fair.c 218 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/cpuidle.h>
  26. #include <linux/slab.h>
  27. #include <linux/profile.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/mempolicy.h>
  30. #include <linux/migrate.h>
  31. #include <linux/task_work.h>
  32. #include <trace/events/sched.h>
  33. #include "sched.h"
  34. /*
  35. * Targeted preemption latency for CPU-bound tasks:
  36. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  37. *
  38. * NOTE: this latency value is not the same as the concept of
  39. * 'timeslice length' - timeslices in CFS are of variable length
  40. * and have no persistent notion like in traditional, time-slice
  41. * based scheduling concepts.
  42. *
  43. * (to see the precise effective timeslice length of your workload,
  44. * run vmstat and monitor the context-switches (cs) field)
  45. */
  46. unsigned int sysctl_sched_latency = 6000000ULL;
  47. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  48. /*
  49. * The initial- and re-scaling of tunables is configurable
  50. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  51. *
  52. * Options are:
  53. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  54. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  55. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  56. */
  57. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  58. = SCHED_TUNABLESCALING_LOG;
  59. /*
  60. * Minimal preemption granularity for CPU-bound tasks:
  61. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  62. */
  63. unsigned int sysctl_sched_min_granularity = 750000ULL;
  64. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  65. /*
  66. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  67. */
  68. static unsigned int sched_nr_latency = 8;
  69. /*
  70. * After fork, child runs first. If set to 0 (default) then
  71. * parent will (try to) run first.
  72. */
  73. unsigned int sysctl_sched_child_runs_first __read_mostly;
  74. /*
  75. * SCHED_OTHER wake-up granularity.
  76. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  77. *
  78. * This option delays the preemption effects of decoupled workloads
  79. * and reduces their over-scheduling. Synchronous workloads will still
  80. * have immediate wakeup/sleep latencies.
  81. */
  82. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  83. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  84. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  85. /*
  86. * The exponential sliding window over which load is averaged for shares
  87. * distribution.
  88. * (default: 10msec)
  89. */
  90. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  91. #ifdef CONFIG_CFS_BANDWIDTH
  92. /*
  93. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  94. * each time a cfs_rq requests quota.
  95. *
  96. * Note: in the case that the slice exceeds the runtime remaining (either due
  97. * to consumption or the quota being specified to be smaller than the slice)
  98. * we will always only issue the remaining available time.
  99. *
  100. * default: 5 msec, units: microseconds
  101. */
  102. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  103. #endif
  104. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  105. {
  106. lw->weight += inc;
  107. lw->inv_weight = 0;
  108. }
  109. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  110. {
  111. lw->weight -= dec;
  112. lw->inv_weight = 0;
  113. }
  114. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  115. {
  116. lw->weight = w;
  117. lw->inv_weight = 0;
  118. }
  119. /*
  120. * Increase the granularity value when there are more CPUs,
  121. * because with more CPUs the 'effective latency' as visible
  122. * to users decreases. But the relationship is not linear,
  123. * so pick a second-best guess by going with the log2 of the
  124. * number of CPUs.
  125. *
  126. * This idea comes from the SD scheduler of Con Kolivas:
  127. */
  128. static unsigned int get_update_sysctl_factor(void)
  129. {
  130. unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
  131. unsigned int factor;
  132. switch (sysctl_sched_tunable_scaling) {
  133. case SCHED_TUNABLESCALING_NONE:
  134. factor = 1;
  135. break;
  136. case SCHED_TUNABLESCALING_LINEAR:
  137. factor = cpus;
  138. break;
  139. case SCHED_TUNABLESCALING_LOG:
  140. default:
  141. factor = 1 + ilog2(cpus);
  142. break;
  143. }
  144. return factor;
  145. }
  146. static void update_sysctl(void)
  147. {
  148. unsigned int factor = get_update_sysctl_factor();
  149. #define SET_SYSCTL(name) \
  150. (sysctl_##name = (factor) * normalized_sysctl_##name)
  151. SET_SYSCTL(sched_min_granularity);
  152. SET_SYSCTL(sched_latency);
  153. SET_SYSCTL(sched_wakeup_granularity);
  154. #undef SET_SYSCTL
  155. }
  156. void sched_init_granularity(void)
  157. {
  158. update_sysctl();
  159. }
  160. #define WMULT_CONST (~0U)
  161. #define WMULT_SHIFT 32
  162. static void __update_inv_weight(struct load_weight *lw)
  163. {
  164. unsigned long w;
  165. if (likely(lw->inv_weight))
  166. return;
  167. w = scale_load_down(lw->weight);
  168. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  169. lw->inv_weight = 1;
  170. else if (unlikely(!w))
  171. lw->inv_weight = WMULT_CONST;
  172. else
  173. lw->inv_weight = WMULT_CONST / w;
  174. }
  175. /*
  176. * delta_exec * weight / lw.weight
  177. * OR
  178. * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
  179. *
  180. * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
  181. * we're guaranteed shift stays positive because inv_weight is guaranteed to
  182. * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
  183. *
  184. * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
  185. * weight/lw.weight <= 1, and therefore our shift will also be positive.
  186. */
  187. static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
  188. {
  189. u64 fact = scale_load_down(weight);
  190. int shift = WMULT_SHIFT;
  191. __update_inv_weight(lw);
  192. if (unlikely(fact >> 32)) {
  193. while (fact >> 32) {
  194. fact >>= 1;
  195. shift--;
  196. }
  197. }
  198. /* hint to use a 32x32->64 mul */
  199. fact = (u64)(u32)fact * lw->inv_weight;
  200. while (fact >> 32) {
  201. fact >>= 1;
  202. shift--;
  203. }
  204. return mul_u64_u32_shr(delta_exec, fact, shift);
  205. }
  206. const struct sched_class fair_sched_class;
  207. /**************************************************************
  208. * CFS operations on generic schedulable entities:
  209. */
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* cpu runqueue to which this cfs_rq is attached */
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return cfs_rq->rq;
  215. }
  216. /* An entity is a task if it doesn't "own" a runqueue */
  217. #define entity_is_task(se) (!se->my_q)
  218. static inline struct task_struct *task_of(struct sched_entity *se)
  219. {
  220. #ifdef CONFIG_SCHED_DEBUG
  221. WARN_ON_ONCE(!entity_is_task(se));
  222. #endif
  223. return container_of(se, struct task_struct, se);
  224. }
  225. /* Walk up scheduling entities hierarchy */
  226. #define for_each_sched_entity(se) \
  227. for (; se; se = se->parent)
  228. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  229. {
  230. return p->se.cfs_rq;
  231. }
  232. /* runqueue on which this entity is (to be) queued */
  233. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  234. {
  235. return se->cfs_rq;
  236. }
  237. /* runqueue "owned" by this group */
  238. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  239. {
  240. return grp->my_q;
  241. }
  242. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  243. {
  244. if (!cfs_rq->on_list) {
  245. /*
  246. * Ensure we either appear before our parent (if already
  247. * enqueued) or force our parent to appear after us when it is
  248. * enqueued. The fact that we always enqueue bottom-up
  249. * reduces this to two cases.
  250. */
  251. if (cfs_rq->tg->parent &&
  252. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  253. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  254. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  255. } else {
  256. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  257. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  258. }
  259. cfs_rq->on_list = 1;
  260. }
  261. }
  262. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  263. {
  264. if (cfs_rq->on_list) {
  265. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  266. cfs_rq->on_list = 0;
  267. }
  268. }
  269. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  270. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  271. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  272. /* Do the two (enqueued) entities belong to the same group ? */
  273. static inline struct cfs_rq *
  274. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  275. {
  276. if (se->cfs_rq == pse->cfs_rq)
  277. return se->cfs_rq;
  278. return NULL;
  279. }
  280. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  281. {
  282. return se->parent;
  283. }
  284. static void
  285. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  286. {
  287. int se_depth, pse_depth;
  288. /*
  289. * preemption test can be made between sibling entities who are in the
  290. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  291. * both tasks until we find their ancestors who are siblings of common
  292. * parent.
  293. */
  294. /* First walk up until both entities are at same depth */
  295. se_depth = (*se)->depth;
  296. pse_depth = (*pse)->depth;
  297. while (se_depth > pse_depth) {
  298. se_depth--;
  299. *se = parent_entity(*se);
  300. }
  301. while (pse_depth > se_depth) {
  302. pse_depth--;
  303. *pse = parent_entity(*pse);
  304. }
  305. while (!is_same_group(*se, *pse)) {
  306. *se = parent_entity(*se);
  307. *pse = parent_entity(*pse);
  308. }
  309. }
  310. #else /* !CONFIG_FAIR_GROUP_SCHED */
  311. static inline struct task_struct *task_of(struct sched_entity *se)
  312. {
  313. return container_of(se, struct task_struct, se);
  314. }
  315. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  316. {
  317. return container_of(cfs_rq, struct rq, cfs);
  318. }
  319. #define entity_is_task(se) 1
  320. #define for_each_sched_entity(se) \
  321. for (; se; se = NULL)
  322. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  323. {
  324. return &task_rq(p)->cfs;
  325. }
  326. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  327. {
  328. struct task_struct *p = task_of(se);
  329. struct rq *rq = task_rq(p);
  330. return &rq->cfs;
  331. }
  332. /* runqueue "owned" by this group */
  333. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  334. {
  335. return NULL;
  336. }
  337. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  338. {
  339. }
  340. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  341. {
  342. }
  343. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  344. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  345. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  346. {
  347. return NULL;
  348. }
  349. static inline void
  350. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  351. {
  352. }
  353. #endif /* CONFIG_FAIR_GROUP_SCHED */
  354. static __always_inline
  355. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
  356. /**************************************************************
  357. * Scheduling class tree data structure manipulation methods:
  358. */
  359. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  360. {
  361. s64 delta = (s64)(vruntime - max_vruntime);
  362. if (delta > 0)
  363. max_vruntime = vruntime;
  364. return max_vruntime;
  365. }
  366. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  367. {
  368. s64 delta = (s64)(vruntime - min_vruntime);
  369. if (delta < 0)
  370. min_vruntime = vruntime;
  371. return min_vruntime;
  372. }
  373. static inline int entity_before(struct sched_entity *a,
  374. struct sched_entity *b)
  375. {
  376. return (s64)(a->vruntime - b->vruntime) < 0;
  377. }
  378. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  379. {
  380. u64 vruntime = cfs_rq->min_vruntime;
  381. if (cfs_rq->curr)
  382. vruntime = cfs_rq->curr->vruntime;
  383. if (cfs_rq->rb_leftmost) {
  384. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  385. struct sched_entity,
  386. run_node);
  387. if (!cfs_rq->curr)
  388. vruntime = se->vruntime;
  389. else
  390. vruntime = min_vruntime(vruntime, se->vruntime);
  391. }
  392. /* ensure we never gain time by being placed backwards. */
  393. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  394. #ifndef CONFIG_64BIT
  395. smp_wmb();
  396. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  397. #endif
  398. }
  399. /*
  400. * Enqueue an entity into the rb-tree:
  401. */
  402. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  405. struct rb_node *parent = NULL;
  406. struct sched_entity *entry;
  407. int leftmost = 1;
  408. /*
  409. * Find the right place in the rbtree:
  410. */
  411. while (*link) {
  412. parent = *link;
  413. entry = rb_entry(parent, struct sched_entity, run_node);
  414. /*
  415. * We dont care about collisions. Nodes with
  416. * the same key stay together.
  417. */
  418. if (entity_before(se, entry)) {
  419. link = &parent->rb_left;
  420. } else {
  421. link = &parent->rb_right;
  422. leftmost = 0;
  423. }
  424. }
  425. /*
  426. * Maintain a cache of leftmost tree entries (it is frequently
  427. * used):
  428. */
  429. if (leftmost)
  430. cfs_rq->rb_leftmost = &se->run_node;
  431. rb_link_node(&se->run_node, parent, link);
  432. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  433. }
  434. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  435. {
  436. if (cfs_rq->rb_leftmost == &se->run_node) {
  437. struct rb_node *next_node;
  438. next_node = rb_next(&se->run_node);
  439. cfs_rq->rb_leftmost = next_node;
  440. }
  441. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  442. }
  443. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  444. {
  445. struct rb_node *left = cfs_rq->rb_leftmost;
  446. if (!left)
  447. return NULL;
  448. return rb_entry(left, struct sched_entity, run_node);
  449. }
  450. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  451. {
  452. struct rb_node *next = rb_next(&se->run_node);
  453. if (!next)
  454. return NULL;
  455. return rb_entry(next, struct sched_entity, run_node);
  456. }
  457. #ifdef CONFIG_SCHED_DEBUG
  458. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  459. {
  460. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  461. if (!last)
  462. return NULL;
  463. return rb_entry(last, struct sched_entity, run_node);
  464. }
  465. /**************************************************************
  466. * Scheduling class statistics methods:
  467. */
  468. int sched_proc_update_handler(struct ctl_table *table, int write,
  469. void __user *buffer, size_t *lenp,
  470. loff_t *ppos)
  471. {
  472. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  473. unsigned int factor = get_update_sysctl_factor();
  474. if (ret || !write)
  475. return ret;
  476. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  477. sysctl_sched_min_granularity);
  478. #define WRT_SYSCTL(name) \
  479. (normalized_sysctl_##name = sysctl_##name / (factor))
  480. WRT_SYSCTL(sched_min_granularity);
  481. WRT_SYSCTL(sched_latency);
  482. WRT_SYSCTL(sched_wakeup_granularity);
  483. #undef WRT_SYSCTL
  484. return 0;
  485. }
  486. #endif
  487. /*
  488. * delta /= w
  489. */
  490. static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
  491. {
  492. if (unlikely(se->load.weight != NICE_0_LOAD))
  493. delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  494. return delta;
  495. }
  496. /*
  497. * The idea is to set a period in which each task runs once.
  498. *
  499. * When there are too many tasks (sched_nr_latency) we have to stretch
  500. * this period because otherwise the slices get too small.
  501. *
  502. * p = (nr <= nl) ? l : l*nr/nl
  503. */
  504. static u64 __sched_period(unsigned long nr_running)
  505. {
  506. if (unlikely(nr_running > sched_nr_latency))
  507. return nr_running * sysctl_sched_min_granularity;
  508. else
  509. return sysctl_sched_latency;
  510. }
  511. /*
  512. * We calculate the wall-time slice from the period by taking a part
  513. * proportional to the weight.
  514. *
  515. * s = p*P[w/rw]
  516. */
  517. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  518. {
  519. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  520. for_each_sched_entity(se) {
  521. struct load_weight *load;
  522. struct load_weight lw;
  523. cfs_rq = cfs_rq_of(se);
  524. load = &cfs_rq->load;
  525. if (unlikely(!se->on_rq)) {
  526. lw = cfs_rq->load;
  527. update_load_add(&lw, se->load.weight);
  528. load = &lw;
  529. }
  530. slice = __calc_delta(slice, se->load.weight, load);
  531. }
  532. return slice;
  533. }
  534. /*
  535. * We calculate the vruntime slice of a to-be-inserted task.
  536. *
  537. * vs = s/w
  538. */
  539. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  540. {
  541. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  542. }
  543. #ifdef CONFIG_SMP
  544. static int select_idle_sibling(struct task_struct *p, int cpu);
  545. static unsigned long task_h_load(struct task_struct *p);
  546. /*
  547. * We choose a half-life close to 1 scheduling period.
  548. * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
  549. * dependent on this value.
  550. */
  551. #define LOAD_AVG_PERIOD 32
  552. #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  553. #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
  554. /* Give new sched_entity start runnable values to heavy its load in infant time */
  555. void init_entity_runnable_average(struct sched_entity *se)
  556. {
  557. struct sched_avg *sa = &se->avg;
  558. sa->last_update_time = 0;
  559. /*
  560. * sched_avg's period_contrib should be strictly less then 1024, so
  561. * we give it 1023 to make sure it is almost a period (1024us), and
  562. * will definitely be update (after enqueue).
  563. */
  564. sa->period_contrib = 1023;
  565. sa->load_avg = scale_load_down(se->load.weight);
  566. sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
  567. sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
  568. sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
  569. /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
  570. }
  571. static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
  572. static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
  573. #else
  574. void init_entity_runnable_average(struct sched_entity *se)
  575. {
  576. }
  577. #endif
  578. /*
  579. * Update the current task's runtime statistics.
  580. */
  581. static void update_curr(struct cfs_rq *cfs_rq)
  582. {
  583. struct sched_entity *curr = cfs_rq->curr;
  584. u64 now = rq_clock_task(rq_of(cfs_rq));
  585. u64 delta_exec;
  586. if (unlikely(!curr))
  587. return;
  588. delta_exec = now - curr->exec_start;
  589. if (unlikely((s64)delta_exec <= 0))
  590. return;
  591. curr->exec_start = now;
  592. schedstat_set(curr->statistics.exec_max,
  593. max(delta_exec, curr->statistics.exec_max));
  594. curr->sum_exec_runtime += delta_exec;
  595. schedstat_add(cfs_rq, exec_clock, delta_exec);
  596. curr->vruntime += calc_delta_fair(delta_exec, curr);
  597. update_min_vruntime(cfs_rq);
  598. if (entity_is_task(curr)) {
  599. struct task_struct *curtask = task_of(curr);
  600. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  601. cpuacct_charge(curtask, delta_exec);
  602. account_group_exec_runtime(curtask, delta_exec);
  603. }
  604. account_cfs_rq_runtime(cfs_rq, delta_exec);
  605. }
  606. static void update_curr_fair(struct rq *rq)
  607. {
  608. update_curr(cfs_rq_of(&rq->curr->se));
  609. }
  610. static inline void
  611. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  612. {
  613. schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
  614. }
  615. /*
  616. * Task is being enqueued - update stats:
  617. */
  618. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  619. {
  620. /*
  621. * Are we enqueueing a waiting task? (for current tasks
  622. * a dequeue/enqueue event is a NOP)
  623. */
  624. if (se != cfs_rq->curr)
  625. update_stats_wait_start(cfs_rq, se);
  626. }
  627. static void
  628. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  629. {
  630. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  631. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
  632. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  633. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  634. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  635. #ifdef CONFIG_SCHEDSTATS
  636. if (entity_is_task(se)) {
  637. trace_sched_stat_wait(task_of(se),
  638. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  639. }
  640. #endif
  641. schedstat_set(se->statistics.wait_start, 0);
  642. }
  643. static inline void
  644. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  645. {
  646. /*
  647. * Mark the end of the wait period if dequeueing a
  648. * waiting task:
  649. */
  650. if (se != cfs_rq->curr)
  651. update_stats_wait_end(cfs_rq, se);
  652. }
  653. /*
  654. * We are picking a new current task - update its stats:
  655. */
  656. static inline void
  657. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. /*
  660. * We are starting a new run period:
  661. */
  662. se->exec_start = rq_clock_task(rq_of(cfs_rq));
  663. }
  664. /**************************************************
  665. * Scheduling class queueing methods:
  666. */
  667. #ifdef CONFIG_NUMA_BALANCING
  668. /*
  669. * Approximate time to scan a full NUMA task in ms. The task scan period is
  670. * calculated based on the tasks virtual memory size and
  671. * numa_balancing_scan_size.
  672. */
  673. unsigned int sysctl_numa_balancing_scan_period_min = 1000;
  674. unsigned int sysctl_numa_balancing_scan_period_max = 60000;
  675. /* Portion of address space to scan in MB */
  676. unsigned int sysctl_numa_balancing_scan_size = 256;
  677. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  678. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  679. static unsigned int task_nr_scan_windows(struct task_struct *p)
  680. {
  681. unsigned long rss = 0;
  682. unsigned long nr_scan_pages;
  683. /*
  684. * Calculations based on RSS as non-present and empty pages are skipped
  685. * by the PTE scanner and NUMA hinting faults should be trapped based
  686. * on resident pages
  687. */
  688. nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
  689. rss = get_mm_rss(p->mm);
  690. if (!rss)
  691. rss = nr_scan_pages;
  692. rss = round_up(rss, nr_scan_pages);
  693. return rss / nr_scan_pages;
  694. }
  695. /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
  696. #define MAX_SCAN_WINDOW 2560
  697. static unsigned int task_scan_min(struct task_struct *p)
  698. {
  699. unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
  700. unsigned int scan, floor;
  701. unsigned int windows = 1;
  702. if (scan_size < MAX_SCAN_WINDOW)
  703. windows = MAX_SCAN_WINDOW / scan_size;
  704. floor = 1000 / windows;
  705. scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
  706. return max_t(unsigned int, floor, scan);
  707. }
  708. static unsigned int task_scan_max(struct task_struct *p)
  709. {
  710. unsigned int smin = task_scan_min(p);
  711. unsigned int smax;
  712. /* Watch for min being lower than max due to floor calculations */
  713. smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
  714. return max(smin, smax);
  715. }
  716. static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  717. {
  718. rq->nr_numa_running += (p->numa_preferred_nid != -1);
  719. rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
  720. }
  721. static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  722. {
  723. rq->nr_numa_running -= (p->numa_preferred_nid != -1);
  724. rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
  725. }
  726. struct numa_group {
  727. atomic_t refcount;
  728. spinlock_t lock; /* nr_tasks, tasks */
  729. int nr_tasks;
  730. pid_t gid;
  731. struct rcu_head rcu;
  732. nodemask_t active_nodes;
  733. unsigned long total_faults;
  734. /*
  735. * Faults_cpu is used to decide whether memory should move
  736. * towards the CPU. As a consequence, these stats are weighted
  737. * more by CPU use than by memory faults.
  738. */
  739. unsigned long *faults_cpu;
  740. unsigned long faults[0];
  741. };
  742. /* Shared or private faults. */
  743. #define NR_NUMA_HINT_FAULT_TYPES 2
  744. /* Memory and CPU locality */
  745. #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
  746. /* Averaged statistics, and temporary buffers. */
  747. #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
  748. pid_t task_numa_group_id(struct task_struct *p)
  749. {
  750. return p->numa_group ? p->numa_group->gid : 0;
  751. }
  752. /*
  753. * The averaged statistics, shared & private, memory & cpu,
  754. * occupy the first half of the array. The second half of the
  755. * array is for current counters, which are averaged into the
  756. * first set by task_numa_placement.
  757. */
  758. static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
  759. {
  760. return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
  761. }
  762. static inline unsigned long task_faults(struct task_struct *p, int nid)
  763. {
  764. if (!p->numa_faults)
  765. return 0;
  766. return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  767. p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
  768. }
  769. static inline unsigned long group_faults(struct task_struct *p, int nid)
  770. {
  771. if (!p->numa_group)
  772. return 0;
  773. return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  774. p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
  775. }
  776. static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
  777. {
  778. return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
  779. group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
  780. }
  781. /* Handle placement on systems where not all nodes are directly connected. */
  782. static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
  783. int maxdist, bool task)
  784. {
  785. unsigned long score = 0;
  786. int node;
  787. /*
  788. * All nodes are directly connected, and the same distance
  789. * from each other. No need for fancy placement algorithms.
  790. */
  791. if (sched_numa_topology_type == NUMA_DIRECT)
  792. return 0;
  793. /*
  794. * This code is called for each node, introducing N^2 complexity,
  795. * which should be ok given the number of nodes rarely exceeds 8.
  796. */
  797. for_each_online_node(node) {
  798. unsigned long faults;
  799. int dist = node_distance(nid, node);
  800. /*
  801. * The furthest away nodes in the system are not interesting
  802. * for placement; nid was already counted.
  803. */
  804. if (dist == sched_max_numa_distance || node == nid)
  805. continue;
  806. /*
  807. * On systems with a backplane NUMA topology, compare groups
  808. * of nodes, and move tasks towards the group with the most
  809. * memory accesses. When comparing two nodes at distance
  810. * "hoplimit", only nodes closer by than "hoplimit" are part
  811. * of each group. Skip other nodes.
  812. */
  813. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  814. dist > maxdist)
  815. continue;
  816. /* Add up the faults from nearby nodes. */
  817. if (task)
  818. faults = task_faults(p, node);
  819. else
  820. faults = group_faults(p, node);
  821. /*
  822. * On systems with a glueless mesh NUMA topology, there are
  823. * no fixed "groups of nodes". Instead, nodes that are not
  824. * directly connected bounce traffic through intermediate
  825. * nodes; a numa_group can occupy any set of nodes.
  826. * The further away a node is, the less the faults count.
  827. * This seems to result in good task placement.
  828. */
  829. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  830. faults *= (sched_max_numa_distance - dist);
  831. faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
  832. }
  833. score += faults;
  834. }
  835. return score;
  836. }
  837. /*
  838. * These return the fraction of accesses done by a particular task, or
  839. * task group, on a particular numa node. The group weight is given a
  840. * larger multiplier, in order to group tasks together that are almost
  841. * evenly spread out between numa nodes.
  842. */
  843. static inline unsigned long task_weight(struct task_struct *p, int nid,
  844. int dist)
  845. {
  846. unsigned long faults, total_faults;
  847. if (!p->numa_faults)
  848. return 0;
  849. total_faults = p->total_numa_faults;
  850. if (!total_faults)
  851. return 0;
  852. faults = task_faults(p, nid);
  853. faults += score_nearby_nodes(p, nid, dist, true);
  854. return 1000 * faults / total_faults;
  855. }
  856. static inline unsigned long group_weight(struct task_struct *p, int nid,
  857. int dist)
  858. {
  859. unsigned long faults, total_faults;
  860. if (!p->numa_group)
  861. return 0;
  862. total_faults = p->numa_group->total_faults;
  863. if (!total_faults)
  864. return 0;
  865. faults = group_faults(p, nid);
  866. faults += score_nearby_nodes(p, nid, dist, false);
  867. return 1000 * faults / total_faults;
  868. }
  869. bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
  870. int src_nid, int dst_cpu)
  871. {
  872. struct numa_group *ng = p->numa_group;
  873. int dst_nid = cpu_to_node(dst_cpu);
  874. int last_cpupid, this_cpupid;
  875. this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
  876. /*
  877. * Multi-stage node selection is used in conjunction with a periodic
  878. * migration fault to build a temporal task<->page relation. By using
  879. * a two-stage filter we remove short/unlikely relations.
  880. *
  881. * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
  882. * a task's usage of a particular page (n_p) per total usage of this
  883. * page (n_t) (in a given time-span) to a probability.
  884. *
  885. * Our periodic faults will sample this probability and getting the
  886. * same result twice in a row, given these samples are fully
  887. * independent, is then given by P(n)^2, provided our sample period
  888. * is sufficiently short compared to the usage pattern.
  889. *
  890. * This quadric squishes small probabilities, making it less likely we
  891. * act on an unlikely task<->page relation.
  892. */
  893. last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
  894. if (!cpupid_pid_unset(last_cpupid) &&
  895. cpupid_to_nid(last_cpupid) != dst_nid)
  896. return false;
  897. /* Always allow migrate on private faults */
  898. if (cpupid_match_pid(p, last_cpupid))
  899. return true;
  900. /* A shared fault, but p->numa_group has not been set up yet. */
  901. if (!ng)
  902. return true;
  903. /*
  904. * Do not migrate if the destination is not a node that
  905. * is actively used by this numa group.
  906. */
  907. if (!node_isset(dst_nid, ng->active_nodes))
  908. return false;
  909. /*
  910. * Source is a node that is not actively used by this
  911. * numa group, while the destination is. Migrate.
  912. */
  913. if (!node_isset(src_nid, ng->active_nodes))
  914. return true;
  915. /*
  916. * Both source and destination are nodes in active
  917. * use by this numa group. Maximize memory bandwidth
  918. * by migrating from more heavily used groups, to less
  919. * heavily used ones, spreading the load around.
  920. * Use a 1/4 hysteresis to avoid spurious page movement.
  921. */
  922. return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
  923. }
  924. static unsigned long weighted_cpuload(const int cpu);
  925. static unsigned long source_load(int cpu, int type);
  926. static unsigned long target_load(int cpu, int type);
  927. static unsigned long capacity_of(int cpu);
  928. static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
  929. /* Cached statistics for all CPUs within a node */
  930. struct numa_stats {
  931. unsigned long nr_running;
  932. unsigned long load;
  933. /* Total compute capacity of CPUs on a node */
  934. unsigned long compute_capacity;
  935. /* Approximate capacity in terms of runnable tasks on a node */
  936. unsigned long task_capacity;
  937. int has_free_capacity;
  938. };
  939. /*
  940. * XXX borrowed from update_sg_lb_stats
  941. */
  942. static void update_numa_stats(struct numa_stats *ns, int nid)
  943. {
  944. int smt, cpu, cpus = 0;
  945. unsigned long capacity;
  946. memset(ns, 0, sizeof(*ns));
  947. for_each_cpu(cpu, cpumask_of_node(nid)) {
  948. struct rq *rq = cpu_rq(cpu);
  949. ns->nr_running += rq->nr_running;
  950. ns->load += weighted_cpuload(cpu);
  951. ns->compute_capacity += capacity_of(cpu);
  952. cpus++;
  953. }
  954. /*
  955. * If we raced with hotplug and there are no CPUs left in our mask
  956. * the @ns structure is NULL'ed and task_numa_compare() will
  957. * not find this node attractive.
  958. *
  959. * We'll either bail at !has_free_capacity, or we'll detect a huge
  960. * imbalance and bail there.
  961. */
  962. if (!cpus)
  963. return;
  964. /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
  965. smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
  966. capacity = cpus / smt; /* cores */
  967. ns->task_capacity = min_t(unsigned, capacity,
  968. DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
  969. ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
  970. }
  971. struct task_numa_env {
  972. struct task_struct *p;
  973. int src_cpu, src_nid;
  974. int dst_cpu, dst_nid;
  975. struct numa_stats src_stats, dst_stats;
  976. int imbalance_pct;
  977. int dist;
  978. struct task_struct *best_task;
  979. long best_imp;
  980. int best_cpu;
  981. };
  982. static void task_numa_assign(struct task_numa_env *env,
  983. struct task_struct *p, long imp)
  984. {
  985. if (env->best_task)
  986. put_task_struct(env->best_task);
  987. if (p)
  988. get_task_struct(p);
  989. env->best_task = p;
  990. env->best_imp = imp;
  991. env->best_cpu = env->dst_cpu;
  992. }
  993. static bool load_too_imbalanced(long src_load, long dst_load,
  994. struct task_numa_env *env)
  995. {
  996. long imb, old_imb;
  997. long orig_src_load, orig_dst_load;
  998. long src_capacity, dst_capacity;
  999. /*
  1000. * The load is corrected for the CPU capacity available on each node.
  1001. *
  1002. * src_load dst_load
  1003. * ------------ vs ---------
  1004. * src_capacity dst_capacity
  1005. */
  1006. src_capacity = env->src_stats.compute_capacity;
  1007. dst_capacity = env->dst_stats.compute_capacity;
  1008. /* We care about the slope of the imbalance, not the direction. */
  1009. if (dst_load < src_load)
  1010. swap(dst_load, src_load);
  1011. /* Is the difference below the threshold? */
  1012. imb = dst_load * src_capacity * 100 -
  1013. src_load * dst_capacity * env->imbalance_pct;
  1014. if (imb <= 0)
  1015. return false;
  1016. /*
  1017. * The imbalance is above the allowed threshold.
  1018. * Compare it with the old imbalance.
