;
  826. }
  827. if (addr != end)
  828. goto again;
  829. return 0;
  830. }
  831. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  832. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  833. unsigned long addr, unsigned long end)
  834. {
  835. pmd_t *src_pmd, *dst_pmd;
  836. unsigned long next;
  837. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  838. if (!dst_pmd)
  839. return -ENOMEM;
  840. src_pmd = pmd_offset(src_pud, addr);
  841. do {
  842. next = pmd_addr_end(addr, end);
  843. if (pmd_trans_huge(*src_pmd)) {
  844. int err;
  845. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  846. err = copy_huge_pmd(dst_mm, src_mm,
  847. dst_pmd, src_pmd, addr, vma);
  848. if (err == -ENOMEM)
  849. return -ENOMEM;
  850. if (!err)
  851. continue;
  852. /* fall through */
  853. }
  854. if (pmd_none_or_clear_bad(src_pmd))
  855. continue;
  856. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  857. vma, addr, next))
  858. return -ENOMEM;
  859. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  860. return 0;
  861. }
  862. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  863. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  864. unsigned long addr, unsigned long end)
  865. {
  866. pud_t *src_pud, *dst_pud;
  867. unsigned long next;
  868. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  869. if (!dst_pud)
  870. return -ENOMEM;
  871. src_pud = pud_offset(src_pgd, addr);
  872. do {
  873. next = pud_addr_end(addr, end);
  874. if (pud_none_or_clear_bad(src_pud))
  875. continue;
  876. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  877. vma, addr, next))
  878. return -ENOMEM;
  879. } while (dst_pud++, src_pud++, addr = next, addr != end);
  880. return 0;
  881. }
  882. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  883. struct vm_area_struct *vma)
  884. {
  885. pgd_t *src_pgd, *dst_pgd;
  886. unsigned long next;
  887. unsigned long addr = vma->vm_start;
  888. unsigned long end = vma->vm_end;
  889. unsigned long mmun_start; /* For mmu_notifiers */
  890. unsigned long mmun_end; /* For mmu_notifiers */
  891. bool is_cow;
  892. int ret;
  893. /*
  894. * Don't copy ptes where a page fault will fill them correctly.
  895. * Fork becomes much lighter when there are big shared or private
  896. * readonly mappings. The tradeoff is that copy_page_range is more
  897. * efficient than faulting.
  898. */
  899. if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
  900. !vma->anon_vma)
  901. return 0;
  902. if (is_vm_hugetlb_page(vma))
  903. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  904. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  905. /*
  906. * We do not free on error cases below as remove_vma
  907. * gets called on error from higher level routine
  908. */
  909. ret = track_pfn_copy(vma);
  910. if (ret)
  911. return ret;
  912. }
  913. /*
  914. * We need to invalidate the secondary MMU mappings only when
  915. * there could be a permission downgrade on the ptes of the
  916. * parent mm. And a permission downgrade will only happen if
  917. * is_cow_mapping() returns true.
  918. */
  919. is_cow = is_cow_mapping(vma->vm_flags);
  920. mmun_start = addr;
  921. mmun_end = end;
  922. if (is_cow)
  923. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  924. mmun_end);
  925. ret = 0;
  926. dst_pgd = pgd_offset(dst_mm, addr);
  927. src_pgd = pgd_offset(src_mm, addr);
  928. do {
  929. next = pgd_addr_end(addr, end);
  930. if (pgd_none_or_clear_bad(src_pgd))
  931. continue;
  932. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  933. vma, addr, next))) {
  934. ret = -ENOMEM;
  935. break;
  936. }
  937. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  938. if (is_cow)
  939. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  940. return ret;
  941. }
  942. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  943. struct vm_area_struct *vma, pmd_t *pmd,
  944. unsigned long addr, unsigned long end,
  945. struct zap_details *details)
  946. {
  947. struct mm_struct *mm = tlb->mm;
  948. int force_flush = 0;
  949. int rss[NR_MM_COUNTERS];
  950. spinlock_t *ptl;
  951. pte_t *start_pte;
  952. pte_t *pte;
  953. swp_entry_t entry;
  954. again:
  955. init_rss_vec(rss);
  956. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  957. pte = start_pte;
  958. arch_enter_lazy_mmu_mode();
  959. do {
  960. pte_t ptent = *pte;
  961. if (pte_none(ptent)) {
  962. continue;
  963. }
  964. if (pte_present(ptent)) {
  965. struct page *page;
  966. page = vm_normal_page(vma, addr, ptent);
  967. if (unlikely(details) && page) {
  968. /*
  969. * unmap_shared_mapping_pages() wants to
  970. * invalidate cache without truncating:
  971. * unmap shared but keep private pages.
  972. */
  973. if (details->check_mapping &&
  974. details->check_mapping != page->mapping)
  975. continue;
  976. }
  977. ptent = ptep_get_and_clear_full(mm, addr, pte,
  978. tlb->fullmm);
  979. tlb_remove_tlb_entry(tlb, pte, addr);
  980. if (unlikely(!page))
  981. continue;
  982. if (PageAnon(page))
  983. rss[MM_ANONPAGES]--;
  984. else {
  985. if (pte_dirty(ptent)) {
  986. force_flush = 1;
  987. set_page_dirty(page);
  988. }
  989. if (pte_young(ptent) &&
  990. likely(!(vma->vm_flags & VM_SEQ_READ)))
  991. mark_page_accessed(page);
  992. rss[MM_FILEPAGES]--;
  993. }
  994. page_remove_rmap(page);
  995. if (unlikely(page_mapcount(page) < 0))
  996. print_bad_pte(vma, addr, ptent, page);
  997. if (unlikely(!__tlb_remove_page(tlb, page))) {
  998. force_flush = 1;
  999. addr += PAGE_SIZE;
  1000. break;
  1001. }
  1002. continue;
  1003. }
  1004. /* If details->check_mapping, we leave swap entries. */
  1005. if (unlikely(details))
  1006. continue;
  1007. entry = pte_to_swp_entry(ptent);
  1008. if (!non_swap_entry(entry))
  1009. rss[MM_SWAPENTS]--;
  1010. else if (is_migration_entry(entry)) {
  1011. struct page *page;
  1012. page = migration_entry_to_page(entry);
  1013. if (PageAnon(page))
  1014. rss[MM_ANONPAGES]--;
  1015. else
  1016. rss[MM_FILEPAGES]--;
  1017. }
  1018. if (unlikely(!free_swap_and_cache(entry)))
  1019. print_bad_pte(vma, addr, ptent, NULL);
  1020. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1021. } while (pte++, addr += PAGE_SIZE, addr != end);
  1022. add_mm_rss_vec(mm, rss);
  1023. arch_leave_lazy_mmu_mode();
  1024. /* Do the actual TLB flush before dropping ptl */
  1025. if (force_flush)
  1026. tlb_flush_mmu_tlbonly(tlb);
  1027. pte_unmap_unlock(start_pte, ptl);
  1028. /*
  1029. * If we forced a TLB flush (either due to running out of
  1030. * batch buffers or because we needed to flush dirty TLB
  1031. * entries before releasing the ptl), free the batched
  1032. * memory too. Restart if we didn't do everything.
  1033. */
  1034. if (force_flush) {
  1035. force_flush = 0;
  1036. tlb_flush_mmu_free(tlb);
  1037. if (addr != end)
  1038. goto again;
  1039. }
  1040. return addr;
  1041. }
  1042. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1043. struct vm_area_struct *vma, pud_t *pud,
  1044. unsigned long addr, unsigned long end,
  1045. struct zap_details *details)
  1046. {
  1047. pmd_t *pmd;
  1048. unsigned long next;
  1049. pmd = pmd_offset(pud, addr);
  1050. do {
  1051. next = pmd_addr_end(addr, end);
  1052. if (pmd_trans_huge(*pmd)) {
  1053. if (next - addr != HPAGE_PMD_SIZE) {
  1054. #ifdef CONFIG_DEBUG_VM
  1055. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1056. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1057. __func__, addr, end,
  1058. vma->vm_start,
  1059. vma->vm_end);
  1060. BUG();
  1061. }
  1062. #endif
  1063. split_huge_page_pmd(vma, addr, pmd);
  1064. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1065. goto next;
  1066. /* fall through */
  1067. }
  1068. /*
  1069. * Here there can be other concurrent MADV_DONTNEED or
  1070. * trans huge page faults running, and if the pmd is
  1071. * none or trans huge it can change under us. This is
  1072. * because MADV_DONTNEED holds the mmap_sem in read
  1073. * mode.
  1074. */
  1075. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1076. goto next;
  1077. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1078. next:
  1079. cond_resched();
  1080. } while (pmd++, addr = next, addr != end);
  1081. return addr;
  1082. }
  1083. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1084. struct vm_area_struct *vma, pgd_t *pgd,
  1085. unsigned long addr, unsigned long end,
  1086. struct zap_details *details)
  1087. {
  1088. pud_t *pud;
  1089. unsigned long next;
  1090. pud = pud_offset(pgd, addr);
  1091. do {
  1092. next = pud_addr_end(addr, end);
  1093. if (pud_none_or_clear_bad(pud))
  1094. continue;
  1095. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1096. } while (pud++, addr = next, addr != end);
  1097. return addr;
  1098. }
  1099. static void unmap_page_range(struct mmu_gather *tlb,
  1100. struct vm_area_struct *vma,
  1101. unsigned long addr, unsigned long end,
  1102. struct zap_details *details)
  1103. {
  1104. pgd_t *pgd;
  1105. unsigned long next;
  1106. if (details && !details->check_mapping)
  1107. details = NULL;
  1108. BUG_ON(addr >= end);
  1109. tlb_start_vma(tlb, vma);
  1110. pgd = pgd_offset(vma->vm_mm, addr);
  1111. do {
  1112. next = pgd_addr_end(addr, end);
  1113. if (pgd_none_or_clear_bad(pgd))
  1114. continue;
  1115. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1116. } while (pgd++, addr = next, addr != end);
  1117. tlb_end_vma(tlb, vma);
  1118. }
  1119. static void unmap_single_vma(struct mmu_gather *tlb,
  1120. struct vm_area_struct *vma, unsigned long start_addr,
  1121. unsigned long end_addr,
  1122. struct zap_details *details)
  1123. {
  1124. unsigned long start = max(vma->vm_start, start_addr);
  1125. unsigned long end;
  1126. if (start >= vma->vm_end)
  1127. return;
  1128. end = min(vma->vm_end, end_addr);
  1129. if (end <= vma->vm_start)
  1130. return;
  1131. if (vma->vm_file)
  1132. uprobe_munmap(vma, start, end);
  1133. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1134. untrack_pfn(vma, 0, 0);
  1135. if (start != end) {
  1136. if (unlikely(is_vm_hugetlb_page(vma))) {
  1137. /*
  1138. * It is undesirable to test vma->vm_file as it
  1139. * should be non-null for valid hugetlb area.
  1140. * However, vm_file will be NULL in the error
  1141. * cleanup path of mmap_region. When
  1142. * hugetlbfs ->mmap method fails,
  1143. * mmap_region() nullifies vma->vm_file
  1144. * before calling this function to clean up.
  1145. * Since no pte has actually been setup, it is
  1146. * safe to do nothing in this case.
  1147. */
  1148. if (vma->vm_file) {
  1149. i_mmap_lock_write(vma->vm_file->f_mapping);
  1150. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1151. i_mmap_unlock_write(vma->vm_file->f_mapping);
  1152. }
  1153. } else
  1154. unmap_page_range(tlb, vma, start, end, details);
  1155. }
  1156. }
  1157. /**
  1158. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1159. * @tlb: address of the caller's struct mmu_gather
  1160. * @vma: the starting vma
  1161. * @start_addr: virtual address at which to start unmapping
  1162. * @end_addr: virtual address at which to end unmapping
  1163. *
  1164. * Unmap all pages in the vma list.
