posix-cpu-timers.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523
  1. /*
  2. * Implement CPU time clocks for the POSIX clock interface.
  3. */
  4. #include <linux/sched.h>
  5. #include <linux/posix-timers.h>
  6. #include <linux/errno.h>
  7. #include <linux/math64.h>
  8. #include <asm/uaccess.h>
  9. #include <linux/kernel_stat.h>
  10. #include <trace/events/timer.h>
  11. #include <linux/random.h>
  12. #include <linux/tick.h>
  13. #include <linux/workqueue.h>
  14. /*
  15. * Called after updating RLIMIT_CPU to run cpu timer and update
  16. * tsk->signal->cputime_expires expiration cache if necessary. Needs
  17. * siglock protection since other code may update expiration cache as
  18. * well.
  19. */
  20. void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  21. {
  22. cputime_t cputime = secs_to_cputime(rlim_new);
  23. spin_lock_irq(&task->sighand->siglock);
  24. set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
  25. spin_unlock_irq(&task->sighand->siglock);
  26. }
  27. static int check_clock(const clockid_t which_clock)
  28. {
  29. int error = 0;
  30. struct task_struct *p;
  31. const pid_t pid = CPUCLOCK_PID(which_clock);
  32. if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  33. return -EINVAL;
  34. if (pid == 0)
  35. return 0;
  36. rcu_read_lock();
  37. p = find_task_by_vpid(pid);
  38. if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  39. same_thread_group(p, current) : has_group_leader_pid(p))) {
  40. error = -EINVAL;
  41. }
  42. rcu_read_unlock();
  43. return error;
  44. }
  45. static inline unsigned long long
  46. timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  47. {
  48. unsigned long long ret;
  49. ret = 0; /* high half always zero when .cpu used */
  50. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  51. ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  52. } else {
  53. ret = cputime_to_expires(timespec_to_cputime(tp));
  54. }
  55. return ret;
  56. }
  57. static void sample_to_timespec(const clockid_t which_clock,
  58. unsigned long long expires,
  59. struct timespec *tp)
  60. {
  61. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  62. *tp = ns_to_timespec(expires);
  63. else
  64. cputime_to_timespec((__force cputime_t)expires, tp);
  65. }
  66. /*
  67. * Update expiry time from increment, and increase overrun count,
  68. * given the current clock sample.
  69. */
  70. static void bump_cpu_timer(struct k_itimer *timer,
  71. unsigned long long now)
  72. {
  73. int i;
  74. unsigned long long delta, incr;
  75. if (timer->it.cpu.incr == 0)
  76. return;
  77. if (now < timer->it.cpu.expires)
  78. return;
  79. incr = timer->it.cpu.incr;
  80. delta = now + incr - timer->it.cpu.expires;
  81. /* Don't use (incr*2 < delta), incr*2 might overflow. */
  82. for (i = 0; incr < delta - incr; i++)
  83. incr = incr << 1;
  84. for (; i >= 0; incr >>= 1, i--) {
  85. if (delta < incr)
  86. continue;
  87. timer->it.cpu.expires += incr;
  88. timer->it_overrun += 1 << i;
  89. delta -= incr;
  90. }
  91. }
  92. /**
  93. * task_cputime_zero - Check a task_cputime struct for all zero fields.
  94. *
  95. * @cputime: The struct to compare.
  96. *
  97. * Checks @cputime to see if all fields are zero. Returns true if all fields
  98. * are zero, false if any field is nonzero.
  99. */
  100. static inline int task_cputime_zero(const struct task_cputime *cputime)
  101. {
  102. if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
  103. return 1;
  104. return 0;
  105. }
  106. static inline unsigned long long prof_ticks(struct task_struct *p)
  107. {
  108. cputime_t utime, stime;
  109. task_cputime(p, &utime, &stime);
  110. return cputime_to_expires(utime + stime);
  111. }
  112. static inline unsigned long long virt_ticks(struct task_struct *p)
  113. {
  114. cputime_t utime;
  115. task_cputime(p, &utime, NULL);
  116. return cputime_to_expires(utime);
  117. }
  118. static int
  119. posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
  120. {
  121. int error = check_clock(which_clock);
  122. if (!error) {
  123. tp->tv_sec = 0;
  124. tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
  125. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  126. /*
  127. * If sched_clock is using a cycle counter, we
  128. * don't have any idea of its true resolution
  129. * exported, but it is much more than 1s/HZ.
  130. */
  131. tp->tv_nsec = 1;
  132. }
  133. }
  134. return error;
  135. }
  136. static int
  137. posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
  138. {
  139. /*
  140. * You can never reset a CPU clock, but we check for other errors
  141. * in the call before failing with EPERM.
  142. */
  143. int error = check_clock(which_clock);
  144. if (error == 0) {
  145. error = -EPERM;
  146. }
  147. return error;
  148. }
  149. /*
  150. * Sample a per-thread clock for the given task.
  151. */
  152. static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
  153. unsigned long long *sample)
  154. {
  155. switch (CPUCLOCK_WHICH(which_clock)) {
  156. default:
  157. return -EINVAL;
  158. case CPUCLOCK_PROF:
  159. *sample = prof_ticks(p);
  160. break;
  161. case CPUCLOCK_VIRT:
  162. *sample = virt_ticks(p);
  163. break;
  164. case CPUCLOCK_SCHED:
  165. *sample = task_sched_runtime(p);
  166. break;
  167. }
  168. return 0;
  169. }
  170. /*
  171. * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
  172. * to avoid race conditions with concurrent updates to cputime.