  1019. */
  1020. orig_src_load = env->src_stats.load;
  1021. orig_dst_load = env->dst_stats.load;
  1022. if (orig_dst_load < orig_src_load)
  1023. swap(orig_dst_load, orig_src_load);
  1024. old_imb = orig_dst_load * src_capacity * 100 -
  1025. orig_src_load * dst_capacity * env->imbalance_pct;
  1026. /* Would this change make things worse? */
  1027. return (imb > old_imb);
  1028. }
  1029. /*
  1030. * This checks if the overall compute and NUMA accesses of the system would
  1031. * be improved if the source tasks was migrated to the target dst_cpu taking
  1032. * into account that it might be best if task running on the dst_cpu should
  1033. * be exchanged with the source task
  1034. */
  1035. static void task_numa_compare(struct task_numa_env *env,
  1036. long taskimp, long groupimp)
  1037. {
  1038. struct rq *src_rq = cpu_rq(env->src_cpu);
  1039. struct rq *dst_rq = cpu_rq(env->dst_cpu);
  1040. struct task_struct *cur;
  1041. long src_load, dst_load;
  1042. long load;
  1043. long imp = env->p->numa_group ? groupimp : taskimp;
  1044. long moveimp = imp;
  1045. int dist = env->dist;
  1046. rcu_read_lock();
  1047. raw_spin_lock_irq(&dst_rq->lock);
  1048. cur = dst_rq->curr;
  1049. /*
  1050. * No need to move the exiting task, and this ensures that ->curr
  1051. * wasn't reaped and thus get_task_struct() in task_numa_assign()
  1052. * is safe under RCU read lock.
  1053. * Note that rcu_read_lock() itself can't protect from the final
  1054. * put_task_struct() after the last schedule().
  1055. */
  1056. if ((cur->flags & PF_EXITING) || is_idle_task(cur))
  1057. cur = NULL;
  1058. raw_spin_unlock_irq(&dst_rq->lock);
  1059. /*
  1060. * Because we have preemption enabled we can get migrated around and
  1061. * end try selecting ourselves (current == env->p) as a swap candidate.
  1062. */
  1063. if (cur == env->p)
  1064. goto unlock;
  1065. /*
  1066. * "imp" is the fault differential for the source task between the
  1067. * source and destination node. Calculate the total differential for
  1068. * the source task and potential destination task. The more negative
  1069. * the value is, the more rmeote accesses that would be expected to
  1070. * be incurred if the tasks were swapped.
  1071. */
  1072. if (cur) {
  1073. /* Skip this swap candidate if cannot move to the source cpu */
  1074. if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
  1075. goto unlock;
  1076. /*
  1077. * If dst and source tasks are in the same NUMA group, or not
  1078. * in any group then look only at task weights.
  1079. */
  1080. if (cur->numa_group == env->p->numa_group) {
  1081. imp = taskimp + task_weight(cur, env->src_nid, dist) -
  1082. task_weight(cur, env->dst_nid, dist);
  1083. /*
  1084. * Add some hysteresis to prevent swapping the
  1085. * tasks within a group over tiny differences.
  1086. */
  1087. if (cur->numa_group)
  1088. imp -= imp/16;
  1089. } else {
  1090. /*
  1091. * Compare the group weights. If a task is all by
  1092. * itself (not part of a group), use the task weight
  1093. * instead.
  1094. */
  1095. if (cur->numa_group)
  1096. imp += group_weight(cur, env->src_nid, dist) -
  1097. group_weight(cur, env->dst_nid, dist);
  1098. else
  1099. imp += task_weight(cur, env->src_nid, dist) -
  1100. task_weight(cur, env->dst_nid, dist);
  1101. }
  1102. }
  1103. if (imp <= env->best_imp && moveimp <= env->best_imp)
  1104. goto unlock;
  1105. if (!cur) {
  1106. /* Is there capacity at our destination? */
  1107. if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
  1108. !env->dst_stats.has_free_capacity)
  1109. goto unlock;
  1110. goto balance;
  1111. }
  1112. /* Balance doesn't matter much if we're running a task per cpu */
  1113. if (imp > env->best_imp && src_rq->nr_running == 1 &&
  1114. dst_rq->nr_running == 1)
  1115. goto assign;
  1116. /*
  1117. * In the overloaded case, try and keep the load balanced.
  1118. */
  1119. balance:
  1120. load = task_h_load(env->p);
  1121. dst_load = env->dst_stats.load + load;
  1122. src_load = env->src_stats.load - load;
  1123. if (moveimp > imp && moveimp > env->best_imp) {
  1124. /*
  1125. * If the improvement from just moving env->p direction is
  1126. * better than swapping tasks around, check if a move is
  1127. * possible. Store a slightly smaller score than moveimp,
  1128. * so an actually idle CPU will win.
  1129. */
  1130. if (!load_too_imbalanced(src_load, dst_load, env)) {
  1131. imp = moveimp - 1;
  1132. cur = NULL;
  1133. goto assign;
  1134. }
  1135. }
  1136. if (imp <= env->best_imp)
  1137. goto unlock;
  1138. if (cur) {
  1139. load = task_h_load(cur);
  1140. dst_load -= load;
  1141. src_load += load;
  1142. }
  1143. if (load_too_imbalanced(src_load, dst_load, env))
  1144. goto unlock;
  1145. /*
  1146. * One idle CPU per node is evaluated for a task numa move.
  1147. * Call select_idle_sibling to maybe find a better one.
  1148. */
  1149. if (!cur)
  1150. env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
  1151. assign:
  1152. task_numa_assign(env, cur, imp);
  1153. unlock:
  1154. rcu_read_unlock();
  1155. }
  1156. static void task_numa_find_cpu(struct task_numa_env *env,
  1157. long taskimp, long groupimp)
  1158. {
  1159. int cpu;
  1160. for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
  1161. /* Skip this CPU if the source task cannot migrate */
  1162. if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
  1163. continue;
  1164. env->dst_cpu = cpu;
  1165. task_numa_compare(env, taskimp, groupimp);
  1166. }
  1167. }
  1168. /* Only move tasks to a NUMA node less busy than the current node. */
  1169. static bool numa_has_capacity(struct task_numa_env *env)
  1170. {
  1171. struct numa_stats *src = &env->src_stats;
  1172. struct numa_stats *dst = &env->dst_stats;
  1173. if (src->has_free_capacity && !dst->has_free_capacity)
  1174. return false;
  1175. /*
  1176. * Only consider a task move if the source has a higher load
  1177. * than the destination, corrected for CPU capacity on each node.
  1178. *
  1179. * src->load dst->load
  1180. * --------------------- vs ---------------------
  1181. * src->compute_capacity dst->compute_capacity
  1182. */
  1183. if (src->load * dst->compute_capacity * env->imbalance_pct >
  1184. dst->load * src->compute_capacity * 100)
  1185. return true;
  1186. return false;
  1187. }
  1188. static int task_numa_migrate(struct task_struct *p)
  1189. {
  1190. struct task_numa_env env = {
  1191. .p = p,
  1192. .src_cpu = task_cpu(p),
  1193. .src_nid = task_node(p),
  1194. .imbalance_pct = 112,
  1195. .best_task = NULL,
  1196. .best_imp = 0,
  1197. .best_cpu = -1
  1198. };
  1199. struct sched_domain *sd;
  1200. unsigned long taskweight, groupweight;
  1201. int nid, ret, dist;
  1202. long taskimp, groupimp;
  1203. /*
  1204. * Pick the lowest SD_NUMA domain, as that would have the smallest
  1205. * imbalance and would be the first to start moving tasks about.
  1206. *
  1207. * And we want to avoid any moving of tasks about, as that would create
  1208. * random movement of tasks -- counter the numa conditions we're trying
  1209. * to satisfy here.
  1210. */
  1211. rcu_read_lock();
  1212. sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
  1213. if (sd)
  1214. env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
  1215. rcu_read_unlock();
  1216. /*
  1217. * Cpusets can break the scheduler domain tree into smaller
  1218. * balance domains, some of which do not cross NUMA boundaries.
  1219. * Tasks that are "trapped" in such domains cannot be migrated
  1220. * elsewhere, so there is no point in (re)trying.
  1221. */
  1222. if (unlikely(!sd)) {
  1223. p->numa_preferred_nid = task_node(p);
  1224. return -EINVAL;
  1225. }
  1226. env.dst_nid = p->numa_preferred_nid;
  1227. dist = env.dist = node_distance(env.src_nid, env.dst_nid);
  1228. taskweight = task_weight(p, env.src_nid, dist);
  1229. groupweight = group_weight(p, env.src_nid, dist);
  1230. update_numa_stats(&env.src_stats, env.src_nid);
  1231. taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
  1232. groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
  1233. update_numa_stats(&env.dst_stats, env.dst_nid);
  1234. /* Try to find a spot on the preferred nid. */
  1235. if (numa_has_capacity(&env))
  1236. task_numa_find_cpu(&env, taskimp, groupimp);
  1237. /*
  1238. * Look at other nodes in these cases:
  1239. * - there is no space available on the preferred_nid
  1240. * - the task is part of a numa_group that is interleaved across
  1241. * multiple NUMA nodes; in order to better consolidate the group,
  1242. * we need to check other locations.
  1243. */
  1244. if (env.best_cpu == -1 || (p->numa_group &&
  1245. nodes_weight(p->numa_group->active_nodes) > 1)) {
  1246. for_each_online_node(nid) {
  1247. if (nid == env.src_nid || nid == p->numa_preferred_nid)
  1248. continue;
  1249. dist = node_distance(env.src_nid, env.dst_nid);
  1250. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  1251. dist != env.dist) {
  1252. taskweight = task_weight(p, env.src_nid, dist);
  1253. groupweight = group_weight(p, env.src_nid, dist);
  1254. }
  1255. /* Only consider nodes where both task and groups benefit */
  1256. taskimp = task_weight(p, nid, dist) - taskweight;
  1257. groupimp = group_weight(p, nid, dist) - groupweight;
  1258. if (taskimp < 0 && groupimp < 0)
  1259. continue;
  1260. env.dist = dist;
  1261. env.dst_nid = nid;
  1262. update_numa_stats(&env.dst_stats, env.dst_nid);
  1263. if (numa_has_capacity(&env))
  1264. task_numa_find_cpu(&env, taskimp, groupimp);
  1265. }
  1266. }
  1267. /*
  1268. * If the task is part of a workload that spans multiple NUMA nodes,
  1269. * and is migrating into one of the workload's active nodes, remember
  1270. * this node as the task's preferred numa node, so the workload can
  1271. * settle down.
  1272. * A task that migrated to a second choice node will be better off
  1273. * trying for a better one later. Do not set the preferred node here.
  1274. */
  1275. if (p->numa_group) {
  1276. if (env.best_cpu == -1)
  1277. nid = env.src_nid;
  1278. else
  1279. nid = env.dst_nid;
  1280. if (node_isset(nid, p->numa_group->active_nodes))
  1281. sched_setnuma(p, env.dst_nid);
  1282. }
  1283. /* No better CPU than the current one was found. */
  1284. if (env.best_cpu == -1)
  1285. return -EAGAIN;
  1286. /*
  1287. * Reset the scan period if the task is being rescheduled on an
  1288. * alternative node to recheck if the tasks is now properly placed.
  1289. */
  1290. p->numa_scan_period = task_scan_min(p);
  1291. if (env.best_task == NULL) {
  1292. ret = migrate_task_to(p, env.best_cpu);
  1293. if (ret != 0)
  1294. trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
  1295. return ret;
  1296. }
  1297. ret = migrate_swap(p, env.best_task);
  1298. if (ret != 0)
  1299. trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
  1300. put_task_struct(env.best_task);
  1301. return ret;
  1302. }
  1303. /* Attempt to migrate a task to a CPU on the preferred node. */
  1304. static void numa_migrate_preferred(struct task_struct *p)
  1305. {
  1306. unsigned long interval = HZ;
  1307. /* This task has no NUMA fault statistics yet */
  1308. if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
  1309. return;
  1310. /* Periodically retry migrating the task to the preferred node */
  1311. interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
  1312. p->numa_migrate_retry = jiffies + interval;
  1313. /* Success if task is already running on preferred CPU */
  1314. if (task_node(p) == p->numa_preferred_nid)
  1315. return;
  1316. /* Otherwise, try migrate to a CPU on the preferred node */
  1317. task_numa_migrate(p);
  1318. }
  1319. /*
  1320. * Find the nodes on which the workload is actively running. We do this by
  1321. * tracking the nodes from which NUMA hinting faults are triggered. This can
  1322. * be different from the set of nodes where the workload's memory is currently
  1323. * located.
  1324. *
  1325. * The bitmask is used to make smarter decisions on when to do NUMA page
  1326. * migrations, To prevent flip-flopping, and excessive page migrations, nodes
  1327. * are added when they cause over 6/16 of the maximum number of faults, but
  1328. * only removed when they drop below 3/16.
  1329. */
  1330. static void update_numa_active_node_mask(struct numa_group *numa_group)
  1331. {
  1332. unsigned long faults, max_faults = 0;
  1333. int nid;
  1334. for_each_online_node(nid) {
  1335. faults = group_faults_cpu(numa_group, nid);
  1336. if (faults > max_faults)
  1337. max_faults = faults;
  1338. }
  1339. for_each_online_node(nid) {
  1340. faults = group_faults_cpu(numa_group, nid);
  1341. if (!node_isset(nid, numa_group->active_nodes)) {
  1342. if (faults > max_faults * 6 / 16)
  1343. node_set(nid, numa_group->active_nodes);
  1344. } else if (faults < max_faults * 3 / 16)
  1345. node_clear(nid, numa_group->active_nodes);
  1346. }
  1347. }
  1348. /*
  1349. * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
  1350. * increments. The more local the fault statistics are, the higher the scan
  1351. * period will be for the next scan window. If local/(local+remote) ratio is
  1352. * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
  1353. * the scan period will decrease. Aim for 70% local accesses.
  1354. */
  1355. #define NUMA_PERIOD_SLOTS 10
  1356. #define NUMA_PERIOD_THRESHOLD 7
  1357. /*
  1358. * Increase the scan period (slow down scanning) if the majority of
  1359. * our memory is already on our local node, or if the majority of
  1360. * the page accesses are shared with other processes.
  1361. * Otherwise, decrease the scan period.
  1362. */
  1363. static void update_task_scan_period(struct task_struct *p,
  1364. unsigned long shared, unsigned long private)
  1365. {
  1366. unsigned int period_slot;
  1367. int ratio;
  1368. int diff;
  1369. unsigned long remote = p->numa_faults_locality[0];
  1370. unsigned long local = p->numa_faults_locality[1];
  1371. /*
  1372. * If there were no record hinting faults then either the task is
  1373. * completely idle or all activity is areas that are not of interest
  1374. * to automatic numa balancing. Related to that, if there were failed
  1375. * migration then it implies we are migrating too quickly or the local
  1376. * node is overloaded. In either case, scan slower
  1377. */
  1378. if (local + shared == 0 || p->numa_faults_locality[2]) {
  1379. p->numa_scan_period = min(p->numa_scan_period_max,
  1380. p->numa_scan_period << 1);
  1381. p->mm->numa_next_scan = jiffies +
  1382. msecs_to_jiffies(p->numa_scan_period);
  1383. return;
  1384. }
  1385. /*
  1386. * Prepare to scale scan period relative to the current period.
  1387. * == NUMA_PERIOD_THRESHOLD scan period stays the same
  1388. * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
  1389. * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
  1390. */
  1391. period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
  1392. ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
  1393. if (ratio >= NUMA_PERIOD_THRESHOLD) {
  1394. int slot = ratio - NUMA_PERIOD_THRESHOLD;
  1395. if (!slot)
  1396. slot = 1;
  1397. diff = slot * period_slot;
  1398. } else {
  1399. diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
  1400. /*
  1401. * Scale scan rate increases based on sharing. There is an
  1402. * inverse relationship between the degree of sharing and
  1403. * the adjustment made to the scanning period. Broadly
  1404. * speaking the intent is that there is little point
  1405. * scanning faster if shared accesses dominate as it may
  1406. * simply bounce migrations uselessly
  1407. */
  1408. ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
  1409. diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
  1410. }
  1411. p->numa_scan_period = clamp(p->numa_scan_period + diff,
  1412. task_scan_min(p), task_scan_max(p));
  1413. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1414. }
  1415. /*
  1416. * Get the fraction of time the task has been running since the last
  1417. * NUMA placement cycle. The scheduler keeps similar statistics, but
  1418. * decays those on a 32ms period, which is orders of magnitude off
  1419. * from the dozens-of-seconds NUMA balancing period. Use the scheduler
  1420. * stats only if the task is so new there are no NUMA statistics yet.
  1421. */
  1422. static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
  1423. {
  1424. u64 runtime, delta, now;
  1425. /* Use the start of this time slice to avoid calculations. */
  1426. now = p->se.exec_start;
  1427. runtime = p->se.sum_exec_runtime;
  1428. if (p->last_task_numa_placement) {
  1429. delta = runtime - p->last_sum_exec_runtime;
  1430. *period = now - p->last_task_numa_placement;
  1431. } else {
  1432. delta = p->se.avg.load_sum / p->se.load.weight;
  1433. *period = LOAD_AVG_MAX;
  1434. }
  1435. p->last_sum_exec_runtime = runtime;
  1436. p->last_task_numa_placement = now;
  1437. return delta;
  1438. }
  1439. /*
  1440. * Determine the preferred nid for a task in a numa_group. This needs to
  1441. * be done in a way that produces consistent results with group_weight,
  1442. * otherwise workloads might not converge.
  1443. */
  1444. static int preferred_group_nid(struct task_struct *p, int nid)
  1445. {
  1446. nodemask_t nodes;
  1447. int dist;
  1448. /* Direct connections between all NUMA nodes. */
  1449. if (sched_numa_topology_type == NUMA_DIRECT)
  1450. return nid;
  1451. /*
  1452. * On a system with glueless mesh NUMA topology, group_weight
  1453. * scores nodes according to the number of NUMA hinting faults on
  1454. * both the node itself, and on nearby nodes.
  1455. */
  1456. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  1457. unsigned long score, max_score = 0;
  1458. int node, max_node = nid;
  1459. dist = sched_max_numa_distance;
  1460. for_each_online_node(node) {
  1461. score = group_weight(p, node, dist);
  1462. if (score > max_score) {
  1463. max_score = score;
  1464. max_node = node;
  1465. }
  1466. }
  1467. return max_node;
  1468. }
  1469. /*
  1470. * Finding the preferred nid in a system with NUMA backplane
  1471. * interconnect topology is more involved. The goal is to locate
  1472. * tasks from numa_groups near each other in the system, and
  1473. * untangle workloads from different sides of the system. This requires
  1474. * searching down the hierarchy of node groups, recursively searching
  1475. * inside the highest scoring group of nodes. The nodemask tricks
  1476. * keep the complexity of the search down.
  1477. */
  1478. nodes = node_online_map;
  1479. for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
  1480. unsigned long max_faults = 0;
  1481. nodemask_t max_group = NODE_MASK_NONE;
  1482. int a, b;
  1483. /* Are there nodes at this distance from each other? */
  1484. if (!find_numa_distance(dist))
  1485. continue;
  1486. for_each_node_mask(a, nodes) {
  1487. unsigned long faults = 0;
  1488. nodemask_t this_group;
  1489. nodes_clear(this_group);
  1490. /* Sum group's NUMA faults; includes a==b case. */
  1491. for_each_node_mask(b, nodes) {
  1492. if (node_distance(a, b) < dist) {
  1493. faults += group_faults(p, b);
  1494. node_set(b, this_group);
  1495. node_clear(b, nodes);
  1496. }
  1497. }
  1498. /* Remember the top group. */
  1499. if (faults > max_faults) {
  1500. max_faults = faults;
  1501. max_group = this_group;
  1502. /*
  1503. * subtle: at the smallest distance there is
  1504. * just one node left in each "group", the
  1505. * winner is the preferred nid.
  1506. */
  1507. nid = a;
  1508. }
  1509. }
  1510. /* Next round, evaluate the nodes within max_group. */
  1511. if (!max_faults)
  1512. break;
  1513. nodes = max_group;
  1514. }
  1515. return nid;
  1516. }
  1517. static void task_numa_placement(struct task_struct *p)
  1518. {
  1519. int seq, nid, max_nid = -1, max_group_nid = -1;
  1520. unsigned long max_faults = 0, max_group_faults = 0;
  1521. unsigned long fault_types[2] = { 0, 0 };
  1522. unsigned long total_faults;
  1523. u64 runtime, period;
  1524. spinlock_t *group_lock = NULL;
  1525. /*
  1526. * The p->mm->numa_scan_seq field gets updated without
  1527. * exclusive access. Use READ_ONCE() here to ensure
  1528. * that the field is read in a single access:
  1529. */
  1530. seq = READ_ONCE(p->mm->numa_scan_seq);
  1531. if (p->numa_scan_seq == seq)
  1532. return;
  1533. p->numa_scan_seq = seq;
  1534. p->numa_scan_period_max = task_scan_max(p);
  1535. total_faults = p->numa_faults_locality[0] +
  1536. p->numa_faults_locality[1];
  1537. runtime = numa_get_avg_runtime(p, &period);
  1538. /* If the task is part of a group prevent parallel updates to group stats */
  1539. if (p->numa_group) {
  1540. group_lock = &p->numa_group->lock;
  1541. spin_lock_irq(group_lock);
  1542. }
  1543. /* Find the node with the highest number of faults */
  1544. for_each_online_node(nid) {
  1545. /* Keep track of the offsets in numa_faults array */
  1546. int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
  1547. unsigned long faults = 0, group_faults = 0;
  1548. int priv;
  1549. for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
  1550. long diff, f_diff, f_weight;
  1551. mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
  1552. membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
  1553. cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
  1554. cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
  1555. /* Decay existing window, copy faults since last scan */
  1556. diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
  1557. fault_types[priv] += p->numa_faults[membuf_idx];
  1558. p->numa_faults[membuf_idx] = 0;
  1559. /*
  1560. * Normalize the faults_from, so all tasks in a group
  1561. * count according to CPU use, instead of by the raw
  1562. * number of faults. Tasks with little runtime have
  1563. * little over-all impact on throughput, and thus their
  1564. * faults are less important.
  1565. */
  1566. f_weight = div64_u64(runtime << 16, period + 1);
  1567. f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
  1568. (total_faults + 1);
  1569. f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
  1570. p->numa_faults[cpubuf_idx] = 0;
  1571. p->numa_faults[mem_idx] += diff;
  1572. p->numa_faults[cpu_idx] += f_diff;
  1573. faults += p->numa_faults[mem_idx];
  1574. p->total_numa_faults += diff;
  1575. if (p->numa_group) {
  1576. /*
  1577. * safe because we can only change our own group
  1578. *
  1579. * mem_idx represents the offset for a given
  1580. * nid and priv in a specific region because it
  1581. * is at the beginning of the numa_faults array.
  1582. */
  1583. p->numa_group->faults[mem_idx] += diff;
  1584. p->numa_group->faults_cpu[mem_idx] += f_diff;
  1585. p->numa_group->total_faults += diff;
  1586. group_faults += p->numa_group->faults[mem_idx];
  1587. }
  1588. }
  1589. if (faults > max_faults) {
  1590. max_faults = faults;
  1591. max_nid = nid;
  1592. }
  1593. if (group_faults > max_group_faults) {
  1594. max_group_faults = group_faults;
  1595. max_group_nid = nid;
  1596. }
  1597. }
  1598. update_task_scan_period(p, fault_types[0], fault_types[1]);
  1599. if (p->numa_group) {
  1600. update_numa_active_node_mask(p->numa_group);
  1601. spin_unlock_irq(group_lock);
  1602. max_nid = preferred_group_nid(p, max_group_nid);
  1603. }
  1604. if (max_faults) {
  1605. /* Set the new preferred node */
  1606. if (max_nid != p->numa_preferred_nid)
  1607. sched_setnuma(p, max_nid);
  1608. if (task_node(p) != p->numa_preferred_nid)
  1609. numa_migrate_preferred(p);
  1610. }
  1611. }
  1612. static inline int get_numa_group(struct numa_group *grp)
  1613. {
  1614. return atomic_inc_not_zero(&grp->refcount);
  1615. }
  1616. static inline void put_numa_group(struct numa_group *grp)
  1617. {
  1618. if (atomic_dec_and_test(&grp->refcount))
  1619. kfree_rcu(grp, rcu);
  1620. }
  1621. static void task_numa_group(struct task_struct *p, int cpupid, int flags,
  1622. int *priv)
  1623. {
  1624. struct numa_group *grp, *my_grp;
  1625. struct task_struct *tsk;
  1626. bool join = false;
  1627. int cpu = cpupid_to_cpu(cpupid);
  1628. int i;
  1629. if (unlikely(!p->numa_group)) {
  1630. unsigned int size = sizeof(struct numa_group) +
  1631. 4*nr_node_ids*sizeof(unsigned long);
  1632. grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
  1633. if (!grp)
  1634. return;
  1635. atomic_set(&grp->refcount, 1);
  1636. spin_lock_init(&grp->lock);
  1637. grp->gid = p->pid;
  1638. /* Second half of the array tracks nids where faults happen */
  1639. grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
  1640. nr_node_ids;
  1641. node_set(task_node(current), grp->active_nodes);
  1642. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1643. grp->faults[i] = p->numa_faults[i];
  1644. grp->total_faults = p->total_numa_faults;
  1645. grp->nr_tasks++;
  1646. rcu_assign_pointer(p->numa_group, grp);
  1647. }
  1648. rcu_read_lock();
  1649. tsk = READ_ONCE(cpu_rq(cpu)->curr);
  1650. if (!cpupid_match_pid(tsk, cpupid))
  1651. goto no_join;
  1652. grp = rcu_dereference(tsk->numa_group);
  1653. if (!grp)
  1654. goto no_join;
  1655. my_grp = p->numa_group;
  1656. if (grp == my_grp)
  1657. goto no_join;
  1658. /*
  1659. * Only join the other group if its bigger; if we're the bigger group,
  1660. * the other task will join us.
  1661. */
  1662. if (my_grp->nr_tasks > grp->nr_tasks)
  1663. goto no_join;
  1664. /*
  1665. * Tie-break on the grp address.
  1666. */
  1667. if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
  1668. goto no_join;
  1669. /* Always join threads in the same process. */
  1670. if (tsk->mm == current->mm)
  1671. join = true;
  1672. /* Simple filter to avoid false positives due to PID collisions */
  1673. if (flags & TNF_SHARED)
  1674. join = true;
  1675. /* Update priv based on whether false sharing was detected */
  1676. *priv = !join;
  1677. if (join && !get_numa_group(grp))
  1678. goto no_join;
  1679. rcu_read_unlock();
  1680. if (!join)
  1681. return;
  1682. BUG_ON(irqs_disabled());
  1683. double_lock_irq(&my_grp->lock, &grp->lock);
  1684. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
  1685. my_grp->faults[i] -= p->numa_faults[i];
  1686. grp->faults[i] += p->numa_faults[i];
  1687. }
  1688. my_grp->total_faults -= p->total_numa_faults;
  1689. grp->total_faults += p->total_numa_faults;
  1690. my_grp->nr_tasks--;
  1691. grp->nr_tasks++;
  1692. spin_unlock(&my_grp->lock);
  1693. spin_unlock_irq(&grp->lock);
  1694. rcu_assign_pointer(p->numa_group, grp);
  1695. put_numa_group(my_grp);
  1696. return;
  1697. no_join:
  1698. rcu_read_unlock();
  1699. return;
  1700. }
  1701. void task_numa_free(struct task_struct *p)
  1702. {
  1703. struct numa_group *grp = p->numa_group;
  1704. void *numa_faults = p->numa_faults;
  1705. unsigned long flags;
  1706. int i;
  1707. if (grp) {
  1708. spin_lock_irqsave(&grp->lock, flags);
  1709. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1710. grp->faults[i] -= p->numa_faults[i];
  1711. grp->total_faults -= p->total_numa_faults;
  1712. grp->nr_tasks--;
  1713. spin_unlock_irqrestore(&grp->lock, flags);
  1714. RCU_INIT_POINTER(p->numa_group, NULL);
  1715. put_numa_group(grp);
  1716. }
  1717. p->numa_faults = NULL;
  1718. kfree(numa_faults);
  1719. }
  1720. /*
  1721. * Got a PROT_NONE fault for a page on @node.
  1722. */
  1723. void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
  1724. {
  1725. struct task_struct *p = current;
  1726. bool migrated = flags & TNF_MIGRATED;
  1727. int cpu_node = task_node(current);
  1728. int local = !!(flags & TNF_FAULT_LOCAL);
  1729. int priv;
  1730. if (!static_branch_likely(&sched_numa_balancing))
  1731. return;
  1732. /* for example, ksmd faulting in a user's mm */
  1733. if (!p->mm)
  1734. return;
  1735. /* Allocate buffer to track faults on a per-node basis */
  1736. if (unlikely(!p->numa_faults)) {
  1737. int size = sizeof(*p->numa_faults) *
  1738. NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
  1739. p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
  1740. if (!p->numa_faults)
  1741. return;
  1742. p->total_numa_faults = 0;
  1743. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1744. }
  1745. /*
  1746. * First accesses are treated as private, otherwise consider accesses
  1747. * to be private if the accessing pid has not changed
  1748. */
  1749. if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
  1750. priv = 1;
  1751. } else {
  1752. priv = cpupid_match_pid(p, last_cpupid);
  1753. if (!priv && !(flags & TNF_NO_GROUP))
  1754. task_numa_group(p, last_cpupid, flags, &priv);
  1755. }
  1756. /*
  1757. * If a workload spans multiple NUMA nodes, a shared fault that
  1758. * occurs wholly within the set of nodes that the workload is
  1759. * actively using should be counted as local. This allows the
  1760. * scan rate to slow down when a workload has settled down.
  1761. */
  1762. if (!priv && !local && p->numa_group &&
  1763. node_isset(cpu_node, p->numa_group->active_nodes) &&
  1764. node_isset(mem_node, p->numa_group->active_nodes))
  1765. local = 1;
  1766. task_numa_placement(p);
  1767. /*
  1768. * Retry task to preferred node migration periodically, in case it
  1769. * case it previously failed, or the scheduler moved us.
  1770. */
  1771. if (time_after(jiffies, p->numa_migrate_retry))
  1772. numa_migrate_preferred(p);
  1773. if (migrated)
  1774. p->numa_pages_migrated += pages;
  1775. if (flags & TNF_MIGRATE_FAIL)
  1776. p->numa_faults_locality[2] += pages;
  1777. p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
  1778. p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
  1779. p->numa_faults_locality[local] += pages;
  1780. }
  1781. static void reset_ptenuma_scan(struct task_struct *p)
  1782. {
  1783. /*
  1784. * We only did a read acquisition of the mmap sem, so
  1785. * p->mm->numa_scan_seq is written to without exclusive access
  1786. * and the update is not guaranteed to be atomic. That's not
  1787. * much of an issue though, since this is just used for
  1788. * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
  1789. * expensive, to avoid any form of compiler optimizations:
  1790. */
  1791. WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
  1792. p->mm->numa_scan_offset = 0;
  1793. }
  1794. /*
  1795. * The expensive part of numa migration is done from task_work context.
  1796. * Triggered from task_tick_numa().
  1797. */
  1798. void task_numa_work(struct callback_head *work)
  1799. {
  1800. unsigned long migrate, next_scan, now = jiffies;
  1801. struct task_struct *p = current;
  1802. struct mm_struct *mm = p->mm;
  1803. struct vm_area_struct *vma;
  1804. unsigned long start, end;
  1805. unsigned long nr_pte_updates = 0;
  1806. long pages, virtpages;
  1807. WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
  1808. work->next = work; /* protect against double add */
  1809. /*
  1810. * Who cares about NUMA placement when they're dying.
  1811. *
  1812. * NOTE: make sure not to dereference p->mm before this check,
  1813. * exit_task_work() happens _after_ exit_mm() so we could be called
  1814. * without p->mm even though we still had it when we enqueued this
  1815. * work.
  1816. */
  1817. if (p->flags & PF_EXITING)
  1818. return;
  1819. if (!mm->numa_next_scan) {
  1820. mm->numa_next_scan = now +
  1821. msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1822. }
  1823. /*
  1824. * Enforce maximal scan/migration frequency..