  1165. *
  1166. * Only addresses between `start' and `end' will be unmapped.
  1167. *
  1168. * The VMA list must be sorted in ascending virtual address order.
  1169. *
  1170. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1171. * range after unmap_vmas() returns. So the only responsibility here is to
  1172. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1173. * drops the lock and schedules.
  1174. */
  1175. void unmap_vmas(struct mmu_gather *tlb,
  1176. struct vm_area_struct *vma, unsigned long start_addr,
  1177. unsigned long end_addr)
  1178. {
  1179. struct mm_struct *mm = vma->vm_mm;
  1180. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1181. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1182. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1183. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1184. }
  1185. /**
  1186. * zap_page_range - remove user pages in a given range
  1187. * @vma: vm_area_struct holding the applicable pages
  1188. * @start: starting address of pages to zap
  1189. * @size: number of bytes to zap
  1190. * @details: details of shared cache invalidation
  1191. *
  1192. * Caller must protect the VMA list
  1193. */
  1194. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1195. unsigned long size, struct zap_details *details)
  1196. {
  1197. struct mm_struct *mm = vma->vm_mm;
  1198. struct mmu_gather tlb;
  1199. unsigned long end = start + size;
  1200. lru_add_drain();
  1201. tlb_gather_mmu(&tlb, mm, start, end);
  1202. update_hiwater_rss(mm);
  1203. mmu_notifier_invalidate_range_start(mm, start, end);
  1204. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1205. unmap_single_vma(&tlb, vma, start, end, details);
  1206. mmu_notifier_invalidate_range_end(mm, start, end);
  1207. tlb_finish_mmu(&tlb, start, end);
  1208. }
  1209. /**
  1210. * zap_page_range_single - remove user pages in a given range
  1211. * @vma: vm_area_struct holding the applicable pages
  1212. * @address: starting address of pages to zap
  1213. * @size: number of bytes to zap
  1214. * @details: details of shared cache invalidation
  1215. *
  1216. * The range must fit into one VMA.
  1217. */
  1218. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1219. unsigned long size, struct zap_details *details)
  1220. {
  1221. struct mm_struct *mm = vma->vm_mm;
  1222. struct mmu_gather tlb;
  1223. unsigned long end = address + size;
  1224. lru_add_drain();
  1225. tlb_gather_mmu(&tlb, mm, address, end);
  1226. update_hiwater_rss(mm);
  1227. mmu_notifier_invalidate_range_start(mm, address, end);
  1228. unmap_single_vma(&tlb, vma, address, end, details);
  1229. mmu_notifier_invalidate_range_end(mm, address, end);
  1230. tlb_finish_mmu(&tlb, address, end);
  1231. }
  1232. /**
  1233. * zap_vma_ptes - remove ptes mapping the vma
  1234. * @vma: vm_area_struct holding ptes to be zapped
  1235. * @address: starting address of pages to zap
  1236. * @size: number of bytes to zap
  1237. *
  1238. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1239. *
  1240. * The entire address range must be fully contained within the vma.
  1241. *
  1242. * Returns 0 if successful.
  1243. */
  1244. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1245. unsigned long size)
  1246. {
  1247. if (address < vma->vm_start || address + size > vma->vm_end ||
  1248. !(vma->vm_flags & VM_PFNMAP))
  1249. return -1;
  1250. zap_page_range_single(vma, address, size, NULL);
  1251. return 0;
  1252. }
  1253. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1254. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1255. spinlock_t **ptl)
  1256. {
  1257. pgd_t * pgd = pgd_offset(mm, addr);
  1258. pud_t * pud = pud_alloc(mm, pgd, addr);
  1259. if (pud) {
  1260. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1261. if (pmd) {
  1262. VM_BUG_ON(pmd_trans_huge(*pmd));
  1263. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1264. }
  1265. }
  1266. return NULL;
  1267. }
  1268. /*
  1269. * This is the old fallback for page remapping.
  1270. *
  1271. * For historical reasons, it only allows reserved pages. Only
  1272. * old drivers should use this, and they needed to mark their
  1273. * pages reserved for the old functions anyway.
  1274. */
  1275. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1276. struct page *page, pgprot_t prot)
  1277. {
  1278. struct mm_struct *mm = vma->vm_mm;
  1279. int retval;
  1280. pte_t *pte;
  1281. spinlock_t *ptl;
  1282. retval = -EINVAL;
  1283. if (PageAnon(page))
  1284. goto out;
  1285. retval = -ENOMEM;
  1286. flush_dcache_page(page);
  1287. pte = get_locked_pte(mm, addr, &ptl);
  1288. if (!pte)
  1289. goto out;
  1290. retval = -EBUSY;
  1291. if (!pte_none(*pte))
  1292. goto out_unlock;
  1293. /* Ok, finally just insert the thing.. */
  1294. get_page(page);
  1295. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1296. page_add_file_rmap(page);
  1297. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1298. retval = 0;
  1299. pte_unmap_unlock(pte, ptl);
  1300. return retval;
  1301. out_unlock:
  1302. pte_unmap_unlock(pte, ptl);
  1303. out:
  1304. return retval;
  1305. }
  1306. /**
  1307. * vm_insert_page - insert single page into user vma
  1308. * @vma: user vma to map to
  1309. * @addr: target user address of this page
  1310. * @page: source kernel page
  1311. *
  1312. * This allows drivers to insert individual pages they've allocated
  1313. * into a user vma.
  1314. *
  1315. * The page has to be a nice clean _individual_ kernel allocation.
  1316. * If you allocate a compound page, you need to have marked it as
  1317. * such (__GFP_COMP), or manually just split the page up yourself
  1318. * (see split_page()).
  1319. *
  1320. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1321. * took an arbitrary page protection parameter. This doesn't allow
  1322. * that. Your vma protection will have to be set up correctly, which
  1323. * means that if you want a shared writable mapping, you'd better
  1324. * ask for a shared writable mapping!
  1325. *
  1326. * The page does not need to be reserved.
  1327. *
  1328. * Usually this function is called from f_op->mmap() handler
  1329. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1330. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1331. * function from other places, for example from page-fault handler.
  1332. */
  1333. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1334. struct page *page)
  1335. {
  1336. if (addr < vma->vm_start || addr >= vma->vm_end)
  1337. return -EFAULT;
  1338. if (!page_count(page))
  1339. return -EINVAL;
  1340. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1341. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1342. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1343. vma->vm_flags |= VM_MIXEDMAP;
  1344. }
  1345. return insert_page(vma, addr, page, vma->vm_page_prot);
  1346. }
  1347. EXPORT_SYMBOL(vm_insert_page);
  1348. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1349. unsigned long pfn, pgprot_t prot)
  1350. {
  1351. struct mm_struct *mm = vma->vm_mm;
  1352. int retval;
  1353. pte_t *pte, entry;
  1354. spinlock_t *ptl;
  1355. retval = -ENOMEM;
  1356. pte = get_locked_pte(mm, addr, &ptl);
  1357. if (!pte)
  1358. goto out;
  1359. retval = -EBUSY;
  1360. if (!pte_none(*pte))
  1361. goto out_unlock;
  1362. /* Ok, finally just insert the thing.. */
  1363. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1364. set_pte_at(mm, addr, pte, entry);
  1365. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1366. retval = 0;
  1367. out_unlock:
  1368. pte_unmap_unlock(pte, ptl);
  1369. out:
  1370. return retval;
  1371. }
  1372. /**
  1373. * vm_insert_pfn - insert single pfn into user vma
  1374. * @vma: user vma to map to
  1375. * @addr: target user address of this page
  1376. * @pfn: source kernel pfn
  1377. *
  1378. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1379. * they've allocated into a user vma. Same comments apply.
  1380. *
  1381. * This function should only be called from a vm_ops->fault handler, and
  1382. * in that case the handler should return NULL.
  1383. *
  1384. * vma cannot be a COW mapping.
  1385. *
  1386. * As this is called only for pages that do not currently exist, we
  1387. * do not need to flush old virtual caches or the TLB.
  1388. */
  1389. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1390. unsigned long pfn)
  1391. {
  1392. int ret;
  1393. pgprot_t pgprot = vma->vm_page_prot;
  1394. /*
  1395. * Technically, architectures with pte_special can avoid all these
  1396. * restrictions (same for remap_pfn_range). However we would like
  1397. * consistency in testing and feature parity among all, so we should
  1398. * try to keep these invariants in place for everybody.
  1399. */
  1400. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1401. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1402. (VM_PFNMAP|VM_MIXEDMAP));
  1403. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1404. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1405. if (addr < vma->vm_start || addr >= vma->vm_end)
  1406. return -EFAULT;
  1407. if (track_pfn_insert(vma, &pgprot, pfn))
  1408. return -EINVAL;
  1409. ret = insert_pfn(vma, addr, pfn, pgprot);
  1410. return ret;
  1411. }
  1412. EXPORT_SYMBOL(vm_insert_pfn);
  1413. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1414. unsigned long pfn)
  1415. {
  1416. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1417. if (addr < vma->vm_start || addr >= vma->vm_end)
  1418. return -EFAULT;
  1419. /*
  1420. * If we don't have pte special, then we have to use the pfn_valid()
  1421. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1422. * refcount the page if pfn_valid is true (hence insert_page rather
  1423. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1424. * without pte special, it would there be refcounted as a normal page.
  1425. */
  1426. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1427. struct page *page;
  1428. page = pfn_to_page(pfn);
  1429. return insert_page(vma, addr, page, vma->vm_page_prot);
  1430. }
  1431. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1432. }
  1433. EXPORT_SYMBOL(vm_insert_mixed);
  1434. /*
  1435. * maps a range of physical memory into the requested pages. the old
  1436. * mappings are removed. any references to nonexistent pages results
  1437. * in null mappings (currently treated as "copy-on-access")
  1438. */
  1439. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1440. unsigned long addr, unsigned long end,
  1441. unsigned long pfn, pgprot_t prot)
  1442. {
  1443. pte_t *pte;
  1444. spinlock_t *ptl;
  1445. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1446. if (!pte)
  1447. return -ENOMEM;
  1448. arch_enter_lazy_mmu_mode();
  1449. do {
  1450. BUG_ON(!pte_none(*pte));
  1451. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1452. pfn++;
  1453. } while (pte++, addr += PAGE_SIZE, addr != end);
  1454. arch_leave_lazy_mmu_mode();
  1455. pte_unmap_unlock(pte - 1, ptl);
  1456. return 0;
  1457. }
  1458. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1459. unsigned long addr, unsigned long end,
  1460. unsigned long pfn, pgprot_t prot)
  1461. {
  1462. pmd_t *pmd;
  1463. unsigned long next;
  1464. pfn -= addr >> PAGE_SHIFT;
  1465. pmd = pmd_alloc(mm, pud, addr);
  1466. if (!pmd)
  1467. return -ENOMEM;
  1468. VM_BUG_ON(pmd_trans_huge(*pmd));
  1469. do {
  1470. next = pmd_addr_end(addr, end);
  1471. if (remap_pte_range(mm, pmd, addr, next,
  1472. pfn + (addr >> PAGE_SHIFT), prot))
  1473. return -ENOMEM;
  1474. } while (pmd++, addr = next, addr != end);
  1475. return 0;
  1476. }
  1477. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1478. unsigned long addr, unsigned long end,
  1479. unsigned long pfn, pgprot_t prot)
  1480. {
  1481. pud_t *pud;
  1482. unsigned long next;
  1483. pfn -= addr >> PAGE_SHIFT;
  1484. pud = pud_alloc(mm, pgd, addr);
  1485. if (!pud)
  1486. return -ENOMEM;
  1487. do {
  1488. next = pud_addr_end(addr, end);
  1489. if (remap_pmd_range(mm, pud, addr, next,
  1490. pfn + (addr >> PAGE_SHIFT), prot))
  1491. return -ENOMEM;
  1492. } while (pud++, addr = next, addr != end);
  1493. return 0;
  1494. }
  1495. /**
  1496. * remap_pfn_range - remap kernel memory to userspace
  1497. * @vma: user vma to map to
  1498. * @addr: target user address to start at
  1499. * @pfn: physical address of kernel memory
  1500. * @size: size of map area
  1501. * @prot: page protection flags for this mapping
  1502. *
  1503. * Note: this is only safe if the mm semaphore is held when called.