  173. */
  174. static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
  175. {
  176. u64 curr_cputime;
  177. retry:
  178. curr_cputime = atomic64_read(cputime);
  179. if (sum_cputime > curr_cputime) {
  180. if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
  181. goto retry;
  182. }
  183. }
  184. static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
  185. {
  186. __update_gt_cputime(&cputime_atomic->utime, sum->utime);
  187. __update_gt_cputime(&cputime_atomic->stime, sum->stime);
  188. __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
  189. }
  190. /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
  191. static inline void sample_cputime_atomic(struct task_cputime *times,
  192. struct task_cputime_atomic *atomic_times)
  193. {
  194. times->utime = atomic64_read(&atomic_times->utime);
  195. times->stime = atomic64_read(&atomic_times->stime);
  196. times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
  197. }
  198. void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
  199. {
  200. struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
  201. struct task_cputime sum;
  202. /* Check if cputimer isn't running. This is accessed without locking. */
  203. if (!READ_ONCE(cputimer->running)) {
  204. /*
  205. * The POSIX timer interface allows for absolute time expiry
  206. * values through the TIMER_ABSTIME flag, therefore we have
  207. * to synchronize the timer to the clock every time we start it.
  208. */
  209. thread_group_cputime(tsk, &sum);
  210. update_gt_cputime(&cputimer->cputime_atomic, &sum);
  211. /*
  212. * We're setting cputimer->running without a lock. Ensure
  213. * this only gets written to in one operation. We set
  214. * running after update_gt_cputime() as a small optimization,
  215. * but barriers are not required because update_gt_cputime()
  216. * can handle concurrent updates.
  217. */
  218. WRITE_ONCE(cputimer->running, true);
  219. }
  220. sample_cputime_atomic(times, &cputimer->cputime_atomic);
  221. }
  222. /*
  223. * Sample a process (thread group) clock for the given group_leader task.
  224. * Must be called with task sighand lock held for safe while_each_thread()
  225. * traversal.
  226. */
  227. static int cpu_clock_sample_group(const clockid_t which_clock,
  228. struct task_struct *p,
  229. unsigned long long *sample)
  230. {
  231. struct task_cputime cputime;
  232. switch (CPUCLOCK_WHICH(which_clock)) {
  233. default:
  234. return -EINVAL;
  235. case CPUCLOCK_PROF:
  236. thread_group_cputime(p, &cputime);
  237. *sample = cputime_to_expires(cputime.utime + cputime.stime);
  238. break;
  239. case CPUCLOCK_VIRT:
  240. thread_group_cputime(p, &cputime);
  241. *sample = cputime_to_expires(cputime.utime);
  242. break;
  243. case CPUCLOCK_SCHED:
  244. thread_group_cputime(p, &cputime);
  245. *sample = cputime.sum_exec_runtime;
  246. break;
  247. }
  248. return 0;
  249. }
  250. static int posix_cpu_clock_get_task(struct task_struct *tsk,
  251. const clockid_t which_clock,
  252. struct timespec *tp)
  253. {
  254. int err = -EINVAL;
  255. unsigned long long rtn;
  256. if (CPUCLOCK_PERTHREAD(which_clock)) {
  257. if (same_thread_group(tsk, current))
  258. err = cpu_clock_sample(which_clock, tsk, &rtn);
  259. } else {
  260. if (tsk == current || thread_group_leader(tsk))
  261. err = cpu_clock_sample_group(which_clock, tsk, &rtn);
  262. }
  263. if (!err)
  264. sample_to_timespec(which_clock, rtn, tp);
  265. return err;
  266. }
  267. static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
  268. {
  269. const pid_t pid = CPUCLOCK_PID(which_clock);
  270. int err = -EINVAL;
  271. if (pid == 0) {
  272. /*
  273. * Special case constant value for our own clocks.
  274. * We don't have to do any lookup to find ourselves.
  275. */
  276. err = posix_cpu_clock_get_task(current, which_clock, tp);
  277. } else {
  278. /*
  279. * Find the given PID, and validate that the caller
  280. * should be able to see it.
  281. */
  282. struct task_struct *p;
  283. rcu_read_lock();
  284. p = find_task_by_vpid(pid);
  285. if (p)
  286. err = posix_cpu_clock_get_task(p, which_clock, tp);
  287. rcu_read_unlock();
  288. }
  289. return err;
  290. }
  291. /*
  292. * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
  293. * This is called from sys_timer_create() and do_cpu_nanosleep() with the
  294. * new timer already all-zeros initialized.
  295. */
  296. static int posix_cpu_timer_create(struct k_itimer *new_timer)
  297. {
  298. int ret = 0;
  299. const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
  300. struct task_struct *p;
  301. if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
  302. return -EINVAL;
  303. INIT_LIST_HEAD(&new_timer->it.cpu.entry);
  304. rcu_read_lock();
  305. if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
  306. if (pid == 0) {
  307. p = current;
  308. } else {
  309. p = find_task_by_vpid(pid);
  310. if (p && !same_thread_group(p, current))
  311. p = NULL;
  312. }
  313. } else {
  314. if (pid == 0) {
  315. p = current->group_leader;
  316. } else {
  317. p = find_task_by_vpid(pid);
  318. if (p && !has_group_leader_pid(p))
  319. p = NULL;
  320. }
  321. }
  322. new_timer->it.cpu.task = p;
  323. if (p) {
  324. get_task_struct(p);
  325. } else {
  326. ret = -EINVAL;
  327. }
  328. rcu_read_unlock();
  329. return ret;
  330. }
  331. /*
  332. * Clean up a CPU-clock timer that is about to be destroyed.
  333. * This is called from timer deletion with the timer already locked.
  334. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  335. * and try again. (This happens when the timer is in the middle of firing.)
  336. */
  337. static int posix_cpu_timer_del(struct k_itimer *timer)
  338. {
  339. int ret = 0;
  340. unsigned long flags;
  341. struct sighand_struct *sighand;
  342. struct task_struct *p = timer->it.cpu.task;
  343. WARN_ON_ONCE(p == NULL);
  344. /*
  345. * Protect against sighand release/switch in exit/exec and process/
  346. * thread timer list entry concurrent read/writes.
  347. */
  348. sighand = lock_task_sighand(p, &flags);
  349. if (unlikely(sighand == NULL)) {
  350. /*
  351. * We raced with the reaping of the task.
  352. * The deletion should have cleared us off the list.