  1825. */
  1826. migrate = mm->numa_next_scan;
  1827. if (time_before(now, migrate))
  1828. return;
  1829. if (p->numa_scan_period == 0) {
  1830. p->numa_scan_period_max = task_scan_max(p);
  1831. p->numa_scan_period = task_scan_min(p);
  1832. }
  1833. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  1834. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  1835. return;
  1836. /*
  1837. * Delay this task enough that another task of this mm will likely win
  1838. * the next time around.
  1839. */
  1840. p->node_stamp += 2 * TICK_NSEC;
  1841. start = mm->numa_scan_offset;
  1842. pages = sysctl_numa_balancing_scan_size;
  1843. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  1844. virtpages = pages * 8; /* Scan up to this much virtual space */
  1845. if (!pages)
  1846. return;
  1847. down_read(&mm->mmap_sem);
  1848. vma = find_vma(mm, start);
  1849. if (!vma) {
  1850. reset_ptenuma_scan(p);
  1851. start = 0;
  1852. vma = mm->mmap;
  1853. }
  1854. for (; vma; vma = vma->vm_next) {
  1855. if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
  1856. is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
  1857. continue;
  1858. }
  1859. /*
  1860. * Shared library pages mapped by multiple processes are not
  1861. * migrated as it is expected they are cache replicated. Avoid
  1862. * hinting faults in read-only file-backed mappings or the vdso
  1863. * as migrating the pages will be of marginal benefit.
  1864. */
  1865. if (!vma->vm_mm ||
  1866. (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
  1867. continue;
  1868. /*
  1869. * Skip inaccessible VMAs to avoid any confusion between
  1870. * PROT_NONE and NUMA hinting ptes
  1871. */
  1872. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  1873. continue;
  1874. do {
  1875. start = max(start, vma->vm_start);
  1876. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  1877. end = min(end, vma->vm_end);
  1878. nr_pte_updates = change_prot_numa(vma, start, end);
  1879. /*
  1880. * Try to scan sysctl_numa_balancing_size worth of
  1881. * hpages that have at least one present PTE that
  1882. * is not already pte-numa. If the VMA contains
  1883. * areas that are unused or already full of prot_numa
  1884. * PTEs, scan up to virtpages, to skip through those
  1885. * areas faster.
  1886. */
  1887. if (nr_pte_updates)
  1888. pages -= (end - start) >> PAGE_SHIFT;
  1889. virtpages -= (end - start) >> PAGE_SHIFT;
  1890. start = end;
  1891. if (pages <= 0 || virtpages <= 0)
  1892. goto out;
  1893. cond_resched();
  1894. } while (end != vma->vm_end);
  1895. }
  1896. out:
  1897. /*
  1898. * It is possible to reach the end of the VMA list but the last few
  1899. * VMAs are not guaranteed to the vma_migratable. If they are not, we
  1900. * would find the !migratable VMA on the next scan but not reset the
  1901. * scanner to the start so check it now.
  1902. */
  1903. if (vma)
  1904. mm->numa_scan_offset = start;
  1905. else
  1906. reset_ptenuma_scan(p);
  1907. up_read(&mm->mmap_sem);
  1908. }
  1909. /*
  1910. * Drive the periodic memory faults..
  1911. */
  1912. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1913. {
  1914. struct callback_head *work = &curr->numa_work;
  1915. u64 period, now;
  1916. /*
  1917. * We don't care about NUMA placement if we don't have memory.
  1918. */
  1919. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  1920. return;
  1921. /*
  1922. * Using runtime rather than walltime has the dual advantage that
  1923. * we (mostly) drive the selection from busy threads and that the
  1924. * task needs to have done some actual work before we bother with
  1925. * NUMA placement.
  1926. */
  1927. now = curr->se.sum_exec_runtime;
  1928. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  1929. if (now > curr->node_stamp + period) {
  1930. if (!curr->node_stamp)
  1931. curr->numa_scan_period = task_scan_min(curr);
  1932. curr->node_stamp += period;
  1933. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  1934. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  1935. task_work_add(curr, work, true);
  1936. }
  1937. }
  1938. }
  1939. #else
  1940. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1941. {
  1942. }
  1943. static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  1944. {
  1945. }
  1946. static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  1947. {
  1948. }
  1949. #endif /* CONFIG_NUMA_BALANCING */
  1950. static void
  1951. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1952. {
  1953. update_load_add(&cfs_rq->load, se->load.weight);
  1954. if (!parent_entity(se))
  1955. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  1956. #ifdef CONFIG_SMP
  1957. if (entity_is_task(se)) {
  1958. struct rq *rq = rq_of(cfs_rq);
  1959. account_numa_enqueue(rq, task_of(se));
  1960. list_add(&se->group_node, &rq->cfs_tasks);
  1961. }
  1962. #endif
  1963. cfs_rq->nr_running++;
  1964. }
  1965. static void
  1966. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1967. {
  1968. update_load_sub(&cfs_rq->load, se->load.weight);
  1969. if (!parent_entity(se))
  1970. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  1971. if (entity_is_task(se)) {
  1972. account_numa_dequeue(rq_of(cfs_rq), task_of(se));
  1973. list_del_init(&se->group_node);
  1974. }
  1975. cfs_rq->nr_running--;
  1976. }
  1977. #ifdef CONFIG_FAIR_GROUP_SCHED
  1978. # ifdef CONFIG_SMP
  1979. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  1980. {
  1981. long tg_weight;
  1982. /*
  1983. * Use this CPU's real-time load instead of the last load contribution
  1984. * as the updating of the contribution is delayed, and we will use the
  1985. * the real-time load to calc the share. See update_tg_load_avg().
  1986. */
  1987. tg_weight = atomic_long_read(&tg->load_avg);
  1988. tg_weight -= cfs_rq->tg_load_avg_contrib;
  1989. tg_weight += cfs_rq->load.weight;
  1990. return tg_weight;
  1991. }
  1992. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1993. {
  1994. long tg_weight, load, shares;
  1995. tg_weight = calc_tg_weight(tg, cfs_rq);
  1996. load = cfs_rq->load.weight;
  1997. shares = (tg->shares * load);
  1998. if (tg_weight)
  1999. shares /= tg_weight;
  2000. if (shares < MIN_SHARES)
  2001. shares = MIN_SHARES;
  2002. if (shares > tg->shares)
  2003. shares = tg->shares;
  2004. return shares;
  2005. }
  2006. # else /* CONFIG_SMP */
  2007. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  2008. {
  2009. return tg->shares;
  2010. }
  2011. # endif /* CONFIG_SMP */
  2012. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  2013. unsigned long weight)
  2014. {
  2015. if (se->on_rq) {
  2016. /* commit outstanding execution time */
  2017. if (cfs_rq->curr == se)
  2018. update_curr(cfs_rq);
  2019. account_entity_dequeue(cfs_rq, se);
  2020. }
  2021. update_load_set(&se->load, weight);
  2022. if (se->on_rq)
  2023. account_entity_enqueue(cfs_rq, se);
  2024. }
  2025. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  2026. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  2027. {
  2028. struct task_group *tg;
  2029. struct sched_entity *se;
  2030. long shares;
  2031. tg = cfs_rq->tg;
  2032. se = tg->se[cpu_of(rq_of(cfs_rq))];
  2033. if (!se || throttled_hierarchy(cfs_rq))
  2034. return;
  2035. #ifndef CONFIG_SMP
  2036. if (likely(se->load.weight == tg->shares))
  2037. return;
  2038. #endif
  2039. shares = calc_cfs_shares(cfs_rq, tg);
  2040. reweight_entity(cfs_rq_of(se), se, shares);
  2041. }
  2042. #else /* CONFIG_FAIR_GROUP_SCHED */
  2043. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  2044. {
  2045. }
  2046. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2047. #ifdef CONFIG_SMP
  2048. /* Precomputed fixed inverse multiplies for multiplication by y^n */
  2049. static const u32 runnable_avg_yN_inv[] = {
  2050. 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  2051. 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  2052. 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  2053. 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  2054. 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  2055. 0x85aac367, 0x82cd8698,
  2056. };
  2057. /*
  2058. * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  2059. * over-estimates when re-combining.
  2060. */
  2061. static const u32 runnable_avg_yN_sum[] = {
  2062. 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  2063. 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  2064. 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  2065. };
  2066. /*
  2067. * Approximate:
  2068. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  2069. */
  2070. static __always_inline u64 decay_load(u64 val, u64 n)
  2071. {
  2072. unsigned int local_n;
  2073. if (!n)
  2074. return val;
  2075. else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  2076. return 0;
  2077. /* after bounds checking we can collapse to 32-bit */
  2078. local_n = n;
  2079. /*
  2080. * As y^PERIOD = 1/2, we can combine
  2081. * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
  2082. * With a look-up table which covers y^n (n<PERIOD)
  2083. *
  2084. * To achieve constant time decay_load.
  2085. */
  2086. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  2087. val >>= local_n / LOAD_AVG_PERIOD;
  2088. local_n %= LOAD_AVG_PERIOD;
  2089. }
  2090. val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
  2091. return val;
  2092. }
  2093. /*
  2094. * For updates fully spanning n periods, the contribution to runnable
  2095. * average will be: \Sum 1024*y^n
  2096. *
  2097. * We can compute this reasonably efficiently by combining:
  2098. * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  2099. */
  2100. static u32 __compute_runnable_contrib(u64 n)
  2101. {
  2102. u32 contrib = 0;
  2103. if (likely(n <= LOAD_AVG_PERIOD))
  2104. return runnable_avg_yN_sum[n];
  2105. else if (unlikely(n >= LOAD_AVG_MAX_N))
  2106. return LOAD_AVG_MAX;
  2107. /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
  2108. do {
  2109. contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
  2110. contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
  2111. n -= LOAD_AVG_PERIOD;
  2112. } while (n > LOAD_AVG_PERIOD);
  2113. contrib = decay_load(contrib, n);
  2114. return contrib + runnable_avg_yN_sum[n];
  2115. }
  2116. #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
  2117. #error "load tracking assumes 2^10 as unit"
  2118. #endif
  2119. #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
  2120. /*
  2121. * We can represent the historical contribution to runnable average as the
  2122. * coefficients of a geometric series. To do this we sub-divide our runnable
  2123. * history into segments of approximately 1ms (1024us); label the segment that
  2124. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  2125. *
  2126. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  2127. * p0 p1 p2
  2128. * (now) (~1ms ago) (~2ms ago)
  2129. *
  2130. * Let u_i denote the fraction of p_i that the entity was runnable.
  2131. *
  2132. * We then designate the fractions u_i as our co-efficients, yielding the
  2133. * following representation of historical load:
  2134. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  2135. *
  2136. * We choose y based on the with of a reasonably scheduling period, fixing:
  2137. * y^32 = 0.5
  2138. *
  2139. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  2140. * approximately half as much as the contribution to load within the last ms
  2141. * (u_0).
  2142. *
  2143. * When a period "rolls over" and we have new u_0`, multiplying the previous
  2144. * sum again by y is sufficient to update:
  2145. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  2146. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  2147. */
  2148. static __always_inline int
  2149. __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
  2150. unsigned long weight, int running, struct cfs_rq *cfs_rq)
  2151. {
  2152. u64 delta, scaled_delta, periods;
  2153. u32 contrib;
  2154. unsigned int delta_w, scaled_delta_w, decayed = 0;
  2155. unsigned long scale_freq, scale_cpu;
  2156. delta = now - sa->last_update_time;
  2157. /*
  2158. * This should only happen when time goes backwards, which it
  2159. * unfortunately does during sched clock init when we swap over to TSC.
  2160. */
  2161. if ((s64)delta < 0) {
  2162. sa->last_update_time = now;
  2163. return 0;
  2164. }
  2165. /*
  2166. * Use 1024ns as the unit of measurement since it's a reasonable
  2167. * approximation of 1us and fast to compute.
  2168. */
  2169. delta >>= 10;
  2170. if (!delta)
  2171. return 0;
  2172. sa->last_update_time = now;
  2173. scale_freq = arch_scale_freq_capacity(NULL, cpu);
  2174. scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
  2175. /* delta_w is the amount already accumulated against our next period */
  2176. delta_w = sa->period_contrib;
  2177. if (delta + delta_w >= 1024) {
  2178. decayed = 1;
  2179. /* how much left for next period will start over, we don't know yet */
  2180. sa->period_contrib = 0;
  2181. /*
  2182. * Now that we know we're crossing a period boundary, figure
  2183. * out how much from delta we need to complete the current
  2184. * period and accrue it.
  2185. */
  2186. delta_w = 1024 - delta_w;
  2187. scaled_delta_w = cap_scale(delta_w, scale_freq);
  2188. if (weight) {
  2189. sa->load_sum += weight * scaled_delta_w;
  2190. if (cfs_rq) {
  2191. cfs_rq->runnable_load_sum +=
  2192. weight * scaled_delta_w;
  2193. }
  2194. }
  2195. if (running)
  2196. sa->util_sum += scaled_delta_w * scale_cpu;
  2197. delta -= delta_w;
  2198. /* Figure out how many additional periods this update spans */
  2199. periods = delta / 1024;
  2200. delta %= 1024;
  2201. sa->load_sum = decay_load(sa->load_sum, periods + 1);
  2202. if (cfs_rq) {
  2203. cfs_rq->runnable_load_sum =
  2204. decay_load(cfs_rq->runnable_load_sum, periods + 1);
  2205. }
  2206. sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
  2207. /* Efficiently calculate \sum (1..n_period) 1024*y^i */
  2208. contrib = __compute_runnable_contrib(periods);
  2209. contrib = cap_scale(contrib, scale_freq);
  2210. if (weight) {
  2211. sa->load_sum += weight * contrib;
  2212. if (cfs_rq)
  2213. cfs_rq->runnable_load_sum += weight * contrib;
  2214. }
  2215. if (running)
  2216. sa->util_sum += contrib * scale_cpu;
  2217. }
  2218. /* Remainder of delta accrued against u_0` */
  2219. scaled_delta = cap_scale(delta, scale_freq);
  2220. if (weight) {
  2221. sa->load_sum += weight * scaled_delta;
  2222. if (cfs_rq)
  2223. cfs_rq->runnable_load_sum += weight * scaled_delta;
  2224. }
  2225. if (running)
  2226. sa->util_sum += scaled_delta * scale_cpu;
  2227. sa->period_contrib += delta;
  2228. if (decayed) {
  2229. sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
  2230. if (cfs_rq) {
  2231. cfs_rq->runnable_load_avg =
  2232. div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
  2233. }
  2234. sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
  2235. }
  2236. return decayed;
  2237. }
  2238. #ifdef CONFIG_FAIR_GROUP_SCHED
  2239. /*
  2240. * Updating tg's load_avg is necessary before update_cfs_share (which is done)
  2241. * and effective_load (which is not done because it is too costly).
  2242. */
  2243. static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
  2244. {
  2245. long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
  2246. if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
  2247. atomic_long_add(delta, &cfs_rq->tg->load_avg);
  2248. cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
  2249. }
  2250. }
  2251. #else /* CONFIG_FAIR_GROUP_SCHED */
  2252. static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
  2253. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2254. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  2255. /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
  2256. static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
  2257. {
  2258. struct sched_avg *sa = &cfs_rq->avg;
  2259. int decayed, removed = 0;
  2260. if (atomic_long_read(&cfs_rq->removed_load_avg)) {
  2261. long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
  2262. sa->load_avg = max_t(long, sa->load_avg - r, 0);
  2263. sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
  2264. removed = 1;
  2265. }
  2266. if (atomic_long_read(&cfs_rq->removed_util_avg)) {
  2267. long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
  2268. sa->util_avg = max_t(long, sa->util_avg - r, 0);
  2269. sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
  2270. }
  2271. decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
  2272. scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
  2273. #ifndef CONFIG_64BIT
  2274. smp_wmb();
  2275. cfs_rq->load_last_update_time_copy = sa->last_update_time;
  2276. #endif
  2277. return decayed || removed;
  2278. }
  2279. /* Update task and its cfs_rq load average */
  2280. static inline void update_load_avg(struct sched_entity *se, int update_tg)
  2281. {
  2282. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2283. u64 now = cfs_rq_clock_task(cfs_rq);
  2284. int cpu = cpu_of(rq_of(cfs_rq));
  2285. /*
  2286. * Track task load average for carrying it to new CPU after migrated, and
  2287. * track group sched_entity load average for task_h_load calc in migration
  2288. */
  2289. __update_load_avg(now, cpu, &se->avg,
  2290. se->on_rq * scale_load_down(se->load.weight),
  2291. cfs_rq->curr == se, NULL);
  2292. if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
  2293. update_tg_load_avg(cfs_rq, 0);
  2294. }
  2295. static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2296. {
  2297. if (!sched_feat(ATTACH_AGE_LOAD))
  2298. goto skip_aging;
  2299. /*
  2300. * If we got migrated (either between CPUs or between cgroups) we'll
  2301. * have aged the average right before clearing @last_update_time.
  2302. */
  2303. if (se->avg.last_update_time) {
  2304. __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
  2305. &se->avg, 0, 0, NULL);
  2306. /*
  2307. * XXX: we could have just aged the entire load away if we've been
  2308. * absent from the fair class for too long.
  2309. */
  2310. }
  2311. skip_aging:
  2312. se->avg.last_update_time = cfs_rq->avg.last_update_time;
  2313. cfs_rq->avg.load_avg += se->avg.load_avg;
  2314. cfs_rq->avg.load_sum += se->avg.load_sum;
  2315. cfs_rq->avg.util_avg += se->avg.util_avg;
  2316. cfs_rq->avg.util_sum += se->avg.util_sum;
  2317. }
  2318. static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2319. {
  2320. __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
  2321. &se->avg, se->on_rq * scale_load_down(se->load.weight),
  2322. cfs_rq->curr == se, NULL);
  2323. cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
  2324. cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
  2325. cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
  2326. cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
  2327. }
  2328. /* Add the load generated by se into cfs_rq's load average */
  2329. static inline void
  2330. enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2331. {
  2332. struct sched_avg *sa = &se->avg;
  2333. u64 now = cfs_rq_clock_task(cfs_rq);
  2334. int migrated, decayed;
  2335. migrated = !sa->last_update_time;
  2336. if (!migrated) {
  2337. __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
  2338. se->on_rq * scale_load_down(se->load.weight),
  2339. cfs_rq->curr == se, NULL);
  2340. }
  2341. decayed = update_cfs_rq_load_avg(now, cfs_rq);
  2342. cfs_rq->runnable_load_avg += sa->load_avg;
  2343. cfs_rq->runnable_load_sum += sa->load_sum;
  2344. if (migrated)
  2345. attach_entity_load_avg(cfs_rq, se);
  2346. if (decayed || migrated)
  2347. update_tg_load_avg(cfs_rq, 0);
  2348. }
  2349. /* Remove the runnable load generated by se from cfs_rq's runnable load average */
  2350. static inline void
  2351. dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2352. {
  2353. update_load_avg(se, 1);
  2354. cfs_rq->runnable_load_avg =
  2355. max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
  2356. cfs_rq->runnable_load_sum =
  2357. max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
  2358. }
  2359. /*
  2360. * Task first catches up with cfs_rq, and then subtract
  2361. * itself from the cfs_rq (task must be off the queue now).
  2362. */
  2363. void remove_entity_load_avg(struct sched_entity *se)
  2364. {
  2365. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2366. u64 last_update_time;
  2367. #ifndef CONFIG_64BIT
  2368. u64 last_update_time_copy;
  2369. do {
  2370. last_update_time_copy = cfs_rq->load_last_update_time_copy;
  2371. smp_rmb();
  2372. last_update_time = cfs_rq->avg.last_update_time;
  2373. } while (last_update_time != last_update_time_copy);
  2374. #else
  2375. last_update_time = cfs_rq->avg.last_update_time;
  2376. #endif
  2377. __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
  2378. atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
  2379. atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
  2380. }
  2381. /*
  2382. * Update the rq's load with the elapsed running time before entering
  2383. * idle. if the last scheduled task is not a CFS task, idle_enter will
  2384. * be the only way to update the runnable statistic.
  2385. */
  2386. void idle_enter_fair(struct rq *this_rq)
  2387. {
  2388. }
  2389. /*
  2390. * Update the rq's load with the elapsed idle time before a task is
  2391. * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
  2392. * be the only way to update the runnable statistic.
  2393. */
  2394. void idle_exit_fair(struct rq *this_rq)
  2395. {
  2396. }
  2397. static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
  2398. {
  2399. return cfs_rq->runnable_load_avg;
  2400. }
  2401. static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
  2402. {
  2403. return cfs_rq->avg.load_avg;
  2404. }
  2405. static int idle_balance(struct rq *this_rq);
  2406. #else /* CONFIG_SMP */
  2407. static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
  2408. static inline void
  2409. enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2410. static inline void
  2411. dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2412. static inline void remove_entity_load_avg(struct sched_entity *se) {}
  2413. static inline void
  2414. attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2415. static inline void
  2416. detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2417. static inline int idle_balance(struct rq *rq)
  2418. {
  2419. return 0;
  2420. }
  2421. #endif /* CONFIG_SMP */
  2422. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2423. {
  2424. #ifdef CONFIG_SCHEDSTATS
  2425. struct task_struct *tsk = NULL;
  2426. if (entity_is_task(se))
  2427. tsk = task_of(se);
  2428. if (se->statistics.sleep_start) {
  2429. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
  2430. if ((s64)delta < 0)
  2431. delta = 0;
  2432. if (unlikely(delta > se->statistics.sleep_max))
  2433. se->statistics.sleep_max = delta;
  2434. se->statistics.sleep_start = 0;
  2435. se->statistics.sum_sleep_runtime += delta;
  2436. if (tsk) {
  2437. account_scheduler_latency(tsk, delta >> 10, 1);
  2438. trace_sched_stat_sleep(tsk, delta);
  2439. }
  2440. }
  2441. if (se->statistics.block_start) {
  2442. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
  2443. if ((s64)delta < 0)
  2444. delta = 0;
  2445. if (unlikely(delta > se->statistics.block_max))
  2446. se->statistics.block_max = delta;
  2447. se->statistics.block_start = 0;
  2448. se->statistics.sum_sleep_runtime += delta;
  2449. if (tsk) {
  2450. if (tsk->in_iowait) {
  2451. se->statistics.iowait_sum += delta;
  2452. se->statistics.iowait_count++;
  2453. trace_sched_stat_iowait(tsk, delta);
  2454. }
  2455. trace_sched_stat_blocked(tsk, delta);
  2456. /*
  2457. * Blocking time is in units of nanosecs, so shift by
  2458. * 20 to get a milliseconds-range estimation of the
  2459. * amount of time that the task spent sleeping:
  2460. */
  2461. if (unlikely(prof_on == SLEEP_PROFILING)) {
  2462. profile_hits(SLEEP_PROFILING,
  2463. (void *)get_wchan(tsk),
  2464. delta >> 20);
  2465. }
  2466. account_scheduler_latency(tsk, delta >> 10, 0);
  2467. }
  2468. }
  2469. #endif
  2470. }
  2471. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2472. {
  2473. #ifdef CONFIG_SCHED_DEBUG
  2474. s64 d = se->vruntime - cfs_rq->min_vruntime;
  2475. if (d < 0)
  2476. d = -d;
  2477. if (d > 3*sysctl_sched_latency)
  2478. schedstat_inc(cfs_rq, nr_spread_over);
  2479. #endif
  2480. }
  2481. static void
  2482. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  2483. {
  2484. u64 vruntime = cfs_rq->min_vruntime;
  2485. /*
  2486. * The 'current' period is already promised to the current tasks,
  2487. * however the extra weight of the new task will slow them down a
  2488. * little, place the new task so that it fits in the slot that
  2489. * stays open at the end.
  2490. */
  2491. if (initial && sched_feat(START_DEBIT))
  2492. vruntime += sched_vslice(cfs_rq, se);
  2493. /* sleeps up to a single latency don't count. */
  2494. if (!initial) {
  2495. unsigned long thresh = sysctl_sched_latency;
  2496. /*
  2497. * Halve their sleep time's effect, to allow
  2498. * for a gentler effect of sleepers:
  2499. */
  2500. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  2501. thresh >>= 1;
  2502. vruntime -= thresh;
  2503. }
  2504. /* ensure we never gain time by being placed backwards. */
  2505. se->vruntime = max_vruntime(se->vruntime, vruntime);
  2506. }
  2507. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  2508. static void
  2509. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2510. {
  2511. /*
  2512. * Update the normalized vruntime before updating min_vruntime
  2513. * through calling update_curr().
  2514. */
  2515. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  2516. se->vruntime += cfs_rq->min_vruntime;
  2517. /*
  2518. * Update run-time statistics of the 'current'.
  2519. */
  2520. update_curr(cfs_rq);
  2521. enqueue_entity_load_avg(cfs_rq, se);
  2522. account_entity_enqueue(cfs_rq, se);
  2523. update_cfs_shares(cfs_rq);
  2524. if (flags & ENQUEUE_WAKEUP) {
  2525. place_entity(cfs_rq, se, 0);
  2526. enqueue_sleeper(cfs_rq, se);
  2527. }
  2528. update_stats_enqueue(cfs_rq, se);
  2529. check_spread(cfs_rq, se);
  2530. if (se != cfs_rq->curr)
  2531. __enqueue_entity(cfs_rq, se);
  2532. se->on_rq = 1;
  2533. if (cfs_rq->nr_running == 1) {
  2534. list_add_leaf_cfs_rq(cfs_rq);
  2535. check_enqueue_throttle(cfs_rq);
  2536. }
  2537. }
  2538. static void __clear_buddies_last(struct sched_entity *se)
  2539. {
  2540. for_each_sched_entity(se) {
  2541. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2542. if (cfs_rq->last != se)
  2543. break;
  2544. cfs_rq->last = NULL;
  2545. }
  2546. }
  2547. static void __clear_buddies_next(struct sched_entity *se)
  2548. {
  2549. for_each_sched_entity(se) {
  2550. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2551. if (cfs_rq->next != se)
  2552. break;
  2553. cfs_rq->next = NULL;
  2554. }
  2555. }
  2556. static void __clear_buddies_skip(struct sched_entity *se)
  2557. {
  2558. for_each_sched_entity(se) {
  2559. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2560. if (cfs_rq->skip != se)
  2561. break;
  2562. cfs_rq->skip = NULL;
  2563. }
  2564. }
  2565. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2566. {
  2567. if (cfs_rq->last == se)
  2568. __clear_buddies_last(se);
  2569. if (cfs_rq->next == se)
  2570. __clear_buddies_next(se);
  2571. if (cfs_rq->skip == se)
  2572. __clear_buddies_skip(se);
  2573. }
  2574. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2575. static void
  2576. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2577. {
  2578. /*
  2579. * Update run-time statistics of the 'current'.
  2580. */
  2581. update_curr(cfs_rq);
  2582. dequeue_entity_load_avg(cfs_rq, se);
  2583. update_stats_dequeue(cfs_rq, se);
  2584. if (flags & DEQUEUE_SLEEP) {
  2585. #ifdef CONFIG_SCHEDSTATS
  2586. if (entity_is_task(se)) {
  2587. struct task_struct *tsk = task_of(se);
  2588. if (tsk->state & TASK_INTERRUPTIBLE)
  2589. se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
  2590. if (tsk->state & TASK_UNINTERRUPTIBLE)
  2591. se->statistics.block_start = rq_clock(rq_of(cfs_rq));
  2592. }
  2593. #endif
  2594. }
  2595. clear_buddies(cfs_rq, se);
  2596. if (se != cfs_rq->curr)
  2597. __dequeue_entity(cfs_rq, se);
  2598. se->on_rq = 0;
  2599. account_entity_dequeue(cfs_rq, se);
  2600. /*
  2601. * Normalize the entity after updating the min_vruntime because the
  2602. * update can refer to the ->curr item and we need to reflect this
  2603. * movement in our normalized position.
  2604. */
  2605. if (!(flags & DEQUEUE_SLEEP))
  2606. se->vruntime -= cfs_rq->min_vruntime;
  2607. /* return excess runtime on last dequeue */
  2608. return_cfs_rq_runtime(cfs_rq);
  2609. update_min_vruntime(cfs_rq);
  2610. update_cfs_shares(cfs_rq);
  2611. }
  2612. /*
  2613. * Preempt the current task with a newly woken task if needed:
  2614. */
  2615. static void
  2616. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2617. {
  2618. unsigned long ideal_runtime, delta_exec;
  2619. struct sched_entity *se;
  2620. s64 delta;
  2621. ideal_runtime = sched_slice(cfs_rq, curr);
  2622. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  2623. if (delta_exec > ideal_runtime) {
  2624. resched_curr(rq_of(cfs_rq));
  2625. /*
  2626. * The current task ran long enough, ensure it doesn't get
  2627. * re-elected due to buddy favours.
  2628. */
  2629. clear_buddies(cfs_rq, curr);
  2630. return;
  2631. }
  2632. /*
  2633. * Ensure that a task that missed wakeup preemption by a
  2634. * narrow margin doesn't have to wait for a full slice.
  2635. * This also mitigates buddy induced latencies under load.
  2636. */
  2637. if (delta_exec < sysctl_sched_min_granularity)
  2638. return;
  2639. se = __pick_first_entity(cfs_rq);
  2640. delta = curr->vruntime - se->vruntime;
  2641. if (delta < 0)
  2642. return;
  2643. if (delta > ideal_runtime)
  2644. resched_curr(rq_of(cfs_rq));
  2645. }
  2646. static void
  2647. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2648. {
  2649. /* 'current' is not kept within the tree. */
  2650. if (se->on_rq) {
  2651. /*
  2652. * Any task has to be enqueued before it get to execute on
  2653. * a CPU. So account for the time it spent waiting on the
  2654. * runqueue.
  2655. */
  2656. update_stats_wait_end(cfs_rq, se);
  2657. __dequeue_entity(cfs_rq, se);
  2658. update_load_avg(se, 1);
  2659. }
  2660. update_stats_curr_start(cfs_rq, se);
  2661. cfs_rq->curr = se;
  2662. #ifdef CONFIG_SCHEDSTATS
  2663. /*
  2664. * Track our maximum slice length, if the CPU's load is at
  2665. * least twice that of our own weight (i.e. dont track it
  2666. * when there are only lesser-weight tasks around):
  2667. */
  2668. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  2669. se->statistics.slice_max = max(se->statistics.slice_max,
  2670. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  2671. }
  2672. #endif
  2673. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  2674. }
  2675. static int
  2676. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  2677. /*
  2678. * Pick the next process, keeping these things in mind, in this order:
  2679. * 1) keep things fair between processes/task groups
  2680. * 2) pick the "next" process, since someone really wants that to run
  2681. * 3) pick the "last" process, for cache locality
  2682. * 4) do not run the "skip" process, if something else is available
  2683. */
  2684. static struct sched_entity *
  2685. pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2686. {
  2687. struct sched_entity *left = __pick_first_entity(cfs_rq);
  2688. struct sched_entity *se;
  2689. /*
  2690. * If curr is set we have to see if its left of the leftmost entity
  2691. * still in the tree, provided there was anything in the tree at all.
  2692. */
  2693. if (!left || (curr && entity_before(curr, left)))
  2694. left = curr;
  2695. se = left; /* ideally we run the leftmost entity */
  2696. /*
  2697. * Avoid running the skip buddy, if running something else can
  2698. * be done without getting too unfair.
  2699. */
  2700. if (cfs_rq->skip == se) {
  2701. struct sched_entity *second;
  2702. if (se == curr) {
  2703. second = __pick_first_entity(cfs_rq);
  2704. } else {
  2705. second = __pick_next_entity(se);
  2706. if (!second || (curr && entity_before(curr, second)))
  2707. second = curr;
  2708. }
  2709. if (second && wakeup_preempt_entity(second, left) < 1)
  2710. se = second;
  2711. }
  2712. /*
  2713. * Prefer last buddy, try to return the CPU to a preempted task.