  1504. */
  1505. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1506. unsigned long pfn, unsigned long size, pgprot_t prot)
  1507. {
  1508. pgd_t *pgd;
  1509. unsigned long next;
  1510. unsigned long end = addr + PAGE_ALIGN(size);
  1511. struct mm_struct *mm = vma->vm_mm;
  1512. int err;
  1513. /*
  1514. * Physically remapped pages are special. Tell the
  1515. * rest of the world about it:
  1516. * VM_IO tells people not to look at these pages
  1517. * (accesses can have side effects).
  1518. * VM_PFNMAP tells the core MM that the base pages are just
  1519. * raw PFN mappings, and do not have a "struct page" associated
  1520. * with them.
  1521. * VM_DONTEXPAND
  1522. * Disable vma merging and expanding with mremap().
  1523. * VM_DONTDUMP
  1524. * Omit vma from core dump, even when VM_IO turned off.
  1525. *
  1526. * There's a horrible special case to handle copy-on-write
  1527. * behaviour that some programs depend on. We mark the "original"
  1528. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1529. * See vm_normal_page() for details.
  1530. */
  1531. if (is_cow_mapping(vma->vm_flags)) {
  1532. if (addr != vma->vm_start || end != vma->vm_end)
  1533. return -EINVAL;
  1534. vma->vm_pgoff = pfn;
  1535. }
  1536. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  1537. if (err)
  1538. return -EINVAL;
  1539. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1540. BUG_ON(addr >= end);
  1541. pfn -= addr >> PAGE_SHIFT;
  1542. pgd = pgd_offset(mm, addr);
  1543. flush_cache_range(vma, addr, end);
  1544. do {
  1545. next = pgd_addr_end(addr, end);
  1546. err = remap_pud_range(mm, pgd, addr, next,
  1547. pfn + (addr >> PAGE_SHIFT), prot);
  1548. if (err)
  1549. break;
  1550. } while (pgd++, addr = next, addr != end);
  1551. if (err)
  1552. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  1553. return err;
  1554. }
  1555. EXPORT_SYMBOL(remap_pfn_range);
  1556. /**
  1557. * vm_iomap_memory - remap memory to userspace
  1558. * @vma: user vma to map to
  1559. * @start: start of area
  1560. * @len: size of area
  1561. *
  1562. * This is a simplified io_remap_pfn_range() for common driver use. The
  1563. * driver just needs to give us the physical memory range to be mapped,
  1564. * we'll figure out the rest from the vma information.
  1565. *
  1566. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1567. * whatever write-combining details or similar.
  1568. */
  1569. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1570. {
  1571. unsigned long vm_len, pfn, pages;
  1572. /* Check that the physical memory area passed in looks valid */
  1573. if (start + len < start)
  1574. return -EINVAL;
  1575. /*
  1576. * You *really* shouldn't map things that aren't page-aligned,
  1577. * but we've historically allowed it because IO memory might
  1578. * just have smaller alignment.
  1579. */
  1580. len += start & ~PAGE_MASK;
  1581. pfn = start >> PAGE_SHIFT;
  1582. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1583. if (pfn + pages < pfn)
  1584. return -EINVAL;
  1585. /* We start the mapping 'vm_pgoff' pages into the area */
  1586. if (vma->vm_pgoff > pages)
  1587. return -EINVAL;
  1588. pfn += vma->vm_pgoff;
  1589. pages -= vma->vm_pgoff;
  1590. /* Can we fit all of the mapping? */
  1591. vm_len = vma->vm_end - vma->vm_start;
  1592. if (vm_len >> PAGE_SHIFT > pages)
  1593. return -EINVAL;
  1594. /* Ok, let it rip */
  1595. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1596. }
  1597. EXPORT_SYMBOL(vm_iomap_memory);
  1598. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1599. unsigned long addr, unsigned long end,
  1600. pte_fn_t fn, void *data)
  1601. {
  1602. pte_t *pte;
  1603. int err;
  1604. pgtable_t token;
  1605. spinlock_t *uninitialized_var(ptl);
  1606. pte = (mm == &init_mm) ?
  1607. pte_alloc_kernel(pmd, addr) :
  1608. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1609. if (!pte)
  1610. return -ENOMEM;
  1611. BUG_ON(pmd_huge(*pmd));
  1612. arch_enter_lazy_mmu_mode();
  1613. token = pmd_pgtable(*pmd);
  1614. do {
  1615. err = fn(pte++, token, addr, data);
  1616. if (err)
  1617. break;
  1618. } while (addr += PAGE_SIZE, addr != end);
  1619. arch_leave_lazy_mmu_mode();
  1620. if (mm != &init_mm)
  1621. pte_unmap_unlock(pte-1, ptl);
  1622. return err;
  1623. }
  1624. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1625. unsigned long addr, unsigned long end,
  1626. pte_fn_t fn, void *data)
  1627. {
  1628. pmd_t *pmd;
  1629. unsigned long next;
  1630. int err;
  1631. BUG_ON(pud_huge(*pud));
  1632. pmd = pmd_alloc(mm, pud, addr);
  1633. if (!pmd)
  1634. return -ENOMEM;
  1635. do {
  1636. next = pmd_addr_end(addr, end);
  1637. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1638. if (err)
  1639. break;
  1640. } while (pmd++, addr = next, addr != end);
  1641. return err;
  1642. }
  1643. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1644. unsigned long addr, unsigned long end,
  1645. pte_fn_t fn, void *data)
  1646. {
  1647. pud_t *pud;
  1648. unsigned long next;
  1649. int err;
  1650. pud = pud_alloc(mm, pgd, addr);
  1651. if (!pud)
  1652. return -ENOMEM;
  1653. do {
  1654. next = pud_addr_end(addr, end);
  1655. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1656. if (err)
  1657. break;
  1658. } while (pud++, addr = next, addr != end);
  1659. return err;
  1660. }
  1661. /*
  1662. * Scan a region of virtual memory, filling in page tables as necessary
  1663. * and calling a provided function on each leaf page table.
  1664. */
  1665. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1666. unsigned long size, pte_fn_t fn, void *data)
  1667. {
  1668. pgd_t *pgd;
  1669. unsigned long next;
  1670. unsigned long end = addr + size;
  1671. int err;
  1672. BUG_ON(addr >= end);
  1673. pgd = pgd_offset(mm, addr);
  1674. do {
  1675. next = pgd_addr_end(addr, end);
  1676. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1677. if (err)
  1678. break;
  1679. } while (pgd++, addr = next, addr != end);
  1680. return err;
  1681. }
  1682. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1683. /*
  1684. * handle_pte_fault chooses page fault handler according to an entry which was
  1685. * read non-atomically. Before making any commitment, on those architectures
  1686. * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
  1687. * parts, do_swap_page must check under lock before unmapping the pte and
  1688. * proceeding (but do_wp_page is only called after already making such a check;
  1689. * and do_anonymous_page can safely check later on).
  1690. */
  1691. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1692. pte_t *page_table, pte_t orig_pte)
  1693. {
  1694. int same = 1;
  1695. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1696. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1697. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1698. spin_lock(ptl);
  1699. same = pte_same(*page_table, orig_pte);
  1700. spin_unlock(ptl);
  1701. }
  1702. #endif
  1703. pte_unmap(page_table);
  1704. return same;
  1705. }
  1706. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1707. {
  1708. debug_dma_assert_idle(src);
  1709. /*
  1710. * If the source page was a PFN mapping, we don't have
  1711. * a "struct page" for it. We do a best-effort copy by
  1712. * just copying from the original user address. If that
  1713. * fails, we just zero-fill it. Live with it.
  1714. */
  1715. if (unlikely(!src)) {
  1716. void *kaddr = kmap_atomic(dst);
  1717. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1718. /*
  1719. * This really shouldn't fail, because the page is there
  1720. * in the page tables. But it might just be unreadable,
  1721. * in which case we just give up and fill the result with
  1722. * zeroes.
  1723. */
  1724. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1725. clear_page(kaddr);
  1726. kunmap_atomic(kaddr);
  1727. flush_dcache_page(dst);
  1728. } else
  1729. copy_user_highpage(dst, src, va, vma);
  1730. }
  1731. /*
  1732. * Notify the address space that the page is about to become writable so that
  1733. * it can prohibit this or wait for the page to get into an appropriate state.
  1734. *
  1735. * We do this without the lock held, so that it can sleep if it needs to.
  1736. */
  1737. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1738. unsigned long address)
  1739. {
  1740. struct vm_fault vmf;
  1741. int ret;
  1742. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1743. vmf.pgoff = page->index;
  1744. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1745. vmf.page = page;
  1746. vmf.cow_page = NULL;
  1747. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1748. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1749. return ret;
  1750. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1751. lock_page(page);
  1752. if (!page->mapping) {
  1753. unlock_page(page);
  1754. return 0; /* retry */
  1755. }
  1756. ret |= VM_FAULT_LOCKED;
  1757. } else
  1758. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1759. return ret;
  1760. }
  1761. /*
  1762. * Handle write page faults for pages that can be reused in the current vma
  1763. *
  1764. * This can happen either due to the mapping being with the VM_SHARED flag,
  1765. * or due to us being the last reference standing to the page. In either
  1766. * case, all we need to do here is to mark the page as writable and update
  1767. * any related book-keeping.
  1768. */
  1769. static inline int wp_page_reuse(struct mm_struct *mm,
  1770. struct vm_area_struct *vma, unsigned long address,
  1771. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1772. struct page *page, int page_mkwrite,
  1773. int dirty_shared)
  1774. __releases(ptl)
  1775. {
  1776. pte_t entry;
  1777. /*
  1778. * Clear the pages cpupid information as the existing
  1779. * information potentially belongs to a now completely
  1780. * unrelated process.
  1781. */
  1782. if (page)
  1783. page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
  1784. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1785. entry = pte_mkyoung(orig_pte);
  1786. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1787. if (ptep_set_access_flags(vma, address, page_table, entry, 1))
  1788. update_mmu_cache(vma, address, page_table);
  1789. pte_unmap_unlock(page_table, ptl);
  1790. if (dirty_shared) {
  1791. struct address_space *mapping;
  1792. int dirtied;
  1793. if (!page_mkwrite)
  1794. lock_page(page);
  1795. dirtied = set_page_dirty(page);
  1796. VM_BUG_ON_PAGE(PageAnon(page), page);
  1797. mapping = page->mapping;
  1798. unlock_page(page);
  1799. page_cache_release(page);
  1800. if ((dirtied || page_mkwrite) && mapping) {
  1801. /*
  1802. * Some device drivers do not set page.mapping
  1803. * but still dirty their pages
  1804. */
  1805. balance_dirty_pages_ratelimited(mapping);
  1806. }
  1807. if (!page_mkwrite)
  1808. file_update_time(vma->vm_file);
  1809. }
  1810. return VM_FAULT_WRITE;
  1811. }
  1812. /*
  1813. * Handle the case of a page which we actually need to copy to a new page.
  1814. *
  1815. * Called with mmap_sem locked and the old page referenced, but
  1816. * without the ptl held.
  1817. *
  1818. * High level logic flow:
  1819. *
  1820. * - Allocate a page, copy the content of the old page to the new one.