  353. */
  354. WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
  355. } else {
  356. if (timer->it.cpu.firing)
  357. ret = TIMER_RETRY;
  358. else
  359. list_del(&timer->it.cpu.entry);
  360. unlock_task_sighand(p, &flags);
  361. }
  362. if (!ret)
  363. put_task_struct(p);
  364. return ret;
  365. }
  366. static void cleanup_timers_list(struct list_head *head)
  367. {
  368. struct cpu_timer_list *timer, *next;
  369. list_for_each_entry_safe(timer, next, head, entry)
  370. list_del_init(&timer->entry);
  371. }
  372. /*
  373. * Clean out CPU timers still ticking when a thread exited. The task
  374. * pointer is cleared, and the expiry time is replaced with the residual
  375. * time for later timer_gettime calls to return.
  376. * This must be called with the siglock held.
  377. */
  378. static void cleanup_timers(struct list_head *head)
  379. {
  380. cleanup_timers_list(head);
  381. cleanup_timers_list(++head);
  382. cleanup_timers_list(++head);
  383. }
  384. /*
  385. * These are both called with the siglock held, when the current thread
  386. * is being reaped. When the final (leader) thread in the group is reaped,
  387. * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
  388. */
  389. void posix_cpu_timers_exit(struct task_struct *tsk)
  390. {
  391. add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
  392. sizeof(unsigned long long));
  393. cleanup_timers(tsk->cpu_timers);
  394. }
  395. void posix_cpu_timers_exit_group(struct task_struct *tsk)
  396. {
  397. cleanup_timers(tsk->signal->cpu_timers);
  398. }
  399. static inline int expires_gt(cputime_t expires, cputime_t new_exp)
  400. {
  401. return expires == 0 || expires > new_exp;
  402. }
  403. /*
  404. * Insert the timer on the appropriate list before any timers that
  405. * expire later. This must be called with the sighand lock held.
  406. */
  407. static void arm_timer(struct k_itimer *timer)
  408. {
  409. struct task_struct *p = timer->it.cpu.task;
  410. struct list_head *head, *listpos;
  411. struct task_cputime *cputime_expires;
  412. struct cpu_timer_list *const nt = &timer->it.cpu;
  413. struct cpu_timer_list *next;
  414. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  415. head = p->cpu_timers;
  416. cputime_expires = &p->cputime_expires;
  417. } else {
  418. head = p->signal->cpu_timers;
  419. cputime_expires = &p->signal->cputime_expires;
  420. }
  421. head += CPUCLOCK_WHICH(timer->it_clock);
  422. listpos = head;
  423. list_for_each_entry(next, head, entry) {
  424. if (nt->expires < next->expires)
  425. break;
  426. listpos = &next->entry;
  427. }
  428. list_add(&nt->entry, listpos);
  429. if (listpos == head) {
  430. unsigned long long exp = nt->expires;
  431. /*
  432. * We are the new earliest-expiring POSIX 1.b timer, hence
  433. * need to update expiration cache. Take into account that
  434. * for process timers we share expiration cache with itimers
  435. * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
  436. */
  437. switch (CPUCLOCK_WHICH(timer->it_clock)) {
  438. case CPUCLOCK_PROF:
  439. if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
  440. cputime_expires->prof_exp = expires_to_cputime(exp);
  441. break;
  442. case CPUCLOCK_VIRT:
  443. if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
  444. cputime_expires->virt_exp = expires_to_cputime(exp);
  445. break;
  446. case CPUCLOCK_SCHED:
  447. if (cputime_expires->sched_exp == 0 ||
  448. cputime_expires->sched_exp > exp)
  449. cputime_expires->sched_exp = exp;
  450. break;
  451. }
  452. }
  453. }
  454. /*
  455. * The timer is locked, fire it and arrange for its reload.
  456. */
  457. static void cpu_timer_fire(struct k_itimer *timer)
  458. {
  459. if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
  460. /*
  461. * User don't want any signal.
  462. */
  463. timer->it.cpu.expires = 0;
  464. } else if (unlikely(timer->sigq == NULL)) {
  465. /*
  466. * This a special case for clock_nanosleep,
  467. * not a normal timer from sys_timer_create.
  468. */
  469. wake_up_process(timer->it_process);
  470. timer->it.cpu.expires = 0;
  471. } else if (timer->it.cpu.incr == 0) {
  472. /*
  473. * One-shot timer. Clear it as soon as it's fired.
  474. */
  475. posix_timer_event(timer, 0);
  476. timer->it.cpu.expires = 0;
  477. } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
  478. /*
  479. * The signal did not get queued because the signal
  480. * was ignored, so we won't get any callback to
  481. * reload the timer. But we need to keep it
  482. * ticking in case the signal is deliverable next time.
  483. */
  484. posix_cpu_timer_schedule(timer);
  485. }
  486. }
  487. /*
  488. * Sample a process (thread group) timer for the given group_leader task.
  489. * Must be called with task sighand lock held for safe while_each_thread()
  490. * traversal.
  491. */
  492. static int cpu_timer_sample_group(const clockid_t which_clock,
  493. struct task_struct *p,
  494. unsigned long long *sample)
  495. {
  496. struct task_cputime cputime;
  497. thread_group_cputimer(p, &cputime);
  498. switch (CPUCLOCK_WHICH(which_clock)) {
  499. default:
  500. return -EINVAL;
  501. case CPUCLOCK_PROF:
  502. *sample = cputime_to_expires(cputime.utime + cputime.stime);
  503. break;
  504. case CPUCLOCK_VIRT:
  505. *sample = cputime_to_expires(cputime.utime);
  506. break;
  507. case CPUCLOCK_SCHED:
  508. *sample = cputime.sum_exec_runtime;
  509. break;
  510. }
  511. return 0;
  512. }
  513. #ifdef CONFIG_NO_HZ_FULL
  514. static void nohz_kick_work_fn(struct work_struct *work)
  515. {
  516. tick_nohz_full_kick_all();
  517. }
  518. static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
  519. /*
  520. * We need the IPIs to be sent from sane process context.
  521. * The posix cpu timers are always set with irqs disabled.
