tree.c 141 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/nmi.h>
  39. #include <linux/atomic.h>
  40. #include <linux/bitops.h>
  41. #include <linux/export.h>
  42. #include <linux/completion.h>
  43. #include <linux/moduleparam.h>
  44. #include <linux/module.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <linux/prefetch.h>
  54. #include <linux/delay.h>
  55. #include <linux/stop_machine.h>
  56. #include <linux/random.h>
  57. #include <linux/trace_events.h>
  58. #include <linux/suspend.h>
  59. #include "tree.h"
  60. #include "rcu.h"
  61. MODULE_ALIAS("rcutree");
  62. #ifdef MODULE_PARAM_PREFIX
  63. #undef MODULE_PARAM_PREFIX
  64. #endif
  65. #define MODULE_PARAM_PREFIX "rcutree."
  66. /* Data structures. */
  67. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  68. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  69. static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
  70. /*
  71. * In order to export the rcu_state name to the tracing tools, it
  72. * needs to be added in the __tracepoint_string section.
  73. * This requires defining a separate variable tp_<sname>_varname
  74. * that points to the string being used, and this will allow
  75. * the tracing userspace tools to be able to decipher the string
  76. * address to the matching string.
  77. */
  78. #ifdef CONFIG_TRACING
  79. # define DEFINE_RCU_TPS(sname) \
  80. static char sname##_varname[] = #sname; \
  81. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  82. # define RCU_STATE_NAME(sname) sname##_varname
  83. #else
  84. # define DEFINE_RCU_TPS(sname)
  85. # define RCU_STATE_NAME(sname) __stringify(sname)
  86. #endif
  87. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  88. DEFINE_RCU_TPS(sname) \
  89. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  90. struct rcu_state sname##_state = { \
  91. .level = { &sname##_state.node[0] }, \
  92. .rda = &sname##_data, \
  93. .call = cr, \
  94. .gp_state = RCU_GP_IDLE, \
  95. .gpnum = 0UL - 300UL, \
  96. .completed = 0UL - 300UL, \
  97. .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  98. .orphan_nxttail = &sname##_state.orphan_nxtlist, \
  99. .orphan_donetail = &sname##_state.orphan_donelist, \
  100. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  101. .name = RCU_STATE_NAME(sname), \
  102. .abbr = sabbr, \
  103. }
  104. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  105. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  106. static struct rcu_state *const rcu_state_p;
  107. static struct rcu_data __percpu *const rcu_data_p;
  108. LIST_HEAD(rcu_struct_flavors);
  109. /* Dump rcu_node combining tree at boot to verify correct setup. */
  110. static bool dump_tree;
  111. module_param(dump_tree, bool, 0444);
  112. /* Control rcu_node-tree auto-balancing at boot time. */
  113. static bool rcu_fanout_exact;
  114. module_param(rcu_fanout_exact, bool, 0444);
  115. /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
  116. static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
  117. module_param(rcu_fanout_leaf, int, 0444);
  118. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  119. /* Number of rcu_nodes at specified level. */
  120. static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
  121. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  122. /*
  123. * The rcu_scheduler_active variable transitions from zero to one just
  124. * before the first task is spawned. So when this variable is zero, RCU
  125. * can assume that there is but one task, allowing RCU to (for example)
  126. * optimize synchronize_sched() to a simple barrier(). When this variable
  127. * is one, RCU must actually do all the hard work required to detect real
  128. * grace periods. This variable is also used to suppress boot-time false
  129. * positives from lockdep-RCU error checking.
  130. */
  131. int rcu_scheduler_active __read_mostly;
  132. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  133. /*
  134. * The rcu_scheduler_fully_active variable transitions from zero to one
  135. * during the early_initcall() processing, which is after the scheduler
  136. * is capable of creating new tasks. So RCU processing (for example,
  137. * creating tasks for RCU priority boosting) must be delayed until after
  138. * rcu_scheduler_fully_active transitions from zero to one. We also
  139. * currently delay invocation of any RCU callbacks until after this point.
  140. *
  141. * It might later prove better for people registering RCU callbacks during
  142. * early boot to take responsibility for these callbacks, but one step at
  143. * a time.
  144. */
  145. static int rcu_scheduler_fully_active __read_mostly;
  146. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
  147. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
  148. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  149. static void invoke_rcu_core(void);
  150. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  151. static void rcu_report_exp_rdp(struct rcu_state *rsp,
  152. struct rcu_data *rdp, bool wake);
  153. /* rcuc/rcub kthread realtime priority */
  154. #ifdef CONFIG_RCU_KTHREAD_PRIO
  155. static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
  156. #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
  157. static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
  158. #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
  159. module_param(kthread_prio, int, 0644);
  160. /* Delay in jiffies for grace-period initialization delays, debug only. */
  161. #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
  162. static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
  163. module_param(gp_preinit_delay, int, 0644);
  164. #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
  165. static const int gp_preinit_delay;
  166. #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
  167. #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
  168. static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
  169. module_param(gp_init_delay, int, 0644);
  170. #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
  171. static const int gp_init_delay;
  172. #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
  173. #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
  174. static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
  175. module_param(gp_cleanup_delay, int, 0644);
  176. #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
  177. static const int gp_cleanup_delay;
  178. #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
  179. /*
  180. * Number of grace periods between delays, normalized by the duration of
  181. * the delay. The longer the the delay, the more the grace periods between
  182. * each delay. The reason for this normalization is that it means that,
  183. * for non-zero delays, the overall slowdown of grace periods is constant
  184. * regardless of the duration of the delay. This arrangement balances
  185. * the need for long delays to increase some race probabilities with the
  186. * need for fast grace periods to increase other race probabilities.
  187. */
  188. #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
  189. /*
  190. * Track the rcutorture test sequence number and the update version
  191. * number within a given test. The rcutorture_testseq is incremented
  192. * on every rcutorture module load and unload, so has an odd value
  193. * when a test is running. The rcutorture_vernum is set to zero
  194. * when rcutorture starts and is incremented on each rcutorture update.
  195. * These variables enable correlating rcutorture output with the
  196. * RCU tracing information.
  197. */
  198. unsigned long rcutorture_testseq;
  199. unsigned long rcutorture_vernum;
  200. /*
  201. * Compute the mask of online CPUs for the specified rcu_node structure.
  202. * This will not be stable unless the rcu_node structure's ->lock is
  203. * held, but the bit corresponding to the current CPU will be stable
  204. * in most contexts.
  205. */
  206. unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
  207. {
  208. return READ_ONCE(rnp->qsmaskinitnext);
  209. }
  210. /*
  211. * Return true if an RCU grace period is in progress. The READ_ONCE()s
  212. * permit this function to be invoked without holding the root rcu_node
  213. * structure's ->lock, but of course results can be subject to change.
  214. */
  215. static int rcu_gp_in_progress(struct rcu_state *rsp)
  216. {
  217. return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
  218. }
  219. /*
  220. * Note a quiescent state. Because we do not need to know
  221. * how many quiescent states passed, just if there was at least
  222. * one since the start of the grace period, this just sets a flag.
  223. * The caller must have disabled preemption.
  224. */
  225. void rcu_sched_qs(void)
  226. {
  227. unsigned long flags;
  228. if (__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) {
  229. trace_rcu_grace_period(TPS("rcu_sched"),
  230. __this_cpu_read(rcu_sched_data.gpnum),
  231. TPS("cpuqs"));
  232. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
  233. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
  234. return;
  235. local_irq_save(flags);
  236. if (__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) {
  237. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
  238. rcu_report_exp_rdp(&rcu_sched_state,
  239. this_cpu_ptr(&rcu_sched_data),
  240. true);
  241. }
  242. local_irq_restore(flags);
  243. }
  244. }
  245. void rcu_bh_qs(void)
  246. {
  247. if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
  248. trace_rcu_grace_period(TPS("rcu_bh"),
  249. __this_cpu_read(rcu_bh_data.gpnum),
  250. TPS("cpuqs"));
  251. __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
  252. }
  253. }
  254. static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
  255. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  256. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  257. .dynticks = ATOMIC_INIT(1),
  258. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  259. .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
  260. .dynticks_idle = ATOMIC_INIT(1),
  261. #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  262. };
  263. DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
  264. EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
  265. /*
  266. * Let the RCU core know that this CPU has gone through the scheduler,
  267. * which is a quiescent state. This is called when the need for a
  268. * quiescent state is urgent, so we burn an atomic operation and full
  269. * memory barriers to let the RCU core know about it, regardless of what
  270. * this CPU might (or might not) do in the near future.
  271. *
  272. * We inform the RCU core by emulating a zero-duration dyntick-idle
  273. * period, which we in turn do by incrementing the ->dynticks counter
  274. * by two.
  275. */
  276. static void rcu_momentary_dyntick_idle(void)
  277. {
  278. unsigned long flags;
  279. struct rcu_data *rdp;
  280. struct rcu_dynticks *rdtp;
  281. int resched_mask;
  282. struct rcu_state *rsp;
  283. local_irq_save(flags);
  284. /*
  285. * Yes, we can lose flag-setting operations. This is OK, because
  286. * the flag will be set again after some delay.
  287. */
  288. resched_mask = raw_cpu_read(rcu_sched_qs_mask);
  289. raw_cpu_write(rcu_sched_qs_mask, 0);
  290. /* Find the flavor that needs a quiescent state. */
  291. for_each_rcu_flavor(rsp) {
  292. rdp = raw_cpu_ptr(rsp->rda);
  293. if (!(resched_mask & rsp->flavor_mask))
  294. continue;
  295. smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
  296. if (READ_ONCE(rdp->mynode->completed) !=
  297. READ_ONCE(rdp->cond_resched_completed))
  298. continue;
  299. /*
  300. * Pretend to be momentarily idle for the quiescent state.
  301. * This allows the grace-period kthread to record the
  302. * quiescent state, with no need for this CPU to do anything
  303. * further.
  304. */
  305. rdtp = this_cpu_ptr(&rcu_dynticks);
  306. smp_mb__before_atomic(); /* Earlier stuff before QS. */
  307. atomic_add(2, &rdtp->dynticks); /* QS. */
  308. smp_mb__after_atomic(); /* Later stuff after QS. */
  309. break;
  310. }
  311. local_irq_restore(flags);
  312. }
  313. /*
  314. * Note a context switch. This is a quiescent state for RCU-sched,
  315. * and requires special handling for preemptible RCU.
  316. * The caller must have disabled preemption.