  1821. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
  1822. * - Take the PTL. If the pte changed, bail out and release the allocated page
  1823. * - If the pte is still the way we remember it, update the page table and all
  1824. * relevant references. This includes dropping the reference the page-table
  1825. * held to the old page, as well as updating the rmap.
  1826. * - In any case, unlock the PTL and drop the reference we took to the old page.
  1827. */
  1828. static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
  1829. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1830. pte_t orig_pte, struct page *old_page)
  1831. {
  1832. struct page *new_page = NULL;
  1833. spinlock_t *ptl = NULL;
  1834. pte_t entry;
  1835. int page_copied = 0;
  1836. const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
  1837. const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
  1838. struct mem_cgroup *memcg;
  1839. if (unlikely(anon_vma_prepare(vma)))
  1840. goto oom;
  1841. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1842. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1843. if (!new_page)
  1844. goto oom;
  1845. } else {
  1846. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1847. if (!new_page)
  1848. goto oom;
  1849. cow_user_page(new_page, old_page, address, vma);
  1850. }
  1851. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
  1852. goto oom_free_new;
  1853. __SetPageUptodate(new_page);
  1854. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1855. /*
  1856. * Re-check the pte - we dropped the lock
  1857. */
  1858. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1859. if (likely(pte_same(*page_table, orig_pte))) {
  1860. if (old_page) {
  1861. if (!PageAnon(old_page)) {
  1862. dec_mm_counter_fast(mm, MM_FILEPAGES);
  1863. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1864. }
  1865. } else {
  1866. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1867. }
  1868. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1869. entry = mk_pte(new_page, vma->vm_page_prot);
  1870. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1871. /*
  1872. * Clear the pte entry and flush it first, before updating the
  1873. * pte with the new entry. This will avoid a race condition
  1874. * seen in the presence of one thread doing SMC and another
  1875. * thread doing COW.
  1876. */
  1877. ptep_clear_flush_notify(vma, address, page_table);
  1878. page_add_new_anon_rmap(new_page, vma, address);
  1879. mem_cgroup_commit_charge(new_page, memcg, false);
  1880. lru_cache_add_active_or_unevictable(new_page, vma);
  1881. /*
  1882. * We call the notify macro here because, when using secondary
  1883. * mmu page tables (such as kvm shadow page tables), we want the
  1884. * new page to be mapped directly into the secondary page table.
  1885. */
  1886. set_pte_at_notify(mm, address, page_table, entry);
  1887. update_mmu_cache(vma, address, page_table);
  1888. if (old_page) {
  1889. /*
  1890. * Only after switching the pte to the new page may
  1891. * we remove the mapcount here. Otherwise another
  1892. * process may come and find the rmap count decremented
  1893. * before the pte is switched to the new page, and
  1894. * "reuse" the old page writing into it while our pte
  1895. * here still points into it and can be read by other
  1896. * threads.
  1897. *
  1898. * The critical issue is to order this
  1899. * page_remove_rmap with the ptp_clear_flush above.
  1900. * Those stores are ordered by (if nothing else,)
  1901. * the barrier present in the atomic_add_negative
  1902. * in page_remove_rmap.
  1903. *
  1904. * Then the TLB flush in ptep_clear_flush ensures that
  1905. * no process can access the old page before the
  1906. * decremented mapcount is visible. And the old page
  1907. * cannot be reused until after the decremented
  1908. * mapcount is visible. So transitively, TLBs to
  1909. * old page will be flushed before it can be reused.
  1910. */
  1911. page_remove_rmap(old_page);
  1912. }
  1913. /* Free the old page.. */
  1914. new_page = old_page;
  1915. page_copied = 1;
  1916. } else {
  1917. mem_cgroup_cancel_charge(new_page, memcg);
  1918. }
  1919. if (new_page)
  1920. page_cache_release(new_page);
  1921. pte_unmap_unlock(page_table, ptl);
  1922. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1923. if (old_page) {
  1924. /*
  1925. * Don't let another task, with possibly unlocked vma,
  1926. * keep the mlocked page.
  1927. */
  1928. if (page_copied && (vma->vm_flags & VM_LOCKED)) {
  1929. lock_page(old_page); /* LRU manipulation */
  1930. munlock_vma_page(old_page);
  1931. unlock_page(old_page);
  1932. }
  1933. page_cache_release(old_page);
  1934. }
  1935. return page_copied ? VM_FAULT_WRITE : 0;
  1936. oom_free_new:
  1937. page_cache_release(new_page);
  1938. oom:
  1939. if (old_page)
  1940. page_cache_release(old_page);
  1941. return VM_FAULT_OOM;
  1942. }
  1943. /*
  1944. * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
  1945. * mapping
  1946. */
  1947. static int wp_pfn_shared(struct mm_struct *mm,
  1948. struct vm_area_struct *vma, unsigned long address,
  1949. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1950. pmd_t *pmd)
  1951. {
  1952. if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
  1953. struct vm_fault vmf = {
  1954. .page = NULL,
  1955. .pgoff = linear_page_index(vma, address),
  1956. .virtual_address = (void __user *)(address & PAGE_MASK),
  1957. .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
  1958. };
  1959. int ret;
  1960. pte_unmap_unlock(page_table, ptl);
  1961. ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
  1962. if (ret & VM_FAULT_ERROR)
  1963. return ret;
  1964. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1965. /*
  1966. * We might have raced with another page fault while we
  1967. * released the pte_offset_map_lock.
  1968. */
  1969. if (!pte_same(*page_table, orig_pte)) {
  1970. pte_unmap_unlock(page_table, ptl);
  1971. return 0;
  1972. }
  1973. }
  1974. return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
  1975. NULL, 0, 0);
  1976. }
  1977. static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
  1978. unsigned long address, pte_t *page_table,
  1979. pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
  1980. struct page *old_page)
  1981. __releases(ptl)
  1982. {
  1983. int page_mkwrite = 0;
  1984. page_cache_get(old_page);
  1985. /*
  1986. * Only catch write-faults on shared writable pages,
  1987. * read-only shared pages can get COWed by
  1988. * get_user_pages(.write=1, .force=1).
  1989. */
  1990. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1991. int tmp;
  1992. pte_unmap_unlock(page_table, ptl);
  1993. tmp = do_page_mkwrite(vma, old_page, address);
  1994. if (unlikely(!tmp || (tmp &
  1995. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  1996. page_cache_release(old_page);
  1997. return tmp;
  1998. }
  1999. /*
  2000. * Since we dropped the lock we need to revalidate
  2001. * the PTE as someone else may have changed it. If
  2002. * they did, we just return, as we can count on the
  2003. * MMU to tell us if they didn't also make it writable.
  2004. */
  2005. page_table = pte_offset_map_lock(mm, pmd, address,
  2006. &ptl);
  2007. if (!pte_same(*page_table, orig_pte)) {
  2008. unlock_page(old_page);
  2009. pte_unmap_unlock(page_table, ptl);
  2010. page_cache_release(old_page);
  2011. return 0;
  2012. }
  2013. page_mkwrite = 1;
  2014. }
  2015. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2016. orig_pte, old_page, page_mkwrite, 1);
  2017. }
  2018. /*
  2019. * This routine handles present pages, when users try to write
  2020. * to a shared page. It is done by copying the page to a new address
  2021. * and decrementing the shared-page counter for the old page.
  2022. *
  2023. * Note that this routine assumes that the protection checks have been
  2024. * done by the caller (the low-level page fault routine in most cases).
  2025. * Thus we can safely just mark it writable once we've done any necessary
  2026. * COW.
  2027. *
  2028. * We also mark the page dirty at this point even though the page will
  2029. * change only once the write actually happens. This avoids a few races,
  2030. * and potentially makes it more efficient.
  2031. *
  2032. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2033. * but allow concurrent faults), with pte both mapped and locked.
  2034. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2035. */
  2036. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2037. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2038. spinlock_t *ptl, pte_t orig_pte)
  2039. __releases(ptl)
  2040. {
  2041. struct page *old_page;
  2042. old_page = vm_normal_page(vma, address, orig_pte);
  2043. if (!old_page) {
  2044. /*
  2045. * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
  2046. * VM_PFNMAP VMA.
  2047. *
  2048. * We should not cow pages in a shared writeable mapping.
  2049. * Just mark the pages writable and/or call ops->pfn_mkwrite.
  2050. */
  2051. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2052. (VM_WRITE|VM_SHARED))
  2053. return wp_pfn_shared(mm, vma, address, page_table, ptl,
  2054. orig_pte, pmd);
  2055. pte_unmap_unlock(page_table, ptl);
  2056. return wp_page_copy(mm, vma, address, page_table, pmd,
  2057. orig_pte, old_page);
  2058. }
  2059. /*
  2060. * Take out anonymous pages first, anonymous shared vmas are
  2061. * not dirty accountable.
  2062. */
  2063. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2064. if (!trylock_page(old_page)) {
  2065. page_cache_get(old_page);
  2066. pte_unmap_unlock(page_table, ptl);
  2067. lock_page(old_page);
  2068. page_table = pte_offset_map_lock(mm, pmd, address,
  2069. &ptl);
  2070. if (!pte_same(*page_table, orig_pte)) {
  2071. unlock_page(old_page);
  2072. pte_unmap_unlock(page_table, ptl);
  2073. page_cache_release(old_page);
  2074. return 0;
  2075. }
  2076. page_cache_release(old_page);
  2077. }
  2078. if (reuse_swap_page(old_page)) {
  2079. /*
  2080. * The page is all ours. Move it to our anon_vma so
  2081. * the rmap code will not search our parent or siblings.
  2082. * Protected against the rmap code by the page lock.
  2083. */
  2084. page_move_anon_rmap(old_page, vma, address);
  2085. unlock_page(old_page);
  2086. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2087. orig_pte, old_page, 0, 0);
  2088. }
  2089. unlock_page(old_page);
  2090. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2091. (VM_WRITE|VM_SHARED))) {
  2092. return wp_page_shared(mm, vma, address, page_table, pmd,
  2093. ptl, orig_pte, old_page);
  2094. }
  2095. /*
  2096. * Ok, we need to copy. Oh, well..
  2097. */
  2098. page_cache_get(old_page);
  2099. pte_unmap_unlock(page_table, ptl);
  2100. return wp_page_copy(mm, vma, address, page_table, pmd,
  2101. orig_pte, old_page);
  2102. }
  2103. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2104. unsigned long start_addr, unsigned long end_addr,
  2105. struct zap_details *details)
  2106. {
  2107. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2108. }
  2109. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2110. struct zap_details *details)
  2111. {
  2112. struct vm_area_struct *vma;
  2113. pgoff_t vba, vea, zba, zea;
  2114. vma_interval_tree_foreach(vma, root,
  2115. details->first_index, details->last_index) {
  2116. vba = vma->vm_pgoff;
  2117. vea = vba + vma_pages(vma) - 1;
  2118. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2119. zba = details->first_index;
  2120. if (zba < vba)
  2121. zba = vba;
  2122. zea = details->last_index;
  2123. if (zea > vea)
  2124. zea = vea;
  2125. unmap_mapping_range_vma(vma,
  2126. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2127. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2128. details);
  2129. }
  2130. }
  2131. /**
  2132. * unmap_mapping_range - unmap the portion of all mmaps in the specified
  2133. * address_space corresponding to the specified page range in the underlying
  2134. * file.
  2135. *
  2136. * @mapping: the address space containing mmaps to be unmapped.
  2137. * @holebegin: byte in first page to unmap, relative to the start of
  2138. * the underlying file. This will be rounded down to a PAGE_SIZE
  2139. * boundary. Note that this is different from truncate_pagecache(), which
  2140. * must keep the partial page. In contrast, we must get rid of
  2141. * partial pages.
  2142. * @holelen: size of prospective hole in bytes. This will be rounded
  2143. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2144. * end of the file.