  522. */
  523. static void posix_cpu_timer_kick_nohz(void)
  524. {
  525. if (context_tracking_is_enabled())
  526. schedule_work(&nohz_kick_work);
  527. }
  528. bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
  529. {
  530. if (!task_cputime_zero(&tsk->cputime_expires))
  531. return false;
  532. /* Check if cputimer is running. This is accessed without locking. */
  533. if (READ_ONCE(tsk->signal->cputimer.running))
  534. return false;
  535. return true;
  536. }
  537. #else
  538. static inline void posix_cpu_timer_kick_nohz(void) { }
  539. #endif
  540. /*
  541. * Guts of sys_timer_settime for CPU timers.
  542. * This is called with the timer locked and interrupts disabled.
  543. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  544. * and try again. (This happens when the timer is in the middle of firing.)
  545. */
  546. static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
  547. struct itimerspec *new, struct itimerspec *old)
  548. {
  549. unsigned long flags;
  550. struct sighand_struct *sighand;
  551. struct task_struct *p = timer->it.cpu.task;
  552. unsigned long long old_expires, new_expires, old_incr, val;
  553. int ret;
  554. WARN_ON_ONCE(p == NULL);
  555. new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
  556. /*
  557. * Protect against sighand release/switch in exit/exec and p->cpu_timers
  558. * and p->signal->cpu_timers read/write in arm_timer()
  559. */
  560. sighand = lock_task_sighand(p, &flags);
  561. /*
  562. * If p has just been reaped, we can no
  563. * longer get any information about it at all.
  564. */
  565. if (unlikely(sighand == NULL)) {
  566. return -ESRCH;
  567. }
  568. /*
  569. * Disarm any old timer after extracting its expiry time.
  570. */
  571. WARN_ON_ONCE(!irqs_disabled());
  572. ret = 0;
  573. old_incr = timer->it.cpu.incr;
  574. old_expires = timer->it.cpu.expires;
  575. if (unlikely(timer->it.cpu.firing)) {
  576. timer->it.cpu.firing = -1;
  577. ret = TIMER_RETRY;
  578. } else
  579. list_del_init(&timer->it.cpu.entry);
  580. /*
  581. * We need to sample the current value to convert the new
  582. * value from to relative and absolute, and to convert the
  583. * old value from absolute to relative. To set a process
  584. * timer, we need a sample to balance the thread expiry
  585. * times (in arm_timer). With an absolute time, we must
  586. * check if it's already passed. In short, we need a sample.
  587. */
  588. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  589. cpu_clock_sample(timer->it_clock, p, &val);
  590. } else {
  591. cpu_timer_sample_group(timer->it_clock, p, &val);
  592. }
  593. if (old) {
  594. if (old_expires == 0) {
  595. old->it_value.tv_sec = 0;
  596. old->it_value.tv_nsec = 0;
  597. } else {
  598. /*
  599. * Update the timer in case it has
  600. * overrun already. If it has,
  601. * we'll report it as having overrun
  602. * and with the next reloaded timer
  603. * already ticking, though we are
  604. * swallowing that pending
  605. * notification here to install the
  606. * new setting.
  607. */
  608. bump_cpu_timer(timer, val);
  609. if (val < timer->it.cpu.expires) {
  610. old_expires = timer->it.cpu.expires - val;
  611. sample_to_timespec(timer->it_clock,
  612. old_expires,
  613. &old->it_value);
  614. } else {
  615. old->it_value.tv_nsec = 1;
  616. old->it_value.tv_sec = 0;
  617. }
  618. }
  619. }
  620. if (unlikely(ret)) {
  621. /*
  622. * We are colliding with the timer actually firing.
  623. * Punt after filling in the timer's old value, and
  624. * disable this firing since we are already reporting
  625. * it as an overrun (thanks to bump_cpu_timer above).
  626. */
  627. unlock_task_sighand(p, &flags);
  628. goto out;
  629. }
  630. if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
  631. new_expires += val;
  632. }
  633. /*
  634. * Install the new expiry time (or zero).
  635. * For a timer with no notification action, we don't actually
  636. * arm the timer (we'll just fake it for timer_gettime).
  637. */
  638. timer->it.cpu.expires = new_expires;
  639. if (new_expires != 0 && val < new_expires) {
  640. arm_timer(timer);
  641. }
  642. unlock_task_sighand(p, &flags);
  643. /*
  644. * Install the new reload setting, and
  645. * set up the signal and overrun bookkeeping.
  646. */
  647. timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
  648. &new->it_interval);
  649. /*
  650. * This acts as a modification timestamp for the timer,
  651. * so any automatic reload attempt will punt on seeing
  652. * that we have reset the timer manually.
  653. */
  654. timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
  655. ~REQUEUE_PENDING;
  656. timer->it_overrun_last = 0;
  657. timer->it_overrun = -1;
  658. if (new_expires != 0 && !(val < new_expires)) {
  659. /*
  660. * The designated time already passed, so we notify
  661. * immediately, even if the thread never runs to
  662. * accumulate more time on this clock.
  663. */
  664. cpu_timer_fire(timer);
  665. }
  666. ret = 0;
  667. out:
  668. if (old) {
  669. sample_to_timespec(timer->it_clock,
  670. old_incr, &old->it_interval);
  671. }
  672. if (!ret)
  673. posix_cpu_timer_kick_nohz();
  674. return ret;
  675. }
  676. static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
  677. {
  678. unsigned long long now;
  679. struct task_struct *p = timer->it.cpu.task;
  680. WARN_ON_ONCE(p == NULL);
  681. /*
  682. * Easy part: convert the reload time.
  683. */
  684. sample_to_timespec(timer->it_clock,
  685. timer->it.cpu.incr, &itp->it_interval);
  686. if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
  687. itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
  688. return;
  689. }
  690. /*
  691. * Sample the clock to take the difference with the expiry time.
  692. */
  693. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  694. cpu_clock_sample(timer->it_clock, p, &now);
  695. } else {
  696. struct sighand_struct *sighand;
  697. unsigned long flags;
  698. /*
  699. * Protect against sighand release/switch in exit/exec and
  700. * also make timer sampling safe if it ends up calling
  701. * thread_group_cputime().