  2714. */
  2715. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  2716. se = cfs_rq->last;
  2717. /*
  2718. * Someone really wants this to run. If it's not unfair, run it.
  2719. */
  2720. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  2721. se = cfs_rq->next;
  2722. clear_buddies(cfs_rq, se);
  2723. return se;
  2724. }
  2725. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2726. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  2727. {
  2728. /*
  2729. * If still on the runqueue then deactivate_task()
  2730. * was not called and update_curr() has to be done:
  2731. */
  2732. if (prev->on_rq)
  2733. update_curr(cfs_rq);
  2734. /* throttle cfs_rqs exceeding runtime */
  2735. check_cfs_rq_runtime(cfs_rq);
  2736. check_spread(cfs_rq, prev);
  2737. if (prev->on_rq) {
  2738. update_stats_wait_start(cfs_rq, prev);
  2739. /* Put 'current' back into the tree. */
  2740. __enqueue_entity(cfs_rq, prev);
  2741. /* in !on_rq case, update occurred at dequeue */
  2742. update_load_avg(prev, 0);
  2743. }
  2744. cfs_rq->curr = NULL;
  2745. }
  2746. static void
  2747. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  2748. {
  2749. /*
  2750. * Update run-time statistics of the 'current'.
  2751. */
  2752. update_curr(cfs_rq);
  2753. /*
  2754. * Ensure that runnable average is periodically updated.
  2755. */
  2756. update_load_avg(curr, 1);
  2757. update_cfs_shares(cfs_rq);
  2758. #ifdef CONFIG_SCHED_HRTICK
  2759. /*
  2760. * queued ticks are scheduled to match the slice, so don't bother
  2761. * validating it and just reschedule.
  2762. */
  2763. if (queued) {
  2764. resched_curr(rq_of(cfs_rq));
  2765. return;
  2766. }
  2767. /*
  2768. * don't let the period tick interfere with the hrtick preemption
  2769. */
  2770. if (!sched_feat(DOUBLE_TICK) &&
  2771. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  2772. return;
  2773. #endif
  2774. if (cfs_rq->nr_running > 1)
  2775. check_preempt_tick(cfs_rq, curr);
  2776. }
  2777. /**************************************************
  2778. * CFS bandwidth control machinery
  2779. */
  2780. #ifdef CONFIG_CFS_BANDWIDTH
  2781. #ifdef HAVE_JUMP_LABEL
  2782. static struct static_key __cfs_bandwidth_used;
  2783. static inline bool cfs_bandwidth_used(void)
  2784. {
  2785. return static_key_false(&__cfs_bandwidth_used);
  2786. }
  2787. void cfs_bandwidth_usage_inc(void)
  2788. {
  2789. static_key_slow_inc(&__cfs_bandwidth_used);
  2790. }
  2791. void cfs_bandwidth_usage_dec(void)
  2792. {
  2793. static_key_slow_dec(&__cfs_bandwidth_used);
  2794. }
  2795. #else /* HAVE_JUMP_LABEL */
  2796. static bool cfs_bandwidth_used(void)
  2797. {
  2798. return true;
  2799. }
  2800. void cfs_bandwidth_usage_inc(void) {}
  2801. void cfs_bandwidth_usage_dec(void) {}
  2802. #endif /* HAVE_JUMP_LABEL */
  2803. /*
  2804. * default period for cfs group bandwidth.
  2805. * default: 0.1s, units: nanoseconds
  2806. */
  2807. static inline u64 default_cfs_period(void)
  2808. {
  2809. return 100000000ULL;
  2810. }
  2811. static inline u64 sched_cfs_bandwidth_slice(void)
  2812. {
  2813. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  2814. }
  2815. /*
  2816. * Replenish runtime according to assigned quota and update expiration time.
  2817. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  2818. * additional synchronization around rq->lock.
  2819. *
  2820. * requires cfs_b->lock
  2821. */
  2822. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  2823. {
  2824. u64 now;
  2825. if (cfs_b->quota == RUNTIME_INF)
  2826. return;
  2827. now = sched_clock_cpu(smp_processor_id());
  2828. cfs_b->runtime = cfs_b->quota;
  2829. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  2830. }
  2831. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2832. {
  2833. return &tg->cfs_bandwidth;
  2834. }
  2835. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  2836. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2837. {
  2838. if (unlikely(cfs_rq->throttle_count))
  2839. return cfs_rq->throttled_clock_task;
  2840. return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
  2841. }
  2842. /* returns 0 on failure to allocate runtime */
  2843. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2844. {
  2845. struct task_group *tg = cfs_rq->tg;
  2846. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  2847. u64 amount = 0, min_amount, expires;
  2848. /* note: this is a positive sum as runtime_remaining <= 0 */
  2849. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  2850. raw_spin_lock(&cfs_b->lock);
  2851. if (cfs_b->quota == RUNTIME_INF)
  2852. amount = min_amount;
  2853. else {
  2854. start_cfs_bandwidth(cfs_b);
  2855. if (cfs_b->runtime > 0) {
  2856. amount = min(cfs_b->runtime, min_amount);
  2857. cfs_b->runtime -= amount;
  2858. cfs_b->idle = 0;
  2859. }
  2860. }
  2861. expires = cfs_b->runtime_expires;
  2862. raw_spin_unlock(&cfs_b->lock);
  2863. cfs_rq->runtime_remaining += amount;
  2864. /*
  2865. * we may have advanced our local expiration to account for allowed
  2866. * spread between our sched_clock and the one on which runtime was
  2867. * issued.
  2868. */
  2869. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  2870. cfs_rq->runtime_expires = expires;
  2871. return cfs_rq->runtime_remaining > 0;
  2872. }
  2873. /*
  2874. * Note: This depends on the synchronization provided by sched_clock and the
  2875. * fact that rq->clock snapshots this value.
  2876. */
  2877. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2878. {
  2879. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2880. /* if the deadline is ahead of our clock, nothing to do */
  2881. if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
  2882. return;
  2883. if (cfs_rq->runtime_remaining < 0)
  2884. return;
  2885. /*
  2886. * If the local deadline has passed we have to consider the
  2887. * possibility that our sched_clock is 'fast' and the global deadline
  2888. * has not truly expired.
  2889. *
  2890. * Fortunately we can check determine whether this the case by checking
  2891. * whether the global deadline has advanced. It is valid to compare
  2892. * cfs_b->runtime_expires without any locks since we only care about
  2893. * exact equality, so a partial write will still work.
  2894. */
  2895. if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
  2896. /* extend local deadline, drift is bounded above by 2 ticks */
  2897. cfs_rq->runtime_expires += TICK_NSEC;
  2898. } else {
  2899. /* global deadline is ahead, expiration has passed */
  2900. cfs_rq->runtime_remaining = 0;
  2901. }
  2902. }
  2903. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  2904. {
  2905. /* dock delta_exec before expiring quota (as it could span periods) */
  2906. cfs_rq->runtime_remaining -= delta_exec;
  2907. expire_cfs_rq_runtime(cfs_rq);
  2908. if (likely(cfs_rq->runtime_remaining > 0))
  2909. return;
  2910. /*
  2911. * if we're unable to extend our runtime we resched so that the active
  2912. * hierarchy can be throttled
  2913. */
  2914. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  2915. resched_curr(rq_of(cfs_rq));
  2916. }
  2917. static __always_inline
  2918. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  2919. {
  2920. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  2921. return;
  2922. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  2923. }
  2924. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2925. {
  2926. return cfs_bandwidth_used() && cfs_rq->throttled;
  2927. }
  2928. /* check whether cfs_rq, or any parent, is throttled */
  2929. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2930. {
  2931. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  2932. }
  2933. /*
  2934. * Ensure that neither of the group entities corresponding to src_cpu or
  2935. * dest_cpu are members of a throttled hierarchy when performing group
  2936. * load-balance operations.
  2937. */
  2938. static inline int throttled_lb_pair(struct task_group *tg,
  2939. int src_cpu, int dest_cpu)
  2940. {
  2941. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  2942. src_cfs_rq = tg->cfs_rq[src_cpu];
  2943. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  2944. return throttled_hierarchy(src_cfs_rq) ||
  2945. throttled_hierarchy(dest_cfs_rq);
  2946. }
  2947. /* updated child weight may affect parent so we have to do this bottom up */
  2948. static int tg_unthrottle_up(struct task_group *tg, void *data)
  2949. {
  2950. struct rq *rq = data;
  2951. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2952. cfs_rq->throttle_count--;
  2953. #ifdef CONFIG_SMP
  2954. if (!cfs_rq->throttle_count) {
  2955. /* adjust cfs_rq_clock_task() */
  2956. cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
  2957. cfs_rq->throttled_clock_task;
  2958. }
  2959. #endif
  2960. return 0;
  2961. }
  2962. static int tg_throttle_down(struct task_group *tg, void *data)
  2963. {
  2964. struct rq *rq = data;
  2965. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2966. /* group is entering throttled state, stop time */
  2967. if (!cfs_rq->throttle_count)
  2968. cfs_rq->throttled_clock_task = rq_clock_task(rq);
  2969. cfs_rq->throttle_count++;
  2970. return 0;
  2971. }
  2972. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  2973. {
  2974. struct rq *rq = rq_of(cfs_rq);
  2975. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2976. struct sched_entity *se;
  2977. long task_delta, dequeue = 1;
  2978. bool empty;
  2979. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  2980. /* freeze hierarchy runnable averages while throttled */
  2981. rcu_read_lock();
  2982. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  2983. rcu_read_unlock();
  2984. task_delta = cfs_rq->h_nr_running;
  2985. for_each_sched_entity(se) {
  2986. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  2987. /* throttled entity or throttle-on-deactivate */
  2988. if (!se->on_rq)
  2989. break;
  2990. if (dequeue)
  2991. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  2992. qcfs_rq->h_nr_running -= task_delta;
  2993. if (qcfs_rq->load.weight)
  2994. dequeue = 0;
  2995. }
  2996. if (!se)
  2997. sub_nr_running(rq, task_delta);
  2998. cfs_rq->throttled = 1;
  2999. cfs_rq->throttled_clock = rq_clock(rq);
  3000. raw_spin_lock(&cfs_b->lock);
  3001. empty = list_empty(&cfs_b->throttled_cfs_rq);
  3002. /*
  3003. * Add to the _head_ of the list, so that an already-started
  3004. * distribute_cfs_runtime will not see us
  3005. */
  3006. list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  3007. /*
  3008. * If we're the first throttled task, make sure the bandwidth
  3009. * timer is running.
  3010. */
  3011. if (empty)
  3012. start_cfs_bandwidth(cfs_b);
  3013. raw_spin_unlock(&cfs_b->lock);
  3014. }
  3015. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  3016. {
  3017. struct rq *rq = rq_of(cfs_rq);
  3018. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3019. struct sched_entity *se;
  3020. int enqueue = 1;
  3021. long task_delta;
  3022. se = cfs_rq->tg->se[cpu_of(rq)];
  3023. cfs_rq->throttled = 0;
  3024. update_rq_clock(rq);
  3025. raw_spin_lock(&cfs_b->lock);
  3026. cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
  3027. list_del_rcu(&cfs_rq->throttled_list);
  3028. raw_spin_unlock(&cfs_b->lock);
  3029. /* update hierarchical throttle state */
  3030. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  3031. if (!cfs_rq->load.weight)
  3032. return;
  3033. task_delta = cfs_rq->h_nr_running;
  3034. for_each_sched_entity(se) {
  3035. if (se->on_rq)
  3036. enqueue = 0;
  3037. cfs_rq = cfs_rq_of(se);
  3038. if (enqueue)
  3039. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  3040. cfs_rq->h_nr_running += task_delta;
  3041. if (cfs_rq_throttled(cfs_rq))
  3042. break;
  3043. }
  3044. if (!se)
  3045. add_nr_running(rq, task_delta);
  3046. /* determine whether we need to wake up potentially idle cpu */
  3047. if (rq->curr == rq->idle && rq->cfs.nr_running)
  3048. resched_curr(rq);
  3049. }
  3050. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  3051. u64 remaining, u64 expires)
  3052. {
  3053. struct cfs_rq *cfs_rq;
  3054. u64 runtime;
  3055. u64 starting_runtime = remaining;
  3056. rcu_read_lock();
  3057. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  3058. throttled_list) {
  3059. struct rq *rq = rq_of(cfs_rq);
  3060. raw_spin_lock(&rq->lock);
  3061. if (!cfs_rq_throttled(cfs_rq))
  3062. goto next;
  3063. runtime = -cfs_rq->runtime_remaining + 1;
  3064. if (runtime > remaining)
  3065. runtime = remaining;
  3066. remaining -= runtime;
  3067. cfs_rq->runtime_remaining += runtime;
  3068. cfs_rq->runtime_expires = expires;
  3069. /* we check whether we're throttled above */
  3070. if (cfs_rq->runtime_remaining > 0)
  3071. unthrottle_cfs_rq(cfs_rq);
  3072. next:
  3073. raw_spin_unlock(&rq->lock);
  3074. if (!remaining)
  3075. break;
  3076. }
  3077. rcu_read_unlock();
  3078. return starting_runtime - remaining;
  3079. }
  3080. /*
  3081. * Responsible for refilling a task_group's bandwidth and unthrottling its
  3082. * cfs_rqs as appropriate. If there has been no activity within the last
  3083. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  3084. * used to track this state.
  3085. */
  3086. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  3087. {
  3088. u64 runtime, runtime_expires;
  3089. int throttled;
  3090. /* no need to continue the timer with no bandwidth constraint */
  3091. if (cfs_b->quota == RUNTIME_INF)
  3092. goto out_deactivate;
  3093. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3094. cfs_b->nr_periods += overrun;
  3095. /*
  3096. * idle depends on !throttled (for the case of a large deficit), and if
  3097. * we're going inactive then everything else can be deferred
  3098. */
  3099. if (cfs_b->idle && !throttled)
  3100. goto out_deactivate;
  3101. __refill_cfs_bandwidth_runtime(cfs_b);
  3102. if (!throttled) {
  3103. /* mark as potentially idle for the upcoming period */
  3104. cfs_b->idle = 1;
  3105. return 0;
  3106. }
  3107. /* account preceding periods in which throttling occurred */
  3108. cfs_b->nr_throttled += overrun;
  3109. runtime_expires = cfs_b->runtime_expires;
  3110. /*
  3111. * This check is repeated as we are holding onto the new bandwidth while
  3112. * we unthrottle. This can potentially race with an unthrottled group
  3113. * trying to acquire new bandwidth from the global pool. This can result
  3114. * in us over-using our runtime if it is all used during this loop, but
  3115. * only by limited amounts in that extreme case.
  3116. */
  3117. while (throttled && cfs_b->runtime > 0) {
  3118. runtime = cfs_b->runtime;
  3119. raw_spin_unlock(&cfs_b->lock);
  3120. /* we can't nest cfs_b->lock while distributing bandwidth */
  3121. runtime = distribute_cfs_runtime(cfs_b, runtime,
  3122. runtime_expires);
  3123. raw_spin_lock(&cfs_b->lock);
  3124. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3125. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  3126. }
  3127. /*
  3128. * While we are ensured activity in the period following an
  3129. * unthrottle, this also covers the case in which the new bandwidth is
  3130. * insufficient to cover the existing bandwidth deficit. (Forcing the
  3131. * timer to remain active while there are any throttled entities.)
  3132. */
  3133. cfs_b->idle = 0;
  3134. return 0;
  3135. out_deactivate:
  3136. return 1;
  3137. }
  3138. /* a cfs_rq won't donate quota below this amount */
  3139. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  3140. /* minimum remaining period time to redistribute slack quota */
  3141. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  3142. /* how long we wait to gather additional slack before distributing */
  3143. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  3144. /*
  3145. * Are we near the end of the current quota period?
  3146. *
  3147. * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
  3148. * hrtimer base being cleared by hrtimer_start. In the case of
  3149. * migrate_hrtimers, base is never cleared, so we are fine.
  3150. */
  3151. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  3152. {
  3153. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  3154. u64 remaining;
  3155. /* if the call-back is running a quota refresh is already occurring */
  3156. if (hrtimer_callback_running(refresh_timer))
  3157. return 1;
  3158. /* is a quota refresh about to occur? */
  3159. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  3160. if (remaining < min_expire)
  3161. return 1;
  3162. return 0;
  3163. }
  3164. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  3165. {
  3166. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  3167. /* if there's a quota refresh soon don't bother with slack */
  3168. if (runtime_refresh_within(cfs_b, min_left))
  3169. return;
  3170. hrtimer_start(&cfs_b->slack_timer,
  3171. ns_to_ktime(cfs_bandwidth_slack_period),
  3172. HRTIMER_MODE_REL);
  3173. }
  3174. /* we know any runtime found here is valid as update_curr() precedes return */
  3175. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3176. {
  3177. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3178. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  3179. if (slack_runtime <= 0)
  3180. return;
  3181. raw_spin_lock(&cfs_b->lock);
  3182. if (cfs_b->quota != RUNTIME_INF &&
  3183. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  3184. cfs_b->runtime += slack_runtime;
  3185. /* we are under rq->lock, defer unthrottling using a timer */
  3186. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  3187. !list_empty(&cfs_b->throttled_cfs_rq))
  3188. start_cfs_slack_bandwidth(cfs_b);
  3189. }
  3190. raw_spin_unlock(&cfs_b->lock);
  3191. /* even if it's not valid for return we don't want to try again */
  3192. cfs_rq->runtime_remaining -= slack_runtime;
  3193. }
  3194. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3195. {
  3196. if (!cfs_bandwidth_used())
  3197. return;
  3198. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  3199. return;
  3200. __return_cfs_rq_runtime(cfs_rq);
  3201. }
  3202. /*
  3203. * This is done with a timer (instead of inline with bandwidth return) since
  3204. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  3205. */
  3206. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  3207. {
  3208. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  3209. u64 expires;
  3210. /* confirm we're still not at a refresh boundary */
  3211. raw_spin_lock(&cfs_b->lock);
  3212. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
  3213. raw_spin_unlock(&cfs_b->lock);
  3214. return;
  3215. }
  3216. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
  3217. runtime = cfs_b->runtime;
  3218. expires = cfs_b->runtime_expires;
  3219. raw_spin_unlock(&cfs_b->lock);
  3220. if (!runtime)
  3221. return;
  3222. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  3223. raw_spin_lock(&cfs_b->lock);
  3224. if (expires == cfs_b->runtime_expires)
  3225. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  3226. raw_spin_unlock(&cfs_b->lock);
  3227. }
  3228. /*
  3229. * When a group wakes up we want to make sure that its quota is not already
  3230. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  3231. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  3232. */
  3233. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  3234. {
  3235. if (!cfs_bandwidth_used())
  3236. return;
  3237. /* an active group must be handled by the update_curr()->put() path */
  3238. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  3239. return;
  3240. /* ensure the group is not already throttled */
  3241. if (cfs_rq_throttled(cfs_rq))
  3242. return;
  3243. /* update runtime allocation */
  3244. account_cfs_rq_runtime(cfs_rq, 0);
  3245. if (cfs_rq->runtime_remaining <= 0)
  3246. throttle_cfs_rq(cfs_rq);
  3247. }
  3248. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  3249. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3250. {
  3251. if (!cfs_bandwidth_used())
  3252. return false;
  3253. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  3254. return false;
  3255. /*
  3256. * it's possible for a throttled entity to be forced into a running
  3257. * state (e.g. set_curr_task), in this case we're finished.
  3258. */
  3259. if (cfs_rq_throttled(cfs_rq))
  3260. return true;
  3261. throttle_cfs_rq(cfs_rq);
  3262. return true;
  3263. }
  3264. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  3265. {
  3266. struct cfs_bandwidth *cfs_b =
  3267. container_of(timer, struct cfs_bandwidth, slack_timer);
  3268. do_sched_cfs_slack_timer(cfs_b);
  3269. return HRTIMER_NORESTART;
  3270. }
  3271. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  3272. {
  3273. struct cfs_bandwidth *cfs_b =
  3274. container_of(timer, struct cfs_bandwidth, period_timer);
  3275. int overrun;
  3276. int idle = 0;
  3277. raw_spin_lock(&cfs_b->lock);
  3278. for (;;) {
  3279. overrun = hrtimer_forward_now(timer, cfs_b->period);
  3280. if (!overrun)
  3281. break;
  3282. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  3283. }
  3284. if (idle)
  3285. cfs_b->period_active = 0;
  3286. raw_spin_unlock(&cfs_b->lock);
  3287. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  3288. }
  3289. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3290. {
  3291. raw_spin_lock_init(&cfs_b->lock);
  3292. cfs_b->runtime = 0;
  3293. cfs_b->quota = RUNTIME_INF;
  3294. cfs_b->period = ns_to_ktime(default_cfs_period());
  3295. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  3296. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
  3297. cfs_b->period_timer.function = sched_cfs_period_timer;
  3298. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3299. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  3300. }
  3301. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3302. {
  3303. cfs_rq->runtime_enabled = 0;
  3304. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  3305. }
  3306. void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3307. {
  3308. lockdep_assert_held(&cfs_b->lock);
  3309. if (!cfs_b->period_active) {
  3310. cfs_b->period_active = 1;
  3311. hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
  3312. hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
  3313. }
  3314. }
  3315. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3316. {
  3317. /* init_cfs_bandwidth() was not called */
  3318. if (!cfs_b->throttled_cfs_rq.next)
  3319. return;
  3320. hrtimer_cancel(&cfs_b->period_timer);
  3321. hrtimer_cancel(&cfs_b->slack_timer);
  3322. }
  3323. static void __maybe_unused update_runtime_enabled(struct rq *rq)
  3324. {
  3325. struct cfs_rq *cfs_rq;
  3326. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3327. struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
  3328. raw_spin_lock(&cfs_b->lock);
  3329. cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
  3330. raw_spin_unlock(&cfs_b->lock);
  3331. }
  3332. }
  3333. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  3334. {
  3335. struct cfs_rq *cfs_rq;
  3336. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3337. if (!cfs_rq->runtime_enabled)
  3338. continue;
  3339. /*
  3340. * clock_task is not advancing so we just need to make sure
  3341. * there's some valid quota amount
  3342. */
  3343. cfs_rq->runtime_remaining = 1;
  3344. /*
  3345. * Offline rq is schedulable till cpu is completely disabled
  3346. * in take_cpu_down(), so we prevent new cfs throttling here.
  3347. */
  3348. cfs_rq->runtime_enabled = 0;
  3349. if (cfs_rq_throttled(cfs_rq))
  3350. unthrottle_cfs_rq(cfs_rq);
  3351. }
  3352. }
  3353. #else /* CONFIG_CFS_BANDWIDTH */
  3354. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  3355. {
  3356. return rq_clock_task(rq_of(cfs_rq));
  3357. }
  3358. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
  3359. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
  3360. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  3361. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  3362. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  3363. {
  3364. return 0;
  3365. }
  3366. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  3367. {
  3368. return 0;
  3369. }
  3370. static inline int throttled_lb_pair(struct task_group *tg,
  3371. int src_cpu, int dest_cpu)
  3372. {
  3373. return 0;
  3374. }
  3375. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  3376. #ifdef CONFIG_FAIR_GROUP_SCHED
  3377. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  3378. #endif
  3379. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  3380. {
  3381. return NULL;
  3382. }
  3383. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  3384. static inline void update_runtime_enabled(struct rq *rq) {}
  3385. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  3386. #endif /* CONFIG_CFS_BANDWIDTH */
  3387. /**************************************************
  3388. * CFS operations on tasks:
  3389. */
  3390. #ifdef CONFIG_SCHED_HRTICK
  3391. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3392. {
  3393. struct sched_entity *se = &p->se;
  3394. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3395. WARN_ON(task_rq(p) != rq);
  3396. if (cfs_rq->nr_running > 1) {
  3397. u64 slice = sched_slice(cfs_rq, se);
  3398. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  3399. s64 delta = slice - ran;
  3400. if (delta < 0) {
  3401. if (rq->curr == p)
  3402. resched_curr(rq);
  3403. return;
  3404. }
  3405. hrtick_start(rq, delta);
  3406. }
  3407. }
  3408. /*
  3409. * called from enqueue/dequeue and updates the hrtick when the
  3410. * current task is from our class and nr_running is low enough
  3411. * to matter.
  3412. */
  3413. static void hrtick_update(struct rq *rq)
  3414. {
  3415. struct task_struct *curr = rq->curr;
  3416. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  3417. return;
  3418. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  3419. hrtick_start_fair(rq, curr);
  3420. }
  3421. #else /* !CONFIG_SCHED_HRTICK */
  3422. static inline void
  3423. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3424. {
  3425. }
  3426. static inline void hrtick_update(struct rq *rq)
  3427. {
  3428. }
  3429. #endif
  3430. /*
  3431. * The enqueue_task method is called before nr_running is
  3432. * increased. Here we update the fair scheduling stats and
  3433. * then put the task into the rbtree:
  3434. */
  3435. static void
  3436. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3437. {
  3438. struct cfs_rq *cfs_rq;
  3439. struct sched_entity *se = &p->se;
  3440. for_each_sched_entity(se) {
  3441. if (se->on_rq)
  3442. break;
  3443. cfs_rq = cfs_rq_of(se);
  3444. enqueue_entity(cfs_rq, se, flags);
  3445. /*
  3446. * end evaluation on encountering a throttled cfs_rq
  3447. *
  3448. * note: in the case of encountering a throttled cfs_rq we will
  3449. * post the final h_nr_running increment below.
  3450. */
  3451. if (cfs_rq_throttled(cfs_rq))
  3452. break;
  3453. cfs_rq->h_nr_running++;
  3454. flags = ENQUEUE_WAKEUP;
  3455. }
  3456. for_each_sched_entity(se) {
  3457. cfs_rq = cfs_rq_of(se);
  3458. cfs_rq->h_nr_running++;
  3459. if (cfs_rq_throttled(cfs_rq))
  3460. break;
  3461. update_load_avg(se, 1);
  3462. update_cfs_shares(cfs_rq);
  3463. }
  3464. if (!se)
  3465. add_nr_running(rq, 1);
  3466. hrtick_update(rq);
  3467. }
  3468. static void set_next_buddy(struct sched_entity *se);
  3469. /*
  3470. * The dequeue_task method is called before nr_running is
  3471. * decreased. We remove the task from the rbtree and
  3472. * update the fair scheduling stats:
  3473. */
  3474. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3475. {
  3476. struct cfs_rq *cfs_rq;
  3477. struct sched_entity *se = &p->se;
  3478. int task_sleep = flags & DEQUEUE_SLEEP;
  3479. for_each_sched_entity(se) {
  3480. cfs_rq = cfs_rq_of(se);
  3481. dequeue_entity(cfs_rq, se, flags);
  3482. /*
  3483. * end evaluation on encountering a throttled cfs_rq
  3484. *
  3485. * note: in the case of encountering a throttled cfs_rq we will
  3486. * post the final h_nr_running decrement below.
  3487. */
  3488. if (cfs_rq_throttled(cfs_rq))
  3489. break;
  3490. cfs_rq->h_nr_running--;
  3491. /* Don't dequeue parent if it has other entities besides us */
  3492. if (cfs_rq->load.weight) {
  3493. /*
  3494. * Bias pick_next to pick a task from this cfs_rq, as
  3495. * p is sleeping when it is within its sched_slice.
  3496. */
  3497. if (task_sleep && parent_entity(se))
  3498. set_next_buddy(parent_entity(se));
  3499. /* avoid re-evaluating load for this entity */
  3500. se = parent_entity(se);
  3501. break;
  3502. }
  3503. flags |= DEQUEUE_SLEEP;
  3504. }
  3505. for_each_sched_entity(se) {
  3506. cfs_rq = cfs_rq_of(se);
  3507. cfs_rq->h_nr_running--;
  3508. if (cfs_rq_throttled(cfs_rq))
  3509. break;
  3510. update_load_avg(se, 1);
  3511. update_cfs_shares(cfs_rq);
  3512. }
  3513. if (!se)
  3514. sub_nr_running(rq, 1);
  3515. hrtick_update(rq);
  3516. }
  3517. #ifdef CONFIG_SMP
  3518. /*
  3519. * per rq 'load' arrray crap; XXX kill this.
  3520. */
  3521. /*
  3522. * The exact cpuload at various idx values, calculated at every tick would be
  3523. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  3524. *
  3525. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  3526. * on nth tick when cpu may be busy, then we have:
  3527. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3528. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  3529. *
  3530. * decay_load_missed() below does efficient calculation of
  3531. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3532. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  3533. *
  3534. * The calculation is approximated on a 128 point scale.
  3535. * degrade_zero_ticks is the number of ticks after which load at any
  3536. * particular idx is approximated to be zero.
  3537. * degrade_factor is a precomputed table, a row for each load idx.
  3538. * Each column corresponds to degradation factor for a power of two ticks,
  3539. * based on 128 point scale.
  3540. * Example:
  3541. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  3542. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  3543. *
  3544. * With this power of 2 load factors, we can degrade the load n times
  3545. * by looking at 1 bits in n and doing as many mult/shift instead of
  3546. * n mult/shifts needed by the exact degradation.
  3547. */
  3548. #define DEGRADE_SHIFT 7
  3549. static const unsigned char
  3550. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  3551. static const unsigned char
  3552. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  3553. {0, 0, 0, 0, 0, 0, 0, 0},
  3554. {64, 32, 8, 0, 0, 0, 0, 0},
  3555. {96, 72, 40, 12, 1, 0, 0},
  3556. {112, 98, 75, 43, 15, 1, 0},
  3557. {120, 112, 98, 76, 45, 16, 2} };
  3558. /*
  3559. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  3560. * would be when CPU is idle and so we just decay the old load without
  3561. * adding any new load.
  3562. */
  3563. static unsigned long
  3564. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  3565. {
  3566. int j = 0;
  3567. if (!missed_updates)
  3568. return load;
  3569. if (missed_updates >= degrade_zero_ticks[idx])
  3570. return 0;
  3571. if (idx == 1)
  3572. return load >> missed_updates;
  3573. while (missed_updates) {
  3574. if (missed_updates % 2)
  3575. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  3576. missed_updates >>= 1;
  3577. j++;
  3578. }
  3579. return load;
  3580. }
  3581. /*
  3582. * Update rq->cpu_load[] statistics. This function is usually called every
  3583. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  3584. * every tick. We fix it up based on jiffies.
  3585. */
  3586. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  3587. unsigned long pending_updates)
  3588. {
  3589. int i, scale;
  3590. this_rq->nr_load_updates++;
  3591. /* Update our load: */
  3592. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3593. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3594. unsigned long old_load, new_load;
  3595. /* scale is effectively 1 << i now, and >> i divides by scale */
  3596. old_load = this_rq->cpu_load[i];
  3597. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3598. new_load = this_load;
  3599. /*
  3600. * Round up the averaging division if load is increasing. This
  3601. * prevents us from getting stuck on 9 if the load is 10, for
  3602. * example.
  3603. */
  3604. if (new_load > old_load)
  3605. new_load += scale - 1;
  3606. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3607. }
  3608. sched_avg_update(this_rq);
  3609. }
  3610. /* Used instead of source_load when we know the type == 0 */
  3611. static unsigned long weighted_cpuload(const int cpu)
  3612. {
  3613. return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
  3614. }
  3615. #ifdef CONFIG_NO_HZ_COMMON
  3616. /*
  3617. * There is no sane way to deal with nohz on smp when using jiffies because the
  3618. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  3619. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  3620. *
  3621. * Therefore we cannot use the delta approach from the regular tick since that
  3622. * would seriously skew the load calculation. However we'll make do for those
  3623. * updates happening while idle (nohz_idle_balance) or coming out of idle
  3624. * (tick_nohz_idle_exit).