  2145. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2146. * but 0 when invalidating pagecache, don't throw away private data.
  2147. */
  2148. void unmap_mapping_range(struct address_space *mapping,
  2149. loff_t const holebegin, loff_t const holelen, int even_cows)
  2150. {
  2151. struct zap_details details;
  2152. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2153. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2154. /* Check for overflow. */
  2155. if (sizeof(holelen) > sizeof(hlen)) {
  2156. long long holeend =
  2157. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2158. if (holeend & ~(long long)ULONG_MAX)
  2159. hlen = ULONG_MAX - hba + 1;
  2160. }
  2161. details.check_mapping = even_cows? NULL: mapping;
  2162. details.first_index = hba;
  2163. details.last_index = hba + hlen - 1;
  2164. if (details.last_index < details.first_index)
  2165. details.last_index = ULONG_MAX;
  2166. /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
  2167. i_mmap_lock_write(mapping);
  2168. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2169. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2170. i_mmap_unlock_write(mapping);
  2171. }
  2172. EXPORT_SYMBOL(unmap_mapping_range);
  2173. /*
  2174. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2175. * but allow concurrent faults), and pte mapped but not yet locked.
  2176. * We return with pte unmapped and unlocked.
  2177. *
  2178. * We return with the mmap_sem locked or unlocked in the same cases
  2179. * as does filemap_fault().
  2180. */
  2181. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2182. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2183. unsigned int flags, pte_t orig_pte)
  2184. {
  2185. spinlock_t *ptl;
  2186. struct page *page, *swapcache;
  2187. struct mem_cgroup *memcg;
  2188. swp_entry_t entry;
  2189. pte_t pte;
  2190. int locked;
  2191. int exclusive = 0;
  2192. int ret = 0;
  2193. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2194. goto out;
  2195. entry = pte_to_swp_entry(orig_pte);
  2196. if (unlikely(non_swap_entry(entry))) {
  2197. if (is_migration_entry(entry)) {
  2198. migration_entry_wait(mm, pmd, address);
  2199. } else if (is_hwpoison_entry(entry)) {
  2200. ret = VM_FAULT_HWPOISON;
  2201. } else {
  2202. print_bad_pte(vma, address, orig_pte, NULL);
  2203. ret = VM_FAULT_SIGBUS;
  2204. }
  2205. goto out;
  2206. }
  2207. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2208. page = lookup_swap_cache(entry);
  2209. if (!page) {
  2210. page = swapin_readahead(entry,
  2211. GFP_HIGHUSER_MOVABLE, vma, address);
  2212. if (!page) {
  2213. /*
  2214. * Back out if somebody else faulted in this pte
  2215. * while we released the pte lock.
  2216. */
  2217. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2218. if (likely(pte_same(*page_table, orig_pte)))
  2219. ret = VM_FAULT_OOM;
  2220. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2221. goto unlock;
  2222. }
  2223. /* Had to read the page from swap area: Major fault */
  2224. ret = VM_FAULT_MAJOR;
  2225. count_vm_event(PGMAJFAULT);
  2226. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2227. } else if (PageHWPoison(page)) {
  2228. /*
  2229. * hwpoisoned dirty swapcache pages are kept for killing
  2230. * owner processes (which may be unknown at hwpoison time)
  2231. */
  2232. ret = VM_FAULT_HWPOISON;
  2233. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2234. swapcache = page;
  2235. goto out_release;
  2236. }
  2237. swapcache = page;
  2238. locked = lock_page_or_retry(page, mm, flags);
  2239. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2240. if (!locked) {
  2241. ret |= VM_FAULT_RETRY;
  2242. goto out_release;
  2243. }
  2244. /*
  2245. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2246. * release the swapcache from under us. The page pin, and pte_same
  2247. * test below, are not enough to exclude that. Even if it is still
  2248. * swapcache, we need to check that the page's swap has not changed.
  2249. */
  2250. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2251. goto out_page;
  2252. page = ksm_might_need_to_copy(page, vma, address);
  2253. if (unlikely(!page)) {
  2254. ret = VM_FAULT_OOM;
  2255. page = swapcache;
  2256. goto out_page;
  2257. }
  2258. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
  2259. ret = VM_FAULT_OOM;
  2260. goto out_page;
  2261. }
  2262. /*
  2263. * Back out if somebody else already faulted in this pte.
  2264. */
  2265. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2266. if (unlikely(!pte_same(*page_table, orig_pte)))
  2267. goto out_nomap;
  2268. if (unlikely(!PageUptodate(page))) {
  2269. ret = VM_FAULT_SIGBUS;
  2270. goto out_nomap;
  2271. }
  2272. /*
  2273. * The page isn't present yet, go ahead with the fault.
  2274. *
  2275. * Be careful about the sequence of operations here.
  2276. * To get its accounting right, reuse_swap_page() must be called
  2277. * while the page is counted on swap but not yet in mapcount i.e.
  2278. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2279. * must be called after the swap_free(), or it will never succeed.
  2280. */
  2281. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2282. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2283. pte = mk_pte(page, vma->vm_page_prot);
  2284. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2285. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2286. flags &= ~FAULT_FLAG_WRITE;
  2287. ret |= VM_FAULT_WRITE;
  2288. exclusive = 1;
  2289. }
  2290. flush_icache_page(vma, page);
  2291. if (pte_swp_soft_dirty(orig_pte))
  2292. pte = pte_mksoft_dirty(pte);
  2293. set_pte_at(mm, address, page_table, pte);
  2294. if (page == swapcache) {
  2295. do_page_add_anon_rmap(page, vma, address, exclusive);
  2296. mem_cgroup_commit_charge(page, memcg, true);
  2297. } else { /* ksm created a completely new copy */
  2298. page_add_new_anon_rmap(page, vma, address);
  2299. mem_cgroup_commit_charge(page, memcg, false);
  2300. lru_cache_add_active_or_unevictable(page, vma);
  2301. }
  2302. swap_free(entry);
  2303. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2304. try_to_free_swap(page);
  2305. unlock_page(page);
  2306. if (page != swapcache) {
  2307. /*
  2308. * Hold the lock to avoid the swap entry to be reused
  2309. * until we take the PT lock for the pte_same() check
  2310. * (to avoid false positives from pte_same). For
  2311. * further safety release the lock after the swap_free
  2312. * so that the swap count won't change under a
  2313. * parallel locked swapcache.
  2314. */
  2315. unlock_page(swapcache);
  2316. page_cache_release(swapcache);
  2317. }
  2318. if (flags & FAULT_FLAG_WRITE) {
  2319. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2320. if (ret & VM_FAULT_ERROR)
  2321. ret &= VM_FAULT_ERROR;
  2322. goto out;
  2323. }
  2324. /* No need to invalidate - it was non-present before */
  2325. update_mmu_cache(vma, address, page_table);
  2326. unlock:
  2327. pte_unmap_unlock(page_table, ptl);
  2328. out:
  2329. return ret;
  2330. out_nomap:
  2331. mem_cgroup_cancel_charge(page, memcg);
  2332. pte_unmap_unlock(page_table, ptl);
  2333. out_page:
  2334. unlock_page(page);
  2335. out_release:
  2336. page_cache_release(page);
  2337. if (page != swapcache) {
  2338. unlock_page(swapcache);
  2339. page_cache_release(swapcache);
  2340. }
  2341. return ret;
  2342. }
  2343. /*
  2344. * This is like a special single-page "expand_{down|up}wards()",
  2345. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2346. * doesn't hit another vma.
  2347. */
  2348. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2349. {
  2350. address &= PAGE_MASK;
  2351. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2352. struct vm_area_struct *prev = vma->vm_prev;
  2353. /*
  2354. * Is there a mapping abutting this one below?
  2355. *
  2356. * That's only ok if it's the same stack mapping
  2357. * that has gotten split..
  2358. */
  2359. if (prev && prev->vm_end == address)
  2360. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2361. return expand_downwards(vma, address - PAGE_SIZE);
  2362. }
  2363. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2364. struct vm_area_struct *next = vma->vm_next;
  2365. /* As VM_GROWSDOWN but s/below/above/ */
  2366. if (next && next->vm_start == address + PAGE_SIZE)
  2367. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2368. return expand_upwards(vma, address + PAGE_SIZE);
  2369. }
  2370. return 0;
  2371. }
  2372. /*
  2373. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2374. * but allow concurrent faults), and pte mapped but not yet locked.
  2375. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2376. */
  2377. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2378. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2379. unsigned int flags)
  2380. {
  2381. struct mem_cgroup *memcg;
  2382. struct page *page;
  2383. spinlock_t *ptl;
  2384. pte_t entry;
  2385. pte_unmap(page_table);
  2386. /* File mapping without ->vm_ops ? */
  2387. if (vma->vm_flags & VM_SHARED)
  2388. return VM_FAULT_SIGBUS;
  2389. /* Check if we need to add a guard page to the stack */
  2390. if (check_stack_guard_page(vma, address) < 0)
  2391. return VM_FAULT_SIGSEGV;
  2392. /* Use the zero-page for reads */
  2393. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
  2394. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2395. vma->vm_page_prot));
  2396. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2397. if (!pte_none(*page_table))
  2398. goto unlock;
  2399. /* Deliver the page fault to userland, check inside PT lock */
  2400. if (userfaultfd_missing(vma)) {
  2401. pte_unmap_unlock(page_table, ptl);
  2402. return handle_userfault(vma, address, flags,
  2403. VM_UFFD_MISSING);
  2404. }
  2405. goto setpte;
  2406. }
  2407. /* Allocate our own private page. */
  2408. if (unlikely(anon_vma_prepare(vma)))
  2409. goto oom;
  2410. page = alloc_zeroed_user_highpage_movable(vma, address);
  2411. if (!page)
  2412. goto oom;
  2413. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
  2414. goto oom_free_page;
  2415. /*
  2416. * The memory barrier inside __SetPageUptodate makes sure that
  2417. * preceeding stores to the page contents become visible before
  2418. * the set_pte_at() write.
  2419. */
  2420. __SetPageUptodate(page);
  2421. entry = mk_pte(page, vma->vm_page_prot);
  2422. if (vma->vm_flags & VM_WRITE)
  2423. entry = pte_mkwrite(pte_mkdirty(entry));
  2424. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2425. if (!pte_none(*page_table))
  2426. goto release;
  2427. /* Deliver the page fault to userland, check inside PT lock */
  2428. if (userfaultfd_missing(vma)) {
  2429. pte_unmap_unlock(page_table, ptl);
  2430. mem_cgroup_cancel_charge(page, memcg);
  2431. page_cache_release(page);
  2432. return handle_userfault(vma, address, flags,
  2433. VM_UFFD_MISSING);
  2434. }
  2435. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2436. page_add_new_anon_rmap(page, vma, address);
  2437. mem_cgroup_commit_charge(page, memcg, false);
  2438. lru_cache_add_active_or_unevictable(page, vma);
  2439. setpte:
  2440. set_pte_at(mm, address, page_table, entry);
  2441. /* No need to invalidate - it was non-present before */
  2442. update_mmu_cache(vma, address, page_table);
  2443. unlock:
  2444. pte_unmap_unlock(page_table, ptl);
  2445. return 0;
  2446. release:
  2447. mem_cgroup_cancel_charge(page, memcg);
  2448. page_cache_release(page);
  2449. goto unlock;
  2450. oom_free_page:
  2451. page_cache_release(page);
  2452. oom:
  2453. return VM_FAULT_OOM;
  2454. }
  2455. /*
  2456. * The mmap_sem must have been held on entry, and may have been
  2457. * released depending on flags and vma->vm_ops->fault() return value.
  2458. * See filemap_fault() and __lock_page_retry().