  702. */
  703. sighand = lock_task_sighand(p, &flags);
  704. if (unlikely(sighand == NULL)) {
  705. /*
  706. * The process has been reaped.
  707. * We can't even collect a sample any more.
  708. * Call the timer disarmed, nothing else to do.
  709. */
  710. timer->it.cpu.expires = 0;
  711. sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
  712. &itp->it_value);
  713. } else {
  714. cpu_timer_sample_group(timer->it_clock, p, &now);
  715. unlock_task_sighand(p, &flags);
  716. }
  717. }
  718. if (now < timer->it.cpu.expires) {
  719. sample_to_timespec(timer->it_clock,
  720. timer->it.cpu.expires - now,
  721. &itp->it_value);
  722. } else {
  723. /*
  724. * The timer should have expired already, but the firing
  725. * hasn't taken place yet. Say it's just about to expire.
  726. */
  727. itp->it_value.tv_nsec = 1;
  728. itp->it_value.tv_sec = 0;
  729. }
  730. }
  731. static unsigned long long
  732. check_timers_list(struct list_head *timers,
  733. struct list_head *firing,
  734. unsigned long long curr)
  735. {
  736. int maxfire = 20;
  737. while (!list_empty(timers)) {
  738. struct cpu_timer_list *t;
  739. t = list_first_entry(timers, struct cpu_timer_list, entry);
  740. if (!--maxfire || curr < t->expires)
  741. return t->expires;
  742. t->firing = 1;
  743. list_move_tail(&t->entry, firing);
  744. }
  745. return 0;
  746. }
  747. /*
  748. * Check for any per-thread CPU timers that have fired and move them off
  749. * the tsk->cpu_timers[N] list onto the firing list. Here we update the
  750. * tsk->it_*_expires values to reflect the remaining thread CPU timers.
  751. */
  752. static void check_thread_timers(struct task_struct *tsk,
  753. struct list_head *firing)
  754. {
  755. struct list_head *timers = tsk->cpu_timers;
  756. struct signal_struct *const sig = tsk->signal;
  757. struct task_cputime *tsk_expires = &tsk->cputime_expires;
  758. unsigned long long expires;
  759. unsigned long soft;
  760. /*
  761. * If cputime_expires is zero, then there are no active
  762. * per thread CPU timers.
  763. */
  764. if (task_cputime_zero(&tsk->cputime_expires))
  765. return;
  766. expires = check_timers_list(timers, firing, prof_ticks(tsk));
  767. tsk_expires->prof_exp = expires_to_cputime(expires);
  768. expires = check_timers_list(++timers, firing, virt_ticks(tsk));
  769. tsk_expires->virt_exp = expires_to_cputime(expires);
  770. tsk_expires->sched_exp = check_timers_list(++timers, firing,
  771. tsk->se.sum_exec_runtime);
  772. /*
  773. * Check for the special case thread timers.
  774. */
  775. soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
  776. if (soft != RLIM_INFINITY) {
  777. unsigned long hard =
  778. READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
  779. if (hard != RLIM_INFINITY &&
  780. tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
  781. /*
  782. * At the hard limit, we just die.
  783. * No need to calculate anything else now.
  784. */
  785. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  786. return;
  787. }
  788. if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
  789. /*
  790. * At the soft limit, send a SIGXCPU every second.
  791. */
  792. if (soft < hard) {
  793. soft += USEC_PER_SEC;
  794. sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
  795. }
  796. printk(KERN_INFO
  797. "RT Watchdog Timeout: %s[%d]\n",
  798. tsk->comm, task_pid_nr(tsk));
  799. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  800. }
  801. }
  802. }
  803. static inline void stop_process_timers(struct signal_struct *sig)
  804. {
  805. struct thread_group_cputimer *cputimer = &sig->cputimer;
  806. /* Turn off cputimer->running. This is done without locking. */
  807. WRITE_ONCE(cputimer->running, false);
  808. }
  809. static u32 onecputick;
  810. static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
  811. unsigned long long *expires,
  812. unsigned long long cur_time, int signo)
  813. {
  814. if (!it->expires)
  815. return;
  816. if (cur_time >= it->expires) {
  817. if (it->incr) {
  818. it->expires += it->incr;
  819. it->error += it->incr_error;
  820. if (it->error >= onecputick) {
  821. it->expires -= cputime_one_jiffy;
  822. it->error -= onecputick;
  823. }
  824. } else {
  825. it->expires = 0;
  826. }
  827. trace_itimer_expire(signo == SIGPROF ?
  828. ITIMER_PROF : ITIMER_VIRTUAL,
  829. tsk->signal->leader_pid, cur_time);
  830. __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
  831. }
  832. if (it->expires && (!*expires || it->expires < *expires)) {
  833. *expires = it->expires;
  834. }
  835. }
  836. /*
  837. * Check for any per-thread CPU timers that have fired and move them
  838. * off the tsk->*_timers list onto the firing list. Per-thread timers
  839. * have already been taken off.
  840. */
  841. static void check_process_timers(struct task_struct *tsk,
  842. struct list_head *firing)
  843. {
  844. struct signal_struct *const sig = tsk->signal;
  845. unsigned long long utime, ptime, virt_expires, prof_expires;
  846. unsigned long long sum_sched_runtime, sched_expires;
  847. struct list_head *timers = sig->cpu_timers;
  848. struct task_cputime cputime;
  849. unsigned long soft;
  850. /*
  851. * If cputimer is not running, then there are no active
  852. * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
  853. */
  854. if (!READ_ONCE(tsk->signal->cputimer.running))
  855. return;
  856. /*
  857. * Signify that a thread is checking for process timers.
  858. * Write access to this field is protected by the sighand lock.
  859. */
  860. sig->cputimer.checking_timer = true;
  861. /*
  862. * Collect the current process totals.