  317. */
  318. void rcu_note_context_switch(void)
  319. {
  320. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  321. trace_rcu_utilization(TPS("Start context switch"));
  322. rcu_sched_qs();
  323. rcu_preempt_note_context_switch();
  324. if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
  325. rcu_momentary_dyntick_idle();
  326. trace_rcu_utilization(TPS("End context switch"));
  327. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  328. }
  329. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  330. /*
  331. * Register a quiescent state for all RCU flavors. If there is an
  332. * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
  333. * dyntick-idle quiescent state visible to other CPUs (but only for those
  334. * RCU flavors in desperate need of a quiescent state, which will normally
  335. * be none of them). Either way, do a lightweight quiescent state for
  336. * all RCU flavors.
  337. *
  338. * The barrier() calls are redundant in the common case when this is
  339. * called externally, but just in case this is called from within this
  340. * file.
  341. *
  342. */
  343. void rcu_all_qs(void)
  344. {
  345. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  346. if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
  347. rcu_momentary_dyntick_idle();
  348. this_cpu_inc(rcu_qs_ctr);
  349. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  350. }
  351. EXPORT_SYMBOL_GPL(rcu_all_qs);
  352. static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
  353. static long qhimark = 10000; /* If this many pending, ignore blimit. */
  354. static long qlowmark = 100; /* Once only this many pending, use blimit. */
  355. module_param(blimit, long, 0444);
  356. module_param(qhimark, long, 0444);
  357. module_param(qlowmark, long, 0444);
  358. static ulong jiffies_till_first_fqs = ULONG_MAX;
  359. static ulong jiffies_till_next_fqs = ULONG_MAX;
  360. module_param(jiffies_till_first_fqs, ulong, 0644);
  361. module_param(jiffies_till_next_fqs, ulong, 0644);
  362. /*
  363. * How long the grace period must be before we start recruiting
  364. * quiescent-state help from rcu_note_context_switch().
  365. */
  366. static ulong jiffies_till_sched_qs = HZ / 20;
  367. module_param(jiffies_till_sched_qs, ulong, 0644);
  368. static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  369. struct rcu_data *rdp);
  370. static void force_qs_rnp(struct rcu_state *rsp,
  371. int (*f)(struct rcu_data *rsp, bool *isidle,
  372. unsigned long *maxj),
  373. bool *isidle, unsigned long *maxj);
  374. static void force_quiescent_state(struct rcu_state *rsp);
  375. static int rcu_pending(void);
  376. /*
  377. * Return the number of RCU batches started thus far for debug & stats.
  378. */
  379. unsigned long rcu_batches_started(void)
  380. {
  381. return rcu_state_p->gpnum;
  382. }
  383. EXPORT_SYMBOL_GPL(rcu_batches_started);
  384. /*
  385. * Return the number of RCU-sched batches started thus far for debug & stats.
  386. */
  387. unsigned long rcu_batches_started_sched(void)
  388. {
  389. return rcu_sched_state.gpnum;
  390. }
  391. EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
  392. /*
  393. * Return the number of RCU BH batches started thus far for debug & stats.
  394. */
  395. unsigned long rcu_batches_started_bh(void)
  396. {
  397. return rcu_bh_state.gpnum;
  398. }
  399. EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
  400. /*
  401. * Return the number of RCU batches completed thus far for debug & stats.
  402. */
  403. unsigned long rcu_batches_completed(void)
  404. {
  405. return rcu_state_p->completed;
  406. }
  407. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  408. /*
  409. * Return the number of RCU-sched batches completed thus far for debug & stats.
  410. */
  411. unsigned long rcu_batches_completed_sched(void)
  412. {
  413. return rcu_sched_state.completed;
  414. }
  415. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  416. /*
  417. * Return the number of RCU BH batches completed thus far for debug & stats.
  418. */
  419. unsigned long rcu_batches_completed_bh(void)
  420. {
  421. return rcu_bh_state.completed;
  422. }
  423. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  424. /*
  425. * Force a quiescent state.
  426. */
  427. void rcu_force_quiescent_state(void)
  428. {
  429. force_quiescent_state(rcu_state_p);
  430. }
  431. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  432. /*
  433. * Force a quiescent state for RCU BH.
  434. */
  435. void rcu_bh_force_quiescent_state(void)
  436. {
  437. force_quiescent_state(&rcu_bh_state);
  438. }
  439. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  440. /*
  441. * Force a quiescent state for RCU-sched.
  442. */
  443. void rcu_sched_force_quiescent_state(void)
  444. {
  445. force_quiescent_state(&rcu_sched_state);
  446. }
  447. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  448. /*
  449. * Show the state of the grace-period kthreads.
  450. */
  451. void show_rcu_gp_kthreads(void)
  452. {
  453. struct rcu_state *rsp;
  454. for_each_rcu_flavor(rsp) {
  455. pr_info("%s: wait state: %d ->state: %#lx\n",
  456. rsp->name, rsp->gp_state, rsp->gp_kthread->state);
  457. /* sched_show_task(rsp->gp_kthread); */
  458. }
  459. }
  460. EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
  461. /*
  462. * Record the number of times rcutorture tests have been initiated and
  463. * terminated. This information allows the debugfs tracing stats to be
  464. * correlated to the rcutorture messages, even when the rcutorture module
  465. * is being repeatedly loaded and unloaded. In other words, we cannot
  466. * store this state in rcutorture itself.
  467. */
  468. void rcutorture_record_test_transition(void)
  469. {
  470. rcutorture_testseq++;
  471. rcutorture_vernum = 0;
  472. }
  473. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  474. /*
  475. * Send along grace-period-related data for rcutorture diagnostics.
  476. */
  477. void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  478. unsigned long *gpnum, unsigned long *completed)
  479. {
  480. struct rcu_state *rsp = NULL;
  481. switch (test_type) {
  482. case RCU_FLAVOR:
  483. rsp = rcu_state_p;
  484. break;
  485. case RCU_BH_FLAVOR:
  486. rsp = &rcu_bh_state;
  487. break;
  488. case RCU_SCHED_FLAVOR:
  489. rsp = &rcu_sched_state;
  490. break;
  491. default:
  492. break;
  493. }
  494. if (rsp != NULL) {
  495. *flags = READ_ONCE(rsp->gp_flags);
  496. *gpnum = READ_ONCE(rsp->gpnum);
  497. *completed = READ_ONCE(rsp->completed);
  498. return;
  499. }
  500. *flags = 0;
  501. *gpnum = 0;
  502. *completed = 0;
  503. }
  504. EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
  505. /*
  506. * Record the number of writer passes through the current rcutorture test.
  507. * This is also used to correlate debugfs tracing stats with the rcutorture
  508. * messages.
  509. */
  510. void rcutorture_record_progress(unsigned long vernum)
  511. {
  512. rcutorture_vernum++;
  513. }
  514. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  515. /*
  516. * Does the CPU have callbacks ready to be invoked?
  517. */
  518. static int
  519. cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
  520. {
  521. return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
  522. rdp->nxttail[RCU_DONE_TAIL] != NULL;
  523. }
  524. /*
  525. * Return the root node of the specified rcu_state structure.
  526. */
  527. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  528. {
  529. return &rsp->node[0];
  530. }
  531. /*
  532. * Is there any need for future grace periods?
  533. * Interrupts must be disabled. If the caller does not hold the root
  534. * rnp_node structure's ->lock, the results are advisory only.
  535. */
  536. static int rcu_future_needs_gp(struct rcu_state *rsp)
  537. {
  538. struct rcu_node *rnp = rcu_get_root(rsp);
  539. int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
  540. int *fp = &rnp->need_future_gp[idx];
  541. return READ_ONCE(*fp);
  542. }
  543. /*
  544. * Does the current CPU require a not-yet-started grace period?
  545. * The caller must have disabled interrupts to prevent races with
  546. * normal callback registry.
  547. */
  548. static int
  549. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  550. {
  551. int i;
  552. if (rcu_gp_in_progress(rsp))
  553. return 0; /* No, a grace period is already in progress. */
  554. if (rcu_future_needs_gp(rsp))
  555. return 1; /* Yes, a no-CBs CPU needs one. */
  556. if (!rdp->nxttail[RCU_NEXT_TAIL])
  557. return 0; /* No, this is a no-CBs (or offline) CPU. */
  558. if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
  559. return 1; /* Yes, this CPU has newly registered callbacks. */
  560. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
  561. if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
  562. ULONG_CMP_LT(READ_ONCE(rsp->completed),
  563. rdp->nxtcompleted[i]))
  564. return 1; /* Yes, CBs for future grace period. */
  565. return 0; /* No grace period needed. */
  566. }
  567. /*
  568. * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
  569. *
  570. * If the new value of the ->dynticks_nesting counter now is zero,
  571. * we really have entered idle, and must do the appropriate accounting.
  572. * The caller must have disabled interrupts.
  573. */
  574. static void rcu_eqs_enter_common(long long oldval, bool user)
  575. {
  576. struct rcu_state *rsp;
  577. struct rcu_data *rdp;
  578. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  579. trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
  580. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  581. !user && !is_idle_task(current)) {
  582. struct task_struct *idle __maybe_unused =
  583. idle_task(smp_processor_id());
  584. trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
  585. ftrace_dump(DUMP_ORIG);
  586. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  587. current->pid, current->comm,
  588. idle->pid, idle->comm); /* must be idle task! */
  589. }
  590. for_each_rcu_flavor(rsp) {
  591. rdp = this_cpu_ptr(rsp->rda);
  592. do_nocb_deferred_wakeup(rdp);
  593. }
  594. rcu_prepare_for_idle();
  595. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  596. smp_mb__before_atomic(); /* See above. */
  597. atomic_inc(&rdtp->dynticks);
  598. smp_mb__after_atomic(); /* Force ordering with next sojourn. */
  599. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  600. atomic_read(&rdtp->dynticks) & 0x1);
  601. rcu_dynticks_task_enter();
  602. /*
  603. * It is illegal to enter an extended quiescent state while
  604. * in an RCU read-side critical section.
  605. */
  606. RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
  607. "Illegal idle entry in RCU read-side critical section.");
  608. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
  609. "Illegal idle entry in RCU-bh read-side critical section.");
  610. RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
  611. "Illegal idle entry in RCU-sched read-side critical section.");
  612. }
  613. /*
  614. * Enter an RCU extended quiescent state, which can be either the
  615. * idle loop or adaptive-tickless usermode execution.