  2459. */
  2460. static int __do_fault(struct vm_area_struct *vma, unsigned long address,
  2461. pgoff_t pgoff, unsigned int flags,
  2462. struct page *cow_page, struct page **page)
  2463. {
  2464. struct vm_fault vmf;
  2465. int ret;
  2466. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2467. vmf.pgoff = pgoff;
  2468. vmf.flags = flags;
  2469. vmf.page = NULL;
  2470. vmf.cow_page = cow_page;
  2471. ret = vma->vm_ops->fault(vma, &vmf);
  2472. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2473. return ret;
  2474. if (!vmf.page)
  2475. goto out;
  2476. if (unlikely(PageHWPoison(vmf.page))) {
  2477. if (ret & VM_FAULT_LOCKED)
  2478. unlock_page(vmf.page);
  2479. page_cache_release(vmf.page);
  2480. return VM_FAULT_HWPOISON;
  2481. }
  2482. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2483. lock_page(vmf.page);
  2484. else
  2485. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2486. out:
  2487. *page = vmf.page;
  2488. return ret;
  2489. }
  2490. /**
  2491. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2492. *
  2493. * @vma: virtual memory area
  2494. * @address: user virtual address
  2495. * @page: page to map
  2496. * @pte: pointer to target page table entry
  2497. * @write: true, if new entry is writable
  2498. * @anon: true, if it's anonymous page
  2499. *
  2500. * Caller must hold page table lock relevant for @pte.
  2501. *
  2502. * Target users are page handler itself and implementations of
  2503. * vm_ops->map_pages.
  2504. */
  2505. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  2506. struct page *page, pte_t *pte, bool write, bool anon)
  2507. {
  2508. pte_t entry;
  2509. flush_icache_page(vma, page);
  2510. entry = mk_pte(page, vma->vm_page_prot);
  2511. if (write)
  2512. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2513. if (anon) {
  2514. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2515. page_add_new_anon_rmap(page, vma, address);
  2516. } else {
  2517. inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
  2518. page_add_file_rmap(page);
  2519. }
  2520. set_pte_at(vma->vm_mm, address, pte, entry);
  2521. /* no need to invalidate: a not-present page won't be cached */
  2522. update_mmu_cache(vma, address, pte);
  2523. }
  2524. static unsigned long fault_around_bytes __read_mostly =
  2525. rounddown_pow_of_two(65536);
  2526. #ifdef CONFIG_DEBUG_FS
  2527. static int fault_around_bytes_get(void *data, u64 *val)
  2528. {
  2529. *val = fault_around_bytes;
  2530. return 0;
  2531. }
  2532. /*
  2533. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2534. * rounded down to nearest page order. It's what do_fault_around() expects to
  2535. * see.
  2536. */
  2537. static int fault_around_bytes_set(void *data, u64 val)
  2538. {
  2539. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2540. return -EINVAL;
  2541. if (val > PAGE_SIZE)
  2542. fault_around_bytes = rounddown_pow_of_two(val);
  2543. else
  2544. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2545. return 0;
  2546. }
  2547. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2548. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2549. static int __init fault_around_debugfs(void)
  2550. {
  2551. void *ret;
  2552. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2553. &fault_around_bytes_fops);
  2554. if (!ret)
  2555. pr_warn("Failed to create fault_around_bytes in debugfs");
  2556. return 0;
  2557. }
  2558. late_initcall(fault_around_debugfs);
  2559. #endif
  2560. /*
  2561. * do_fault_around() tries to map few pages around the fault address. The hope
  2562. * is that the pages will be needed soon and this will lower the number of
  2563. * faults to handle.
  2564. *
  2565. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2566. * not ready to be mapped: not up-to-date, locked, etc.
  2567. *
  2568. * This function is called with the page table lock taken. In the split ptlock
  2569. * case the page table lock only protects only those entries which belong to
  2570. * the page table corresponding to the fault address.
  2571. *
  2572. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2573. * only once.
  2574. *
  2575. * fault_around_pages() defines how many pages we'll try to map.
  2576. * do_fault_around() expects it to return a power of two less than or equal to
  2577. * PTRS_PER_PTE.
  2578. *
  2579. * The virtual address of the area that we map is naturally aligned to the
  2580. * fault_around_pages() value (and therefore to page order). This way it's
  2581. * easier to guarantee that we don't cross page table boundaries.
  2582. */
  2583. static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
  2584. pte_t *pte, pgoff_t pgoff, unsigned int flags)
  2585. {
  2586. unsigned long start_addr, nr_pages, mask;
  2587. pgoff_t max_pgoff;
  2588. struct vm_fault vmf;
  2589. int off;
  2590. nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2591. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2592. start_addr = max(address & mask, vma->vm_start);
  2593. off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2594. pte -= off;
  2595. pgoff -= off;
  2596. /*
  2597. * max_pgoff is either end of page table or end of vma
  2598. * or fault_around_pages() from pgoff, depending what is nearest.
  2599. */
  2600. max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2601. PTRS_PER_PTE - 1;
  2602. max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
  2603. pgoff + nr_pages - 1);
  2604. /* Check if it makes any sense to call ->map_pages */
  2605. while (!pte_none(*pte)) {
  2606. if (++pgoff > max_pgoff)
  2607. return;
  2608. start_addr += PAGE_SIZE;
  2609. if (start_addr >= vma->vm_end)
  2610. return;
  2611. pte++;
  2612. }
  2613. vmf.virtual_address = (void __user *) start_addr;
  2614. vmf.pte = pte;
  2615. vmf.pgoff = pgoff;
  2616. vmf.max_pgoff = max_pgoff;
  2617. vmf.flags = flags;
  2618. vma->vm_ops->map_pages(vma, &vmf);
  2619. }
  2620. static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2621. unsigned long address, pmd_t *pmd,
  2622. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2623. {
  2624. struct page *fault_page;
  2625. spinlock_t *ptl;
  2626. pte_t *pte;
  2627. int ret = 0;
  2628. /*
  2629. * Let's call ->map_pages() first and use ->fault() as fallback
  2630. * if page by the offset is not ready to be mapped (cold cache or
  2631. * something).
  2632. */
  2633. if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
  2634. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2635. do_fault_around(vma, address, pte, pgoff, flags);
  2636. if (!pte_same(*pte, orig_pte))
  2637. goto unlock_out;
  2638. pte_unmap_unlock(pte, ptl);
  2639. }
  2640. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2641. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2642. return ret;
  2643. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2644. if (unlikely(!pte_same(*pte, orig_pte))) {
  2645. pte_unmap_unlock(pte, ptl);
  2646. unlock_page(fault_page);
  2647. page_cache_release(fault_page);
  2648. return ret;
  2649. }
  2650. do_set_pte(vma, address, fault_page, pte, false, false);
  2651. unlock_page(fault_page);
  2652. unlock_out:
  2653. pte_unmap_unlock(pte, ptl);
  2654. return ret;
  2655. }
  2656. static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2657. unsigned long address, pmd_t *pmd,
  2658. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2659. {
  2660. struct page *fault_page, *new_page;
  2661. struct mem_cgroup *memcg;
  2662. spinlock_t *ptl;
  2663. pte_t *pte;
  2664. int ret;
  2665. if (unlikely(anon_vma_prepare(vma)))
  2666. return VM_FAULT_OOM;
  2667. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2668. if (!new_page)
  2669. return VM_FAULT_OOM;
  2670. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
  2671. page_cache_release(new_page);
  2672. return VM_FAULT_OOM;
  2673. }
  2674. ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
  2675. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2676. goto uncharge_out;
  2677. if (fault_page)
  2678. copy_user_highpage(new_page, fault_page, address, vma);
  2679. __SetPageUptodate(new_page);
  2680. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2681. if (unlikely(!pte_same(*pte, orig_pte))) {
  2682. pte_unmap_unlock(pte, ptl);
  2683. if (fault_page) {
  2684. unlock_page(fault_page);
  2685. page_cache_release(fault_page);
  2686. } else {
  2687. /*
  2688. * The fault handler has no page to lock, so it holds
  2689. * i_mmap_lock for read to protect against truncate.
  2690. */
  2691. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2692. }
  2693. goto uncharge_out;
  2694. }
  2695. do_set_pte(vma, address, new_page, pte, true, true);
  2696. mem_cgroup_commit_charge(new_page, memcg, false);
  2697. lru_cache_add_active_or_unevictable(new_page, vma);
  2698. pte_unmap_unlock(pte, ptl);
  2699. if (fault_page) {
  2700. unlock_page(fault_page);
  2701. page_cache_release(fault_page);
  2702. } else {
  2703. /*
  2704. * The fault handler has no page to lock, so it holds
  2705. * i_mmap_lock for read to protect against truncate.
  2706. */
  2707. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2708. }
  2709. return ret;
  2710. uncharge_out:
  2711. mem_cgroup_cancel_charge(new_page, memcg);
  2712. page_cache_release(new_page);
  2713. return ret;
  2714. }
  2715. static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2716. unsigned long address, pmd_t *pmd,
  2717. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2718. {
  2719. struct page *fault_page;
  2720. struct address_space *mapping;
  2721. spinlock_t *ptl;
  2722. pte_t *pte;
  2723. int dirtied = 0;
  2724. int ret, tmp;
  2725. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2726. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2727. return ret;
  2728. /*
  2729. * Check if the backing address space wants to know that the page is
  2730. * about to become writable
  2731. */
  2732. if (vma->vm_ops->page_mkwrite) {
  2733. unlock_page(fault_page);
  2734. tmp = do_page_mkwrite(vma, fault_page, address);
  2735. if (unlikely(!tmp ||
  2736. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2737. page_cache_release(fault_page);
  2738. return tmp;
  2739. }
  2740. }
  2741. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2742. if (unlikely(!pte_same(*pte, orig_pte))) {
  2743. pte_unmap_unlock(pte, ptl);
  2744. unlock_page(fault_page);
  2745. page_cache_release(fault_page);
  2746. return ret;
  2747. }
  2748. do_set_pte(vma, address, fault_page, pte, true, false);
  2749. pte_unmap_unlock(pte, ptl);
  2750. if (set_page_dirty(fault_page))
  2751. dirtied = 1;
  2752. /*
  2753. * Take a local copy of the address_space - page.mapping may be zeroed
  2754. * by truncate after unlock_page(). The address_space itself remains
  2755. * pinned by vma->vm_file's reference. We rely on unlock_page()'s
  2756. * release semantics to prevent the compiler from undoing this copying.
  2757. */
  2758. mapping = fault_page->mapping;
  2759. unlock_page(fault_page);
  2760. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2761. /*
  2762. * Some device drivers do not set page.mapping but still
  2763. * dirty their pages
  2764. */
  2765. balance_dirty_pages_ratelimited(mapping);
  2766. }
  2767. if (!vma->vm_ops->page_mkwrite)
  2768. file_update_time(vma->vm_file);
  2769. return ret;
  2770. }
  2771. /*
  2772. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2773. * but allow concurrent faults).
  2774. * The mmap_sem may have been released depending on flags and our
  2775. * return value. See filemap_fault() and __lock_page_or_retry().
  2776. */
  2777. static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2778. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2779. unsigned int flags, pte_t orig_pte)
  2780. {
  2781. pgoff_t pgoff = (((address & PAGE_MASK)
  2782. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2783. pte_unmap(page_table);
  2784. /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
  2785. if (!vma->vm_ops->fault)
  2786. return VM_FAULT_SIGBUS;
  2787. if (!(flags & FAULT_FLAG_WRITE))
  2788. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2789. orig_pte);
  2790. if (!(vma->vm_flags & VM_SHARED))
  2791. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2792. orig_pte);
  2793. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2794. }
  2795. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2796. unsigned long addr, int page_nid,
  2797. int *flags)
  2798. {
  2799. get_page(page);
  2800. count_vm_numa_event(NUMA_HINT_FAULTS);
  2801. if (page_nid == numa_node_id()) {
  2802. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2803. *flags |= TNF_FAULT_LOCAL;
  2804. }
  2805. return mpol_misplaced(page, vma, addr);
  2806. }
  2807. static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2808. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  2809. {
  2810. struct page *page = NULL;
  2811. spinlock_t *ptl;
  2812. int page_nid = -1;
  2813. int last_cpupid;
  2814. int target_nid;
  2815. bool migrated = false;
  2816. bool was_writable = pte_write(pte);
  2817. int flags = 0;
  2818. /* A PROT_NONE fault should not end up here */
  2819. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  2820. /*
  2821. * The "pte" at this point cannot be used safely without
  2822. * validation through pte_unmap_same(). It's of NUMA type but
  2823. * the pfn may be screwed if the read is non atomic.