  863. */
  864. thread_group_cputimer(tsk, &cputime);
  865. utime = cputime_to_expires(cputime.utime);
  866. ptime = utime + cputime_to_expires(cputime.stime);
  867. sum_sched_runtime = cputime.sum_exec_runtime;
  868. prof_expires = check_timers_list(timers, firing, ptime);
  869. virt_expires = check_timers_list(++timers, firing, utime);
  870. sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
  871. /*
  872. * Check for the special case process timers.
  873. */
  874. check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
  875. SIGPROF);
  876. check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
  877. SIGVTALRM);
  878. soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  879. if (soft != RLIM_INFINITY) {
  880. unsigned long psecs = cputime_to_secs(ptime);
  881. unsigned long hard =
  882. READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
  883. cputime_t x;
  884. if (psecs >= hard) {
  885. /*
  886. * At the hard limit, we just die.
  887. * No need to calculate anything else now.
  888. */
  889. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  890. return;
  891. }
  892. if (psecs >= soft) {
  893. /*
  894. * At the soft limit, send a SIGXCPU every second.
  895. */
  896. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  897. if (soft < hard) {
  898. soft++;
  899. sig->rlim[RLIMIT_CPU].rlim_cur = soft;
  900. }
  901. }
  902. x = secs_to_cputime(soft);
  903. if (!prof_expires || x < prof_expires) {
  904. prof_expires = x;
  905. }
  906. }
  907. sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
  908. sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
  909. sig->cputime_expires.sched_exp = sched_expires;
  910. if (task_cputime_zero(&sig->cputime_expires))
  911. stop_process_timers(sig);
  912. sig->cputimer.checking_timer = false;
  913. }
  914. /*
  915. * This is called from the signal code (via do_schedule_next_timer)
  916. * when the last timer signal was delivered and we have to reload the timer.
  917. */
  918. void posix_cpu_timer_schedule(struct k_itimer *timer)
  919. {
  920. struct sighand_struct *sighand;
  921. unsigned long flags;
  922. struct task_struct *p = timer->it.cpu.task;
  923. unsigned long long now;
  924. WARN_ON_ONCE(p == NULL);
  925. /*
  926. * Fetch the current sample and update the timer's expiry time.
  927. */
  928. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  929. cpu_clock_sample(timer->it_clock, p, &now);
  930. bump_cpu_timer(timer, now);
  931. if (unlikely(p->exit_state))
  932. goto out;
  933. /* Protect timer list r/w in arm_timer() */
  934. sighand = lock_task_sighand(p, &flags);
  935. if (!sighand)
  936. goto out;
  937. } else {
  938. /*
  939. * Protect arm_timer() and timer sampling in case of call to
  940. * thread_group_cputime().
  941. */
  942. sighand = lock_task_sighand(p, &flags);
  943. if (unlikely(sighand == NULL)) {
  944. /*
  945. * The process has been reaped.
  946. * We can't even collect a sample any more.
  947. */
  948. timer->it.cpu.expires = 0;
  949. goto out;
  950. } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
  951. unlock_task_sighand(p, &flags);
  952. /* Optimizations: if the process is dying, no need to rearm */
  953. goto out;
  954. }
  955. cpu_timer_sample_group(timer->it_clock, p, &now);
  956. bump_cpu_timer(timer, now);
  957. /* Leave the sighand locked for the call below. */
  958. }
  959. /*
  960. * Now re-arm for the new expiry time.
  961. */
  962. WARN_ON_ONCE(!irqs_disabled());
  963. arm_timer(timer);
  964. unlock_task_sighand(p, &flags);
  965. /* Kick full dynticks CPUs in case they need to tick on the new timer */
  966. posix_cpu_timer_kick_nohz();
  967. out:
  968. timer->it_overrun_last = timer->it_overrun;
  969. timer->it_overrun = -1;
  970. ++timer->it_requeue_pending;
  971. }
  972. /**
  973. * task_cputime_expired - Compare two task_cputime entities.
  974. *
  975. * @sample: The task_cputime structure to be checked for expiration.
  976. * @expires: Expiration times, against which @sample will be checked.
  977. *
  978. * Checks @sample against @expires to see if any field of @sample has expired.
  979. * Returns true if any field of the former is greater than the corresponding
  980. * field of the latter if the latter field is set. Otherwise returns false.
  981. */
  982. static inline int task_cputime_expired(const struct task_cputime *sample,
  983. const struct task_cputime *expires)
  984. {
  985. if (expires->utime && sample->utime >= expires->utime)
  986. return 1;
  987. if (expires->stime && sample->utime + sample->stime >= expires->stime)
  988. return 1;
  989. if (expires->sum_exec_runtime != 0 &&
  990. sample->sum_exec_runtime >= expires->sum_exec_runtime)
  991. return 1;
  992. return 0;
  993. }
  994. /**
  995. * fastpath_timer_check - POSIX CPU timers fast path.
  996. *
  997. * @tsk: The task (thread) being checked.
  998. *
  999. * Check the task and thread group timers. If both are zero (there are no
  1000. * timers set) return false. Otherwise snapshot the task and thread group
  1001. * timers and compare them with the corresponding expiration times. Return
  1002. * true if a timer has expired, else return false.
  1003. */
  1004. static inline int fastpath_timer_check(struct task_struct *tsk)
  1005. {
  1006. struct signal_struct *sig;
  1007. if (!task_cputime_zero(&tsk->cputime_expires)) {
  1008. struct task_cputime task_sample;
  1009. task_cputime(tsk, &task_sample.utime, &task_sample.stime);
  1010. task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
  1011. if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
  1012. return 1;
  1013. }
  1014. sig = tsk->signal;
  1015. /*
  1016. * Check if thread group timers expired when the cputimer is
  1017. * running and no other thread in the group is already checking
  1018. * for thread group cputimers. These fields are read without the
  1019. * sighand lock. However, this is fine because this is meant to
  1020. * be a fastpath heuristic to determine whether we should try to
  1021. * acquire the sighand lock to check/handle timers.
  1022. *
  1023. * In the worst case scenario, if 'running' or 'checking_timer' gets
  1024. * set but the current thread doesn't see the change yet, we'll wait
  1025. * until the next thread in the group gets a scheduler interrupt to
  1026. * handle the timer. This isn't an issue in practice because these
  1027. * types of delays with signals actually getting sent are expected.