  3625. *
  3626. * This means we might still be one tick off for nohz periods.
  3627. */
  3628. /*
  3629. * Called from nohz_idle_balance() to update the load ratings before doing the
  3630. * idle balance.
  3631. */
  3632. static void update_idle_cpu_load(struct rq *this_rq)
  3633. {
  3634. unsigned long curr_jiffies = READ_ONCE(jiffies);
  3635. unsigned long load = weighted_cpuload(cpu_of(this_rq));
  3636. unsigned long pending_updates;
  3637. /*
  3638. * bail if there's load or we're actually up-to-date.
  3639. */
  3640. if (load || curr_jiffies == this_rq->last_load_update_tick)
  3641. return;
  3642. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3643. this_rq->last_load_update_tick = curr_jiffies;
  3644. __update_cpu_load(this_rq, load, pending_updates);
  3645. }
  3646. /*
  3647. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  3648. */
  3649. void update_cpu_load_nohz(void)
  3650. {
  3651. struct rq *this_rq = this_rq();
  3652. unsigned long curr_jiffies = READ_ONCE(jiffies);
  3653. unsigned long pending_updates;
  3654. if (curr_jiffies == this_rq->last_load_update_tick)
  3655. return;
  3656. raw_spin_lock(&this_rq->lock);
  3657. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3658. if (pending_updates) {
  3659. this_rq->last_load_update_tick = curr_jiffies;
  3660. /*
  3661. * We were idle, this means load 0, the current load might be
  3662. * !0 due to remote wakeups and the sort.
  3663. */
  3664. __update_cpu_load(this_rq, 0, pending_updates);
  3665. }
  3666. raw_spin_unlock(&this_rq->lock);
  3667. }
  3668. #endif /* CONFIG_NO_HZ */
  3669. /*
  3670. * Called from scheduler_tick()
  3671. */
  3672. void update_cpu_load_active(struct rq *this_rq)
  3673. {
  3674. unsigned long load = weighted_cpuload(cpu_of(this_rq));
  3675. /*
  3676. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  3677. */
  3678. this_rq->last_load_update_tick = jiffies;
  3679. __update_cpu_load(this_rq, load, 1);
  3680. }
  3681. /*
  3682. * Return a low guess at the load of a migration-source cpu weighted
  3683. * according to the scheduling class and "nice" value.
  3684. *
  3685. * We want to under-estimate the load of migration sources, to
  3686. * balance conservatively.
  3687. */
  3688. static unsigned long source_load(int cpu, int type)
  3689. {
  3690. struct rq *rq = cpu_rq(cpu);
  3691. unsigned long total = weighted_cpuload(cpu);
  3692. if (type == 0 || !sched_feat(LB_BIAS))
  3693. return total;
  3694. return min(rq->cpu_load[type-1], total);
  3695. }
  3696. /*
  3697. * Return a high guess at the load of a migration-target cpu weighted
  3698. * according to the scheduling class and "nice" value.
  3699. */
  3700. static unsigned long target_load(int cpu, int type)
  3701. {
  3702. struct rq *rq = cpu_rq(cpu);
  3703. unsigned long total = weighted_cpuload(cpu);
  3704. if (type == 0 || !sched_feat(LB_BIAS))
  3705. return total;
  3706. return max(rq->cpu_load[type-1], total);
  3707. }
  3708. static unsigned long capacity_of(int cpu)
  3709. {
  3710. return cpu_rq(cpu)->cpu_capacity;
  3711. }
  3712. static unsigned long capacity_orig_of(int cpu)
  3713. {
  3714. return cpu_rq(cpu)->cpu_capacity_orig;
  3715. }
  3716. static unsigned long cpu_avg_load_per_task(int cpu)
  3717. {
  3718. struct rq *rq = cpu_rq(cpu);
  3719. unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
  3720. unsigned long load_avg = weighted_cpuload(cpu);
  3721. if (nr_running)
  3722. return load_avg / nr_running;
  3723. return 0;
  3724. }
  3725. static void record_wakee(struct task_struct *p)
  3726. {
  3727. /*
  3728. * Rough decay (wiping) for cost saving, don't worry
  3729. * about the boundary, really active task won't care
  3730. * about the loss.
  3731. */
  3732. if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
  3733. current->wakee_flips >>= 1;
  3734. current->wakee_flip_decay_ts = jiffies;
  3735. }
  3736. if (current->last_wakee != p) {
  3737. current->last_wakee = p;
  3738. current->wakee_flips++;
  3739. }
  3740. }
  3741. static void task_waking_fair(struct task_struct *p)
  3742. {
  3743. struct sched_entity *se = &p->se;
  3744. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3745. u64 min_vruntime;
  3746. #ifndef CONFIG_64BIT
  3747. u64 min_vruntime_copy;
  3748. do {
  3749. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  3750. smp_rmb();
  3751. min_vruntime = cfs_rq->min_vruntime;
  3752. } while (min_vruntime != min_vruntime_copy);
  3753. #else
  3754. min_vruntime = cfs_rq->min_vruntime;
  3755. #endif
  3756. se->vruntime -= min_vruntime;
  3757. record_wakee(p);
  3758. }
  3759. #ifdef CONFIG_FAIR_GROUP_SCHED
  3760. /*
  3761. * effective_load() calculates the load change as seen from the root_task_group
  3762. *
  3763. * Adding load to a group doesn't make a group heavier, but can cause movement
  3764. * of group shares between cpus. Assuming the shares were perfectly aligned one
  3765. * can calculate the shift in shares.
  3766. *
  3767. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  3768. * on this @cpu and results in a total addition (subtraction) of @wg to the
  3769. * total group weight.
  3770. *
  3771. * Given a runqueue weight distribution (rw_i) we can compute a shares
  3772. * distribution (s_i) using:
  3773. *
  3774. * s_i = rw_i / \Sum rw_j (1)
  3775. *
  3776. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  3777. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  3778. * shares distribution (s_i):
  3779. *
  3780. * rw_i = { 2, 4, 1, 0 }
  3781. * s_i = { 2/7, 4/7, 1/7, 0 }
  3782. *
  3783. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  3784. * task used to run on and the CPU the waker is running on), we need to
  3785. * compute the effect of waking a task on either CPU and, in case of a sync
  3786. * wakeup, compute the effect of the current task going to sleep.
  3787. *
  3788. * So for a change of @wl to the local @cpu with an overall group weight change
  3789. * of @wl we can compute the new shares distribution (s'_i) using:
  3790. *
  3791. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  3792. *
  3793. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  3794. * differences in waking a task to CPU 0. The additional task changes the
  3795. * weight and shares distributions like:
  3796. *
  3797. * rw'_i = { 3, 4, 1, 0 }
  3798. * s'_i = { 3/8, 4/8, 1/8, 0 }
  3799. *
  3800. * We can then compute the difference in effective weight by using:
  3801. *
  3802. * dw_i = S * (s'_i - s_i) (3)
  3803. *
  3804. * Where 'S' is the group weight as seen by its parent.
  3805. *
  3806. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  3807. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  3808. * 4/7) times the weight of the group.
  3809. */
  3810. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3811. {
  3812. struct sched_entity *se = tg->se[cpu];
  3813. if (!tg->parent) /* the trivial, non-cgroup case */
  3814. return wl;
  3815. for_each_sched_entity(se) {
  3816. long w, W;
  3817. tg = se->my_q->tg;
  3818. /*
  3819. * W = @wg + \Sum rw_j
  3820. */
  3821. W = wg + calc_tg_weight(tg, se->my_q);
  3822. /*
  3823. * w = rw_i + @wl
  3824. */
  3825. w = cfs_rq_load_avg(se->my_q) + wl;
  3826. /*
  3827. * wl = S * s'_i; see (2)
  3828. */
  3829. if (W > 0 && w < W)
  3830. wl = (w * (long)tg->shares) / W;
  3831. else
  3832. wl = tg->shares;
  3833. /*
  3834. * Per the above, wl is the new se->load.weight value; since
  3835. * those are clipped to [MIN_SHARES, ...) do so now. See
  3836. * calc_cfs_shares().
  3837. */
  3838. if (wl < MIN_SHARES)
  3839. wl = MIN_SHARES;
  3840. /*
  3841. * wl = dw_i = S * (s'_i - s_i); see (3)
  3842. */
  3843. wl -= se->avg.load_avg;
  3844. /*
  3845. * Recursively apply this logic to all parent groups to compute
  3846. * the final effective load change on the root group. Since
  3847. * only the @tg group gets extra weight, all parent groups can
  3848. * only redistribute existing shares. @wl is the shift in shares
  3849. * resulting from this level per the above.
  3850. */
  3851. wg = 0;
  3852. }
  3853. return wl;
  3854. }
  3855. #else
  3856. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3857. {
  3858. return wl;
  3859. }
  3860. #endif
  3861. /*
  3862. * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
  3863. * A waker of many should wake a different task than the one last awakened
  3864. * at a frequency roughly N times higher than one of its wakees. In order
  3865. * to determine whether we should let the load spread vs consolodating to
  3866. * shared cache, we look for a minimum 'flip' frequency of llc_size in one
  3867. * partner, and a factor of lls_size higher frequency in the other. With
  3868. * both conditions met, we can be relatively sure that the relationship is
  3869. * non-monogamous, with partner count exceeding socket size. Waker/wakee
  3870. * being client/server, worker/dispatcher, interrupt source or whatever is
  3871. * irrelevant, spread criteria is apparent partner count exceeds socket size.
  3872. */
  3873. static int wake_wide(struct task_struct *p)
  3874. {
  3875. unsigned int master = current->wakee_flips;
  3876. unsigned int slave = p->wakee_flips;
  3877. int factor = this_cpu_read(sd_llc_size);
  3878. if (master < slave)
  3879. swap(master, slave);
  3880. if (slave < factor || master < slave * factor)
  3881. return 0;
  3882. return 1;
  3883. }
  3884. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  3885. {
  3886. s64 this_load, load;
  3887. s64 this_eff_load, prev_eff_load;
  3888. int idx, this_cpu, prev_cpu;
  3889. struct task_group *tg;
  3890. unsigned long weight;
  3891. int balanced;
  3892. idx = sd->wake_idx;
  3893. this_cpu = smp_processor_id();
  3894. prev_cpu = task_cpu(p);
  3895. load = source_load(prev_cpu, idx);
  3896. this_load = target_load(this_cpu, idx);
  3897. /*
  3898. * If sync wakeup then subtract the (maximum possible)
  3899. * effect of the currently running task from the load
  3900. * of the current CPU:
  3901. */
  3902. if (sync) {
  3903. tg = task_group(current);
  3904. weight = current->se.avg.load_avg;
  3905. this_load += effective_load(tg, this_cpu, -weight, -weight);
  3906. load += effective_load(tg, prev_cpu, 0, -weight);
  3907. }
  3908. tg = task_group(p);
  3909. weight = p->se.avg.load_avg;
  3910. /*
  3911. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  3912. * due to the sync cause above having dropped this_load to 0, we'll
  3913. * always have an imbalance, but there's really nothing you can do
  3914. * about that, so that's good too.
  3915. *
  3916. * Otherwise check if either cpus are near enough in load to allow this
  3917. * task to be woken on this_cpu.
  3918. */
  3919. this_eff_load = 100;
  3920. this_eff_load *= capacity_of(prev_cpu);
  3921. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  3922. prev_eff_load *= capacity_of(this_cpu);
  3923. if (this_load > 0) {
  3924. this_eff_load *= this_load +
  3925. effective_load(tg, this_cpu, weight, weight);
  3926. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  3927. }
  3928. balanced = this_eff_load <= prev_eff_load;
  3929. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  3930. if (!balanced)
  3931. return 0;
  3932. schedstat_inc(sd, ttwu_move_affine);
  3933. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  3934. return 1;
  3935. }
  3936. /*
  3937. * find_idlest_group finds and returns the least busy CPU group within the
  3938. * domain.
  3939. */
  3940. static struct sched_group *
  3941. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  3942. int this_cpu, int sd_flag)
  3943. {
  3944. struct sched_group *idlest = NULL, *group = sd->groups;
  3945. unsigned long min_load = ULONG_MAX, this_load = 0;
  3946. int load_idx = sd->forkexec_idx;
  3947. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  3948. if (sd_flag & SD_BALANCE_WAKE)
  3949. load_idx = sd->wake_idx;
  3950. do {
  3951. unsigned long load, avg_load;
  3952. int local_group;
  3953. int i;
  3954. /* Skip over this group if it has no CPUs allowed */
  3955. if (!cpumask_intersects(sched_group_cpus(group),
  3956. tsk_cpus_allowed(p)))
  3957. continue;
  3958. local_group = cpumask_test_cpu(this_cpu,
  3959. sched_group_cpus(group));
  3960. /* Tally up the load of all CPUs in the group */
  3961. avg_load = 0;
  3962. for_each_cpu(i, sched_group_cpus(group)) {
  3963. /* Bias balancing toward cpus of our domain */
  3964. if (local_group)
  3965. load = source_load(i, load_idx);
  3966. else
  3967. load = target_load(i, load_idx);
  3968. avg_load += load;
  3969. }
  3970. /* Adjust by relative CPU capacity of the group */
  3971. avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
  3972. if (local_group) {
  3973. this_load = avg_load;
  3974. } else if (avg_load < min_load) {
  3975. min_load = avg_load;
  3976. idlest = group;
  3977. }
  3978. } while (group = group->next, group != sd->groups);
  3979. if (!idlest || 100*this_load < imbalance*min_load)
  3980. return NULL;
  3981. return idlest;
  3982. }
  3983. /*
  3984. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  3985. */
  3986. static int
  3987. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  3988. {
  3989. unsigned long load, min_load = ULONG_MAX;
  3990. unsigned int min_exit_latency = UINT_MAX;
  3991. u64 latest_idle_timestamp = 0;
  3992. int least_loaded_cpu = this_cpu;
  3993. int shallowest_idle_cpu = -1;
  3994. int i;
  3995. /* Traverse only the allowed CPUs */
  3996. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  3997. if (idle_cpu(i)) {
  3998. struct rq *rq = cpu_rq(i);
  3999. struct cpuidle_state *idle = idle_get_state(rq);
  4000. if (idle && idle->exit_latency < min_exit_latency) {
  4001. /*
  4002. * We give priority to a CPU whose idle state
  4003. * has the smallest exit latency irrespective
  4004. * of any idle timestamp.
  4005. */
  4006. min_exit_latency = idle->exit_latency;
  4007. latest_idle_timestamp = rq->idle_stamp;
  4008. shallowest_idle_cpu = i;
  4009. } else if ((!idle || idle->exit_latency == min_exit_latency) &&
  4010. rq->idle_stamp > latest_idle_timestamp) {
  4011. /*
  4012. * If equal or no active idle state, then
  4013. * the most recently idled CPU might have
  4014. * a warmer cache.
  4015. */
  4016. latest_idle_timestamp = rq->idle_stamp;
  4017. shallowest_idle_cpu = i;
  4018. }
  4019. } else if (shallowest_idle_cpu == -1) {
  4020. load = weighted_cpuload(i);
  4021. if (load < min_load || (load == min_load && i == this_cpu)) {
  4022. min_load = load;
  4023. least_loaded_cpu = i;
  4024. }
  4025. }
  4026. }
  4027. return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
  4028. }
  4029. /*
  4030. * Try and locate an idle CPU in the sched_domain.
  4031. */
  4032. static int select_idle_sibling(struct task_struct *p, int target)
  4033. {
  4034. struct sched_domain *sd;
  4035. struct sched_group *sg;
  4036. int i = task_cpu(p);
  4037. if (idle_cpu(target))
  4038. return target;
  4039. /*
  4040. * If the prevous cpu is cache affine and idle, don't be stupid.
  4041. */
  4042. if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
  4043. return i;
  4044. /*
  4045. * Otherwise, iterate the domains and find an elegible idle cpu.
  4046. */
  4047. sd = rcu_dereference(per_cpu(sd_llc, target));
  4048. for_each_lower_domain(sd) {
  4049. sg = sd->groups;
  4050. do {
  4051. if (!cpumask_intersects(sched_group_cpus(sg),
  4052. tsk_cpus_allowed(p)))
  4053. goto next;
  4054. for_each_cpu(i, sched_group_cpus(sg)) {
  4055. if (i == target || !idle_cpu(i))
  4056. goto next;
  4057. }
  4058. target = cpumask_first_and(sched_group_cpus(sg),
  4059. tsk_cpus_allowed(p));
  4060. goto done;
  4061. next:
  4062. sg = sg->next;
  4063. } while (sg != sd->groups);
  4064. }
  4065. done:
  4066. return target;
  4067. }
  4068. /*
  4069. * cpu_util returns the amount of capacity of a CPU that is used by CFS
  4070. * tasks. The unit of the return value must be the one of capacity so we can
  4071. * compare the utilization with the capacity of the CPU that is available for
  4072. * CFS task (ie cpu_capacity).
  4073. *
  4074. * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
  4075. * recent utilization of currently non-runnable tasks on a CPU. It represents
  4076. * the amount of utilization of a CPU in the range [0..capacity_orig] where
  4077. * capacity_orig is the cpu_capacity available at the highest frequency
  4078. * (arch_scale_freq_capacity()).
  4079. * The utilization of a CPU converges towards a sum equal to or less than the
  4080. * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
  4081. * the running time on this CPU scaled by capacity_curr.
  4082. *
  4083. * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
  4084. * higher than capacity_orig because of unfortunate rounding in
  4085. * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
  4086. * the average stabilizes with the new running time. We need to check that the
  4087. * utilization stays within the range of [0..capacity_orig] and cap it if
  4088. * necessary. Without utilization capping, a group could be seen as overloaded
  4089. * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
  4090. * available capacity. We allow utilization to overshoot capacity_curr (but not
  4091. * capacity_orig) as it useful for predicting the capacity required after task
  4092. * migrations (scheduler-driven DVFS).
  4093. */
  4094. static int cpu_util(int cpu)
  4095. {
  4096. unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
  4097. unsigned long capacity = capacity_orig_of(cpu);
  4098. return (util >= capacity) ? capacity : util;
  4099. }
  4100. /*
  4101. * select_task_rq_fair: Select target runqueue for the waking task in domains
  4102. * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
  4103. * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
  4104. *
  4105. * Balances load by selecting the idlest cpu in the idlest group, or under
  4106. * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
  4107. *
  4108. * Returns the target cpu number.
  4109. *
  4110. * preempt must be disabled.
  4111. */
  4112. static int
  4113. select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
  4114. {
  4115. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  4116. int cpu = smp_processor_id();
  4117. int new_cpu = prev_cpu;
  4118. int want_affine = 0;
  4119. int sync = wake_flags & WF_SYNC;
  4120. if (sd_flag & SD_BALANCE_WAKE)
  4121. want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
  4122. rcu_read_lock();
  4123. for_each_domain(cpu, tmp) {
  4124. if (!(tmp->flags & SD_LOAD_BALANCE))
  4125. break;
  4126. /*
  4127. * If both cpu and prev_cpu are part of this domain,
  4128. * cpu is a valid SD_WAKE_AFFINE target.
  4129. */
  4130. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  4131. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  4132. affine_sd = tmp;
  4133. break;
  4134. }
  4135. if (tmp->flags & sd_flag)
  4136. sd = tmp;
  4137. else if (!want_affine)
  4138. break;
  4139. }
  4140. if (affine_sd) {
  4141. sd = NULL; /* Prefer wake_affine over balance flags */
  4142. if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
  4143. new_cpu = cpu;
  4144. }
  4145. if (!sd) {
  4146. if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
  4147. new_cpu = select_idle_sibling(p, new_cpu);
  4148. } else while (sd) {
  4149. struct sched_group *group;
  4150. int weight;
  4151. if (!(sd->flags & sd_flag)) {
  4152. sd = sd->child;
  4153. continue;
  4154. }
  4155. group = find_idlest_group(sd, p, cpu, sd_flag);
  4156. if (!group) {
  4157. sd = sd->child;
  4158. continue;
  4159. }
  4160. new_cpu = find_idlest_cpu(group, p, cpu);
  4161. if (new_cpu == -1 || new_cpu == cpu) {
  4162. /* Now try balancing at a lower domain level of cpu */
  4163. sd = sd->child;
  4164. continue;
  4165. }
  4166. /* Now try balancing at a lower domain level of new_cpu */
  4167. cpu = new_cpu;
  4168. weight = sd->span_weight;
  4169. sd = NULL;
  4170. for_each_domain(cpu, tmp) {
  4171. if (weight <= tmp->span_weight)
  4172. break;
  4173. if (tmp->flags & sd_flag)
  4174. sd = tmp;
  4175. }
  4176. /* while loop will break here if sd == NULL */
  4177. }
  4178. rcu_read_unlock();
  4179. return new_cpu;
  4180. }
  4181. /*
  4182. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  4183. * cfs_rq_of(p) references at time of call are still valid and identify the
  4184. * previous cpu. However, the caller only guarantees p->pi_lock is held; no
  4185. * other assumptions, including the state of rq->lock, should be made.
  4186. */
  4187. static void migrate_task_rq_fair(struct task_struct *p)
  4188. {
  4189. /*
  4190. * We are supposed to update the task to "current" time, then its up to date
  4191. * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
  4192. * what current time is, so simply throw away the out-of-date time. This
  4193. * will result in the wakee task is less decayed, but giving the wakee more
  4194. * load sounds not bad.
  4195. */
  4196. remove_entity_load_avg(&p->se);
  4197. /* Tell new CPU we are migrated */
  4198. p->se.avg.last_update_time = 0;
  4199. /* We have migrated, no longer consider this task hot */
  4200. p->se.exec_start = 0;
  4201. }
  4202. static void task_dead_fair(struct task_struct *p)
  4203. {
  4204. remove_entity_load_avg(&p->se);
  4205. }
  4206. #endif /* CONFIG_SMP */
  4207. static unsigned long
  4208. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  4209. {
  4210. unsigned long gran = sysctl_sched_wakeup_granularity;
  4211. /*
  4212. * Since its curr running now, convert the gran from real-time
  4213. * to virtual-time in his units.
  4214. *
  4215. * By using 'se' instead of 'curr' we penalize light tasks, so
  4216. * they get preempted easier. That is, if 'se' < 'curr' then
  4217. * the resulting gran will be larger, therefore penalizing the
  4218. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  4219. * be smaller, again penalizing the lighter task.
  4220. *
  4221. * This is especially important for buddies when the leftmost
  4222. * task is higher priority than the buddy.
  4223. */
  4224. return calc_delta_fair(gran, se);
  4225. }
  4226. /*
  4227. * Should 'se' preempt 'curr'.
  4228. *
  4229. * |s1
  4230. * |s2
  4231. * |s3
  4232. * g
  4233. * |<--->|c
  4234. *
  4235. * w(c, s1) = -1
  4236. * w(c, s2) = 0
  4237. * w(c, s3) = 1
  4238. *
  4239. */
  4240. static int
  4241. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  4242. {
  4243. s64 gran, vdiff = curr->vruntime - se->vruntime;
  4244. if (vdiff <= 0)
  4245. return -1;
  4246. gran = wakeup_gran(curr, se);
  4247. if (vdiff > gran)
  4248. return 1;
  4249. return 0;
  4250. }
  4251. static void set_last_buddy(struct sched_entity *se)
  4252. {
  4253. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  4254. return;
  4255. for_each_sched_entity(se)
  4256. cfs_rq_of(se)->last = se;
  4257. }
  4258. static void set_next_buddy(struct sched_entity *se)
  4259. {
  4260. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  4261. return;
  4262. for_each_sched_entity(se)
  4263. cfs_rq_of(se)->next = se;
  4264. }
  4265. static void set_skip_buddy(struct sched_entity *se)
  4266. {
  4267. for_each_sched_entity(se)
  4268. cfs_rq_of(se)->skip = se;
  4269. }
  4270. /*
  4271. * Preempt the current task with a newly woken task if needed:
  4272. */
  4273. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  4274. {
  4275. struct task_struct *curr = rq->curr;
  4276. struct sched_entity *se = &curr->se, *pse = &p->se;
  4277. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  4278. int scale = cfs_rq->nr_running >= sched_nr_latency;
  4279. int next_buddy_marked = 0;
  4280. if (unlikely(se == pse))
  4281. return;
  4282. /*
  4283. * This is possible from callers such as attach_tasks(), in which we
  4284. * unconditionally check_prempt_curr() after an enqueue (which may have
  4285. * lead to a throttle). This both saves work and prevents false
  4286. * next-buddy nomination below.
  4287. */
  4288. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  4289. return;
  4290. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  4291. set_next_buddy(pse);
  4292. next_buddy_marked = 1;
  4293. }
  4294. /*
  4295. * We can come here with TIF_NEED_RESCHED already set from new task
  4296. * wake up path.
  4297. *
  4298. * Note: this also catches the edge-case of curr being in a throttled
  4299. * group (e.g. via set_curr_task), since update_curr() (in the
  4300. * enqueue of curr) will have resulted in resched being set. This
  4301. * prevents us from potentially nominating it as a false LAST_BUDDY
  4302. * below.
  4303. */
  4304. if (test_tsk_need_resched(curr))
  4305. return;
  4306. /* Idle tasks are by definition preempted by non-idle tasks. */
  4307. if (unlikely(curr->policy == SCHED_IDLE) &&
  4308. likely(p->policy != SCHED_IDLE))
  4309. goto preempt;
  4310. /*
  4311. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  4312. * is driven by the tick):
  4313. */
  4314. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  4315. return;
  4316. find_matching_se(&se, &pse);
  4317. update_curr(cfs_rq_of(se));
  4318. BUG_ON(!pse);
  4319. if (wakeup_preempt_entity(se, pse) == 1) {
  4320. /*
  4321. * Bias pick_next to pick the sched entity that is
  4322. * triggering this preemption.
  4323. */
  4324. if (!next_buddy_marked)
  4325. set_next_buddy(pse);
  4326. goto preempt;
  4327. }
  4328. return;
  4329. preempt:
  4330. resched_curr(rq);
  4331. /*
  4332. * Only set the backward buddy when the current task is still
  4333. * on the rq. This can happen when a wakeup gets interleaved
  4334. * with schedule on the ->pre_schedule() or idle_balance()
  4335. * point, either of which can * drop the rq lock.
  4336. *
  4337. * Also, during early boot the idle thread is in the fair class,
  4338. * for obvious reasons its a bad idea to schedule back to it.
  4339. */
  4340. if (unlikely(!se->on_rq || curr == rq->idle))
  4341. return;
  4342. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  4343. set_last_buddy(se);
  4344. }
  4345. static struct task_struct *
  4346. pick_next_task_fair(struct rq *rq, struct task_struct *prev)
  4347. {
  4348. struct cfs_rq *cfs_rq = &rq->cfs;
  4349. struct sched_entity *se;
  4350. struct task_struct *p;
  4351. int new_tasks;
  4352. again:
  4353. #ifdef CONFIG_FAIR_GROUP_SCHED
  4354. if (!cfs_rq->nr_running)
  4355. goto idle;
  4356. if (prev->sched_class != &fair_sched_class)
  4357. goto simple;
  4358. /*
  4359. * Because of the set_next_buddy() in dequeue_task_fair() it is rather
  4360. * likely that a next task is from the same cgroup as the current.
  4361. *
  4362. * Therefore attempt to avoid putting and setting the entire cgroup
  4363. * hierarchy, only change the part that actually changes.
  4364. */
  4365. do {
  4366. struct sched_entity *curr = cfs_rq->curr;
  4367. /*
  4368. * Since we got here without doing put_prev_entity() we also
  4369. * have to consider cfs_rq->curr. If it is still a runnable
  4370. * entity, update_curr() will update its vruntime, otherwise
  4371. * forget we've ever seen it.
  4372. */
  4373. if (curr) {
  4374. if (curr->on_rq)
  4375. update_curr(cfs_rq);
  4376. else
  4377. curr = NULL;
  4378. /*
  4379. * This call to check_cfs_rq_runtime() will do the
  4380. * throttle and dequeue its entity in the parent(s).
  4381. * Therefore the 'simple' nr_running test will indeed
  4382. * be correct.
  4383. */
  4384. if (unlikely(check_cfs_rq_runtime(cfs_rq)))
  4385. goto simple;
  4386. }
  4387. se = pick_next_entity(cfs_rq, curr);
  4388. cfs_rq = group_cfs_rq(se);
  4389. } while (cfs_rq);
  4390. p = task_of(se);
  4391. /*
  4392. * Since we haven't yet done put_prev_entity and if the selected task
  4393. * is a different task than we started out with, try and touch the
  4394. * least amount of cfs_rqs.
  4395. */
  4396. if (prev != p) {
  4397. struct sched_entity *pse = &prev->se;
  4398. while (!(cfs_rq = is_same_group(se, pse))) {
  4399. int se_depth = se->depth;
  4400. int pse_depth = pse->depth;
  4401. if (se_depth <= pse_depth) {
  4402. put_prev_entity(cfs_rq_of(pse), pse);
  4403. pse = parent_entity(pse);
  4404. }
  4405. if (se_depth >= pse_depth) {
  4406. set_next_entity(cfs_rq_of(se), se);
  4407. se = parent_entity(se);
  4408. }
  4409. }
  4410. put_prev_entity(cfs_rq, pse);
  4411. set_next_entity(cfs_rq, se);
  4412. }
  4413. if (hrtick_enabled(rq))
  4414. hrtick_start_fair(rq, p);
  4415. return p;
  4416. simple:
  4417. cfs_rq = &rq->cfs;
  4418. #endif
  4419. if (!cfs_rq->nr_running)
  4420. goto idle;
  4421. put_prev_task(rq, prev);
  4422. do {
  4423. se = pick_next_entity(cfs_rq, NULL);
  4424. set_next_entity(cfs_rq, se);
  4425. cfs_rq = group_cfs_rq(se);
  4426. } while (cfs_rq);
  4427. p = task_of(se);
  4428. if (hrtick_enabled(rq))
  4429. hrtick_start_fair(rq, p);
  4430. return p;
  4431. idle:
  4432. /*
  4433. * This is OK, because current is on_cpu, which avoids it being picked
  4434. * for load-balance and preemption/IRQs are still disabled avoiding
  4435. * further scheduler activity on it and we're being very careful to
  4436. * re-start the picking loop.
  4437. */
  4438. lockdep_unpin_lock(&rq->lock);
  4439. new_tasks = idle_balance(rq);
  4440. lockdep_pin_lock(&rq->lock);
  4441. /*
  4442. * Because idle_balance() releases (and re-acquires) rq->lock, it is
  4443. * possible for any higher priority task to appear. In that case we
  4444. * must re-start the pick_next_entity() loop.
  4445. */
  4446. if (new_tasks < 0)
  4447. return RETRY_TASK;
  4448. if (new_tasks > 0)
  4449. goto again;
  4450. return NULL;
  4451. }
  4452. /*
  4453. * Account for a descheduled task:
  4454. */
  4455. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  4456. {
  4457. struct sched_entity *se = &prev->se;
  4458. struct cfs_rq *cfs_rq;
  4459. for_each_sched_entity(se) {
  4460. cfs_rq = cfs_rq_of(se);
  4461. put_prev_entity(cfs_rq, se);
  4462. }
  4463. }
  4464. /*
  4465. * sched_yield() is very simple
  4466. *
  4467. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  4468. */
  4469. static void yield_task_fair(struct rq *rq)
  4470. {
  4471. struct task_struct *curr = rq->curr;
  4472. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  4473. struct sched_entity *se = &curr->se;
  4474. /*
  4475. * Are we the only task in the tree?