  2824. *
  2825. * We can safely just do a "set_pte_at()", because the old
  2826. * page table entry is not accessible, so there would be no
  2827. * concurrent hardware modifications to the PTE.
  2828. */
  2829. ptl = pte_lockptr(mm, pmd);
  2830. spin_lock(ptl);
  2831. if (unlikely(!pte_same(*ptep, pte))) {
  2832. pte_unmap_unlock(ptep, ptl);
  2833. goto out;
  2834. }
  2835. /* Make it present again */
  2836. pte = pte_modify(pte, vma->vm_page_prot);
  2837. pte = pte_mkyoung(pte);
  2838. if (was_writable)
  2839. pte = pte_mkwrite(pte);
  2840. set_pte_at(mm, addr, ptep, pte);
  2841. update_mmu_cache(vma, addr, ptep);
  2842. page = vm_normal_page(vma, addr, pte);
  2843. if (!page) {
  2844. pte_unmap_unlock(ptep, ptl);
  2845. return 0;
  2846. }
  2847. /*
  2848. * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
  2849. * much anyway since they can be in shared cache state. This misses
  2850. * the case where a mapping is writable but the process never writes
  2851. * to it but pte_write gets cleared during protection updates and
  2852. * pte_dirty has unpredictable behaviour between PTE scan updates,
  2853. * background writeback, dirty balancing and application behaviour.
  2854. */
  2855. if (!(vma->vm_flags & VM_WRITE))
  2856. flags |= TNF_NO_GROUP;
  2857. /*
  2858. * Flag if the page is shared between multiple address spaces. This
  2859. * is later used when determining whether to group tasks together
  2860. */
  2861. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2862. flags |= TNF_SHARED;
  2863. last_cpupid = page_cpupid_last(page);
  2864. page_nid = page_to_nid(page);
  2865. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  2866. pte_unmap_unlock(ptep, ptl);
  2867. if (target_nid == -1) {
  2868. put_page(page);
  2869. goto out;
  2870. }
  2871. /* Migrate to the requested node */
  2872. migrated = migrate_misplaced_page(page, vma, target_nid);
  2873. if (migrated) {
  2874. page_nid = target_nid;
  2875. flags |= TNF_MIGRATED;
  2876. } else
  2877. flags |= TNF_MIGRATE_FAIL;
  2878. out:
  2879. if (page_nid != -1)
  2880. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2881. return 0;
  2882. }
  2883. static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  2884. unsigned long address, pmd_t *pmd, unsigned int flags)
  2885. {
  2886. if (vma_is_anonymous(vma))
  2887. return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
  2888. if (vma->vm_ops->pmd_fault)
  2889. return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
  2890. return VM_FAULT_FALLBACK;
  2891. }
  2892. static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  2893. unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
  2894. unsigned int flags)
  2895. {
  2896. if (vma_is_anonymous(vma))
  2897. return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
  2898. if (vma->vm_ops->pmd_fault)
  2899. return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
  2900. return VM_FAULT_FALLBACK;
  2901. }
  2902. /*
  2903. * These routines also need to handle stuff like marking pages dirty
  2904. * and/or accessed for architectures that don't do it in hardware (most
  2905. * RISC architectures). The early dirtying is also good on the i386.
  2906. *
  2907. * There is also a hook called "update_mmu_cache()" that architectures
  2908. * with external mmu caches can use to update those (ie the Sparc or
  2909. * PowerPC hashed page tables that act as extended TLBs).
  2910. *
  2911. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2912. * but allow concurrent faults), and pte mapped but not yet locked.
  2913. * We return with pte unmapped and unlocked.
  2914. *
  2915. * The mmap_sem may have been released depending on flags and our
  2916. * return value. See filemap_fault() and __lock_page_or_retry().
  2917. */
  2918. static int handle_pte_fault(struct mm_struct *mm,
  2919. struct vm_area_struct *vma, unsigned long address,
  2920. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2921. {
  2922. pte_t entry;
  2923. spinlock_t *ptl;
  2924. /*
  2925. * some architectures can have larger ptes than wordsize,
  2926. * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
  2927. * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
  2928. * The code below just needs a consistent view for the ifs and
  2929. * we later double check anyway with the ptl lock held. So here
  2930. * a barrier will do.
  2931. */
  2932. entry = *pte;
  2933. barrier();
  2934. if (!pte_present(entry)) {
  2935. if (pte_none(entry)) {
  2936. if (vma_is_anonymous(vma))
  2937. return do_anonymous_page(mm, vma, address,
  2938. pte, pmd, flags);
  2939. else
  2940. return do_fault(mm, vma, address, pte, pmd,
  2941. flags, entry);
  2942. }
  2943. return do_swap_page(mm, vma, address,
  2944. pte, pmd, flags, entry);
  2945. }
  2946. if (pte_protnone(entry))
  2947. return do_numa_page(mm, vma, address, entry, pte, pmd);
  2948. ptl = pte_lockptr(mm, pmd);
  2949. spin_lock(ptl);
  2950. if (unlikely(!pte_same(*pte, entry)))
  2951. goto unlock;
  2952. if (flags & FAULT_FLAG_WRITE) {
  2953. if (!pte_write(entry))
  2954. return do_wp_page(mm, vma, address,
  2955. pte, pmd, ptl, entry);
  2956. entry = pte_mkdirty(entry);
  2957. }
  2958. entry = pte_mkyoung(entry);
  2959. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2960. update_mmu_cache(vma, address, pte);
  2961. } else {
  2962. /*
  2963. * This is needed only for protection faults but the arch code
  2964. * is not yet telling us if this is a protection fault or not.
  2965. * This still avoids useless tlb flushes for .text page faults
  2966. * with threads.
  2967. */
  2968. if (flags & FAULT_FLAG_WRITE)
  2969. flush_tlb_fix_spurious_fault(vma, address);
  2970. }
  2971. unlock:
  2972. pte_unmap_unlock(pte, ptl);
  2973. return 0;
  2974. }
  2975. /*
  2976. * By the time we get here, we already hold the mm semaphore
  2977. *
  2978. * The mmap_sem may have been released depending on flags and our
  2979. * return value. See filemap_fault() and __lock_page_or_retry().
  2980. */
  2981. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2982. unsigned long address, unsigned int flags)
  2983. {
  2984. pgd_t *pgd;
  2985. pud_t *pud;
  2986. pmd_t *pmd;
  2987. pte_t *pte;
  2988. if (unlikely(is_vm_hugetlb_page(vma)))
  2989. return hugetlb_fault(mm, vma, address, flags);
  2990. pgd = pgd_offset(mm, address);
  2991. pud = pud_alloc(mm, pgd, address);
  2992. if (!pud)
  2993. return VM_FAULT_OOM;
  2994. pmd = pmd_alloc(mm, pud, address);
  2995. if (!pmd)
  2996. return VM_FAULT_OOM;
  2997. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  2998. int ret = create_huge_pmd(mm, vma, address, pmd, flags);
  2999. if (!(ret & VM_FAULT_FALLBACK))
  3000. return ret;
  3001. } else {
  3002. pmd_t orig_pmd = *pmd;
  3003. int ret;
  3004. barrier();
  3005. if (pmd_trans_huge(orig_pmd)) {
  3006. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3007. /*
  3008. * If the pmd is splitting, return and retry the
  3009. * the fault. Alternative: wait until the split
  3010. * is done, and goto retry.
  3011. */
  3012. if (pmd_trans_splitting(orig_pmd))
  3013. return 0;
  3014. if (pmd_protnone(orig_pmd))
  3015. return do_huge_pmd_numa_page(mm, vma, address,
  3016. orig_pmd, pmd);
  3017. if (dirty && !pmd_write(orig_pmd)) {
  3018. ret = wp_huge_pmd(mm, vma, address, pmd,
  3019. orig_pmd, flags);
  3020. if (!(ret & VM_FAULT_FALLBACK))
  3021. return ret;
  3022. } else {
  3023. huge_pmd_set_accessed(mm, vma, address, pmd,
  3024. orig_pmd, dirty);
  3025. return 0;
  3026. }
  3027. }
  3028. }
  3029. /*
  3030. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3031. * run pte_offset_map on the pmd, if an huge pmd could
  3032. * materialize from under us from a different thread.
  3033. */
  3034. if (unlikely(pmd_none(*pmd)) &&
  3035. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3036. return VM_FAULT_OOM;
  3037. /* if an huge pmd materialized from under us just retry later */
  3038. if (unlikely(pmd_trans_huge(*pmd)))
  3039. return 0;
  3040. /*
  3041. * A regular pmd is established and it can't morph into a huge pmd
  3042. * from under us anymore at this point because we hold the mmap_sem
  3043. * read mode and khugepaged takes it in write mode. So now it's
  3044. * safe to run pte_offset_map().
  3045. */
  3046. pte = pte_offset_map(pmd, address);
  3047. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3048. }
  3049. /*
  3050. * By the time we get here, we already hold the mm semaphore
  3051. *
  3052. * The mmap_sem may have been released depending on flags and our
  3053. * return value. See filemap_fault() and __lock_page_or_retry().
  3054. */
  3055. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3056. unsigned long address, unsigned int flags)
  3057. {
  3058. int ret;
  3059. __set_current_state(TASK_RUNNING);
  3060. count_vm_event(PGFAULT);
  3061. mem_cgroup_count_vm_event(mm, PGFAULT);
  3062. /* do counter updates before entering really critical section. */
  3063. check_sync_rss_stat(current);
  3064. /*
  3065. * Enable the memcg OOM handling for faults triggered in user
  3066. * space. Kernel faults are handled more gracefully.
  3067. */
  3068. if (flags & FAULT_FLAG_USER)
  3069. mem_cgroup_oom_enable();
  3070. ret = __handle_mm_fault(mm, vma, address, flags);
  3071. if (flags & FAULT_FLAG_USER) {
  3072. mem_cgroup_oom_disable();
  3073. /*
  3074. * The task may have entered a memcg OOM situation but
  3075. * if the allocation error was handled gracefully (no
  3076. * VM_FAULT_OOM), there is no need to kill anything.
  3077. * Just clean up the OOM state peacefully.
  3078. */
  3079. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3080. mem_cgroup_oom_synchronize(false);
  3081. }
  3082. return ret;
  3083. }
  3084. EXPORT_SYMBOL_GPL(handle_mm_fault);
  3085. #ifndef __PAGETABLE_PUD_FOLDED
  3086. /*
  3087. * Allocate page upper directory.
  3088. * We've already handled the fast-path in-line.
  3089. */
  3090. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3091. {
  3092. pud_t *new = pud_alloc_one(mm, address);
  3093. if (!new)
  3094. return -ENOMEM;
  3095. smp_wmb(); /* See comment in __pte_alloc */
  3096. spin_lock(&mm->page_table_lock);
  3097. if (pgd_present(*pgd)) /* Another has populated it */
  3098. pud_free(mm, new);
  3099. else
  3100. pgd_populate(mm, pgd, new);
  3101. spin_unlock(&mm->page_table_lock);
  3102. return 0;
  3103. }
  3104. #endif /* __PAGETABLE_PUD_FOLDED */
  3105. #ifndef __PAGETABLE_PMD_FOLDED
  3106. /*
  3107. * Allocate page middle directory.