  1028. */
  1029. if (READ_ONCE(sig->cputimer.running) &&
  1030. !READ_ONCE(sig->cputimer.checking_timer)) {
  1031. struct task_cputime group_sample;
  1032. sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
  1033. if (task_cputime_expired(&group_sample, &sig->cputime_expires))
  1034. return 1;
  1035. }
  1036. return 0;
  1037. }
  1038. /*
  1039. * This is called from the timer interrupt handler. The irq handler has
  1040. * already updated our counts. We need to check if any timers fire now.
  1041. * Interrupts are disabled.
  1042. */
  1043. void run_posix_cpu_timers(struct task_struct *tsk)
  1044. {
  1045. LIST_HEAD(firing);
  1046. struct k_itimer *timer, *next;
  1047. unsigned long flags;
  1048. WARN_ON_ONCE(!irqs_disabled());
  1049. /*
  1050. * The fast path checks that there are no expired thread or thread
  1051. * group timers. If that's so, just return.
  1052. */
  1053. if (!fastpath_timer_check(tsk))
  1054. return;
  1055. if (!lock_task_sighand(tsk, &flags))
  1056. return;
  1057. /*
  1058. * Here we take off tsk->signal->cpu_timers[N] and
  1059. * tsk->cpu_timers[N] all the timers that are firing, and
  1060. * put them on the firing list.
  1061. */
  1062. check_thread_timers(tsk, &firing);
  1063. check_process_timers(tsk, &firing);
  1064. /*
  1065. * We must release these locks before taking any timer's lock.
  1066. * There is a potential race with timer deletion here, as the
  1067. * siglock now protects our private firing list. We have set
  1068. * the firing flag in each timer, so that a deletion attempt
  1069. * that gets the timer lock before we do will give it up and
  1070. * spin until we've taken care of that timer below.
  1071. */
  1072. unlock_task_sighand(tsk, &flags);
  1073. /*
  1074. * Now that all the timers on our list have the firing flag,
  1075. * no one will touch their list entries but us. We'll take
  1076. * each timer's lock before clearing its firing flag, so no
  1077. * timer call will interfere.
  1078. */
  1079. list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
  1080. int cpu_firing;
  1081. spin_lock(&timer->it_lock);
  1082. list_del_init(&timer->it.cpu.entry);
  1083. cpu_firing = timer->it.cpu.firing;
  1084. timer->it.cpu.firing = 0;
  1085. /*
  1086. * The firing flag is -1 if we collided with a reset
  1087. * of the timer, which already reported this
  1088. * almost-firing as an overrun. So don't generate an event.
  1089. */
  1090. if (likely(cpu_firing >= 0))
  1091. cpu_timer_fire(timer);
  1092. spin_unlock(&timer->it_lock);
  1093. }
  1094. }
  1095. /*
  1096. * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
  1097. * The tsk->sighand->siglock must be held by the caller.
  1098. */
  1099. void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
  1100. cputime_t *newval, cputime_t *oldval)
  1101. {
  1102. unsigned long long now;
  1103. WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
  1104. cpu_timer_sample_group(clock_idx, tsk, &now);
  1105. if (oldval) {
  1106. /*
  1107. * We are setting itimer. The *oldval is absolute and we update
  1108. * it to be relative, *newval argument is relative and we update
  1109. * it to be absolute.
  1110. */
  1111. if (*oldval) {
  1112. if (*oldval <= now) {
  1113. /* Just about to fire. */
  1114. *oldval = cputime_one_jiffy;
  1115. } else {
  1116. *oldval -= now;
  1117. }
  1118. }
  1119. if (!*newval)
  1120. goto out;
  1121. *newval += now;
  1122. }
  1123. /*
  1124. * Update expiration cache if we are the earliest timer, or eventually
  1125. * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
  1126. */
  1127. switch (clock_idx) {
  1128. case CPUCLOCK_PROF:
  1129. if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
  1130. tsk->signal->cputime_expires.prof_exp = *newval;
  1131. break;
  1132. case CPUCLOCK_VIRT:
  1133. if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
  1134. tsk->signal->cputime_expires.virt_exp = *newval;
  1135. break;
  1136. }
  1137. out:
  1138. posix_cpu_timer_kick_nohz();
  1139. }
  1140. static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
  1141. struct timespec *rqtp, struct itimerspec *it)
  1142. {
  1143. struct k_itimer timer;
  1144. int error;
  1145. /*
  1146. * Set up a temporary timer and then wait for it to go off.
  1147. */
  1148. memset(&timer, 0, sizeof timer);
  1149. spin_lock_init(&timer.it_lock);
  1150. timer.it_clock = which_clock;
  1151. timer.it_overrun = -1;
  1152. error = posix_cpu_timer_create(&timer);
  1153. timer.it_process = current;
  1154. if (!error) {
  1155. static struct itimerspec zero_it;
  1156. memset(it, 0, sizeof *it);
  1157. it->it_value = *rqtp;
  1158. spin_lock_irq(&timer.it_lock);
  1159. error = posix_cpu_timer_set(&timer, flags, it, NULL);
  1160. if (error) {
  1161. spin_unlock_irq(&timer.it_lock);
  1162. return error;
  1163. }
  1164. while (!signal_pending(current)) {
  1165. if (timer.it.cpu.expires == 0) {
  1166. /*
  1167. * Our timer fired and was reset, below
  1168. * deletion can not fail.
  1169. */
  1170. posix_cpu_timer_del(&timer);
  1171. spin_unlock_irq(&timer.it_lock);
  1172. return 0;
  1173. }
  1174. /*
  1175. * Block until cpu_timer_fire (or a signal) wakes us.
  1176. */
  1177. __set_current_state(TASK_INTERRUPTIBLE);
  1178. spin_unlock_irq(&timer.it_lock);
  1179. schedule();
  1180. spin_lock_irq(&timer.it_lock);
  1181. }
  1182. /*
  1183. * We were interrupted by a signal.