  4476. */
  4477. if (unlikely(rq->nr_running == 1))
  4478. return;
  4479. clear_buddies(cfs_rq, se);
  4480. if (curr->policy != SCHED_BATCH) {
  4481. update_rq_clock(rq);
  4482. /*
  4483. * Update run-time statistics of the 'current'.
  4484. */
  4485. update_curr(cfs_rq);
  4486. /*
  4487. * Tell update_rq_clock() that we've just updated,
  4488. * so we don't do microscopic update in schedule()
  4489. * and double the fastpath cost.
  4490. */
  4491. rq_clock_skip_update(rq, true);
  4492. }
  4493. set_skip_buddy(se);
  4494. }
  4495. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  4496. {
  4497. struct sched_entity *se = &p->se;
  4498. /* throttled hierarchies are not runnable */
  4499. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  4500. return false;
  4501. /* Tell the scheduler that we'd really like pse to run next. */
  4502. set_next_buddy(se);
  4503. yield_task_fair(rq);
  4504. return true;
  4505. }
  4506. #ifdef CONFIG_SMP
  4507. /**************************************************
  4508. * Fair scheduling class load-balancing methods.
  4509. *
  4510. * BASICS
  4511. *
  4512. * The purpose of load-balancing is to achieve the same basic fairness the
  4513. * per-cpu scheduler provides, namely provide a proportional amount of compute
  4514. * time to each task. This is expressed in the following equation:
  4515. *
  4516. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  4517. *
  4518. * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
  4519. * W_i,0 is defined as:
  4520. *
  4521. * W_i,0 = \Sum_j w_i,j (2)
  4522. *
  4523. * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
  4524. * is derived from the nice value as per prio_to_weight[].
  4525. *
  4526. * The weight average is an exponential decay average of the instantaneous
  4527. * weight:
  4528. *
  4529. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  4530. *
  4531. * C_i is the compute capacity of cpu i, typically it is the
  4532. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  4533. * can also include other factors [XXX].
  4534. *
  4535. * To achieve this balance we define a measure of imbalance which follows
  4536. * directly from (1):
  4537. *
  4538. * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
  4539. *
  4540. * We them move tasks around to minimize the imbalance. In the continuous
  4541. * function space it is obvious this converges, in the discrete case we get
  4542. * a few fun cases generally called infeasible weight scenarios.
  4543. *
  4544. * [XXX expand on:
  4545. * - infeasible weights;
  4546. * - local vs global optima in the discrete case. ]
  4547. *
  4548. *
  4549. * SCHED DOMAINS
  4550. *
  4551. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  4552. * for all i,j solution, we create a tree of cpus that follows the hardware
  4553. * topology where each level pairs two lower groups (or better). This results
  4554. * in O(log n) layers. Furthermore we reduce the number of cpus going up the
  4555. * tree to only the first of the previous level and we decrease the frequency
  4556. * of load-balance at each level inv. proportional to the number of cpus in
  4557. * the groups.
  4558. *
  4559. * This yields:
  4560. *
  4561. * log_2 n 1 n
  4562. * \Sum { --- * --- * 2^i } = O(n) (5)
  4563. * i = 0 2^i 2^i
  4564. * `- size of each group
  4565. * | | `- number of cpus doing load-balance
  4566. * | `- freq
  4567. * `- sum over all levels
  4568. *
  4569. * Coupled with a limit on how many tasks we can migrate every balance pass,
  4570. * this makes (5) the runtime complexity of the balancer.
  4571. *
  4572. * An important property here is that each CPU is still (indirectly) connected
  4573. * to every other cpu in at most O(log n) steps:
  4574. *
  4575. * The adjacency matrix of the resulting graph is given by:
  4576. *
  4577. * log_2 n
  4578. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  4579. * k = 0
  4580. *
  4581. * And you'll find that:
  4582. *
  4583. * A^(log_2 n)_i,j != 0 for all i,j (7)
  4584. *
  4585. * Showing there's indeed a path between every cpu in at most O(log n) steps.
  4586. * The task movement gives a factor of O(m), giving a convergence complexity
  4587. * of:
  4588. *
  4589. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  4590. *
  4591. *
  4592. * WORK CONSERVING
  4593. *
  4594. * In order to avoid CPUs going idle while there's still work to do, new idle
  4595. * balancing is more aggressive and has the newly idle cpu iterate up the domain
  4596. * tree itself instead of relying on other CPUs to bring it work.
  4597. *
  4598. * This adds some complexity to both (5) and (8) but it reduces the total idle
  4599. * time.
  4600. *
  4601. * [XXX more?]
  4602. *
  4603. *
  4604. * CGROUPS
  4605. *
  4606. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  4607. *
  4608. * s_k,i
  4609. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  4610. * S_k
  4611. *
  4612. * Where
  4613. *
  4614. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  4615. *
  4616. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
  4617. *
  4618. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  4619. * property.
  4620. *
  4621. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  4622. * rewrite all of this once again.]
  4623. */
  4624. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  4625. enum fbq_type { regular, remote, all };
  4626. #define LBF_ALL_PINNED 0x01
  4627. #define LBF_NEED_BREAK 0x02
  4628. #define LBF_DST_PINNED 0x04
  4629. #define LBF_SOME_PINNED 0x08
  4630. struct lb_env {
  4631. struct sched_domain *sd;
  4632. struct rq *src_rq;
  4633. int src_cpu;
  4634. int dst_cpu;
  4635. struct rq *dst_rq;
  4636. struct cpumask *dst_grpmask;
  4637. int new_dst_cpu;
  4638. enum cpu_idle_type idle;
  4639. long imbalance;
  4640. /* The set of CPUs under consideration for load-balancing */
  4641. struct cpumask *cpus;
  4642. unsigned int flags;
  4643. unsigned int loop;
  4644. unsigned int loop_break;
  4645. unsigned int loop_max;
  4646. enum fbq_type fbq_type;
  4647. struct list_head tasks;
  4648. };
  4649. /*
  4650. * Is this task likely cache-hot:
  4651. */
  4652. static int task_hot(struct task_struct *p, struct lb_env *env)
  4653. {
  4654. s64 delta;
  4655. lockdep_assert_held(&env->src_rq->lock);
  4656. if (p->sched_class != &fair_sched_class)
  4657. return 0;
  4658. if (unlikely(p->policy == SCHED_IDLE))
  4659. return 0;
  4660. /*
  4661. * Buddy candidates are cache hot:
  4662. */
  4663. if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
  4664. (&p->se == cfs_rq_of(&p->se)->next ||
  4665. &p->se == cfs_rq_of(&p->se)->last))
  4666. return 1;
  4667. if (sysctl_sched_migration_cost == -1)
  4668. return 1;
  4669. if (sysctl_sched_migration_cost == 0)
  4670. return 0;
  4671. delta = rq_clock_task(env->src_rq) - p->se.exec_start;
  4672. return delta < (s64)sysctl_sched_migration_cost;
  4673. }
  4674. #ifdef CONFIG_NUMA_BALANCING
  4675. /*
  4676. * Returns 1, if task migration degrades locality
  4677. * Returns 0, if task migration improves locality i.e migration preferred.
  4678. * Returns -1, if task migration is not affected by locality.
  4679. */
  4680. static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
  4681. {
  4682. struct numa_group *numa_group = rcu_dereference(p->numa_group);
  4683. unsigned long src_faults, dst_faults;
  4684. int src_nid, dst_nid;
  4685. if (!static_branch_likely(&sched_numa_balancing))
  4686. return -1;
  4687. if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
  4688. return -1;
  4689. src_nid = cpu_to_node(env->src_cpu);
  4690. dst_nid = cpu_to_node(env->dst_cpu);
  4691. if (src_nid == dst_nid)
  4692. return -1;
  4693. /* Migrating away from the preferred node is always bad. */
  4694. if (src_nid == p->numa_preferred_nid) {
  4695. if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
  4696. return 1;
  4697. else
  4698. return -1;
  4699. }
  4700. /* Encourage migration to the preferred node. */
  4701. if (dst_nid == p->numa_preferred_nid)
  4702. return 0;
  4703. if (numa_group) {
  4704. src_faults = group_faults(p, src_nid);
  4705. dst_faults = group_faults(p, dst_nid);
  4706. } else {
  4707. src_faults = task_faults(p, src_nid);
  4708. dst_faults = task_faults(p, dst_nid);
  4709. }
  4710. return dst_faults < src_faults;
  4711. }
  4712. #else
  4713. static inline int migrate_degrades_locality(struct task_struct *p,
  4714. struct lb_env *env)
  4715. {
  4716. return -1;
  4717. }
  4718. #endif
  4719. /*
  4720. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  4721. */
  4722. static
  4723. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  4724. {
  4725. int tsk_cache_hot;
  4726. lockdep_assert_held(&env->src_rq->lock);
  4727. /*
  4728. * We do not migrate tasks that are:
  4729. * 1) throttled_lb_pair, or
  4730. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  4731. * 3) running (obviously), or
  4732. * 4) are cache-hot on their current CPU.
  4733. */
  4734. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  4735. return 0;
  4736. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  4737. int cpu;
  4738. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  4739. env->flags |= LBF_SOME_PINNED;
  4740. /*
  4741. * Remember if this task can be migrated to any other cpu in
  4742. * our sched_group. We may want to revisit it if we couldn't
  4743. * meet load balance goals by pulling other tasks on src_cpu.
  4744. *
  4745. * Also avoid computing new_dst_cpu if we have already computed
  4746. * one in current iteration.
  4747. */
  4748. if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
  4749. return 0;
  4750. /* Prevent to re-select dst_cpu via env's cpus */
  4751. for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
  4752. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
  4753. env->flags |= LBF_DST_PINNED;
  4754. env->new_dst_cpu = cpu;
  4755. break;
  4756. }
  4757. }
  4758. return 0;
  4759. }
  4760. /* Record that we found atleast one task that could run on dst_cpu */
  4761. env->flags &= ~LBF_ALL_PINNED;
  4762. if (task_running(env->src_rq, p)) {
  4763. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  4764. return 0;
  4765. }
  4766. /*
  4767. * Aggressive migration if:
  4768. * 1) destination numa is preferred
  4769. * 2) task is cache cold, or
  4770. * 3) too many balance attempts have failed.
  4771. */
  4772. tsk_cache_hot = migrate_degrades_locality(p, env);
  4773. if (tsk_cache_hot == -1)
  4774. tsk_cache_hot = task_hot(p, env);
  4775. if (tsk_cache_hot <= 0 ||
  4776. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  4777. if (tsk_cache_hot == 1) {
  4778. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  4779. schedstat_inc(p, se.statistics.nr_forced_migrations);
  4780. }
  4781. return 1;
  4782. }
  4783. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  4784. return 0;
  4785. }
  4786. /*
  4787. * detach_task() -- detach the task for the migration specified in env
  4788. */
  4789. static void detach_task(struct task_struct *p, struct lb_env *env)
  4790. {
  4791. lockdep_assert_held(&env->src_rq->lock);
  4792. deactivate_task(env->src_rq, p, 0);
  4793. p->on_rq = TASK_ON_RQ_MIGRATING;
  4794. set_task_cpu(p, env->dst_cpu);
  4795. }
  4796. /*
  4797. * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
  4798. * part of active balancing operations within "domain".
  4799. *
  4800. * Returns a task if successful and NULL otherwise.
  4801. */
  4802. static struct task_struct *detach_one_task(struct lb_env *env)
  4803. {
  4804. struct task_struct *p, *n;
  4805. lockdep_assert_held(&env->src_rq->lock);
  4806. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  4807. if (!can_migrate_task(p, env))
  4808. continue;
  4809. detach_task(p, env);
  4810. /*
  4811. * Right now, this is only the second place where
  4812. * lb_gained[env->idle] is updated (other is detach_tasks)
  4813. * so we can safely collect stats here rather than
  4814. * inside detach_tasks().
  4815. */
  4816. schedstat_inc(env->sd, lb_gained[env->idle]);
  4817. return p;
  4818. }
  4819. return NULL;
  4820. }
  4821. static const unsigned int sched_nr_migrate_break = 32;
  4822. /*
  4823. * detach_tasks() -- tries to detach up to imbalance weighted load from
  4824. * busiest_rq, as part of a balancing operation within domain "sd".
  4825. *
  4826. * Returns number of detached tasks if successful and 0 otherwise.
  4827. */
  4828. static int detach_tasks(struct lb_env *env)
  4829. {
  4830. struct list_head *tasks = &env->src_rq->cfs_tasks;
  4831. struct task_struct *p;
  4832. unsigned long load;
  4833. int detached = 0;
  4834. lockdep_assert_held(&env->src_rq->lock);
  4835. if (env->imbalance <= 0)
  4836. return 0;
  4837. while (!list_empty(tasks)) {
  4838. /*
  4839. * We don't want to steal all, otherwise we may be treated likewise,
  4840. * which could at worst lead to a livelock crash.
  4841. */
  4842. if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
  4843. break;
  4844. p = list_first_entry(tasks, struct task_struct, se.group_node);
  4845. env->loop++;
  4846. /* We've more or less seen every task there is, call it quits */
  4847. if (env->loop > env->loop_max)
  4848. break;
  4849. /* take a breather every nr_migrate tasks */
  4850. if (env->loop > env->loop_break) {
  4851. env->loop_break += sched_nr_migrate_break;
  4852. env->flags |= LBF_NEED_BREAK;
  4853. break;
  4854. }
  4855. if (!can_migrate_task(p, env))
  4856. goto next;
  4857. load = task_h_load(p);
  4858. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  4859. goto next;
  4860. if ((load / 2) > env->imbalance)
  4861. goto next;
  4862. detach_task(p, env);
  4863. list_add(&p->se.group_node, &env->tasks);
  4864. detached++;
  4865. env->imbalance -= load;
  4866. #ifdef CONFIG_PREEMPT
  4867. /*
  4868. * NEWIDLE balancing is a source of latency, so preemptible
  4869. * kernels will stop after the first task is detached to minimize
  4870. * the critical section.
  4871. */
  4872. if (env->idle == CPU_NEWLY_IDLE)
  4873. break;
  4874. #endif
  4875. /*
  4876. * We only want to steal up to the prescribed amount of
  4877. * weighted load.
  4878. */
  4879. if (env->imbalance <= 0)
  4880. break;
  4881. continue;
  4882. next:
  4883. list_move_tail(&p->se.group_node, tasks);
  4884. }
  4885. /*
  4886. * Right now, this is one of only two places we collect this stat
  4887. * so we can safely collect detach_one_task() stats here rather
  4888. * than inside detach_one_task().
  4889. */
  4890. schedstat_add(env->sd, lb_gained[env->idle], detached);
  4891. return detached;
  4892. }
  4893. /*
  4894. * attach_task() -- attach the task detached by detach_task() to its new rq.
  4895. */
  4896. static void attach_task(struct rq *rq, struct task_struct *p)
  4897. {
  4898. lockdep_assert_held(&rq->lock);
  4899. BUG_ON(task_rq(p) != rq);
  4900. p->on_rq = TASK_ON_RQ_QUEUED;
  4901. activate_task(rq, p, 0);
  4902. check_preempt_curr(rq, p, 0);
  4903. }
  4904. /*
  4905. * attach_one_task() -- attaches the task returned from detach_one_task() to
  4906. * its new rq.
  4907. */
  4908. static void attach_one_task(struct rq *rq, struct task_struct *p)
  4909. {
  4910. raw_spin_lock(&rq->lock);
  4911. attach_task(rq, p);
  4912. raw_spin_unlock(&rq->lock);
  4913. }
  4914. /*
  4915. * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
  4916. * new rq.
  4917. */
  4918. static void attach_tasks(struct lb_env *env)
  4919. {
  4920. struct list_head *tasks = &env->tasks;
  4921. struct task_struct *p;
  4922. raw_spin_lock(&env->dst_rq->lock);
  4923. while (!list_empty(tasks)) {
  4924. p = list_first_entry(tasks, struct task_struct, se.group_node);
  4925. list_del_init(&p->se.group_node);
  4926. attach_task(env->dst_rq, p);
  4927. }
  4928. raw_spin_unlock(&env->dst_rq->lock);
  4929. }
  4930. #ifdef CONFIG_FAIR_GROUP_SCHED
  4931. static void update_blocked_averages(int cpu)
  4932. {
  4933. struct rq *rq = cpu_rq(cpu);
  4934. struct cfs_rq *cfs_rq;
  4935. unsigned long flags;
  4936. raw_spin_lock_irqsave(&rq->lock, flags);
  4937. update_rq_clock(rq);
  4938. /*
  4939. * Iterates the task_group tree in a bottom up fashion, see
  4940. * list_add_leaf_cfs_rq() for details.
  4941. */
  4942. for_each_leaf_cfs_rq(rq, cfs_rq) {
  4943. /* throttled entities do not contribute to load */
  4944. if (throttled_hierarchy(cfs_rq))
  4945. continue;
  4946. if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
  4947. update_tg_load_avg(cfs_rq, 0);
  4948. }
  4949. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4950. }
  4951. /*
  4952. * Compute the hierarchical load factor for cfs_rq and all its ascendants.
  4953. * This needs to be done in a top-down fashion because the load of a child
  4954. * group is a fraction of its parents load.
  4955. */
  4956. static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
  4957. {
  4958. struct rq *rq = rq_of(cfs_rq);
  4959. struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
  4960. unsigned long now = jiffies;
  4961. unsigned long load;
  4962. if (cfs_rq->last_h_load_update == now)
  4963. return;
  4964. cfs_rq->h_load_next = NULL;
  4965. for_each_sched_entity(se) {
  4966. cfs_rq = cfs_rq_of(se);
  4967. cfs_rq->h_load_next = se;
  4968. if (cfs_rq->last_h_load_update == now)
  4969. break;
  4970. }
  4971. if (!se) {
  4972. cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
  4973. cfs_rq->last_h_load_update = now;
  4974. }
  4975. while ((se = cfs_rq->h_load_next) != NULL) {
  4976. load = cfs_rq->h_load;
  4977. load = div64_ul(load * se->avg.load_avg,
  4978. cfs_rq_load_avg(cfs_rq) + 1);
  4979. cfs_rq = group_cfs_rq(se);
  4980. cfs_rq->h_load = load;
  4981. cfs_rq->last_h_load_update = now;
  4982. }
  4983. }
  4984. static unsigned long task_h_load(struct task_struct *p)
  4985. {
  4986. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  4987. update_cfs_rq_h_load(cfs_rq);
  4988. return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
  4989. cfs_rq_load_avg(cfs_rq) + 1);
  4990. }
  4991. #else
  4992. static inline void update_blocked_averages(int cpu)
  4993. {
  4994. struct rq *rq = cpu_rq(cpu);
  4995. struct cfs_rq *cfs_rq = &rq->cfs;
  4996. unsigned long flags;
  4997. raw_spin_lock_irqsave(&rq->lock, flags);
  4998. update_rq_clock(rq);
  4999. update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
  5000. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5001. }
  5002. static unsigned long task_h_load(struct task_struct *p)
  5003. {
  5004. return p->se.avg.load_avg;
  5005. }
  5006. #endif
  5007. /********** Helpers for find_busiest_group ************************/
  5008. enum group_type {
  5009. group_other = 0,
  5010. group_imbalanced,
  5011. group_overloaded,
  5012. };
  5013. /*
  5014. * sg_lb_stats - stats of a sched_group required for load_balancing
  5015. */
  5016. struct sg_lb_stats {
  5017. unsigned long avg_load; /*Avg load across the CPUs of the group */
  5018. unsigned long group_load; /* Total load over the CPUs of the group */
  5019. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  5020. unsigned long load_per_task;
  5021. unsigned long group_capacity;
  5022. unsigned long group_util; /* Total utilization of the group */
  5023. unsigned int sum_nr_running; /* Nr tasks running in the group */
  5024. unsigned int idle_cpus;
  5025. unsigned int group_weight;
  5026. enum group_type group_type;
  5027. int group_no_capacity;
  5028. #ifdef CONFIG_NUMA_BALANCING
  5029. unsigned int nr_numa_running;
  5030. unsigned int nr_preferred_running;
  5031. #endif
  5032. };
  5033. /*
  5034. * sd_lb_stats - Structure to store the statistics of a sched_domain
  5035. * during load balancing.
  5036. */
  5037. struct sd_lb_stats {
  5038. struct sched_group *busiest; /* Busiest group in this sd */
  5039. struct sched_group *local; /* Local group in this sd */
  5040. unsigned long total_load; /* Total load of all groups in sd */
  5041. unsigned long total_capacity; /* Total capacity of all groups in sd */
  5042. unsigned long avg_load; /* Average load across all groups in sd */
  5043. struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
  5044. struct sg_lb_stats local_stat; /* Statistics of the local group */
  5045. };
  5046. static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
  5047. {
  5048. /*
  5049. * Skimp on the clearing to avoid duplicate work. We can avoid clearing
  5050. * local_stat because update_sg_lb_stats() does a full clear/assignment.
  5051. * We must however clear busiest_stat::avg_load because
  5052. * update_sd_pick_busiest() reads this before assignment.
  5053. */
  5054. *sds = (struct sd_lb_stats){
  5055. .busiest = NULL,
  5056. .local = NULL,
  5057. .total_load = 0UL,
  5058. .total_capacity = 0UL,
  5059. .busiest_stat = {
  5060. .avg_load = 0UL,
  5061. .sum_nr_running = 0,
  5062. .group_type = group_other,
  5063. },
  5064. };
  5065. }
  5066. /**
  5067. * get_sd_load_idx - Obtain the load index for a given sched domain.
  5068. * @sd: The sched_domain whose load_idx is to be obtained.
  5069. * @idle: The idle status of the CPU for whose sd load_idx is obtained.
  5070. *
  5071. * Return: The load index.
  5072. */
  5073. static inline int get_sd_load_idx(struct sched_domain *sd,
  5074. enum cpu_idle_type idle)
  5075. {
  5076. int load_idx;
  5077. switch (idle) {
  5078. case CPU_NOT_IDLE:
  5079. load_idx = sd->busy_idx;
  5080. break;
  5081. case CPU_NEWLY_IDLE:
  5082. load_idx = sd->newidle_idx;
  5083. break;
  5084. default:
  5085. load_idx = sd->idle_idx;
  5086. break;
  5087. }
  5088. return load_idx;
  5089. }
  5090. static unsigned long scale_rt_capacity(int cpu)
  5091. {
  5092. struct rq *rq = cpu_rq(cpu);
  5093. u64 total, used, age_stamp, avg;
  5094. s64 delta;
  5095. /*
  5096. * Since we're reading these variables without serialization make sure
  5097. * we read them once before doing sanity checks on them.
  5098. */
  5099. age_stamp = READ_ONCE(rq->age_stamp);
  5100. avg = READ_ONCE(rq->rt_avg);
  5101. delta = __rq_clock_broken(rq) - age_stamp;
  5102. if (unlikely(delta < 0))
  5103. delta = 0;
  5104. total = sched_avg_period() + delta;
  5105. used = div_u64(avg, total);
  5106. if (likely(used < SCHED_CAPACITY_SCALE))
  5107. return SCHED_CAPACITY_SCALE - used;
  5108. return 1;
  5109. }
  5110. static void update_cpu_capacity(struct sched_domain *sd, int cpu)
  5111. {
  5112. unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
  5113. struct sched_group *sdg = sd->groups;
  5114. cpu_rq(cpu)->cpu_capacity_orig = capacity;
  5115. capacity *= scale_rt_capacity(cpu);
  5116. capacity >>= SCHED_CAPACITY_SHIFT;
  5117. if (!capacity)
  5118. capacity = 1;
  5119. cpu_rq(cpu)->cpu_capacity = capacity;
  5120. sdg->sgc->capacity = capacity;
  5121. }
  5122. void update_group_capacity(struct sched_domain *sd, int cpu)
  5123. {
  5124. struct sched_domain *child = sd->child;
  5125. struct sched_group *group, *sdg = sd->groups;
  5126. unsigned long capacity;
  5127. unsigned long interval;
  5128. interval = msecs_to_jiffies(sd->balance_interval);
  5129. interval = clamp(interval, 1UL, max_load_balance_interval);
  5130. sdg->sgc->next_update = jiffies + interval;
  5131. if (!child) {
  5132. update_cpu_capacity(sd, cpu);
  5133. return;
  5134. }
  5135. capacity = 0;
  5136. if (child->flags & SD_OVERLAP) {
  5137. /*
  5138. * SD_OVERLAP domains cannot assume that child groups
  5139. * span the current group.
  5140. */
  5141. for_each_cpu(cpu, sched_group_cpus(sdg)) {
  5142. struct sched_group_capacity *sgc;
  5143. struct rq *rq = cpu_rq(cpu);
  5144. /*
  5145. * build_sched_domains() -> init_sched_groups_capacity()
  5146. * gets here before we've attached the domains to the
  5147. * runqueues.
  5148. *
  5149. * Use capacity_of(), which is set irrespective of domains
  5150. * in update_cpu_capacity().
  5151. *
  5152. * This avoids capacity from being 0 and
  5153. * causing divide-by-zero issues on boot.
  5154. */
  5155. if (unlikely(!rq->sd)) {
  5156. capacity += capacity_of(cpu);
  5157. continue;
  5158. }
  5159. sgc = rq->sd->groups->sgc;
  5160. capacity += sgc->capacity;
  5161. }
  5162. } else {
  5163. /*
  5164. * !SD_OVERLAP domains can assume that child groups
  5165. * span the current group.
  5166. */
  5167. group = child->groups;
  5168. do {
  5169. capacity += group->sgc->capacity;
  5170. group = group->next;
  5171. } while (group != child->groups);
  5172. }
  5173. sdg->sgc->capacity = capacity;
  5174. }
  5175. /*
  5176. * Check whether the capacity of the rq has been noticeably reduced by side
  5177. * activity. The imbalance_pct is used for the threshold.
  5178. * Return true is the capacity is reduced
  5179. */
  5180. static inline int
  5181. check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
  5182. {
  5183. return ((rq->cpu_capacity * sd->imbalance_pct) <
  5184. (rq->cpu_capacity_orig * 100));
  5185. }
  5186. /*
  5187. * Group imbalance indicates (and tries to solve) the problem where balancing
  5188. * groups is inadequate due to tsk_cpus_allowed() constraints.
  5189. *
  5190. * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
  5191. * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
  5192. * Something like:
  5193. *
  5194. * { 0 1 2 3 } { 4 5 6 7 }
  5195. * * * * *
  5196. *
  5197. * If we were to balance group-wise we'd place two tasks in the first group and
  5198. * two tasks in the second group. Clearly this is undesired as it will overload
  5199. * cpu 3 and leave one of the cpus in the second group unused.
  5200. *
  5201. * The current solution to this issue is detecting the skew in the first group
  5202. * by noticing the lower domain failed to reach balance and had difficulty
  5203. * moving tasks due to affinity constraints.
  5204. *
  5205. * When this is so detected; this group becomes a candidate for busiest; see
  5206. * update_sd_pick_busiest(). And calculate_imbalance() and
  5207. * find_busiest_group() avoid some of the usual balance conditions to allow it
  5208. * to create an effective group imbalance.
  5209. *
  5210. * This is a somewhat tricky proposition since the next run might not find the
  5211. * group imbalance and decide the groups need to be balanced again. A most
  5212. * subtle and fragile situation.
  5213. */
  5214. static inline int sg_imbalanced(struct sched_group *group)
  5215. {
  5216. return group->sgc->imbalance;
  5217. }
  5218. /*
  5219. * group_has_capacity returns true if the group has spare capacity that could
  5220. * be used by some tasks.
  5221. * We consider that a group has spare capacity if the * number of task is
  5222. * smaller than the number of CPUs or if the utilization is lower than the
  5223. * available capacity for CFS tasks.
  5224. * For the latter, we use a threshold to stabilize the state, to take into
  5225. * account the variance of the tasks' load and to return true if the available
  5226. * capacity in meaningful for the load balancer.
  5227. * As an example, an available capacity of 1% can appear but it doesn't make
  5228. * any benefit for the load balance.
  5229. */
  5230. static inline bool
  5231. group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
  5232. {
  5233. if (sgs->sum_nr_running < sgs->group_weight)
  5234. return true;
  5235. if ((sgs->group_capacity * 100) >
  5236. (sgs->group_util * env->sd->imbalance_pct))
  5237. return true;
  5238. return false;
  5239. }
  5240. /*
  5241. * group_is_overloaded returns true if the group has more tasks than it can
  5242. * handle.
  5243. * group_is_overloaded is not equals to !group_has_capacity because a group
  5244. * with the exact right number of tasks, has no more spare capacity but is not
  5245. * overloaded so both group_has_capacity and group_is_overloaded return
  5246. * false.
  5247. */
  5248. static inline bool
  5249. group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
  5250. {
  5251. if (sgs->sum_nr_running <= sgs->group_weight)
  5252. return false;
  5253. if ((sgs->group_capacity * 100) <
  5254. (sgs->group_util * env->sd->imbalance_pct))
  5255. return true;
  5256. return false;
  5257. }
  5258. static inline enum
  5259. group_type group_classify(struct sched_group *group,
  5260. struct sg_lb_stats *sgs)
  5261. {
  5262. if (sgs->group_no_capacity)
  5263. return group_overloaded;
  5264. if (sg_imbalanced(group))
  5265. return group_imbalanced;
  5266. return group_other;
  5267. }
  5268. /**
  5269. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  5270. * @env: The load balancing environment.
  5271. * @group: sched_group whose statistics are to be updated.
  5272. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  5273. * @local_group: Does group contain this_cpu.
  5274. * @sgs: variable to hold the statistics for this group.
  5275. * @overload: Indicate more than one runnable task for any CPU.
  5276. */
  5277. static inline void update_sg_lb_stats(struct lb_env *env,
  5278. struct sched_group *group, int load_idx,
  5279. int local_group, struct sg_lb_stats *sgs,
  5280. bool *overload)
  5281. {
  5282. unsigned long load;
  5283. int i;
  5284. memset(sgs, 0, sizeof(*sgs));
  5285. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  5286. struct rq *rq = cpu_rq(i);
  5287. /* Bias balancing toward cpus of our domain */
  5288. if (local_group)
  5289. load = target_load(i, load_idx);
  5290. else
  5291. load = source_load(i, load_idx);
  5292. sgs->group_load += load;
  5293. sgs->group_util += cpu_util(i);
  5294. sgs->sum_nr_running += rq->cfs.h_nr_running;
  5295. if (rq->nr_running > 1)
  5296. *overload = true;
  5297. #ifdef CONFIG_NUMA_BALANCING
  5298. sgs->nr_numa_running += rq->nr_numa_running;
  5299. sgs->nr_preferred_running += rq->nr_preferred_running;
  5300. #endif
  5301. sgs->sum_weighted_load += weighted_cpuload(i);
  5302. if (idle_cpu(i))
  5303. sgs->idle_cpus++;
  5304. }
  5305. /* Adjust by relative CPU capacity of the group */
  5306. sgs->group_capacity = group->sgc->capacity;
  5307. sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
  5308. if (sgs->sum_nr_running)
  5309. sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  5310. sgs->group_weight = group->group_weight;
  5311. sgs->group_no_capacity = group_is_overloaded(env, sgs);
  5312. sgs->group_type = group_classify(group, sgs);
  5313. }
  5314. /**
  5315. * update_sd_pick_busiest - return 1 on busiest group
  5316. * @env: The load balancing environment.
  5317. * @sds: sched_domain statistics
  5318. * @sg: sched_group candidate to be checked for being the busiest
  5319. * @sgs: sched_group statistics
  5320. *
  5321. * Determine if @sg is a busier group than the previously selected
  5322. * busiest group.
  5323. *
  5324. * Return: %true if @sg is a busier group than the previously selected
  5325. * busiest group. %false otherwise.