  616. */
  617. static void rcu_eqs_enter(bool user)
  618. {
  619. long long oldval;
  620. struct rcu_dynticks *rdtp;
  621. rdtp = this_cpu_ptr(&rcu_dynticks);
  622. oldval = rdtp->dynticks_nesting;
  623. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  624. (oldval & DYNTICK_TASK_NEST_MASK) == 0);
  625. if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
  626. rdtp->dynticks_nesting = 0;
  627. rcu_eqs_enter_common(oldval, user);
  628. } else {
  629. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  630. }
  631. }
  632. /**
  633. * rcu_idle_enter - inform RCU that current CPU is entering idle
  634. *
  635. * Enter idle mode, in other words, -leave- the mode in which RCU
  636. * read-side critical sections can occur. (Though RCU read-side
  637. * critical sections can occur in irq handlers in idle, a possibility
  638. * handled by irq_enter() and irq_exit().)
  639. *
  640. * We crowbar the ->dynticks_nesting field to zero to allow for
  641. * the possibility of usermode upcalls having messed up our count
  642. * of interrupt nesting level during the prior busy period.
  643. */
  644. void rcu_idle_enter(void)
  645. {
  646. unsigned long flags;
  647. local_irq_save(flags);
  648. rcu_eqs_enter(false);
  649. rcu_sysidle_enter(0);
  650. local_irq_restore(flags);
  651. }
  652. EXPORT_SYMBOL_GPL(rcu_idle_enter);
  653. #ifdef CONFIG_NO_HZ_FULL
  654. /**
  655. * rcu_user_enter - inform RCU that we are resuming userspace.
  656. *
  657. * Enter RCU idle mode right before resuming userspace. No use of RCU
  658. * is permitted between this call and rcu_user_exit(). This way the
  659. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  660. * when the CPU runs in userspace.
  661. */
  662. void rcu_user_enter(void)
  663. {
  664. rcu_eqs_enter(1);
  665. }
  666. #endif /* CONFIG_NO_HZ_FULL */
  667. /**
  668. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  669. *
  670. * Exit from an interrupt handler, which might possibly result in entering
  671. * idle mode, in other words, leaving the mode in which read-side critical
  672. * sections can occur.
  673. *
  674. * This code assumes that the idle loop never does anything that might
  675. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  676. * architecture violates this assumption, RCU will give you what you
  677. * deserve, good and hard. But very infrequently and irreproducibly.
  678. *
  679. * Use things like work queues to work around this limitation.
  680. *
  681. * You have been warned.
  682. */
  683. void rcu_irq_exit(void)
  684. {
  685. unsigned long flags;
  686. long long oldval;
  687. struct rcu_dynticks *rdtp;
  688. local_irq_save(flags);
  689. rdtp = this_cpu_ptr(&rcu_dynticks);
  690. oldval = rdtp->dynticks_nesting;
  691. rdtp->dynticks_nesting--;
  692. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  693. rdtp->dynticks_nesting < 0);
  694. if (rdtp->dynticks_nesting)
  695. trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
  696. else
  697. rcu_eqs_enter_common(oldval, true);
  698. rcu_sysidle_enter(1);
  699. local_irq_restore(flags);
  700. }
  701. /*
  702. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  703. *
  704. * If the new value of the ->dynticks_nesting counter was previously zero,
  705. * we really have exited idle, and must do the appropriate accounting.
  706. * The caller must have disabled interrupts.
  707. */
  708. static void rcu_eqs_exit_common(long long oldval, int user)
  709. {
  710. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  711. rcu_dynticks_task_exit();
  712. smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
  713. atomic_inc(&rdtp->dynticks);
  714. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  715. smp_mb__after_atomic(); /* See above. */
  716. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  717. !(atomic_read(&rdtp->dynticks) & 0x1));
  718. rcu_cleanup_after_idle();
  719. trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
  720. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  721. !user && !is_idle_task(current)) {
  722. struct task_struct *idle __maybe_unused =
  723. idle_task(smp_processor_id());
  724. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  725. oldval, rdtp->dynticks_nesting);
  726. ftrace_dump(DUMP_ORIG);
  727. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  728. current->pid, current->comm,
  729. idle->pid, idle->comm); /* must be idle task! */
  730. }
  731. }
  732. /*
  733. * Exit an RCU extended quiescent state, which can be either the
  734. * idle loop or adaptive-tickless usermode execution.
  735. */
  736. static void rcu_eqs_exit(bool user)
  737. {
  738. struct rcu_dynticks *rdtp;
  739. long long oldval;
  740. rdtp = this_cpu_ptr(&rcu_dynticks);
  741. oldval = rdtp->dynticks_nesting;
  742. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
  743. if (oldval & DYNTICK_TASK_NEST_MASK) {
  744. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  745. } else {
  746. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  747. rcu_eqs_exit_common(oldval, user);
  748. }
  749. }
  750. /**
  751. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  752. *
  753. * Exit idle mode, in other words, -enter- the mode in which RCU
  754. * read-side critical sections can occur.
  755. *
  756. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  757. * allow for the possibility of usermode upcalls messing up our count
  758. * of interrupt nesting level during the busy period that is just
  759. * now starting.
  760. */
  761. void rcu_idle_exit(void)
  762. {
  763. unsigned long flags;
  764. local_irq_save(flags);
  765. rcu_eqs_exit(false);
  766. rcu_sysidle_exit(0);
  767. local_irq_restore(flags);
  768. }
  769. EXPORT_SYMBOL_GPL(rcu_idle_exit);
  770. #ifdef CONFIG_NO_HZ_FULL
  771. /**
  772. * rcu_user_exit - inform RCU that we are exiting userspace.
  773. *
  774. * Exit RCU idle mode while entering the kernel because it can
  775. * run a RCU read side critical section anytime.
  776. */
  777. void rcu_user_exit(void)
  778. {
  779. rcu_eqs_exit(1);
  780. }
  781. #endif /* CONFIG_NO_HZ_FULL */
  782. /**
  783. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  784. *
  785. * Enter an interrupt handler, which might possibly result in exiting
  786. * idle mode, in other words, entering the mode in which read-side critical
  787. * sections can occur.
  788. *
  789. * Note that the Linux kernel is fully capable of entering an interrupt
  790. * handler that it never exits, for example when doing upcalls to
  791. * user mode! This code assumes that the idle loop never does upcalls to
  792. * user mode. If your architecture does do upcalls from the idle loop (or
  793. * does anything else that results in unbalanced calls to the irq_enter()
  794. * and irq_exit() functions), RCU will give you what you deserve, good
  795. * and hard. But very infrequently and irreproducibly.
  796. *
  797. * Use things like work queues to work around this limitation.
  798. *
  799. * You have been warned.
  800. */
  801. void rcu_irq_enter(void)
  802. {
  803. unsigned long flags;
  804. struct rcu_dynticks *rdtp;
  805. long long oldval;
  806. local_irq_save(flags);
  807. rdtp = this_cpu_ptr(&rcu_dynticks);
  808. oldval = rdtp->dynticks_nesting;
  809. rdtp->dynticks_nesting++;
  810. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  811. rdtp->dynticks_nesting == 0);
  812. if (oldval)
  813. trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
  814. else
  815. rcu_eqs_exit_common(oldval, true);
  816. rcu_sysidle_exit(1);
  817. local_irq_restore(flags);
  818. }
  819. /**
  820. * rcu_nmi_enter - inform RCU of entry to NMI context
  821. *
  822. * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
  823. * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
  824. * that the CPU is active. This implementation permits nested NMIs, as
  825. * long as the nesting level does not overflow an int. (You will probably
  826. * run out of stack space first.)
  827. */
  828. void rcu_nmi_enter(void)
  829. {
  830. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  831. int incby = 2;
  832. /* Complain about underflow. */
  833. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
  834. /*
  835. * If idle from RCU viewpoint, atomically increment ->dynticks
  836. * to mark non-idle and increment ->dynticks_nmi_nesting by one.
  837. * Otherwise, increment ->dynticks_nmi_nesting by two. This means
  838. * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
  839. * to be in the outermost NMI handler that interrupted an RCU-idle
  840. * period (observation due to Andy Lutomirski).
  841. */
  842. if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
  843. smp_mb__before_atomic(); /* Force delay from prior write. */
  844. atomic_inc(&rdtp->dynticks);
  845. /* atomic_inc() before later RCU read-side crit sects */
  846. smp_mb__after_atomic(); /* See above. */
  847. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  848. incby = 1;
  849. }
  850. rdtp->dynticks_nmi_nesting += incby;
  851. barrier();
  852. }
  853. /**
  854. * rcu_nmi_exit - inform RCU of exit from NMI context
  855. *
  856. * If we are returning from the outermost NMI handler that interrupted an
  857. * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
  858. * to let the RCU grace-period handling know that the CPU is back to
  859. * being RCU-idle.
  860. */
  861. void rcu_nmi_exit(void)
  862. {
  863. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  864. /*
  865. * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
  866. * (We are exiting an NMI handler, so RCU better be paying attention
  867. * to us!)
  868. */
  869. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
  870. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  871. /*
  872. * If the nesting level is not 1, the CPU wasn't RCU-idle, so
  873. * leave it in non-RCU-idle state.
  874. */
  875. if (rdtp->dynticks_nmi_nesting != 1) {
  876. rdtp->dynticks_nmi_nesting -= 2;
  877. return;
  878. }
  879. /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
  880. rdtp->dynticks_nmi_nesting = 0;
  881. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  882. smp_mb__before_atomic(); /* See above. */
  883. atomic_inc(&rdtp->dynticks);
  884. smp_mb__after_atomic(); /* Force delay to next write. */
  885. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  886. }
  887. /**
  888. * __rcu_is_watching - are RCU read-side critical sections safe?
  889. *
  890. * Return true if RCU is watching the running CPU, which means that
  891. * this CPU can safely enter RCU read-side critical sections. Unlike
  892. * rcu_is_watching(), the caller of __rcu_is_watching() must have at
  893. * least disabled preemption.
  894. */
  895. bool notrace __rcu_is_watching(void)
  896. {
  897. return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
  898. }
  899. /**
  900. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  901. *
  902. * If the current CPU is in its idle loop and is neither in an interrupt
  903. * or NMI handler, return true.
  904. */
  905. bool notrace rcu_is_watching(void)
  906. {
  907. bool ret;
  908. preempt_disable_notrace();
  909. ret = __rcu_is_watching();
  910. preempt_enable_notrace();
  911. return ret;
  912. }
  913. EXPORT_SYMBOL_GPL(rcu_is_watching);
  914. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  915. /*
  916. * Is the current CPU online? Disable preemption to avoid false positives
  917. * that could otherwise happen due to the current CPU number being sampled,
  918. * this task being preempted, its old CPU being taken offline, resuming
  919. * on some other CPU, then determining that its old CPU is now offline.