  3108. * We've already handled the fast-path in-line.
  3109. */
  3110. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3111. {
  3112. pmd_t *new = pmd_alloc_one(mm, address);
  3113. if (!new)
  3114. return -ENOMEM;
  3115. smp_wmb(); /* See comment in __pte_alloc */
  3116. spin_lock(&mm->page_table_lock);
  3117. #ifndef __ARCH_HAS_4LEVEL_HACK
  3118. if (!pud_present(*pud)) {
  3119. mm_inc_nr_pmds(mm);
  3120. pud_populate(mm, pud, new);
  3121. } else /* Another has populated it */
  3122. pmd_free(mm, new);
  3123. #else
  3124. if (!pgd_present(*pud)) {
  3125. mm_inc_nr_pmds(mm);
  3126. pgd_populate(mm, pud, new);
  3127. } else /* Another has populated it */
  3128. pmd_free(mm, new);
  3129. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3130. spin_unlock(&mm->page_table_lock);
  3131. return 0;
  3132. }
  3133. #endif /* __PAGETABLE_PMD_FOLDED */
  3134. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3135. pte_t **ptepp, spinlock_t **ptlp)
  3136. {
  3137. pgd_t *pgd;
  3138. pud_t *pud;
  3139. pmd_t *pmd;
  3140. pte_t *ptep;
  3141. pgd = pgd_offset(mm, address);
  3142. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3143. goto out;
  3144. pud = pud_offset(pgd, address);
  3145. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3146. goto out;
  3147. pmd = pmd_offset(pud, address);
  3148. VM_BUG_ON(pmd_trans_huge(*pmd));
  3149. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3150. goto out;
  3151. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3152. if (pmd_huge(*pmd))
  3153. goto out;
  3154. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3155. if (!ptep)
  3156. goto out;
  3157. if (!pte_present(*ptep))
  3158. goto unlock;
  3159. *ptepp = ptep;
  3160. return 0;
  3161. unlock:
  3162. pte_unmap_unlock(ptep, *ptlp);
  3163. out:
  3164. return -EINVAL;
  3165. }
  3166. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3167. pte_t **ptepp, spinlock_t **ptlp)
  3168. {
  3169. int res;
  3170. /* (void) is needed to make gcc happy */
  3171. (void) __cond_lock(*ptlp,
  3172. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3173. return res;
  3174. }
  3175. /**
  3176. * follow_pfn - look up PFN at a user virtual address
  3177. * @vma: memory mapping
  3178. * @address: user virtual address
  3179. * @pfn: location to store found PFN
  3180. *
  3181. * Only IO mappings and raw PFN mappings are allowed.
  3182. *
  3183. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3184. */
  3185. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3186. unsigned long *pfn)
  3187. {
  3188. int ret = -EINVAL;
  3189. spinlock_t *ptl;
  3190. pte_t *ptep;
  3191. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3192. return ret;
  3193. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3194. if (ret)
  3195. return ret;
  3196. *pfn = pte_pfn(*ptep);
  3197. pte_unmap_unlock(ptep, ptl);
  3198. return 0;
  3199. }
  3200. EXPORT_SYMBOL(follow_pfn);
  3201. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3202. int follow_phys(struct vm_area_struct *vma,
  3203. unsigned long address, unsigned int flags,
  3204. unsigned long *prot, resource_size_t *phys)
  3205. {
  3206. int ret = -EINVAL;
  3207. pte_t *ptep, pte;
  3208. spinlock_t *ptl;
  3209. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3210. goto out;
  3211. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3212. goto out;
  3213. pte = *ptep;
  3214. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3215. goto unlock;
  3216. *prot = pgprot_val(pte_pgprot(pte));
  3217. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3218. ret = 0;
  3219. unlock:
  3220. pte_unmap_unlock(ptep, ptl);
  3221. out:
  3222. return ret;
  3223. }
  3224. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3225. void *buf, int len, int write)
  3226. {
  3227. resource_size_t phys_addr;
  3228. unsigned long prot = 0;
  3229. void __iomem *maddr;
  3230. int offset = addr & (PAGE_SIZE-1);
  3231. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3232. return -EINVAL;
  3233. maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
  3234. if (write)
  3235. memcpy_toio(maddr + offset, buf, len);
  3236. else
  3237. memcpy_fromio(buf, maddr + offset, len);
  3238. iounmap(maddr);
  3239. return len;
  3240. }
  3241. EXPORT_SYMBOL_GPL(generic_access_phys);
  3242. #endif
  3243. /*
  3244. * Access another process' address space as given in mm. If non-NULL, use the
  3245. * given task for page fault accounting.
  3246. */
  3247. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3248. unsigned long addr, void *buf, int len, int write)
  3249. {
  3250. struct vm_area_struct *vma;
  3251. void *old_buf = buf;
  3252. down_read(&mm->mmap_sem);
  3253. /* ignore errors, just check how much was successfully transferred */
  3254. while (len) {
  3255. int bytes, ret, offset;
  3256. void *maddr;
  3257. struct page *page = NULL;
  3258. ret = get_user_pages(tsk, mm, addr, 1,
  3259. write, 1, &page, &vma);
  3260. if (ret <= 0) {
  3261. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3262. break;
  3263. #else
  3264. /*
  3265. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3266. * we can access using slightly different code.
  3267. */
  3268. vma = find_vma(mm, addr);
  3269. if (!vma || vma->vm_start > addr)
  3270. break;
  3271. if (vma->vm_ops && vma->vm_ops->access)
  3272. ret = vma->vm_ops->access(vma, addr, buf,
  3273. len, write);
  3274. if (ret <= 0)
  3275. break;
  3276. bytes = ret;
  3277. #endif
  3278. } else {
  3279. bytes = len;
  3280. offset = addr & (PAGE_SIZE-1);
  3281. if (bytes > PAGE_SIZE-offset)
  3282. bytes = PAGE_SIZE-offset;
  3283. maddr = kmap(page);
  3284. if (write) {
  3285. copy_to_user_page(vma, page, addr,
  3286. maddr + offset, buf, bytes);
  3287. set_page_dirty_lock(page);
  3288. } else {
  3289. copy_from_user_page(vma, page, addr,
  3290. buf, maddr + offset, bytes);
  3291. }
  3292. kunmap(page);
  3293. page_cache_release(page);
  3294. }
  3295. len -= bytes;
  3296. buf += bytes;
  3297. addr += bytes;
  3298. }
  3299. up_read(&mm->mmap_sem);
  3300. return buf - old_buf;
  3301. }
  3302. /**
  3303. * access_remote_vm - access another process' address space
  3304. * @mm: the mm_struct of the target address space
  3305. * @addr: start address to access
  3306. * @buf: source or destination buffer
  3307. * @len: number of bytes to transfer
  3308. * @write: whether the access is a write
  3309. *
  3310. * The caller must hold a reference on @mm.
  3311. */
  3312. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3313. void *buf, int len, int write)
  3314. {
  3315. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3316. }
  3317. /*
  3318. * Access another process' address space.
  3319. * Source/target buffer must be kernel space,
  3320. * Do not walk the page table directly, use get_user_pages
  3321. */
  3322. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3323. void *buf, int len, int write)
  3324. {
  3325. struct mm_struct *mm;
  3326. int ret;
  3327. mm = get_task_mm(tsk);
  3328. if (!mm)
  3329. return 0;
  3330. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3331. mmput(mm);
  3332. return ret;
  3333. }
  3334. /*
  3335. * Print the name of a VMA.
  3336. */
  3337. void print_vma_addr(char *prefix, unsigned long ip)
  3338. {
  3339. struct mm_struct *mm = current->mm;
  3340. struct vm_area_struct *vma;
  3341. /*
  3342. * Do not print if we are in atomic
  3343. * contexts (in exception stacks, etc.):
  3344. */
  3345. if (preempt_count())
  3346. return;
  3347. down_read(&mm->mmap_sem);
  3348. vma = find_vma(mm, ip);
  3349. if (vma && vma->vm_file) {
  3350. struct file *f = vma->vm_file;
  3351. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3352. if (buf) {
  3353. char *p;
  3354. p = file_path(f, buf, PAGE_SIZE);
  3355. if (IS_ERR(p))
  3356. p = "?";
  3357. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3358. vma->vm_start,
  3359. vma->vm_end - vma->vm_start);
  3360. free_page((unsigned long)buf);
  3361. }
  3362. }
  3363. up_read(&mm->mmap_sem);
  3364. }
  3365. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3366. void __might_fault(const char *file, int line)
  3367. {
  3368. /*
  3369. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3370. * holding the mmap_sem, this is safe because kernel memory doesn't
  3371. * get paged out, therefore we'll never actually fault, and the
  3372. * below annotations will generate false positives.
  3373. */
  3374. if (segment_eq(get_fs(), KERNEL_DS))
  3375. return;
  3376. if (pagefault_disabled())
  3377. return;
  3378. __might_sleep(file, line, 0);
  3379. #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3380. if (current->mm)
  3381. might_lock_read(&current->mm->mmap_sem);
  3382. #endif
  3383. }
  3384. EXPORT_SYMBOL(__might_fault);
  3385. #endif
  3386. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3387. static void clear_gigantic_page(struct page *page,
  3388. unsigned long addr,
  3389. unsigned int pages_per_huge_page)
  3390. {
  3391. int i;
  3392. struct page *p = page;
  3393. might_sleep();
  3394. for (i = 0; i < pages_per_huge_page;
  3395. i++, p = mem_map_next(p, page, i)) {
  3396. cond_resched();
  3397. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3398. }
  3399. }
  3400. void clear_huge_page(struct page *page,
  3401. unsigned long addr, unsigned int pages_per_huge_page)
  3402. {
  3403. int i;
  3404. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3405. clear_gigantic_page(page, addr, pages_per_huge_page);
  3406. return;
  3407. }
  3408. might_sleep();
  3409. for (i = 0; i < pages_per_huge_page; i++) {
  3410. cond_resched();
  3411. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3412. }
  3413. }
  3414. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3415. unsigned long addr,
  3416. struct vm_area_struct *vma,
  3417. unsigned int pages_per_huge_page)
  3418. {
  3419. int i;
  3420. struct page *dst_base = dst;
  3421. struct page *src_base = src;
  3422. for (i = 0; i < pages_per_huge_page; ) {
  3423. cond_resched();
  3424. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3425. i++;
  3426. dst = mem_map_next(dst, dst_base, i);
  3427. src = mem_map_next(src, src_base, i);
  3428. }
  3429. }
  3430. void copy_user_huge_page(struct page *dst, struct page *src,
  3431. unsigned long addr, struct vm_area_struct *vma,
  3432. unsigned int pages_per_huge_page)
  3433. {
  3434. int i;
  3435. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3436. copy_user_gigantic_page(dst, src, addr, vma,
  3437. pages_per_huge_page);
  3438. return;
  3439. }
  3440. might_sleep();
  3441. for (i = 0; i < pages_per_huge_page; i++) {
  3442. cond_resched();
  3443. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3444. }
  3445. }
  3446. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3447. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3448. static struct kmem_cache *page_ptl_cachep;
  3449. void __init ptlock_cache_init(void)
  3450. {
  3451. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3452. SLAB_PANIC, NULL);
  3453. }
  3454. bool ptlock_alloc(struct page *page)
  3455. {
  3456. spinlock_t *ptl;
  3457. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3458. if (!ptl)
  3459. return false;
  3460. page->ptl = ptl;
  3461. return true;
  3462. }
  3463. void ptlock_free(struct page *page)
  3464. {
  3465. kmem_cache_free(page_ptl_cachep, page->ptl);
  3466. }
  3467. #endif