  5326. */
  5327. static bool update_sd_pick_busiest(struct lb_env *env,
  5328. struct sd_lb_stats *sds,
  5329. struct sched_group *sg,
  5330. struct sg_lb_stats *sgs)
  5331. {
  5332. struct sg_lb_stats *busiest = &sds->busiest_stat;
  5333. if (sgs->group_type > busiest->group_type)
  5334. return true;
  5335. if (sgs->group_type < busiest->group_type)
  5336. return false;
  5337. if (sgs->avg_load <= busiest->avg_load)
  5338. return false;
  5339. /* This is the busiest node in its class. */
  5340. if (!(env->sd->flags & SD_ASYM_PACKING))
  5341. return true;
  5342. /*
  5343. * ASYM_PACKING needs to move all the work to the lowest
  5344. * numbered CPUs in the group, therefore mark all groups
  5345. * higher than ourself as busy.
  5346. */
  5347. if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
  5348. if (!sds->busiest)
  5349. return true;
  5350. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  5351. return true;
  5352. }
  5353. return false;
  5354. }
  5355. #ifdef CONFIG_NUMA_BALANCING
  5356. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  5357. {
  5358. if (sgs->sum_nr_running > sgs->nr_numa_running)
  5359. return regular;
  5360. if (sgs->sum_nr_running > sgs->nr_preferred_running)
  5361. return remote;
  5362. return all;
  5363. }
  5364. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  5365. {
  5366. if (rq->nr_running > rq->nr_numa_running)
  5367. return regular;
  5368. if (rq->nr_running > rq->nr_preferred_running)
  5369. return remote;
  5370. return all;
  5371. }
  5372. #else
  5373. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  5374. {
  5375. return all;
  5376. }
  5377. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  5378. {
  5379. return regular;
  5380. }
  5381. #endif /* CONFIG_NUMA_BALANCING */
  5382. /**
  5383. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  5384. * @env: The load balancing environment.
  5385. * @sds: variable to hold the statistics for this sched_domain.
  5386. */
  5387. static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
  5388. {
  5389. struct sched_domain *child = env->sd->child;
  5390. struct sched_group *sg = env->sd->groups;
  5391. struct sg_lb_stats tmp_sgs;
  5392. int load_idx, prefer_sibling = 0;
  5393. bool overload = false;
  5394. if (child && child->flags & SD_PREFER_SIBLING)
  5395. prefer_sibling = 1;
  5396. load_idx = get_sd_load_idx(env->sd, env->idle);
  5397. do {
  5398. struct sg_lb_stats *sgs = &tmp_sgs;
  5399. int local_group;
  5400. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  5401. if (local_group) {
  5402. sds->local = sg;
  5403. sgs = &sds->local_stat;
  5404. if (env->idle != CPU_NEWLY_IDLE ||
  5405. time_after_eq(jiffies, sg->sgc->next_update))
  5406. update_group_capacity(env->sd, env->dst_cpu);
  5407. }
  5408. update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
  5409. &overload);
  5410. if (local_group)
  5411. goto next_group;
  5412. /*
  5413. * In case the child domain prefers tasks go to siblings
  5414. * first, lower the sg capacity so that we'll try
  5415. * and move all the excess tasks away. We lower the capacity
  5416. * of a group only if the local group has the capacity to fit
  5417. * these excess tasks. The extra check prevents the case where
  5418. * you always pull from the heaviest group when it is already
  5419. * under-utilized (possible with a large weight task outweighs
  5420. * the tasks on the system).
  5421. */
  5422. if (prefer_sibling && sds->local &&
  5423. group_has_capacity(env, &sds->local_stat) &&
  5424. (sgs->sum_nr_running > 1)) {
  5425. sgs->group_no_capacity = 1;
  5426. sgs->group_type = group_classify(sg, sgs);
  5427. }
  5428. if (update_sd_pick_busiest(env, sds, sg, sgs)) {
  5429. sds->busiest = sg;
  5430. sds->busiest_stat = *sgs;
  5431. }
  5432. next_group:
  5433. /* Now, start updating sd_lb_stats */
  5434. sds->total_load += sgs->group_load;
  5435. sds->total_capacity += sgs->group_capacity;
  5436. sg = sg->next;
  5437. } while (sg != env->sd->groups);
  5438. if (env->sd->flags & SD_NUMA)
  5439. env->fbq_type = fbq_classify_group(&sds->busiest_stat);
  5440. if (!env->sd->parent) {
  5441. /* update overload indicator if we are at root domain */
  5442. if (env->dst_rq->rd->overload != overload)
  5443. env->dst_rq->rd->overload = overload;
  5444. }
  5445. }
  5446. /**
  5447. * check_asym_packing - Check to see if the group is packed into the
  5448. * sched doman.
  5449. *
  5450. * This is primarily intended to used at the sibling level. Some
  5451. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  5452. * case of POWER7, it can move to lower SMT modes only when higher
  5453. * threads are idle. When in lower SMT modes, the threads will
  5454. * perform better since they share less core resources. Hence when we
  5455. * have idle threads, we want them to be the higher ones.
  5456. *
  5457. * This packing function is run on idle threads. It checks to see if
  5458. * the busiest CPU in this domain (core in the P7 case) has a higher
  5459. * CPU number than the packing function is being run on. Here we are
  5460. * assuming lower CPU number will be equivalent to lower a SMT thread
  5461. * number.
  5462. *
  5463. * Return: 1 when packing is required and a task should be moved to
  5464. * this CPU. The amount of the imbalance is returned in *imbalance.
  5465. *
  5466. * @env: The load balancing environment.
  5467. * @sds: Statistics of the sched_domain which is to be packed
  5468. */
  5469. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  5470. {
  5471. int busiest_cpu;
  5472. if (!(env->sd->flags & SD_ASYM_PACKING))
  5473. return 0;
  5474. if (!sds->busiest)
  5475. return 0;
  5476. busiest_cpu = group_first_cpu(sds->busiest);
  5477. if (env->dst_cpu > busiest_cpu)
  5478. return 0;
  5479. env->imbalance = DIV_ROUND_CLOSEST(
  5480. sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
  5481. SCHED_CAPACITY_SCALE);
  5482. return 1;
  5483. }
  5484. /**
  5485. * fix_small_imbalance - Calculate the minor imbalance that exists
  5486. * amongst the groups of a sched_domain, during
  5487. * load balancing.
  5488. * @env: The load balancing environment.
  5489. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  5490. */
  5491. static inline
  5492. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  5493. {
  5494. unsigned long tmp, capa_now = 0, capa_move = 0;
  5495. unsigned int imbn = 2;
  5496. unsigned long scaled_busy_load_per_task;
  5497. struct sg_lb_stats *local, *busiest;
  5498. local = &sds->local_stat;
  5499. busiest = &sds->busiest_stat;
  5500. if (!local->sum_nr_running)
  5501. local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
  5502. else if (busiest->load_per_task > local->load_per_task)
  5503. imbn = 1;
  5504. scaled_busy_load_per_task =
  5505. (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  5506. busiest->group_capacity;
  5507. if (busiest->avg_load + scaled_busy_load_per_task >=
  5508. local->avg_load + (scaled_busy_load_per_task * imbn)) {
  5509. env->imbalance = busiest->load_per_task;
  5510. return;
  5511. }
  5512. /*
  5513. * OK, we don't have enough imbalance to justify moving tasks,
  5514. * however we may be able to increase total CPU capacity used by
  5515. * moving them.
  5516. */
  5517. capa_now += busiest->group_capacity *
  5518. min(busiest->load_per_task, busiest->avg_load);
  5519. capa_now += local->group_capacity *
  5520. min(local->load_per_task, local->avg_load);
  5521. capa_now /= SCHED_CAPACITY_SCALE;
  5522. /* Amount of load we'd subtract */
  5523. if (busiest->avg_load > scaled_busy_load_per_task) {
  5524. capa_move += busiest->group_capacity *
  5525. min(busiest->load_per_task,
  5526. busiest->avg_load - scaled_busy_load_per_task);
  5527. }
  5528. /* Amount of load we'd add */
  5529. if (busiest->avg_load * busiest->group_capacity <
  5530. busiest->load_per_task * SCHED_CAPACITY_SCALE) {
  5531. tmp = (busiest->avg_load * busiest->group_capacity) /
  5532. local->group_capacity;
  5533. } else {
  5534. tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  5535. local->group_capacity;
  5536. }
  5537. capa_move += local->group_capacity *
  5538. min(local->load_per_task, local->avg_load + tmp);
  5539. capa_move /= SCHED_CAPACITY_SCALE;
  5540. /* Move if we gain throughput */
  5541. if (capa_move > capa_now)
  5542. env->imbalance = busiest->load_per_task;
  5543. }
  5544. /**
  5545. * calculate_imbalance - Calculate the amount of imbalance present within the
  5546. * groups of a given sched_domain during load balance.
  5547. * @env: load balance environment
  5548. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  5549. */
  5550. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  5551. {
  5552. unsigned long max_pull, load_above_capacity = ~0UL;
  5553. struct sg_lb_stats *local, *busiest;
  5554. local = &sds->local_stat;
  5555. busiest = &sds->busiest_stat;
  5556. if (busiest->group_type == group_imbalanced) {
  5557. /*
  5558. * In the group_imb case we cannot rely on group-wide averages
  5559. * to ensure cpu-load equilibrium, look at wider averages. XXX
  5560. */
  5561. busiest->load_per_task =
  5562. min(busiest->load_per_task, sds->avg_load);
  5563. }
  5564. /*
  5565. * In the presence of smp nice balancing, certain scenarios can have
  5566. * max load less than avg load(as we skip the groups at or below
  5567. * its cpu_capacity, while calculating max_load..)
  5568. */
  5569. if (busiest->avg_load <= sds->avg_load ||
  5570. local->avg_load >= sds->avg_load) {
  5571. env->imbalance = 0;
  5572. return fix_small_imbalance(env, sds);
  5573. }
  5574. /*
  5575. * If there aren't any idle cpus, avoid creating some.
  5576. */
  5577. if (busiest->group_type == group_overloaded &&
  5578. local->group_type == group_overloaded) {
  5579. load_above_capacity = busiest->sum_nr_running *
  5580. SCHED_LOAD_SCALE;
  5581. if (load_above_capacity > busiest->group_capacity)
  5582. load_above_capacity -= busiest->group_capacity;
  5583. else
  5584. load_above_capacity = ~0UL;
  5585. }
  5586. /*
  5587. * We're trying to get all the cpus to the average_load, so we don't
  5588. * want to push ourselves above the average load, nor do we wish to
  5589. * reduce the max loaded cpu below the average load. At the same time,
  5590. * we also don't want to reduce the group load below the group capacity
  5591. * (so that we can implement power-savings policies etc). Thus we look
  5592. * for the minimum possible imbalance.
  5593. */
  5594. max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
  5595. /* How much load to actually move to equalise the imbalance */
  5596. env->imbalance = min(
  5597. max_pull * busiest->group_capacity,
  5598. (sds->avg_load - local->avg_load) * local->group_capacity
  5599. ) / SCHED_CAPACITY_SCALE;
  5600. /*
  5601. * if *imbalance is less than the average load per runnable task
  5602. * there is no guarantee that any tasks will be moved so we'll have
  5603. * a think about bumping its value to force at least one task to be
  5604. * moved
  5605. */
  5606. if (env->imbalance < busiest->load_per_task)
  5607. return fix_small_imbalance(env, sds);
  5608. }
  5609. /******* find_busiest_group() helpers end here *********************/
  5610. /**
  5611. * find_busiest_group - Returns the busiest group within the sched_domain
  5612. * if there is an imbalance. If there isn't an imbalance, and
  5613. * the user has opted for power-savings, it returns a group whose
  5614. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  5615. * such a group exists.
  5616. *
  5617. * Also calculates the amount of weighted load which should be moved
  5618. * to restore balance.
  5619. *
  5620. * @env: The load balancing environment.
  5621. *
  5622. * Return: - The busiest group if imbalance exists.
  5623. * - If no imbalance and user has opted for power-savings balance,
  5624. * return the least loaded group whose CPUs can be
  5625. * put to idle by rebalancing its tasks onto our group.
  5626. */
  5627. static struct sched_group *find_busiest_group(struct lb_env *env)
  5628. {
  5629. struct sg_lb_stats *local, *busiest;
  5630. struct sd_lb_stats sds;
  5631. init_sd_lb_stats(&sds);
  5632. /*
  5633. * Compute the various statistics relavent for load balancing at
  5634. * this level.
  5635. */
  5636. update_sd_lb_stats(env, &sds);
  5637. local = &sds.local_stat;
  5638. busiest = &sds.busiest_stat;
  5639. /* ASYM feature bypasses nice load balance check */
  5640. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  5641. check_asym_packing(env, &sds))
  5642. return sds.busiest;
  5643. /* There is no busy sibling group to pull tasks from */
  5644. if (!sds.busiest || busiest->sum_nr_running == 0)
  5645. goto out_balanced;
  5646. sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
  5647. / sds.total_capacity;
  5648. /*
  5649. * If the busiest group is imbalanced the below checks don't
  5650. * work because they assume all things are equal, which typically
  5651. * isn't true due to cpus_allowed constraints and the like.
  5652. */
  5653. if (busiest->group_type == group_imbalanced)
  5654. goto force_balance;
  5655. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  5656. if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
  5657. busiest->group_no_capacity)
  5658. goto force_balance;
  5659. /*
  5660. * If the local group is busier than the selected busiest group
  5661. * don't try and pull any tasks.
  5662. */
  5663. if (local->avg_load >= busiest->avg_load)
  5664. goto out_balanced;
  5665. /*
  5666. * Don't pull any tasks if this group is already above the domain
  5667. * average load.
  5668. */
  5669. if (local->avg_load >= sds.avg_load)
  5670. goto out_balanced;
  5671. if (env->idle == CPU_IDLE) {
  5672. /*
  5673. * This cpu is idle. If the busiest group is not overloaded
  5674. * and there is no imbalance between this and busiest group
  5675. * wrt idle cpus, it is balanced. The imbalance becomes
  5676. * significant if the diff is greater than 1 otherwise we
  5677. * might end up to just move the imbalance on another group
  5678. */
  5679. if ((busiest->group_type != group_overloaded) &&
  5680. (local->idle_cpus <= (busiest->idle_cpus + 1)))
  5681. goto out_balanced;
  5682. } else {
  5683. /*
  5684. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  5685. * imbalance_pct to be conservative.
  5686. */
  5687. if (100 * busiest->avg_load <=
  5688. env->sd->imbalance_pct * local->avg_load)
  5689. goto out_balanced;
  5690. }
  5691. force_balance:
  5692. /* Looks like there is an imbalance. Compute it */
  5693. calculate_imbalance(env, &sds);
  5694. return sds.busiest;
  5695. out_balanced:
  5696. env->imbalance = 0;
  5697. return NULL;
  5698. }
  5699. /*
  5700. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  5701. */
  5702. static struct rq *find_busiest_queue(struct lb_env *env,
  5703. struct sched_group *group)
  5704. {
  5705. struct rq *busiest = NULL, *rq;
  5706. unsigned long busiest_load = 0, busiest_capacity = 1;
  5707. int i;
  5708. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  5709. unsigned long capacity, wl;
  5710. enum fbq_type rt;
  5711. rq = cpu_rq(i);
  5712. rt = fbq_classify_rq(rq);
  5713. /*
  5714. * We classify groups/runqueues into three groups:
  5715. * - regular: there are !numa tasks
  5716. * - remote: there are numa tasks that run on the 'wrong' node
  5717. * - all: there is no distinction
  5718. *
  5719. * In order to avoid migrating ideally placed numa tasks,
  5720. * ignore those when there's better options.
  5721. *
  5722. * If we ignore the actual busiest queue to migrate another
  5723. * task, the next balance pass can still reduce the busiest
  5724. * queue by moving tasks around inside the node.
  5725. *
  5726. * If we cannot move enough load due to this classification
  5727. * the next pass will adjust the group classification and
  5728. * allow migration of more tasks.
  5729. *
  5730. * Both cases only affect the total convergence complexity.
  5731. */
  5732. if (rt > env->fbq_type)
  5733. continue;
  5734. capacity = capacity_of(i);
  5735. wl = weighted_cpuload(i);
  5736. /*
  5737. * When comparing with imbalance, use weighted_cpuload()
  5738. * which is not scaled with the cpu capacity.
  5739. */
  5740. if (rq->nr_running == 1 && wl > env->imbalance &&
  5741. !check_cpu_capacity(rq, env->sd))
  5742. continue;
  5743. /*
  5744. * For the load comparisons with the other cpu's, consider
  5745. * the weighted_cpuload() scaled with the cpu capacity, so
  5746. * that the load can be moved away from the cpu that is
  5747. * potentially running at a lower capacity.
  5748. *
  5749. * Thus we're looking for max(wl_i / capacity_i), crosswise
  5750. * multiplication to rid ourselves of the division works out
  5751. * to: wl_i * capacity_j > wl_j * capacity_i; where j is
  5752. * our previous maximum.
  5753. */
  5754. if (wl * busiest_capacity > busiest_load * capacity) {
  5755. busiest_load = wl;
  5756. busiest_capacity = capacity;
  5757. busiest = rq;
  5758. }
  5759. }
  5760. return busiest;
  5761. }
  5762. /*
  5763. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  5764. * so long as it is large enough.
  5765. */
  5766. #define MAX_PINNED_INTERVAL 512
  5767. /* Working cpumask for load_balance and load_balance_newidle. */
  5768. DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
  5769. static int need_active_balance(struct lb_env *env)
  5770. {
  5771. struct sched_domain *sd = env->sd;
  5772. if (env->idle == CPU_NEWLY_IDLE) {
  5773. /*
  5774. * ASYM_PACKING needs to force migrate tasks from busy but
  5775. * higher numbered CPUs in order to pack all tasks in the
  5776. * lowest numbered CPUs.
  5777. */
  5778. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  5779. return 1;
  5780. }
  5781. /*
  5782. * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
  5783. * It's worth migrating the task if the src_cpu's capacity is reduced
  5784. * because of other sched_class or IRQs if more capacity stays
  5785. * available on dst_cpu.
  5786. */
  5787. if ((env->idle != CPU_NOT_IDLE) &&
  5788. (env->src_rq->cfs.h_nr_running == 1)) {
  5789. if ((check_cpu_capacity(env->src_rq, sd)) &&
  5790. (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
  5791. return 1;
  5792. }
  5793. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  5794. }
  5795. static int active_load_balance_cpu_stop(void *data);
  5796. static int should_we_balance(struct lb_env *env)
  5797. {
  5798. struct sched_group *sg = env->sd->groups;
  5799. struct cpumask *sg_cpus, *sg_mask;
  5800. int cpu, balance_cpu = -1;
  5801. /*
  5802. * In the newly idle case, we will allow all the cpu's
  5803. * to do the newly idle load balance.
  5804. */
  5805. if (env->idle == CPU_NEWLY_IDLE)
  5806. return 1;
  5807. sg_cpus = sched_group_cpus(sg);
  5808. sg_mask = sched_group_mask(sg);
  5809. /* Try to find first idle cpu */
  5810. for_each_cpu_and(cpu, sg_cpus, env->cpus) {
  5811. if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
  5812. continue;
  5813. balance_cpu = cpu;
  5814. break;
  5815. }
  5816. if (balance_cpu == -1)
  5817. balance_cpu = group_balance_cpu(sg);
  5818. /*
  5819. * First idle cpu or the first cpu(busiest) in this sched group
  5820. * is eligible for doing load balancing at this and above domains.
  5821. */
  5822. return balance_cpu == env->dst_cpu;
  5823. }
  5824. /*
  5825. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  5826. * tasks if there is an imbalance.
  5827. */
  5828. static int load_balance(int this_cpu, struct rq *this_rq,
  5829. struct sched_domain *sd, enum cpu_idle_type idle,
  5830. int *continue_balancing)
  5831. {
  5832. int ld_moved, cur_ld_moved, active_balance = 0;
  5833. struct sched_domain *sd_parent = sd->parent;
  5834. struct sched_group *group;
  5835. struct rq *busiest;
  5836. unsigned long flags;
  5837. struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
  5838. struct lb_env env = {
  5839. .sd = sd,
  5840. .dst_cpu = this_cpu,
  5841. .dst_rq = this_rq,
  5842. .dst_grpmask = sched_group_cpus(sd->groups),
  5843. .idle = idle,
  5844. .loop_break = sched_nr_migrate_break,
  5845. .cpus = cpus,
  5846. .fbq_type = all,
  5847. .tasks = LIST_HEAD_INIT(env.tasks),
  5848. };
  5849. /*
  5850. * For NEWLY_IDLE load_balancing, we don't need to consider
  5851. * other cpus in our group
  5852. */
  5853. if (idle == CPU_NEWLY_IDLE)
  5854. env.dst_grpmask = NULL;
  5855. cpumask_copy(cpus, cpu_active_mask);
  5856. schedstat_inc(sd, lb_count[idle]);
  5857. redo:
  5858. if (!should_we_balance(&env)) {
  5859. *continue_balancing = 0;
  5860. goto out_balanced;
  5861. }
  5862. group = find_busiest_group(&env);
  5863. if (!group) {
  5864. schedstat_inc(sd, lb_nobusyg[idle]);
  5865. goto out_balanced;
  5866. }
  5867. busiest = find_busiest_queue(&env, group);
  5868. if (!busiest) {
  5869. schedstat_inc(sd, lb_nobusyq[idle]);
  5870. goto out_balanced;
  5871. }
  5872. BUG_ON(busiest == env.dst_rq);
  5873. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  5874. env.src_cpu = busiest->cpu;
  5875. env.src_rq = busiest;
  5876. ld_moved = 0;
  5877. if (busiest->nr_running > 1) {
  5878. /*
  5879. * Attempt to move tasks. If find_busiest_group has found
  5880. * an imbalance but busiest->nr_running <= 1, the group is
  5881. * still unbalanced. ld_moved simply stays zero, so it is
  5882. * correctly treated as an imbalance.
  5883. */
  5884. env.flags |= LBF_ALL_PINNED;
  5885. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  5886. more_balance:
  5887. raw_spin_lock_irqsave(&busiest->lock, flags);
  5888. /*
  5889. * cur_ld_moved - load moved in current iteration
  5890. * ld_moved - cumulative load moved across iterations
  5891. */
  5892. cur_ld_moved = detach_tasks(&env);
  5893. /*
  5894. * We've detached some tasks from busiest_rq. Every
  5895. * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
  5896. * unlock busiest->lock, and we are able to be sure
  5897. * that nobody can manipulate the tasks in parallel.
  5898. * See task_rq_lock() family for the details.
  5899. */
  5900. raw_spin_unlock(&busiest->lock);
  5901. if (cur_ld_moved) {
  5902. attach_tasks(&env);
  5903. ld_moved += cur_ld_moved;
  5904. }
  5905. local_irq_restore(flags);
  5906. if (env.flags & LBF_NEED_BREAK) {
  5907. env.flags &= ~LBF_NEED_BREAK;
  5908. goto more_balance;
  5909. }
  5910. /*
  5911. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  5912. * us and move them to an alternate dst_cpu in our sched_group
  5913. * where they can run. The upper limit on how many times we
  5914. * iterate on same src_cpu is dependent on number of cpus in our
  5915. * sched_group.
  5916. *
  5917. * This changes load balance semantics a bit on who can move
  5918. * load to a given_cpu. In addition to the given_cpu itself
  5919. * (or a ilb_cpu acting on its behalf where given_cpu is
  5920. * nohz-idle), we now have balance_cpu in a position to move
  5921. * load to given_cpu. In rare situations, this may cause
  5922. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  5923. * _independently_ and at _same_ time to move some load to
  5924. * given_cpu) causing exceess load to be moved to given_cpu.
  5925. * This however should not happen so much in practice and
  5926. * moreover subsequent load balance cycles should correct the
  5927. * excess load moved.
  5928. */
  5929. if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
  5930. /* Prevent to re-select dst_cpu via env's cpus */
  5931. cpumask_clear_cpu(env.dst_cpu, env.cpus);
  5932. env.dst_rq = cpu_rq(env.new_dst_cpu);
  5933. env.dst_cpu = env.new_dst_cpu;
  5934. env.flags &= ~LBF_DST_PINNED;
  5935. env.loop = 0;
  5936. env.loop_break = sched_nr_migrate_break;
  5937. /*
  5938. * Go back to "more_balance" rather than "redo" since we
  5939. * need to continue with same src_cpu.
  5940. */
  5941. goto more_balance;
  5942. }
  5943. /*
  5944. * We failed to reach balance because of affinity.
  5945. */
  5946. if (sd_parent) {
  5947. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  5948. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
  5949. *group_imbalance = 1;
  5950. }
  5951. /* All tasks on this runqueue were pinned by CPU affinity */
  5952. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  5953. cpumask_clear_cpu(cpu_of(busiest), cpus);
  5954. if (!cpumask_empty(cpus)) {
  5955. env.loop = 0;
  5956. env.loop_break = sched_nr_migrate_break;
  5957. goto redo;
  5958. }
  5959. goto out_all_pinned;
  5960. }
  5961. }
  5962. if (!ld_moved) {
  5963. schedstat_inc(sd, lb_failed[idle]);
  5964. /*
  5965. * Increment the failure counter only on periodic balance.
  5966. * We do not want newidle balance, which can be very
  5967. * frequent, pollute the failure counter causing
  5968. * excessive cache_hot migrations and active balances.
  5969. */
  5970. if (idle != CPU_NEWLY_IDLE)
  5971. sd->nr_balance_failed++;
  5972. if (need_active_balance(&env)) {
  5973. raw_spin_lock_irqsave(&busiest->lock, flags);
  5974. /* don't kick the active_load_balance_cpu_stop,
  5975. * if the curr task on busiest cpu can't be
  5976. * moved to this_cpu
  5977. */
  5978. if (!cpumask_test_cpu(this_cpu,
  5979. tsk_cpus_allowed(busiest->curr))) {
  5980. raw_spin_unlock_irqrestore(&busiest->lock,
  5981. flags);
  5982. env.flags |= LBF_ALL_PINNED;
  5983. goto out_one_pinned;
  5984. }
  5985. /*
  5986. * ->active_balance synchronizes accesses to
  5987. * ->active_balance_work. Once set, it's cleared
  5988. * only after active load balance is finished.
  5989. */
  5990. if (!busiest->active_balance) {
  5991. busiest->active_balance = 1;
  5992. busiest->push_cpu = this_cpu;
  5993. active_balance = 1;
  5994. }
  5995. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  5996. if (active_balance) {
  5997. stop_one_cpu_nowait(cpu_of(busiest),
  5998. active_load_balance_cpu_stop, busiest,
  5999. &busiest->active_balance_work);
  6000. }
  6001. /*
  6002. * We've kicked active balancing, reset the failure
  6003. * counter.
  6004. */
  6005. sd->nr_balance_failed = sd->cache_nice_tries+1;
  6006. }
  6007. } else
  6008. sd->nr_balance_failed = 0;
  6009. if (likely(!active_balance)) {
  6010. /* We were unbalanced, so reset the balancing interval */
  6011. sd->balance_interval = sd->min_interval;
  6012. } else {
  6013. /*
  6014. * If we've begun active balancing, start to back off. This
  6015. * case may not be covered by the all_pinned logic if there
  6016. * is only 1 task on the busy runqueue (because we don't call
  6017. * detach_tasks).
  6018. */
  6019. if (sd->balance_interval < sd->max_interval)
  6020. sd->balance_interval *= 2;
  6021. }
  6022. goto out;
  6023. out_balanced:
  6024. /*
  6025. * We reach balance although we may have faced some affinity
  6026. * constraints. Clear the imbalance flag if it was set.
  6027. */
  6028. if (sd_parent) {
  6029. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  6030. if (*group_imbalance)
  6031. *group_imbalance = 0;
  6032. }
  6033. out_all_pinned:
  6034. /*
  6035. * We reach balance because all tasks are pinned at this level so
  6036. * we can't migrate them. Let the imbalance flag set so parent level
  6037. * can try to migrate them.
  6038. */
  6039. schedstat_inc(sd, lb_balanced[idle]);
  6040. sd->nr_balance_failed = 0;
  6041. out_one_pinned:
  6042. /* tune up the balancing interval */
  6043. if (((env.flags & LBF_ALL_PINNED) &&
  6044. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  6045. (sd->balance_interval < sd->max_interval))
  6046. sd->balance_interval *= 2;
  6047. ld_moved = 0;
  6048. out:
  6049. return ld_moved;
  6050. }
  6051. static inline unsigned long
  6052. get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
  6053. {
  6054. unsigned long interval = sd->balance_interval;
  6055. if (cpu_busy)
  6056. interval *= sd->busy_factor;
  6057. /* scale ms to jiffies */
  6058. interval = msecs_to_jiffies(interval);
  6059. interval = clamp(interval, 1UL, max_load_balance_interval);
  6060. return interval;
  6061. }
  6062. static inline void
  6063. update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
  6064. {
  6065. unsigned long interval, next;
  6066. interval = get_sd_balance_interval(sd, cpu_busy);
  6067. next = sd->last_balance + interval;
  6068. if (time_after(*next_balance, next))
  6069. *next_balance = next;
  6070. }
  6071. /*
  6072. * idle_balance is called by schedule() if this_cpu is about to become
  6073. * idle. Attempts to pull tasks from other CPUs.
  6074. */
  6075. static int idle_balance(struct rq *this_rq)
  6076. {
  6077. unsigned long next_balance = jiffies + HZ;
  6078. int this_cpu = this_rq->cpu;
  6079. struct sched_domain *sd;
  6080. int pulled_task = 0;
  6081. u64 curr_cost = 0;
  6082. idle_enter_fair(this_rq);
  6083. /*
  6084. * We must set idle_stamp _before_ calling idle_balance(), such that we
  6085. * measure the duration of idle_balance() as idle time.
  6086. */
  6087. this_rq->idle_stamp = rq_clock(this_rq);
  6088. if (this_rq->avg_idle < sysctl_sched_migration_cost ||
  6089. !this_rq->rd->overload) {
  6090. rcu_read_lock();
  6091. sd = rcu_dereference_check_sched_domain(this_rq->sd);
  6092. if (sd)
  6093. update_next_balance(sd, 0, &next_balance);
  6094. rcu_read_unlock();
  6095. goto out;
  6096. }
  6097. raw_spin_unlock(&this_rq->lock);
  6098. update_blocked_averages(this_cpu);
  6099. rcu_read_lock();
  6100. for_each_domain(this_cpu, sd) {
  6101. int continue_balancing = 1;
  6102. u64 t0, domain_cost;
  6103. if (!(sd->flags & SD_LOAD_BALANCE))
  6104. continue;
  6105. if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
  6106. update_next_balance(sd, 0, &next_balance);
  6107. break;
  6108. }
  6109. if (sd->flags & SD_BALANCE_NEWIDLE) {
  6110. t0 = sched_clock_cpu(this_cpu);
  6111. pulled_task = load_balance(this_cpu, this_rq,
  6112. sd, CPU_NEWLY_IDLE,
  6113. &continue_balancing);
  6114. domain_cost = sched_clock_cpu(this_cpu) - t0;
  6115. if (domain_cost > sd->max_newidle_lb_cost)
  6116. sd->max_newidle_lb_cost = domain_cost;
  6117. curr_cost += domain_cost;
  6118. }
  6119. update_next_balance(sd, 0, &next_balance);
  6120. /*
  6121. * Stop searching for tasks to pull if there are
  6122. * now runnable tasks on this rq.
  6123. */
  6124. if (pulled_task || this_rq->nr_running > 0)
  6125. break;
  6126. }
  6127. rcu_read_unlock();
  6128. raw_spin_lock(&this_rq->lock);
  6129. if (curr_cost > this_rq->max_idle_balance_cost)
  6130. this_rq->max_idle_balance_cost = curr_cost;
  6131. /*
  6132. * While browsing the domains, we released the rq lock, a task could
  6133. * have been enqueued in the meantime. Since we're not going idle,
  6134. * pretend we pulled a task.