  920. * It is OK to use RCU on an offline processor during initial boot, hence
  921. * the check for rcu_scheduler_fully_active. Note also that it is OK
  922. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  923. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  924. * offline to continue to use RCU for one jiffy after marking itself
  925. * offline in the cpu_online_mask. This leniency is necessary given the
  926. * non-atomic nature of the online and offline processing, for example,
  927. * the fact that a CPU enters the scheduler after completing the CPU_DYING
  928. * notifiers.
  929. *
  930. * This is also why RCU internally marks CPUs online during the
  931. * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
  932. *
  933. * Disable checking if in an NMI handler because we cannot safely report
  934. * errors from NMI handlers anyway.
  935. */
  936. bool rcu_lockdep_current_cpu_online(void)
  937. {
  938. struct rcu_data *rdp;
  939. struct rcu_node *rnp;
  940. bool ret;
  941. if (in_nmi())
  942. return true;
  943. preempt_disable();
  944. rdp = this_cpu_ptr(&rcu_sched_data);
  945. rnp = rdp->mynode;
  946. ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
  947. !rcu_scheduler_fully_active;
  948. preempt_enable();
  949. return ret;
  950. }
  951. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  952. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  953. /**
  954. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  955. *
  956. * If the current CPU is idle or running at a first-level (not nested)
  957. * interrupt from idle, return true. The caller must have at least
  958. * disabled preemption.
  959. */
  960. static int rcu_is_cpu_rrupt_from_idle(void)
  961. {
  962. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
  963. }
  964. /*
  965. * Snapshot the specified CPU's dynticks counter so that we can later
  966. * credit them with an implicit quiescent state. Return 1 if this CPU
  967. * is in dynticks idle mode, which is an extended quiescent state.
  968. */
  969. static int dyntick_save_progress_counter(struct rcu_data *rdp,
  970. bool *isidle, unsigned long *maxj)
  971. {
  972. rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
  973. rcu_sysidle_check_cpu(rdp, isidle, maxj);
  974. if ((rdp->dynticks_snap & 0x1) == 0) {
  975. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  976. return 1;
  977. } else {
  978. if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
  979. rdp->mynode->gpnum))
  980. WRITE_ONCE(rdp->gpwrap, true);
  981. return 0;
  982. }
  983. }
  984. /*
  985. * Return true if the specified CPU has passed through a quiescent
  986. * state by virtue of being in or having passed through an dynticks
  987. * idle state since the last call to dyntick_save_progress_counter()
  988. * for this same CPU, or by virtue of having been offline.
  989. */
  990. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
  991. bool *isidle, unsigned long *maxj)
  992. {
  993. unsigned int curr;
  994. int *rcrmp;
  995. unsigned int snap;
  996. curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
  997. snap = (unsigned int)rdp->dynticks_snap;
  998. /*
  999. * If the CPU passed through or entered a dynticks idle phase with
  1000. * no active irq/NMI handlers, then we can safely pretend that the CPU
  1001. * already acknowledged the request to pass through a quiescent
  1002. * state. Either way, that CPU cannot possibly be in an RCU
  1003. * read-side critical section that started before the beginning
  1004. * of the current RCU grace period.
  1005. */
  1006. if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
  1007. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  1008. rdp->dynticks_fqs++;
  1009. return 1;
  1010. }
  1011. /*
  1012. * Check for the CPU being offline, but only if the grace period
  1013. * is old enough. We don't need to worry about the CPU changing
  1014. * state: If we see it offline even once, it has been through a
  1015. * quiescent state.
  1016. *
  1017. * The reason for insisting that the grace period be at least
  1018. * one jiffy old is that CPUs that are not quite online and that
  1019. * have just gone offline can still execute RCU read-side critical
  1020. * sections.
  1021. */
  1022. if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
  1023. return 0; /* Grace period is not old enough. */
  1024. barrier();
  1025. if (cpu_is_offline(rdp->cpu)) {
  1026. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  1027. rdp->offline_fqs++;
  1028. return 1;
  1029. }
  1030. /*
  1031. * A CPU running for an extended time within the kernel can
  1032. * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
  1033. * even context-switching back and forth between a pair of
  1034. * in-kernel CPU-bound tasks cannot advance grace periods.
  1035. * So if the grace period is old enough, make the CPU pay attention.
  1036. * Note that the unsynchronized assignments to the per-CPU
  1037. * rcu_sched_qs_mask variable are safe. Yes, setting of
  1038. * bits can be lost, but they will be set again on the next
  1039. * force-quiescent-state pass. So lost bit sets do not result
  1040. * in incorrect behavior, merely in a grace period lasting
  1041. * a few jiffies longer than it might otherwise. Because
  1042. * there are at most four threads involved, and because the
  1043. * updates are only once every few jiffies, the probability of
  1044. * lossage (and thus of slight grace-period extension) is
  1045. * quite low.
  1046. *
  1047. * Note that if the jiffies_till_sched_qs boot/sysfs parameter
  1048. * is set too high, we override with half of the RCU CPU stall
  1049. * warning delay.
  1050. */
  1051. rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
  1052. if (ULONG_CMP_GE(jiffies,
  1053. rdp->rsp->gp_start + jiffies_till_sched_qs) ||
  1054. ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  1055. if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
  1056. WRITE_ONCE(rdp->cond_resched_completed,
  1057. READ_ONCE(rdp->mynode->completed));
  1058. smp_mb(); /* ->cond_resched_completed before *rcrmp. */
  1059. WRITE_ONCE(*rcrmp,
  1060. READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
  1061. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  1062. rdp->rsp->jiffies_resched += 5; /* Enable beating. */
  1063. } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  1064. /* Time to beat on that CPU again! */
  1065. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  1066. rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
  1067. }
  1068. }
  1069. return 0;
  1070. }
  1071. static void record_gp_stall_check_time(struct rcu_state *rsp)
  1072. {
  1073. unsigned long j = jiffies;
  1074. unsigned long j1;
  1075. rsp->gp_start = j;
  1076. smp_wmb(); /* Record start time before stall time. */
  1077. j1 = rcu_jiffies_till_stall_check();
  1078. WRITE_ONCE(rsp->jiffies_stall, j + j1);
  1079. rsp->jiffies_resched = j + j1 / 2;
  1080. rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
  1081. }
  1082. /*
  1083. * Complain about starvation of grace-period kthread.
  1084. */
  1085. static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
  1086. {
  1087. unsigned long gpa;
  1088. unsigned long j;
  1089. j = jiffies;
  1090. gpa = READ_ONCE(rsp->gp_activity);
  1091. if (j - gpa > 2 * HZ)
  1092. pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
  1093. rsp->name, j - gpa,
  1094. rsp->gpnum, rsp->completed,
  1095. rsp->gp_flags, rsp->gp_state,
  1096. rsp->gp_kthread ? rsp->gp_kthread->state : 0);
  1097. }
  1098. /*
  1099. * Dump stacks of all tasks running on stalled CPUs.
  1100. */
  1101. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  1102. {
  1103. int cpu;
  1104. unsigned long flags;
  1105. struct rcu_node *rnp;
  1106. rcu_for_each_leaf_node(rsp, rnp) {
  1107. raw_spin_lock_irqsave(&rnp->lock, flags);
  1108. if (rnp->qsmask != 0) {
  1109. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  1110. if (rnp->qsmask & (1UL << cpu))
  1111. dump_cpu_task(rnp->grplo + cpu);
  1112. }
  1113. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1114. }
  1115. }
  1116. static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
  1117. {
  1118. int cpu;
  1119. long delta;
  1120. unsigned long flags;
  1121. unsigned long gpa;
  1122. unsigned long j;
  1123. int ndetected = 0;
  1124. struct rcu_node *rnp = rcu_get_root(rsp);
  1125. long totqlen = 0;
  1126. /* Only let one CPU complain about others per time interval. */
  1127. raw_spin_lock_irqsave(&rnp->lock, flags);
  1128. delta = jiffies - READ_ONCE(rsp->jiffies_stall);
  1129. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  1130. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1131. return;
  1132. }
  1133. WRITE_ONCE(rsp->jiffies_stall,
  1134. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1135. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1136. /*
  1137. * OK, time to rat on our buddy...
  1138. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1139. * RCU CPU stall warnings.
  1140. */
  1141. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  1142. rsp->name);
  1143. print_cpu_stall_info_begin();
  1144. rcu_for_each_leaf_node(rsp, rnp) {
  1145. raw_spin_lock_irqsave(&rnp->lock, flags);
  1146. ndetected += rcu_print_task_stall(rnp);
  1147. if (rnp->qsmask != 0) {
  1148. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  1149. if (rnp->qsmask & (1UL << cpu)) {
  1150. print_cpu_stall_info(rsp,
  1151. rnp->grplo + cpu);
  1152. ndetected++;
  1153. }
  1154. }
  1155. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1156. }
  1157. print_cpu_stall_info_end();
  1158. for_each_possible_cpu(cpu)
  1159. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  1160. pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
  1161. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  1162. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1163. if (ndetected) {
  1164. rcu_dump_cpu_stacks(rsp);
  1165. } else {
  1166. if (READ_ONCE(rsp->gpnum) != gpnum ||
  1167. READ_ONCE(rsp->completed) == gpnum) {
  1168. pr_err("INFO: Stall ended before state dump start\n");
  1169. } else {
  1170. j = jiffies;
  1171. gpa = READ_ONCE(rsp->gp_activity);
  1172. pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
  1173. rsp->name, j - gpa, j, gpa,
  1174. jiffies_till_next_fqs,
  1175. rcu_get_root(rsp)->qsmask);
  1176. /* In this case, the current CPU might be at fault. */
  1177. sched_show_task(current);
  1178. }
  1179. }
  1180. /* Complain about tasks blocking the grace period. */
  1181. rcu_print_detail_task_stall(rsp);
  1182. rcu_check_gp_kthread_starvation(rsp);
  1183. force_quiescent_state(rsp); /* Kick them all. */
  1184. }
  1185. static void print_cpu_stall(struct rcu_state *rsp)
  1186. {
  1187. int cpu;
  1188. unsigned long flags;
  1189. struct rcu_node *rnp = rcu_get_root(rsp);
  1190. long totqlen = 0;
  1191. /*
  1192. * OK, time to rat on ourselves...
  1193. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1194. * RCU CPU stall warnings.