  1184. */
  1185. sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
  1186. error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
  1187. if (!error) {
  1188. /*
  1189. * Timer is now unarmed, deletion can not fail.
  1190. */
  1191. posix_cpu_timer_del(&timer);
  1192. }
  1193. spin_unlock_irq(&timer.it_lock);
  1194. while (error == TIMER_RETRY) {
  1195. /*
  1196. * We need to handle case when timer was or is in the
  1197. * middle of firing. In other cases we already freed
  1198. * resources.
  1199. */
  1200. spin_lock_irq(&timer.it_lock);
  1201. error = posix_cpu_timer_del(&timer);
  1202. spin_unlock_irq(&timer.it_lock);
  1203. }
  1204. if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
  1205. /*
  1206. * It actually did fire already.
  1207. */
  1208. return 0;
  1209. }
  1210. error = -ERESTART_RESTARTBLOCK;
  1211. }
  1212. return error;
  1213. }
  1214. static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
  1215. static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
  1216. struct timespec *rqtp, struct timespec __user *rmtp)
  1217. {
  1218. struct restart_block *restart_block = &current->restart_block;
  1219. struct itimerspec it;
  1220. int error;
  1221. /*
  1222. * Diagnose required errors first.
  1223. */
  1224. if (CPUCLOCK_PERTHREAD(which_clock) &&
  1225. (CPUCLOCK_PID(which_clock) == 0 ||
  1226. CPUCLOCK_PID(which_clock) == current->pid))
  1227. return -EINVAL;
  1228. error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
  1229. if (error == -ERESTART_RESTARTBLOCK) {
  1230. if (flags & TIMER_ABSTIME)
  1231. return -ERESTARTNOHAND;
  1232. /*
  1233. * Report back to the user the time still remaining.
  1234. */
  1235. if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
  1236. return -EFAULT;
  1237. restart_block->fn = posix_cpu_nsleep_restart;
  1238. restart_block->nanosleep.clockid = which_clock;
  1239. restart_block->nanosleep.rmtp = rmtp;
  1240. restart_block->nanosleep.expires = timespec_to_ns(rqtp);
  1241. }
  1242. return error;
  1243. }
  1244. static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
  1245. {
  1246. clockid_t which_clock = restart_block->nanosleep.clockid;
  1247. struct timespec t;
  1248. struct itimerspec it;
  1249. int error;
  1250. t = ns_to_timespec(restart_block->nanosleep.expires);
  1251. error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
  1252. if (error == -ERESTART_RESTARTBLOCK) {
  1253. struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
  1254. /*
  1255. * Report back to the user the time still remaining.
  1256. */
  1257. if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
  1258. return -EFAULT;
  1259. restart_block->nanosleep.expires = timespec_to_ns(&t);
  1260. }
  1261. return error;
  1262. }
  1263. #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
  1264. #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
  1265. static int process_cpu_clock_getres(const clockid_t which_clock,
  1266. struct timespec *tp)
  1267. {
  1268. return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
  1269. }
  1270. static int process_cpu_clock_get(const clockid_t which_clock,
  1271. struct timespec *tp)
  1272. {
  1273. return posix_cpu_clock_get(PROCESS_CLOCK, tp);
  1274. }
  1275. static int process_cpu_timer_create(struct k_itimer *timer)
  1276. {
  1277. timer->it_clock = PROCESS_CLOCK;
  1278. return posix_cpu_timer_create(timer);
  1279. }
  1280. static int process_cpu_nsleep(const clockid_t which_clock, int flags,
  1281. struct timespec *rqtp,
  1282. struct timespec __user *rmtp)
  1283. {
  1284. return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
  1285. }
  1286. static long process_cpu_nsleep_restart(struct restart_block *restart_block)
  1287. {
  1288. return -EINVAL;
  1289. }
  1290. static int thread_cpu_clock_getres(const clockid_t which_clock,
  1291. struct timespec *tp)
  1292. {
  1293. return posix_cpu_clock_getres(THREAD_CLOCK, tp);
  1294. }
  1295. static int thread_cpu_clock_get(const clockid_t which_clock,
  1296. struct timespec *tp)
  1297. {
  1298. return posix_cpu_clock_get(THREAD_CLOCK, tp);
  1299. }
  1300. static int thread_cpu_timer_create(struct k_itimer *timer)
  1301. {
  1302. timer->it_clock = THREAD_CLOCK;
  1303. return posix_cpu_timer_create(timer);
  1304. }
  1305. struct k_clock clock_posix_cpu = {
  1306. .clock_getres = posix_cpu_clock_getres,
  1307. .clock_set = posix_cpu_clock_set,
  1308. .clock_get = posix_cpu_clock_get,
  1309. .timer_create = posix_cpu_timer_create,
  1310. .nsleep = posix_cpu_nsleep,
  1311. .nsleep_restart = posix_cpu_nsleep_restart,
  1312. .timer_set = posix_cpu_timer_set,
  1313. .timer_del = posix_cpu_timer_del,
  1314. .timer_get = posix_cpu_timer_get,
  1315. };
  1316. static __init int init_posix_cpu_timers(void)
  1317. {
  1318. struct k_clock process = {
  1319. .clock_getres = process_cpu_clock_getres,
  1320. .clock_get = process_cpu_clock_get,
  1321. .timer_create = process_cpu_timer_create,
  1322. .nsleep = process_cpu_nsleep,
  1323. .nsleep_restart = process_cpu_nsleep_restart,
  1324. };
  1325. struct k_clock thread = {
  1326. .clock_getres = thread_cpu_clock_getres,
  1327. .clock_get = thread_cpu_clock_get,
  1328. .timer_create = thread_cpu_timer_create,
  1329. };
  1330. struct timespec ts;
  1331. posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
  1332. posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
  1333. cputime_to_timespec(cputime_one_jiffy, &ts);
  1334. onecputick = ts.tv_nsec;
  1335. WARN_ON(ts.tv_sec != 0);
  1336. return 0;
  1337. }
  1338. __initcall(init_posix_cpu_timers);