  6135. */
  6136. if (this_rq->cfs.h_nr_running && !pulled_task)
  6137. pulled_task = 1;
  6138. out:
  6139. /* Move the next balance forward */
  6140. if (time_after(this_rq->next_balance, next_balance))
  6141. this_rq->next_balance = next_balance;
  6142. /* Is there a task of a high priority class? */
  6143. if (this_rq->nr_running != this_rq->cfs.h_nr_running)
  6144. pulled_task = -1;
  6145. if (pulled_task) {
  6146. idle_exit_fair(this_rq);
  6147. this_rq->idle_stamp = 0;
  6148. }
  6149. return pulled_task;
  6150. }
  6151. /*
  6152. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  6153. * running tasks off the busiest CPU onto idle CPUs. It requires at
  6154. * least 1 task to be running on each physical CPU where possible, and
  6155. * avoids physical / logical imbalances.
  6156. */
  6157. static int active_load_balance_cpu_stop(void *data)
  6158. {
  6159. struct rq *busiest_rq = data;
  6160. int busiest_cpu = cpu_of(busiest_rq);
  6161. int target_cpu = busiest_rq->push_cpu;
  6162. struct rq *target_rq = cpu_rq(target_cpu);
  6163. struct sched_domain *sd;
  6164. struct task_struct *p = NULL;
  6165. raw_spin_lock_irq(&busiest_rq->lock);
  6166. /* make sure the requested cpu hasn't gone down in the meantime */
  6167. if (unlikely(busiest_cpu != smp_processor_id() ||
  6168. !busiest_rq->active_balance))
  6169. goto out_unlock;
  6170. /* Is there any task to move? */
  6171. if (busiest_rq->nr_running <= 1)
  6172. goto out_unlock;
  6173. /*
  6174. * This condition is "impossible", if it occurs
  6175. * we need to fix it. Originally reported by
  6176. * Bjorn Helgaas on a 128-cpu setup.
  6177. */
  6178. BUG_ON(busiest_rq == target_rq);
  6179. /* Search for an sd spanning us and the target CPU. */
  6180. rcu_read_lock();
  6181. for_each_domain(target_cpu, sd) {
  6182. if ((sd->flags & SD_LOAD_BALANCE) &&
  6183. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  6184. break;
  6185. }
  6186. if (likely(sd)) {
  6187. struct lb_env env = {
  6188. .sd = sd,
  6189. .dst_cpu = target_cpu,
  6190. .dst_rq = target_rq,
  6191. .src_cpu = busiest_rq->cpu,
  6192. .src_rq = busiest_rq,
  6193. .idle = CPU_IDLE,
  6194. };
  6195. schedstat_inc(sd, alb_count);
  6196. p = detach_one_task(&env);
  6197. if (p)
  6198. schedstat_inc(sd, alb_pushed);
  6199. else
  6200. schedstat_inc(sd, alb_failed);
  6201. }
  6202. rcu_read_unlock();
  6203. out_unlock:
  6204. busiest_rq->active_balance = 0;
  6205. raw_spin_unlock(&busiest_rq->lock);
  6206. if (p)
  6207. attach_one_task(target_rq, p);
  6208. local_irq_enable();
  6209. return 0;
  6210. }
  6211. static inline int on_null_domain(struct rq *rq)
  6212. {
  6213. return unlikely(!rcu_dereference_sched(rq->sd));
  6214. }
  6215. #ifdef CONFIG_NO_HZ_COMMON
  6216. /*
  6217. * idle load balancing details
  6218. * - When one of the busy CPUs notice that there may be an idle rebalancing
  6219. * needed, they will kick the idle load balancer, which then does idle
  6220. * load balancing for all the idle CPUs.
  6221. */
  6222. static struct {
  6223. cpumask_var_t idle_cpus_mask;
  6224. atomic_t nr_cpus;
  6225. unsigned long next_balance; /* in jiffy units */
  6226. } nohz ____cacheline_aligned;
  6227. static inline int find_new_ilb(void)
  6228. {
  6229. int ilb = cpumask_first(nohz.idle_cpus_mask);
  6230. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  6231. return ilb;
  6232. return nr_cpu_ids;
  6233. }
  6234. /*
  6235. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  6236. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  6237. * CPU (if there is one).
  6238. */
  6239. static void nohz_balancer_kick(void)
  6240. {
  6241. int ilb_cpu;
  6242. nohz.next_balance++;
  6243. ilb_cpu = find_new_ilb();
  6244. if (ilb_cpu >= nr_cpu_ids)
  6245. return;
  6246. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  6247. return;
  6248. /*
  6249. * Use smp_send_reschedule() instead of resched_cpu().
  6250. * This way we generate a sched IPI on the target cpu which
  6251. * is idle. And the softirq performing nohz idle load balance
  6252. * will be run before returning from the IPI.
  6253. */
  6254. smp_send_reschedule(ilb_cpu);
  6255. return;
  6256. }
  6257. static inline void nohz_balance_exit_idle(int cpu)
  6258. {
  6259. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  6260. /*
  6261. * Completely isolated CPUs don't ever set, so we must test.
  6262. */
  6263. if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
  6264. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  6265. atomic_dec(&nohz.nr_cpus);
  6266. }
  6267. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  6268. }
  6269. }
  6270. static inline void set_cpu_sd_state_busy(void)
  6271. {
  6272. struct sched_domain *sd;
  6273. int cpu = smp_processor_id();
  6274. rcu_read_lock();
  6275. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6276. if (!sd || !sd->nohz_idle)
  6277. goto unlock;
  6278. sd->nohz_idle = 0;
  6279. atomic_inc(&sd->groups->sgc->nr_busy_cpus);
  6280. unlock:
  6281. rcu_read_unlock();
  6282. }
  6283. void set_cpu_sd_state_idle(void)
  6284. {
  6285. struct sched_domain *sd;
  6286. int cpu = smp_processor_id();
  6287. rcu_read_lock();
  6288. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6289. if (!sd || sd->nohz_idle)
  6290. goto unlock;
  6291. sd->nohz_idle = 1;
  6292. atomic_dec(&sd->groups->sgc->nr_busy_cpus);
  6293. unlock:
  6294. rcu_read_unlock();
  6295. }
  6296. /*
  6297. * This routine will record that the cpu is going idle with tick stopped.
  6298. * This info will be used in performing idle load balancing in the future.
  6299. */
  6300. void nohz_balance_enter_idle(int cpu)
  6301. {
  6302. /*
  6303. * If this cpu is going down, then nothing needs to be done.
  6304. */
  6305. if (!cpu_active(cpu))
  6306. return;
  6307. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  6308. return;
  6309. /*
  6310. * If we're a completely isolated CPU, we don't play.
  6311. */
  6312. if (on_null_domain(cpu_rq(cpu)))
  6313. return;
  6314. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  6315. atomic_inc(&nohz.nr_cpus);
  6316. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  6317. }
  6318. static int sched_ilb_notifier(struct notifier_block *nfb,
  6319. unsigned long action, void *hcpu)
  6320. {
  6321. switch (action & ~CPU_TASKS_FROZEN) {
  6322. case CPU_DYING:
  6323. nohz_balance_exit_idle(smp_processor_id());
  6324. return NOTIFY_OK;
  6325. default:
  6326. return NOTIFY_DONE;
  6327. }
  6328. }
  6329. #endif
  6330. static DEFINE_SPINLOCK(balancing);
  6331. /*
  6332. * Scale the max load_balance interval with the number of CPUs in the system.
  6333. * This trades load-balance latency on larger machines for less cross talk.
  6334. */
  6335. void update_max_interval(void)
  6336. {
  6337. max_load_balance_interval = HZ*num_online_cpus()/10;
  6338. }
  6339. /*
  6340. * It checks each scheduling domain to see if it is due to be balanced,
  6341. * and initiates a balancing operation if so.
  6342. *
  6343. * Balancing parameters are set up in init_sched_domains.
  6344. */
  6345. static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
  6346. {
  6347. int continue_balancing = 1;
  6348. int cpu = rq->cpu;
  6349. unsigned long interval;
  6350. struct sched_domain *sd;
  6351. /* Earliest time when we have to do rebalance again */
  6352. unsigned long next_balance = jiffies + 60*HZ;
  6353. int update_next_balance = 0;
  6354. int need_serialize, need_decay = 0;
  6355. u64 max_cost = 0;
  6356. update_blocked_averages(cpu);
  6357. rcu_read_lock();
  6358. for_each_domain(cpu, sd) {
  6359. /*
  6360. * Decay the newidle max times here because this is a regular
  6361. * visit to all the domains. Decay ~1% per second.
  6362. */
  6363. if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
  6364. sd->max_newidle_lb_cost =
  6365. (sd->max_newidle_lb_cost * 253) / 256;
  6366. sd->next_decay_max_lb_cost = jiffies + HZ;
  6367. need_decay = 1;
  6368. }
  6369. max_cost += sd->max_newidle_lb_cost;
  6370. if (!(sd->flags & SD_LOAD_BALANCE))
  6371. continue;
  6372. /*
  6373. * Stop the load balance at this level. There is another
  6374. * CPU in our sched group which is doing load balancing more
  6375. * actively.
  6376. */
  6377. if (!continue_balancing) {
  6378. if (need_decay)
  6379. continue;
  6380. break;
  6381. }
  6382. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  6383. need_serialize = sd->flags & SD_SERIALIZE;
  6384. if (need_serialize) {
  6385. if (!spin_trylock(&balancing))
  6386. goto out;
  6387. }
  6388. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  6389. if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
  6390. /*
  6391. * The LBF_DST_PINNED logic could have changed
  6392. * env->dst_cpu, so we can't know our idle
  6393. * state even if we migrated tasks. Update it.
  6394. */
  6395. idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
  6396. }
  6397. sd->last_balance = jiffies;
  6398. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  6399. }
  6400. if (need_serialize)
  6401. spin_unlock(&balancing);
  6402. out:
  6403. if (time_after(next_balance, sd->last_balance + interval)) {
  6404. next_balance = sd->last_balance + interval;
  6405. update_next_balance = 1;
  6406. }
  6407. }
  6408. if (need_decay) {
  6409. /*
  6410. * Ensure the rq-wide value also decays but keep it at a
  6411. * reasonable floor to avoid funnies with rq->avg_idle.
  6412. */
  6413. rq->max_idle_balance_cost =
  6414. max((u64)sysctl_sched_migration_cost, max_cost);
  6415. }
  6416. rcu_read_unlock();
  6417. /*
  6418. * next_balance will be updated only when there is a need.
  6419. * When the cpu is attached to null domain for ex, it will not be
  6420. * updated.
  6421. */
  6422. if (likely(update_next_balance)) {
  6423. rq->next_balance = next_balance;
  6424. #ifdef CONFIG_NO_HZ_COMMON
  6425. /*
  6426. * If this CPU has been elected to perform the nohz idle
  6427. * balance. Other idle CPUs have already rebalanced with
  6428. * nohz_idle_balance() and nohz.next_balance has been
  6429. * updated accordingly. This CPU is now running the idle load
  6430. * balance for itself and we need to update the
  6431. * nohz.next_balance accordingly.
  6432. */
  6433. if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
  6434. nohz.next_balance = rq->next_balance;
  6435. #endif
  6436. }
  6437. }
  6438. #ifdef CONFIG_NO_HZ_COMMON
  6439. /*
  6440. * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
  6441. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  6442. */
  6443. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  6444. {
  6445. int this_cpu = this_rq->cpu;
  6446. struct rq *rq;
  6447. int balance_cpu;
  6448. /* Earliest time when we have to do rebalance again */
  6449. unsigned long next_balance = jiffies + 60*HZ;
  6450. int update_next_balance = 0;
  6451. if (idle != CPU_IDLE ||
  6452. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  6453. goto end;
  6454. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  6455. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  6456. continue;
  6457. /*
  6458. * If this cpu gets work to do, stop the load balancing
  6459. * work being done for other cpus. Next load
  6460. * balancing owner will pick it up.
  6461. */
  6462. if (need_resched())
  6463. break;
  6464. rq = cpu_rq(balance_cpu);
  6465. /*
  6466. * If time for next balance is due,
  6467. * do the balance.
  6468. */
  6469. if (time_after_eq(jiffies, rq->next_balance)) {
  6470. raw_spin_lock_irq(&rq->lock);
  6471. update_rq_clock(rq);
  6472. update_idle_cpu_load(rq);
  6473. raw_spin_unlock_irq(&rq->lock);
  6474. rebalance_domains(rq, CPU_IDLE);
  6475. }
  6476. if (time_after(next_balance, rq->next_balance)) {
  6477. next_balance = rq->next_balance;
  6478. update_next_balance = 1;
  6479. }
  6480. }
  6481. /*
  6482. * next_balance will be updated only when there is a need.
  6483. * When the CPU is attached to null domain for ex, it will not be
  6484. * updated.
  6485. */
  6486. if (likely(update_next_balance))
  6487. nohz.next_balance = next_balance;
  6488. end:
  6489. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  6490. }
  6491. /*
  6492. * Current heuristic for kicking the idle load balancer in the presence
  6493. * of an idle cpu in the system.
  6494. * - This rq has more than one task.
  6495. * - This rq has at least one CFS task and the capacity of the CPU is
  6496. * significantly reduced because of RT tasks or IRQs.
  6497. * - At parent of LLC scheduler domain level, this cpu's scheduler group has
  6498. * multiple busy cpu.
  6499. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  6500. * domain span are idle.
  6501. */
  6502. static inline bool nohz_kick_needed(struct rq *rq)
  6503. {
  6504. unsigned long now = jiffies;
  6505. struct sched_domain *sd;
  6506. struct sched_group_capacity *sgc;
  6507. int nr_busy, cpu = rq->cpu;
  6508. bool kick = false;
  6509. if (unlikely(rq->idle_balance))
  6510. return false;
  6511. /*
  6512. * We may be recently in ticked or tickless idle mode. At the first
  6513. * busy tick after returning from idle, we will update the busy stats.
  6514. */
  6515. set_cpu_sd_state_busy();
  6516. nohz_balance_exit_idle(cpu);
  6517. /*
  6518. * None are in tickless mode and hence no need for NOHZ idle load
  6519. * balancing.
  6520. */
  6521. if (likely(!atomic_read(&nohz.nr_cpus)))
  6522. return false;
  6523. if (time_before(now, nohz.next_balance))
  6524. return false;
  6525. if (rq->nr_running >= 2)
  6526. return true;
  6527. rcu_read_lock();
  6528. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6529. if (sd) {
  6530. sgc = sd->groups->sgc;
  6531. nr_busy = atomic_read(&sgc->nr_busy_cpus);
  6532. if (nr_busy > 1) {
  6533. kick = true;
  6534. goto unlock;
  6535. }
  6536. }
  6537. sd = rcu_dereference(rq->sd);
  6538. if (sd) {
  6539. if ((rq->cfs.h_nr_running >= 1) &&
  6540. check_cpu_capacity(rq, sd)) {
  6541. kick = true;
  6542. goto unlock;
  6543. }
  6544. }
  6545. sd = rcu_dereference(per_cpu(sd_asym, cpu));
  6546. if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
  6547. sched_domain_span(sd)) < cpu)) {
  6548. kick = true;
  6549. goto unlock;
  6550. }
  6551. unlock:
  6552. rcu_read_unlock();
  6553. return kick;
  6554. }
  6555. #else
  6556. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
  6557. #endif
  6558. /*
  6559. * run_rebalance_domains is triggered when needed from the scheduler tick.
  6560. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  6561. */
  6562. static void run_rebalance_domains(struct softirq_action *h)
  6563. {
  6564. struct rq *this_rq = this_rq();
  6565. enum cpu_idle_type idle = this_rq->idle_balance ?
  6566. CPU_IDLE : CPU_NOT_IDLE;
  6567. /*
  6568. * If this cpu has a pending nohz_balance_kick, then do the
  6569. * balancing on behalf of the other idle cpus whose ticks are
  6570. * stopped. Do nohz_idle_balance *before* rebalance_domains to
  6571. * give the idle cpus a chance to load balance. Else we may
  6572. * load balance only within the local sched_domain hierarchy
  6573. * and abort nohz_idle_balance altogether if we pull some load.
  6574. */
  6575. nohz_idle_balance(this_rq, idle);
  6576. rebalance_domains(this_rq, idle);
  6577. }
  6578. /*
  6579. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  6580. */
  6581. void trigger_load_balance(struct rq *rq)
  6582. {
  6583. /* Don't need to rebalance while attached to NULL domain */
  6584. if (unlikely(on_null_domain(rq)))
  6585. return;
  6586. if (time_after_eq(jiffies, rq->next_balance))
  6587. raise_softirq(SCHED_SOFTIRQ);
  6588. #ifdef CONFIG_NO_HZ_COMMON
  6589. if (nohz_kick_needed(rq))
  6590. nohz_balancer_kick();
  6591. #endif
  6592. }
  6593. static void rq_online_fair(struct rq *rq)
  6594. {
  6595. update_sysctl();
  6596. update_runtime_enabled(rq);
  6597. }
  6598. static void rq_offline_fair(struct rq *rq)
  6599. {
  6600. update_sysctl();
  6601. /* Ensure any throttled groups are reachable by pick_next_task */
  6602. unthrottle_offline_cfs_rqs(rq);
  6603. }
  6604. #endif /* CONFIG_SMP */
  6605. /*
  6606. * scheduler tick hitting a task of our scheduling class:
  6607. */
  6608. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  6609. {
  6610. struct cfs_rq *cfs_rq;
  6611. struct sched_entity *se = &curr->se;
  6612. for_each_sched_entity(se) {
  6613. cfs_rq = cfs_rq_of(se);
  6614. entity_tick(cfs_rq, se, queued);
  6615. }
  6616. if (static_branch_unlikely(&sched_numa_balancing))
  6617. task_tick_numa(rq, curr);
  6618. }
  6619. /*
  6620. * called on fork with the child task as argument from the parent's context
  6621. * - child not yet on the tasklist
  6622. * - preemption disabled
  6623. */
  6624. static void task_fork_fair(struct task_struct *p)
  6625. {
  6626. struct cfs_rq *cfs_rq;
  6627. struct sched_entity *se = &p->se, *curr;
  6628. int this_cpu = smp_processor_id();
  6629. struct rq *rq = this_rq();
  6630. unsigned long flags;
  6631. raw_spin_lock_irqsave(&rq->lock, flags);
  6632. update_rq_clock(rq);
  6633. cfs_rq = task_cfs_rq(current);
  6634. curr = cfs_rq->curr;
  6635. /*
  6636. * Not only the cpu but also the task_group of the parent might have
  6637. * been changed after parent->se.parent,cfs_rq were copied to
  6638. * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
  6639. * of child point to valid ones.
  6640. */
  6641. rcu_read_lock();
  6642. __set_task_cpu(p, this_cpu);
  6643. rcu_read_unlock();
  6644. update_curr(cfs_rq);
  6645. if (curr)
  6646. se->vruntime = curr->vruntime;
  6647. place_entity(cfs_rq, se, 1);
  6648. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  6649. /*
  6650. * Upon rescheduling, sched_class::put_prev_task() will place
  6651. * 'current' within the tree based on its new key value.
  6652. */
  6653. swap(curr->vruntime, se->vruntime);
  6654. resched_curr(rq);
  6655. }
  6656. se->vruntime -= cfs_rq->min_vruntime;
  6657. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6658. }
  6659. /*
  6660. * Priority of the task has changed. Check to see if we preempt
  6661. * the current task.
  6662. */
  6663. static void
  6664. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  6665. {
  6666. if (!task_on_rq_queued(p))
  6667. return;
  6668. /*
  6669. * Reschedule if we are currently running on this runqueue and
  6670. * our priority decreased, or if we are not currently running on
  6671. * this runqueue and our priority is higher than the current's
  6672. */
  6673. if (rq->curr == p) {
  6674. if (p->prio > oldprio)
  6675. resched_curr(rq);
  6676. } else
  6677. check_preempt_curr(rq, p, 0);
  6678. }
  6679. static inline bool vruntime_normalized(struct task_struct *p)
  6680. {
  6681. struct sched_entity *se = &p->se;
  6682. /*
  6683. * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
  6684. * the dequeue_entity(.flags=0) will already have normalized the
  6685. * vruntime.
  6686. */
  6687. if (p->on_rq)
  6688. return true;
  6689. /*
  6690. * When !on_rq, vruntime of the task has usually NOT been normalized.
  6691. * But there are some cases where it has already been normalized:
  6692. *
  6693. * - A forked child which is waiting for being woken up by
  6694. * wake_up_new_task().
  6695. * - A task which has been woken up by try_to_wake_up() and
  6696. * waiting for actually being woken up by sched_ttwu_pending().
  6697. */
  6698. if (!se->sum_exec_runtime || p->state == TASK_WAKING)
  6699. return true;
  6700. return false;
  6701. }
  6702. static void detach_task_cfs_rq(struct task_struct *p)
  6703. {
  6704. struct sched_entity *se = &p->se;
  6705. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6706. if (!vruntime_normalized(p)) {
  6707. /*
  6708. * Fix up our vruntime so that the current sleep doesn't
  6709. * cause 'unlimited' sleep bonus.
  6710. */
  6711. place_entity(cfs_rq, se, 0);
  6712. se->vruntime -= cfs_rq->min_vruntime;
  6713. }
  6714. /* Catch up with the cfs_rq and remove our load when we leave */
  6715. detach_entity_load_avg(cfs_rq, se);
  6716. }
  6717. static void attach_task_cfs_rq(struct task_struct *p)
  6718. {
  6719. struct sched_entity *se = &p->se;
  6720. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6721. #ifdef CONFIG_FAIR_GROUP_SCHED
  6722. /*
  6723. * Since the real-depth could have been changed (only FAIR
  6724. * class maintain depth value), reset depth properly.
  6725. */
  6726. se->depth = se->parent ? se->parent->depth + 1 : 0;
  6727. #endif
  6728. /* Synchronize task with its cfs_rq */
  6729. attach_entity_load_avg(cfs_rq, se);
  6730. if (!vruntime_normalized(p))
  6731. se->vruntime += cfs_rq->min_vruntime;
  6732. }
  6733. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  6734. {
  6735. detach_task_cfs_rq(p);
  6736. }
  6737. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  6738. {
  6739. attach_task_cfs_rq(p);
  6740. if (task_on_rq_queued(p)) {
  6741. /*
  6742. * We were most likely switched from sched_rt, so
  6743. * kick off the schedule if running, otherwise just see
  6744. * if we can still preempt the current task.
  6745. */
  6746. if (rq->curr == p)
  6747. resched_curr(rq);
  6748. else
  6749. check_preempt_curr(rq, p, 0);
  6750. }
  6751. }
  6752. /* Account for a task changing its policy or group.
  6753. *
  6754. * This routine is mostly called to set cfs_rq->curr field when a task
  6755. * migrates between groups/classes.
  6756. */
  6757. static void set_curr_task_fair(struct rq *rq)
  6758. {
  6759. struct sched_entity *se = &rq->curr->se;
  6760. for_each_sched_entity(se) {
  6761. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6762. set_next_entity(cfs_rq, se);
  6763. /* ensure bandwidth has been allocated on our new cfs_rq */
  6764. account_cfs_rq_runtime(cfs_rq, 0);
  6765. }
  6766. }
  6767. void init_cfs_rq(struct cfs_rq *cfs_rq)
  6768. {
  6769. cfs_rq->tasks_timeline = RB_ROOT;
  6770. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6771. #ifndef CONFIG_64BIT
  6772. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6773. #endif
  6774. #ifdef CONFIG_SMP
  6775. atomic_long_set(&cfs_rq->removed_load_avg, 0);
  6776. atomic_long_set(&cfs_rq->removed_util_avg, 0);
  6777. #endif
  6778. }
  6779. #ifdef CONFIG_FAIR_GROUP_SCHED
  6780. static void task_move_group_fair(struct task_struct *p)
  6781. {
  6782. detach_task_cfs_rq(p);
  6783. set_task_rq(p, task_cpu(p));
  6784. #ifdef CONFIG_SMP
  6785. /* Tell se's cfs_rq has been changed -- migrated */
  6786. p->se.avg.last_update_time = 0;
  6787. #endif
  6788. attach_task_cfs_rq(p);
  6789. }
  6790. void free_fair_sched_group(struct task_group *tg)
  6791. {
  6792. int i;
  6793. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  6794. for_each_possible_cpu(i) {
  6795. if (tg->cfs_rq)
  6796. kfree(tg->cfs_rq[i]);
  6797. if (tg->se) {
  6798. if (tg->se[i])
  6799. remove_entity_load_avg(tg->se[i]);
  6800. kfree(tg->se[i]);
  6801. }
  6802. }
  6803. kfree(tg->cfs_rq);
  6804. kfree(tg->se);
  6805. }
  6806. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6807. {
  6808. struct cfs_rq *cfs_rq;
  6809. struct sched_entity *se;
  6810. int i;
  6811. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6812. if (!tg->cfs_rq)
  6813. goto err;
  6814. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6815. if (!tg->se)
  6816. goto err;
  6817. tg->shares = NICE_0_LOAD;
  6818. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  6819. for_each_possible_cpu(i) {
  6820. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6821. GFP_KERNEL, cpu_to_node(i));
  6822. if (!cfs_rq)
  6823. goto err;
  6824. se = kzalloc_node(sizeof(struct sched_entity),
  6825. GFP_KERNEL, cpu_to_node(i));
  6826. if (!se)
  6827. goto err_free_rq;
  6828. init_cfs_rq(cfs_rq);
  6829. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6830. init_entity_runnable_average(se);
  6831. }
  6832. return 1;
  6833. err_free_rq:
  6834. kfree(cfs_rq);
  6835. err:
  6836. return 0;
  6837. }
  6838. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6839. {
  6840. struct rq *rq = cpu_rq(cpu);
  6841. unsigned long flags;
  6842. /*
  6843. * Only empty task groups can be destroyed; so we can speculatively
  6844. * check on_list without danger of it being re-added.
  6845. */
  6846. if (!tg->cfs_rq[cpu]->on_list)
  6847. return;
  6848. raw_spin_lock_irqsave(&rq->lock, flags);
  6849. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  6850. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6851. }
  6852. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6853. struct sched_entity *se, int cpu,
  6854. struct sched_entity *parent)
  6855. {
  6856. struct rq *rq = cpu_rq(cpu);
  6857. cfs_rq->tg = tg;
  6858. cfs_rq->rq = rq;
  6859. init_cfs_rq_runtime(cfs_rq);
  6860. tg->cfs_rq[cpu] = cfs_rq;
  6861. tg->se[cpu] = se;
  6862. /* se could be NULL for root_task_group */
  6863. if (!se)
  6864. return;
  6865. if (!parent) {
  6866. se->cfs_rq = &rq->cfs;
  6867. se->depth = 0;
  6868. } else {
  6869. se->cfs_rq = parent->my_q;
  6870. se->depth = parent->depth + 1;
  6871. }
  6872. se->my_q = cfs_rq;
  6873. /* guarantee group entities always have weight */
  6874. update_load_set(&se->load, NICE_0_LOAD);
  6875. se->parent = parent;
  6876. }
  6877. static DEFINE_MUTEX(shares_mutex);
  6878. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6879. {
  6880. int i;
  6881. unsigned long flags;
  6882. /*
  6883. * We can't change the weight of the root cgroup.
  6884. */
  6885. if (!tg->se[0])
  6886. return -EINVAL;
  6887. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  6888. mutex_lock(&shares_mutex);
  6889. if (tg->shares == shares)
  6890. goto done;
  6891. tg->shares = shares;
  6892. for_each_possible_cpu(i) {
  6893. struct rq *rq = cpu_rq(i);
  6894. struct sched_entity *se;
  6895. se = tg->se[i];
  6896. /* Propagate contribution to hierarchy */
  6897. raw_spin_lock_irqsave(&rq->lock, flags);
  6898. /* Possible calls to update_curr() need rq clock */
  6899. update_rq_clock(rq);
  6900. for_each_sched_entity(se)
  6901. update_cfs_shares(group_cfs_rq(se));
  6902. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6903. }
  6904. done:
  6905. mutex_unlock(&shares_mutex);
  6906. return 0;
  6907. }
  6908. #else /* CONFIG_FAIR_GROUP_SCHED */
  6909. void free_fair_sched_group(struct task_group *tg) { }
  6910. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6911. {
  6912. return 1;
  6913. }
  6914. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  6915. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6916. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  6917. {
  6918. struct sched_entity *se = &task->se;
  6919. unsigned int rr_interval = 0;
  6920. /*
  6921. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  6922. * idle runqueue:
  6923. */
  6924. if (rq->cfs.load.weight)
  6925. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  6926. return rr_interval;
  6927. }
  6928. /*
  6929. * All the scheduling class methods:
  6930. */
  6931. const struct sched_class fair_sched_class = {
  6932. .next = &idle_sched_class,
  6933. .enqueue_task = enqueue_task_fair,
  6934. .dequeue_task = dequeue_task_fair,
  6935. .yield_task = yield_task_fair,
  6936. .yield_to_task = yield_to_task_fair,
  6937. .check_preempt_curr = check_preempt_wakeup,
  6938. .pick_next_task = pick_next_task_fair,
  6939. .put_prev_task = put_prev_task_fair,
  6940. #ifdef CONFIG_SMP
  6941. .select_task_rq = select_task_rq_fair,
  6942. .migrate_task_rq = migrate_task_rq_fair,
  6943. .rq_online = rq_online_fair,
  6944. .rq_offline = rq_offline_fair,
  6945. .task_waking = task_waking_fair,
  6946. .task_dead = task_dead_fair,
  6947. .set_cpus_allowed = set_cpus_allowed_common,
  6948. #endif
  6949. .set_curr_task = set_curr_task_fair,
  6950. .task_tick = task_tick_fair,
  6951. .task_fork = task_fork_fair,
  6952. .prio_changed = prio_changed_fair,
  6953. .switched_from = switched_from_fair,
  6954. .switched_to = switched_to_fair,
  6955. .get_rr_interval = get_rr_interval_fair,
  6956. .update_curr = update_curr_fair,
  6957. #ifdef CONFIG_FAIR_GROUP_SCHED
  6958. .task_move_group = task_move_group_fair,
  6959. #endif
  6960. };
  6961. #ifdef CONFIG_SCHED_DEBUG
  6962. void print_cfs_stats(struct seq_file *m, int cpu)
  6963. {
  6964. struct cfs_rq *cfs_rq;
  6965. rcu_read_lock();
  6966. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  6967. print_cfs_rq(m, cpu, cfs_rq);
  6968. rcu_read_unlock();
  6969. }
  6970. #ifdef CONFIG_NUMA_BALANCING
  6971. void show_numa_stats(struct task_struct *p, struct seq_file *m)
  6972. {
  6973. int node;
  6974. unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
  6975. for_each_online_node(node) {
  6976. if (p->numa_faults) {
  6977. tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
  6978. tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
  6979. }
  6980. if (p->numa_group) {
  6981. gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
  6982. gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
  6983. }
  6984. print_numa_stats(m, node, tsf, tpf, gsf, gpf);
  6985. }
  6986. }
  6987. #endif /* CONFIG_NUMA_BALANCING */
  6988. #endif /* CONFIG_SCHED_DEBUG */
  6989. __init void init_sched_fair_class(void)
  6990. {
  6991. #ifdef CONFIG_SMP
  6992. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6993. #ifdef CONFIG_NO_HZ_COMMON
  6994. nohz.next_balance = jiffies;
  6995. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6996. cpu_notifier(sched_ilb_notifier, 0);
  6997. #endif
  6998. #endif /* SMP */
  6999. }