  1195. */
  1196. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  1197. print_cpu_stall_info_begin();
  1198. print_cpu_stall_info(rsp, smp_processor_id());
  1199. print_cpu_stall_info_end();
  1200. for_each_possible_cpu(cpu)
  1201. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  1202. pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
  1203. jiffies - rsp->gp_start,
  1204. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1205. rcu_check_gp_kthread_starvation(rsp);
  1206. rcu_dump_cpu_stacks(rsp);
  1207. raw_spin_lock_irqsave(&rnp->lock, flags);
  1208. if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
  1209. WRITE_ONCE(rsp->jiffies_stall,
  1210. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1211. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1212. /*
  1213. * Attempt to revive the RCU machinery by forcing a context switch.
  1214. *
  1215. * A context switch would normally allow the RCU state machine to make
  1216. * progress and it could be we're stuck in kernel space without context
  1217. * switches for an entirely unreasonable amount of time.
  1218. */
  1219. resched_cpu(smp_processor_id());
  1220. }
  1221. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  1222. {
  1223. unsigned long completed;
  1224. unsigned long gpnum;
  1225. unsigned long gps;
  1226. unsigned long j;
  1227. unsigned long js;
  1228. struct rcu_node *rnp;
  1229. if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
  1230. return;
  1231. j = jiffies;
  1232. /*
  1233. * Lots of memory barriers to reject false positives.
  1234. *
  1235. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  1236. * then rsp->gp_start, and finally rsp->completed. These values
  1237. * are updated in the opposite order with memory barriers (or
  1238. * equivalent) during grace-period initialization and cleanup.
  1239. * Now, a false positive can occur if we get an new value of
  1240. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  1241. * the memory barriers, the only way that this can happen is if one
  1242. * grace period ends and another starts between these two fetches.
  1243. * Detect this by comparing rsp->completed with the previous fetch
  1244. * from rsp->gpnum.
  1245. *
  1246. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  1247. * and rsp->gp_start suffice to forestall false positives.
  1248. */
  1249. gpnum = READ_ONCE(rsp->gpnum);
  1250. smp_rmb(); /* Pick up ->gpnum first... */
  1251. js = READ_ONCE(rsp->jiffies_stall);
  1252. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  1253. gps = READ_ONCE(rsp->gp_start);
  1254. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  1255. completed = READ_ONCE(rsp->completed);
  1256. if (ULONG_CMP_GE(completed, gpnum) ||
  1257. ULONG_CMP_LT(j, js) ||
  1258. ULONG_CMP_GE(gps, js))
  1259. return; /* No stall or GP completed since entering function. */
  1260. rnp = rdp->mynode;
  1261. if (rcu_gp_in_progress(rsp) &&
  1262. (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
  1263. /* We haven't checked in, so go dump stack. */
  1264. print_cpu_stall(rsp);
  1265. } else if (rcu_gp_in_progress(rsp) &&
  1266. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  1267. /* They had a few time units to dump stack, so complain. */
  1268. print_other_cpu_stall(rsp, gpnum);
  1269. }
  1270. }
  1271. /**
  1272. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  1273. *
  1274. * Set the stall-warning timeout way off into the future, thus preventing
  1275. * any RCU CPU stall-warning messages from appearing in the current set of
  1276. * RCU grace periods.
  1277. *
  1278. * The caller must disable hard irqs.
  1279. */
  1280. void rcu_cpu_stall_reset(void)
  1281. {
  1282. struct rcu_state *rsp;
  1283. for_each_rcu_flavor(rsp)
  1284. WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
  1285. }
  1286. /*
  1287. * Initialize the specified rcu_data structure's default callback list
  1288. * to empty. The default callback list is the one that is not used by
  1289. * no-callbacks CPUs.
  1290. */
  1291. static void init_default_callback_list(struct rcu_data *rdp)
  1292. {
  1293. int i;
  1294. rdp->nxtlist = NULL;
  1295. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1296. rdp->nxttail[i] = &rdp->nxtlist;
  1297. }
  1298. /*
  1299. * Initialize the specified rcu_data structure's callback list to empty.
  1300. */
  1301. static void init_callback_list(struct rcu_data *rdp)
  1302. {
  1303. if (init_nocb_callback_list(rdp))
  1304. return;
  1305. init_default_callback_list(rdp);
  1306. }
  1307. /*
  1308. * Determine the value that ->completed will have at the end of the
  1309. * next subsequent grace period. This is used to tag callbacks so that
  1310. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  1311. * been dyntick-idle for an extended period with callbacks under the
  1312. * influence of RCU_FAST_NO_HZ.
  1313. *
  1314. * The caller must hold rnp->lock with interrupts disabled.
  1315. */
  1316. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  1317. struct rcu_node *rnp)
  1318. {
  1319. /*
  1320. * If RCU is idle, we just wait for the next grace period.
  1321. * But we can only be sure that RCU is idle if we are looking
  1322. * at the root rcu_node structure -- otherwise, a new grace
  1323. * period might have started, but just not yet gotten around
  1324. * to initializing the current non-root rcu_node structure.
  1325. */
  1326. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  1327. return rnp->completed + 1;
  1328. /*
  1329. * Otherwise, wait for a possible partial grace period and
  1330. * then the subsequent full grace period.
  1331. */
  1332. return rnp->completed + 2;
  1333. }
  1334. /*
  1335. * Trace-event helper function for rcu_start_future_gp() and
  1336. * rcu_nocb_wait_gp().
  1337. */
  1338. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1339. unsigned long c, const char *s)
  1340. {
  1341. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  1342. rnp->completed, c, rnp->level,
  1343. rnp->grplo, rnp->grphi, s);
  1344. }
  1345. /*
  1346. * Start some future grace period, as needed to handle newly arrived
  1347. * callbacks. The required future grace periods are recorded in each
  1348. * rcu_node structure's ->need_future_gp field. Returns true if there
  1349. * is reason to awaken the grace-period kthread.
  1350. *
  1351. * The caller must hold the specified rcu_node structure's ->lock.
  1352. */
  1353. static bool __maybe_unused
  1354. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1355. unsigned long *c_out)
  1356. {
  1357. unsigned long c;
  1358. int i;
  1359. bool ret = false;
  1360. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  1361. /*
  1362. * Pick up grace-period number for new callbacks. If this
  1363. * grace period is already marked as needed, return to the caller.
  1364. */
  1365. c = rcu_cbs_completed(rdp->rsp, rnp);
  1366. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  1367. if (rnp->need_future_gp[c & 0x1]) {
  1368. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  1369. goto out;
  1370. }
  1371. /*
  1372. * If either this rcu_node structure or the root rcu_node structure
  1373. * believe that a grace period is in progress, then we must wait
  1374. * for the one following, which is in "c". Because our request
  1375. * will be noticed at the end of the current grace period, we don't
  1376. * need to explicitly start one. We only do the lockless check
  1377. * of rnp_root's fields if the current rcu_node structure thinks
  1378. * there is no grace period in flight, and because we hold rnp->lock,
  1379. * the only possible change is when rnp_root's two fields are
  1380. * equal, in which case rnp_root->gpnum might be concurrently
  1381. * incremented. But that is OK, as it will just result in our
  1382. * doing some extra useless work.
  1383. */
  1384. if (rnp->gpnum != rnp->completed ||
  1385. READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
  1386. rnp->need_future_gp[c & 0x1]++;
  1387. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1388. goto out;
  1389. }
  1390. /*
  1391. * There might be no grace period in progress. If we don't already
  1392. * hold it, acquire the root rcu_node structure's lock in order to
  1393. * start one (if needed).
  1394. */
  1395. if (rnp != rnp_root) {
  1396. raw_spin_lock(&rnp_root->lock);
  1397. smp_mb__after_unlock_lock();
  1398. }
  1399. /*
  1400. * Get a new grace-period number. If there really is no grace
  1401. * period in progress, it will be smaller than the one we obtained
  1402. * earlier. Adjust callbacks as needed. Note that even no-CBs
  1403. * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
  1404. */
  1405. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1406. for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
  1407. if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
  1408. rdp->nxtcompleted[i] = c;
  1409. /*
  1410. * If the needed for the required grace period is already
  1411. * recorded, trace and leave.
  1412. */
  1413. if (rnp_root->need_future_gp[c & 0x1]) {
  1414. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1415. goto unlock_out;
  1416. }
  1417. /* Record the need for the future grace period. */
  1418. rnp_root->need_future_gp[c & 0x1]++;
  1419. /* If a grace period is not already in progress, start one. */
  1420. if (rnp_root->gpnum != rnp_root->completed) {
  1421. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1422. } else {
  1423. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1424. ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1425. }
  1426. unlock_out:
  1427. if (rnp != rnp_root)
  1428. raw_spin_unlock(&rnp_root->lock);
  1429. out:
  1430. if (c_out != NULL)
  1431. *c_out = c;
  1432. return ret;
  1433. }
  1434. /*
  1435. * Clean up any old requests for the just-ended grace period. Also return
  1436. * whether any additional grace periods have been requested. Also invoke
  1437. * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
  1438. * waiting for this grace period to complete.
  1439. */
  1440. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1441. {
  1442. int c = rnp->completed;
  1443. int needmore;
  1444. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1445. rcu_nocb_gp_cleanup(rsp, rnp);
  1446. rnp->need_future_gp[c & 0x1] = 0;
  1447. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1448. trace_rcu_future_gp(rnp, rdp, c,
  1449. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1450. return needmore;
  1451. }
  1452. /*
  1453. * Awaken the grace-period kthread for the specified flavor of RCU.
  1454. * Don't do a self-awaken, and don't bother awakening when there is
  1455. * nothing for the grace-period kthread to do (as in several CPUs
  1456. * raced to awaken, and we lost), and finally don't try to awaken
  1457. * a kthread that has not yet been created.
  1458. */
  1459. static void rcu_gp_kthread_wake(struct rcu_state *rsp)
  1460. {
  1461. if (current == rsp->gp_kthread ||
  1462. !READ_ONCE(rsp->gp_flags) ||
  1463. !rsp->gp_kthread)
  1464. return;
  1465. wake_up(&rsp->gp_wq);
  1466. }
  1467. /*
  1468. * If there is room, assign a ->completed number to any callbacks on
  1469. * this CPU that have not already been assigned. Also accelerate any
  1470. * callbacks that were previously assigned a ->completed number that has
  1471. * since proven to be too conservative, which can happen if callbacks get
  1472. * assigned a ->completed number while RCU is idle, but with reference to
  1473. * a non-root rcu_node structure. This function is idempotent, so it does
  1474. * not hurt to call it repeatedly. Returns an flag saying that we should
  1475. * awaken the RCU grace-period kthread.
  1476. *
  1477. * The caller must hold rnp->lock with interrupts disabled.
  1478. */
  1479. static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1480. struct rcu_data *rdp)
  1481. {
  1482. unsigned long c;
  1483. int i;
  1484. bool ret;
  1485. /* If the CPU has no callbacks, nothing to do. */
  1486. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1487. return false;
  1488. /*
  1489. * Starting from the sublist containing the callbacks most
  1490. * recently assigned a ->completed number and working down, find the
  1491. * first sublist that is not assignable to an upcoming grace period.
  1492. * Such a sublist has something in it (first two tests) and has
  1493. * a ->completed number assigned that will complete sooner than
  1494. * the ->completed number for newly arrived callbacks (last test).
  1495. *
  1496. * The key point is that any later sublist can be assigned the
  1497. * same ->completed number as the newly arrived callbacks, which
  1498. * means that the callbacks in any of these later sublist can be
  1499. * grouped into a single sublist, whether or not they have already
  1500. * been assigned a ->completed number.
  1501. */
  1502. c = rcu_cbs_completed(rsp, rnp);
  1503. for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
  1504. if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
  1505. !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
  1506. break;
  1507. /*
  1508. * If there are no sublist for unassigned callbacks, leave.
  1509. * At the same time, advance "i" one sublist, so that "i" will
  1510. * index into the sublist where all the remaining callbacks should
  1511. * be grouped into.
  1512. */
  1513. if (++i >= RCU_NEXT_TAIL)
  1514. return false;
  1515. /*
  1516. * Assign all subsequent callbacks' ->completed number to the next
  1517. * full grace period and group them all in the sublist initially
  1518. * indexed by "i".
  1519. */
  1520. for (; i <= RCU_NEXT_TAIL; i++) {
  1521. rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
  1522. rdp->nxtcompleted[i] = c;
  1523. }
  1524. /* Record any needed additional grace periods. */
  1525. ret = rcu_start_future_gp(rnp, rdp, NULL);
  1526. /* Trace depending on how much we were able to accelerate. */
  1527. if (!*rdp->nxttail[RCU_WAIT_TAIL])
  1528. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1529. else
  1530. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1531. return ret;
  1532. }
  1533. /*
  1534. * Move any callbacks whose grace period has completed to the
  1535. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1536. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1537. * sublist. This function is idempotent, so it does not hurt to
  1538. * invoke it repeatedly. As long as it is not invoked -too- often...
  1539. * Returns true if the RCU grace-period kthread needs to be awakened.
  1540. *
  1541. * The caller must hold rnp->lock with interrupts disabled.
  1542. */
  1543. static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1544. struct rcu_data *rdp)
  1545. {
  1546. int i, j;
  1547. /* If the CPU has no callbacks, nothing to do. */
  1548. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1549. return false;
  1550. /*
  1551. * Find all callbacks whose ->completed numbers indicate that they
  1552. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1553. */
  1554. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
  1555. if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
  1556. break;
  1557. rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
  1558. }
  1559. /* Clean up any sublist tail pointers that were misordered above. */
  1560. for (j = RCU_WAIT_TAIL; j < i; j++)
  1561. rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
  1562. /* Copy down callbacks to fill in empty sublists. */
  1563. for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
  1564. if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
  1565. break;
  1566. rdp->nxttail[j] = rdp->nxttail[i];
  1567. rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
  1568. }
  1569. /* Classify any remaining callbacks. */
  1570. return rcu_accelerate_cbs(rsp, rnp, rdp);
  1571. }
  1572. /*
  1573. * Update CPU-local rcu_data state to record the beginnings and ends of
  1574. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1575. * structure corresponding to the current CPU, and must have irqs disabled.
  1576. * Returns true if the grace-period kthread needs to be awakened.
  1577. */
  1578. static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
  1579. struct rcu_data *rdp)
  1580. {
  1581. bool ret;
  1582. /* Handle the ends of any preceding grace periods first. */
  1583. if (rdp->completed == rnp->completed &&
  1584. !unlikely(READ_ONCE(rdp->gpwrap))) {
  1585. /* No grace period end, so just accelerate recent callbacks. */
  1586. ret = rcu_accelerate_cbs(rsp, rnp, rdp);
  1587. } else {
  1588. /* Advance callbacks. */
  1589. ret = rcu_advance_cbs(rsp, rnp, rdp);
  1590. /* Remember that we saw this grace-period completion. */
  1591. rdp->completed = rnp->completed;
  1592. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1593. }
  1594. if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
  1595. /*
  1596. * If the current grace period is waiting for this CPU,
  1597. * set up to detect a quiescent state, otherwise don't
  1598. * go looking for one.
  1599. */
  1600. rdp->gpnum = rnp->gpnum;
  1601. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1602. rdp->cpu_no_qs.b.norm = true;
  1603. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
  1604. rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
  1605. zero_cpu_stall_ticks(rdp);
  1606. WRITE_ONCE(rdp->gpwrap, false);
  1607. }
  1608. return ret;
  1609. }
  1610. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1611. {
  1612. unsigned long flags;
  1613. bool needwake;
  1614. struct rcu_node *rnp;
  1615. local_irq_save(flags);
  1616. rnp = rdp->mynode;
  1617. if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
  1618. rdp->completed == READ_ONCE(rnp->completed) &&
  1619. !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
  1620. !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
  1621. local_irq_restore(flags);
  1622. return;
  1623. }
  1624. smp_mb__after_unlock_lock();
  1625. needwake = __note_gp_changes(rsp, rnp, rdp);
  1626. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1627. if (needwake)
  1628. rcu_gp_kthread_wake(rsp);
  1629. }
  1630. static void rcu_gp_slow(struct rcu_state *rsp, int delay)
  1631. {
  1632. if (delay > 0 &&
  1633. !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
  1634. schedule_timeout_uninterruptible(delay);
  1635. }
  1636. /*
  1637. * Initialize a new grace period. Return 0 if no grace period required.
  1638. */
  1639. static int rcu_gp_init(struct rcu_state *rsp)
  1640. {
  1641. unsigned long oldmask;
  1642. struct rcu_data *rdp;
  1643. struct rcu_node *rnp = rcu_get_root(rsp);
  1644. WRITE_ONCE(rsp->gp_activity, jiffies);
  1645. raw_spin_lock_irq(&rnp->lock);
  1646. smp_mb__after_unlock_lock();
  1647. if (!READ_ONCE(rsp->gp_flags)) {
  1648. /* Spurious wakeup, tell caller to go back to sleep. */
  1649. raw_spin_unlock_irq(&rnp->lock);
  1650. return 0;
  1651. }
  1652. WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
  1653. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1654. /*
  1655. * Grace period already in progress, don't start another.
  1656. * Not supposed to be able to happen.
  1657. */
  1658. raw_spin_unlock_irq(&rnp->lock);
  1659. return 0;
  1660. }
  1661. /* Advance to a new grace period and initialize state. */
  1662. record_gp_stall_check_time(rsp);
  1663. /* Record GP times before starting GP, hence smp_store_release(). */
  1664. smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
  1665. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1666. raw_spin_unlock_irq(&rnp->lock);
  1667. /*
  1668. * Apply per-leaf buffered online and offline operations to the
  1669. * rcu_node tree. Note that this new grace period need not wait
  1670. * for subsequent online CPUs, and that quiescent-state forcing
  1671. * will handle subsequent offline CPUs.
  1672. */
  1673. rcu_for_each_leaf_node(rsp, rnp) {
  1674. rcu_gp_slow(rsp, gp_preinit_delay);
  1675. raw_spin_lock_irq(&rnp->lock);
  1676. smp_mb__after_unlock_lock();
  1677. if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
  1678. !rnp->wait_blkd_tasks) {
  1679. /* Nothing to do on this leaf rcu_node structure. */
  1680. raw_spin_unlock_irq(&rnp->lock);
  1681. continue;
  1682. }
  1683. /* Record old state, apply changes to ->qsmaskinit field. */
  1684. oldmask = rnp->qsmaskinit;
  1685. rnp->qsmaskinit = rnp->qsmaskinitnext;
  1686. /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
  1687. if (!oldmask != !rnp->qsmaskinit) {
  1688. if (!oldmask) /* First online CPU for this rcu_node. */
  1689. rcu_init_new_rnp(rnp);
  1690. else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
  1691. rnp->wait_blkd_tasks = true;
  1692. else /* Last offline CPU and can propagate. */
  1693. rcu_cleanup_dead_rnp(rnp);
  1694. }
  1695. /*
  1696. * If all waited-on tasks from prior grace period are
  1697. * done, and if all this rcu_node structure's CPUs are
  1698. * still offline, propagate up the rcu_node tree and
  1699. * clear ->wait_blkd_tasks. Otherwise, if one of this
  1700. * rcu_node structure's CPUs has since come back online,
  1701. * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
  1702. * checks for this, so just call it unconditionally).
  1703. */
  1704. if (rnp->wait_blkd_tasks &&
  1705. (!rcu_preempt_has_tasks(rnp) ||
  1706. rnp->qsmaskinit)) {
  1707. rnp->wait_blkd_tasks = false;
  1708. rcu_cleanup_dead_rnp(rnp);
  1709. }
  1710. raw_spin_unlock_irq(&rnp->lock);
  1711. }
  1712. /*
  1713. * Set the quiescent-state-needed bits in all the rcu_node
  1714. * structures for all currently online CPUs in breadth-first order,
  1715. * starting from the root rcu_node structure, relying on the layout
  1716. * of the tree within the rsp->node[] array. Note that other CPUs
  1717. * will access only the leaves of the hierarchy, thus seeing that no
  1718. * grace period is in progress, at least until the corresponding
  1719. * leaf node has been initialized. In addition, we have excluded
  1720. * CPU-hotplug operations.
  1721. *
  1722. * The grace period cannot complete until the initialization
  1723. * process finishes, because this kthread handles both.
  1724. */
  1725. rcu_for_each_node_breadth_first(rsp, rnp) {
  1726. rcu_gp_slow(rsp, gp_init_delay);
  1727. raw_spin_lock_irq(&rnp->lock);
  1728. smp_mb__after_unlock_lock();
  1729. rdp = this_cpu_ptr(rsp->rda);
  1730. rcu_preempt_check_blocked_tasks(rnp);
  1731. rnp->qsmask = rnp->qsmaskinit;
  1732. WRITE_ONCE(rnp->gpnum, rsp->gpnum);
  1733. if (WARN_ON_ONCE(rnp->completed != rsp->completed))
  1734. WRITE_ONCE(rnp->completed, rsp->completed);
  1735. if (rnp == rdp->mynode)
  1736. (void)__note_gp_changes(rsp, rnp, rdp);
  1737. rcu_preempt_boost_start_gp(rnp);
  1738. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1739. rnp->level, rnp->grplo,
  1740. rnp->grphi, rnp->qsmask);
  1741. raw_spin_unlock_irq(&rnp->lock);
  1742. cond_resched_rcu_qs();
  1743. WRITE_ONCE(rsp->gp_activity, jiffies);
  1744. }
  1745. return 1;
  1746. }
  1747. /*
  1748. * Helper function for wait_event_interruptible_timeout() wakeup
  1749. * at force-quiescent-state time.
  1750. */
  1751. static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
  1752. {
  1753. struct rcu_node *rnp = rcu_get_root(rsp);
  1754. /* Someone like call_rcu() requested a force-quiescent-state scan. */
  1755. *gfp = READ_ONCE(rsp->gp_flags);
  1756. if (*gfp & RCU_GP_FLAG_FQS)
  1757. return true;
  1758. /* The current grace period has completed. */
  1759. if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
  1760. return true;
  1761. return false;
  1762. }
  1763. /*
  1764. * Do one round of quiescent-state forcing.
  1765. */
  1766. static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
  1767. {
  1768. bool isidle = false;
  1769. unsigned long maxj;
  1770. struct rcu_node *rnp = rcu_get_root(rsp);
  1771. WRITE_ONCE(rsp->gp_activity, jiffies);
  1772. rsp->n_force_qs++;
  1773. if (first_time) {
  1774. /* Collect dyntick-idle snapshots. */
  1775. if (is_sysidle_rcu_state(rsp)) {
  1776. isidle = true;
  1777. maxj = jiffies - ULONG_MAX / 4;
  1778. }
  1779. force_qs_rnp(rsp, dyntick_save_progress_counter,
  1780. &isidle, &maxj);
  1781. rcu_sysidle_report_gp(rsp, isidle, maxj);
  1782. } else {
  1783. /* Handle dyntick-idle and offline CPUs. */
  1784. isidle = true;
  1785. force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
  1786. }
  1787. /* Clear flag to prevent immediate re-entry. */
  1788. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1789. raw_spin_lock_irq(&rnp->lock);
  1790. smp_mb__after_unlock_lock();
  1791. WRITE_ONCE(rsp->gp_flags,
  1792. READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
  1793. raw_spin_unlock_irq(&rnp->lock);
  1794. }
  1795. }
  1796. /*
  1797. * Clean up after the old grace period.
  1798. */
  1799. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1800. {
  1801. unsigned long gp_duration;
  1802. bool needgp = false;
  1803. int nocb = 0;
  1804. struct rcu_data *rdp;
  1805. struct rcu_node *rnp = rcu_get_root(rsp);
  1806. WRITE_ONCE(rsp->gp_activity, jiffies);
  1807. raw_spin_lock_irq(&rnp->lock);
  1808. smp_mb__after_unlock_lock();
  1809. gp_duration = jiffies - rsp->gp_start;
  1810. if (gp_duration > rsp->gp_max)
  1811. rsp->gp_max = gp_duration;
  1812. /*
  1813. * We know the grace period is complete, but to everyone else
  1814. * it appears to still be ongoing. But it is also the case
  1815. * that to everyone else it looks like there is nothing that
  1816. * they can do to advance the grace period. It is therefore
  1817. * safe for us to drop the lock in order to mark the grace
  1818. * period as completed in all of the rcu_node structures.
  1819. */
  1820. raw_spin_unlock_irq(&rnp->lock);
  1821. /*
  1822. * Propagate new ->completed value to rcu_node structures so
  1823. * that other CPUs don't have to wait until the start of the next
  1824. * grace period to process their callbacks. This also avoids
  1825. * some nasty RCU grace-period initialization races by forcing
  1826. * the end of the current grace period to be completely recorded in
  1827. * all of the rcu_node structures before the beginning of the next
  1828. * grace period is recorded in any of the rcu_node structures.
  1829. */
  1830. rcu_for_each_node_breadth_first(rsp, rnp) {
  1831. raw_spin_lock_irq(&rnp->lock);
  1832. smp_mb__after_unlock_lock();
  1833. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  1834. WARN_ON_ONCE(rnp->qsmask);
  1835. WRITE_ONCE(rnp->completed, rsp->gpnum);
  1836. rdp = this_cpu_ptr(rsp->rda);
  1837. if (rnp == rdp->mynode)
  1838. needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
  1839. /* smp_mb() provided by prior unlock-lock pair. */
  1840. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1841. raw_spin_unlock_irq(&rnp->lock);
  1842. cond_resched_rcu_qs();
  1843. WRITE_ONCE(rsp->gp_activity, jiffies);
  1844. rcu_gp_slow(rsp, gp_cleanup_delay);
  1845. }
  1846. rnp = rcu_get_root(rsp);
  1847. raw_spin_lock_irq(&rnp->lock);
  1848. smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
  1849. rcu_nocb_gp_set(rnp, nocb);
  1850. /* Declare grace period done. */
  1851. WRITE_ONCE(rsp->completed, rsp->gpnum);
  1852. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  1853. rsp->gp_state = RCU_GP_IDLE;
  1854. rdp = this_cpu_ptr(rsp->rda);
  1855. /* Advance CBs to reduce false positives below. */
  1856. needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
  1857. if (needgp || cpu_needs_another_gp(rsp, rdp)) {
  1858. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  1859. trace_rcu_grace_period(rsp->name,
  1860. READ_ONCE(rsp->gpnum),
  1861. TPS("newreq"));
  1862. }
  1863. raw_spin_unlock_irq(&rnp->lock);
  1864. }
  1865. /*
  1866. * Body of kthread that handles grace periods.
  1867. */
  1868. static int __noreturn rcu_gp_kthread(void *arg)
  1869. {
  1870. bool first_gp_fqs;
  1871. int gf;
  1872. unsigned long j;
  1873. int ret;
  1874. struct rcu_state *rsp = arg;
  1875. struct rcu_node *rnp = rcu_get_root(rsp);
  1876. rcu_bind_gp_kthread();
  1877. for (;;) {
  1878. /* Handle grace-period start. */
  1879. for (;;) {
  1880. trace_rcu_grace_period(rsp->name,
  1881. READ_ONCE(rsp->gpnum),
  1882. TPS("reqwait"));
  1883. rsp->gp_state = RCU_GP_WAIT_GPS;
  1884. wait_event_interruptible(rsp->gp_wq,
  1885. READ_ONCE(rsp->gp_flags) &
  1886. RCU_GP_FLAG_INIT);
  1887. rsp->gp_state = RCU_GP_DONE_GPS;
  1888. /* Locking provides needed memory barrier. */
  1889. if (rcu_gp_init(rsp))
  1890. break;
  1891. cond_resched_rcu_qs();
  1892. WRITE_ONCE(rsp->gp_activity, jiffies);
  1893. WARN_ON(signal_pending(current));
  1894. trace_rcu_grace_period(rsp->name,
  1895. READ_ONCE(rsp->gpnum),
  1896. TPS("reqwaitsig"));
  1897. }
  1898. /* Handle quiescent-state forcing. */
  1899. first_gp_fqs = true;
  1900. j = jiffies_till_first_fqs;
  1901. if (j > HZ) {
  1902. j = HZ;
  1903. jiffies_till_first_fqs = HZ;
  1904. }
  1905. ret = 0;
  1906. for (;;) {
  1907. if (!ret)
  1908. rsp->jiffies_force_qs = jiffies + j;
  1909. trace_rcu_grace_period(rsp->name,
  1910. READ_ONCE(rsp->gpnum),
  1911. TPS("fqswait"));
  1912. rsp->gp_state = RCU_GP_WAIT_FQS;
  1913. ret = wait_event_interruptible_timeout(rsp->gp_wq,
  1914. rcu_gp_fqs_check_wake(rsp, &gf), j);
  1915. rsp->gp_state = RCU_GP_DOING_FQS;
  1916. /* Locking provides needed memory barriers. */
  1917. /* If grace period done, leave loop. */
  1918. if (!READ_ONCE(rnp->qsmask) &&
  1919. !rcu_preempt_blocked_readers_cgp(rnp))
  1920. break;
  1921. /* If time for quiescent-state forcing, do it. */
  1922. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  1923. (gf & RCU_GP_FLAG_FQS)) {
  1924. trace_rcu_grace_period(rsp->name,
  1925. READ_ONCE(rsp->gpnum),
  1926. TPS("fqsstart"));
  1927. rcu_gp_fqs(rsp, first_gp_fqs);
  1928. first_gp_fqs = false;
  1929. trace_rcu_grace_period(rsp->name,
  1930. READ_ONCE(rsp->gpnum),
  1931. TPS("fqsend"));
  1932. cond_resched_rcu_qs();
  1933. WRITE_ONCE(rsp->gp_activity, jiffies);
  1934. } else {
  1935. /* Deal with stray signal. */
  1936. cond_resched_rcu_qs();
  1937. WRITE_ONCE(rsp->gp_activity, jiffies);
  1938. WARN_ON(signal_pending(current));
  1939. trace_rcu_grace_period(rsp->name,
  1940. READ_ONCE(rsp->gpnum),
  1941. TPS("fqswaitsig"));
  1942. }
  1943. j = jiffies_till_next_fqs;
  1944. if (j > HZ) {
  1945. j = HZ;
  1946. jiffies_till_next_fqs = HZ;
  1947. } else if (j < 1) {
  1948. j = 1;
  1949. jiffies_till_next_fqs = 1;
  1950. }
  1951. }
  1952. /* Handle grace-period end. */
  1953. rsp->gp_state = RCU_GP_CLEANUP;
  1954. rcu_gp_cleanup(rsp);
  1955. rsp->gp_state = RCU_GP_CLEANED;
  1956. }
  1957. }
  1958. /*
  1959. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  1960. * in preparation for detecting the next grace period. The caller must hold
  1961. * the root node's ->lock and hard irqs must be disabled.
  1962. *
  1963. * Note that it is legal for a dying CPU (which is marked as offline) to
  1964. * invoke this function. This can happen when the dying CPU reports its
  1965. * quiescent state.
  1966. *
  1967. * Returns true if the grace-period kthread must be awakened.
  1968. */
  1969. static bool
  1970. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  1971. struct rcu_data *rdp)
  1972. {
  1973. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  1974. /*
  1975. * Either we have not yet spawned the grace-period
  1976. * task, this CPU does not need another grace period,
  1977. * or a grace period is already in progress.
  1978. * Either way, don't start a new grace period.
  1979. */
  1980. return false;
  1981. }
  1982. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  1983. trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
  1984. TPS("newreq"));
  1985. /*
  1986. * We can't do wakeups while holding the rnp->lock, as that
  1987. * could cause possible deadlocks with the rq->lock. Defer
  1988. * the wakeup to our caller.
  1989. */
  1990. return true;
  1991. }
  1992. /*
  1993. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  1994. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  1995. * is invoked indirectly from rcu_advance_cbs(), which would result in
  1996. * endless recursion -- or would do so if it wasn't for the self-deadlock
  1997. * that is encountered beforehand.
  1998. *
  1999. * Returns true if the grace-period kthread needs to be awakened.
  2000. */
  2001. static bool rcu_start_gp(struct rcu_state *rsp)
  2002. {
  2003. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  2004. struct rcu_node *rnp = rcu_get_root(rsp);
  2005. bool ret = false;
  2006. /*
  2007. * If there is no grace period in progress right now, any
  2008. * callbacks we have up to this point will be satisfied by the
  2009. * next grace period. Also, advancing the callbacks reduces the
  2010. * probability of false positives from cpu_needs_another_gp()
  2011. * resulting in pointless grace periods. So, advance callbacks
  2012. * then start the grace period!
  2013. */
  2014. ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
  2015. ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
  2016. return ret;
  2017. }
  2018. /*
  2019. * Report a full set of quiescent states to the specified rcu_state
  2020. * data structure. This involves cleaning up after the prior grace
  2021. * period and letting rcu_start_gp() start up the next grace period
  2022. * if one is needed. Note that the caller must hold rnp->lock, which
  2023. * is released before return.
  2024. */
  2025. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  2026. __releases(rcu_get_root(rsp)->lock)
  2027. {
  2028. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  2029. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2030. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  2031. rcu_gp_kthread_wake(rsp);
  2032. }
  2033. /*
  2034. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  2035. * Allows quiescent states for a group of CPUs to be reported at one go
  2036. * to the specified rcu_node structure, though all the CPUs in the group
  2037. * must be represented by the same rcu_node structure (which need not be a
  2038. * leaf rcu_node structure, though it often will be). The gps parameter
  2039. * is the grace-period snapshot, which means that the quiescent states
  2040. * are valid only if rnp->gpnum is equal to gps. That structure's lock
  2041. * must be held upon entry, and it is released before return.
  2042. */
  2043. static void
  2044. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  2045. struct rcu_node *rnp, unsigned long gps, unsigned long flags)
  2046. __releases(rnp->lock)
  2047. {
  2048. unsigned long oldmask = 0;
  2049. struct rcu_node *rnp_c;
  2050. /* Walk up the rcu_node hierarchy. */
  2051. for (;;) {
  2052. if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
  2053. /*
  2054. * Our bit has already been cleared, or the
  2055. * relevant grace period is already over, so done.
  2056. */
  2057. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2058. return;
  2059. }
  2060. WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
  2061. rnp->qsmask &= ~mask;
  2062. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  2063. mask, rnp->qsmask, rnp->level,
  2064. rnp->grplo, rnp->grphi,
  2065. !!rnp->gp_tasks);
  2066. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2067. /* Other bits still set at this level, so done. */
  2068. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2069. return;
  2070. }
  2071. mask = rnp->grpmask;
  2072. if (rnp->parent == NULL) {
  2073. /* No more levels. Exit loop holding root lock. */
  2074. break;
  2075. }
  2076. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2077. rnp_c = rnp;
  2078. rnp = rnp->parent;
  2079. raw_spin_lock_irqsave(&rnp->lock, flags);
  2080. smp_mb__after_unlock_lock();
  2081. oldmask = rnp_c->qsmask;
  2082. }
  2083. /*
  2084. * Get here if we are the last CPU to pass through a quiescent
  2085. * state for this grace period. Invoke rcu_report_qs_rsp()
  2086. * to clean up and start the next grace period if one is needed.
  2087. */
  2088. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  2089. }
  2090. /*
  2091. * Record a quiescent state for all tasks that were previously queued
  2092. * on the specified rcu_node structure and that were blocking the current
  2093. * RCU grace period. The caller must hold the specified rnp->lock with
  2094. * irqs disabled, and this lock is released upon return, but irqs remain
  2095. * disabled.
  2096. */
  2097. static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
  2098. struct rcu_node *rnp, unsigned long flags)
  2099. __releases(rnp->lock)
  2100. {
  2101. unsigned long gps;
  2102. unsigned long mask;
  2103. struct rcu_node *rnp_p;
  2104. if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
  2105. rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2106. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2107. return; /* Still need more quiescent states! */
  2108. }
  2109. rnp_p = rnp->parent;
  2110. if (rnp_p == NULL) {
  2111. /*
  2112. * Only one rcu_node structure in the tree, so don't
  2113. * try to report up to its nonexistent parent!
  2114. */
  2115. rcu_report_qs_rsp(rsp, flags);
  2116. return;
  2117. }
  2118. /* Report up the rest of the hierarchy, tracking current ->gpnum. */
  2119. gps = rnp->gpnum;
  2120. mask = rnp->grpmask;
  2121. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2122. raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
  2123. smp_mb__after_unlock_lock();
  2124. rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
  2125. }
  2126. /*
  2127. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  2128. * structure. This must be either called from the specified CPU, or
  2129. * called when the specified CPU is known to be offline (and when it is
  2130. * also known that no other CPU is concurrently trying to help the offline
  2131. * CPU). The lastcomp argument is used to make sure we are still in the
  2132. * grace period of interest. We don't want to end the current grace period
  2133. * based on quiescent states detected in an earlier grace period!
  2134. */
  2135. static void
  2136. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  2137. {
  2138. unsigned long flags;
  2139. unsigned long mask;
  2140. bool needwake;
  2141. struct rcu_node *rnp;
  2142. rnp = rdp->mynode;
  2143. raw_spin_lock_irqsave(&rnp->lock, flags);
  2144. smp_mb__after_unlock_lock();
  2145. if ((rdp->cpu_no_qs.b.norm &&
  2146. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
  2147. rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
  2148. rdp->gpwrap) {
  2149. /*
  2150. * The grace period in which this quiescent state was
  2151. * recorded has ended, so don't report it upwards.
  2152. * We will instead need a new quiescent state that lies
  2153. * within the current grace period.
  2154. */
  2155. rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
  2156. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
  2157. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2158. return;
  2159. }
  2160. mask = rdp->grpmask;
  2161. if ((rnp->qsmask & mask) == 0) {
  2162. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2163. } else {
  2164. rdp->core_needs_qs = 0;
  2165. /*
  2166. * This GP can't end until cpu checks in, so all of our
  2167. * callbacks can be processed during the next GP.
  2168. */
  2169. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  2170. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2171. /* ^^^ Released rnp->lock */
  2172. if (needwake)
  2173. rcu_gp_kthread_wake(rsp);
  2174. }
  2175. }
  2176. /*
  2177. * Check to see if there is a new grace period of which this CPU
  2178. * is not yet aware, and if so, set up local rcu_data state for it.
  2179. * Otherwise, see if this CPU has just passed through its first
  2180. * quiescent state for this grace period, and record that fact if so.
  2181. */
  2182. static void
  2183. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  2184. {
  2185. /* Check for grace-period ends and beginnings. */
  2186. note_gp_changes(rsp, rdp);
  2187. /*
  2188. * Does this CPU still need to do its part for current grace period?
  2189. * If no, return and let the other CPUs do their part as well.
  2190. */
  2191. if (!rdp->core_needs_qs)
  2192. return;
  2193. /*
  2194. * Was there a quiescent state since the beginning of the grace
  2195. * period? If no, then exit and wait for the next call.
  2196. */
  2197. if (rdp->cpu_no_qs.b.norm &&
  2198. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
  2199. return;
  2200. /*
  2201. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  2202. * judge of that).
  2203. */
  2204. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  2205. }
  2206. /*
  2207. * Send the specified CPU's RCU callbacks to the orphanage. The
  2208. * specified CPU must be offline, and the caller must hold the
  2209. * ->orphan_lock.
  2210. */
  2211. static void
  2212. rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
  2213. struct rcu_node *rnp, struct rcu_data *rdp)
  2214. {
  2215. /* No-CBs CPUs do not have orphanable callbacks. */
  2216. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
  2217. return;
  2218. /*
  2219. * Orphan the callbacks. First adjust the counts. This is safe
  2220. * because _rcu_barrier() excludes CPU-hotplug operations, so it
  2221. * cannot be running now. Thus no memory barrier is required.
  2222. */
  2223. if (rdp->nxtlist != NULL) {
  2224. rsp->qlen_lazy += rdp->qlen_lazy;
  2225. rsp->qlen += rdp->qlen;
  2226. rdp->n_cbs_orphaned += rdp->qlen;
  2227. rdp->qlen_lazy = 0;
  2228. WRITE_ONCE(rdp->qlen, 0);
  2229. }
  2230. /*
  2231. * Next, move those callbacks still needing a grace period to
  2232. * the orphanage, where some other CPU will pick them up.
  2233. * Some of the callbacks might have gone partway through a grace
  2234. * period, but that is too bad. They get to start over because we
  2235. * cannot assume that grace periods are synchronized across CPUs.
  2236. * We don't bother updating the ->nxttail[] array yet, instead
  2237. * we just reset the whole thing later on.
  2238. */
  2239. if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
  2240. *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
  2241. rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
  2242. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  2243. }
  2244. /*
  2245. * Then move the ready-to-invoke callbacks to the orphanage,
  2246. * where some other CPU will pick them up. These will not be
  2247. * required to pass though another grace period: They are done.
  2248. */
  2249. if (rdp->nxtlist != NULL) {
  2250. *rsp->orphan_donetail = rdp->nxtlist;
  2251. rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
  2252. }
  2253. /*
  2254. * Finally, initialize the rcu_data structure's list to empty and
  2255. * disallow further callbacks on this CPU.
  2256. */
  2257. init_callback_list(rdp);
  2258. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2259. }
  2260. /*
  2261. * Adopt the RCU callbacks from the specified rcu_state structure's
  2262. * orphanage. The caller must hold the ->orphan_lock.
  2263. */
  2264. static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
  2265. {
  2266. int i;
  2267. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2268. /* No-CBs CPUs are handled specially. */
  2269. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
  2270. rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
  2271. return;
  2272. /* Do the accounting first. */
  2273. rdp->qlen_lazy += rsp->qlen_lazy;
  2274. rdp->qlen += rsp->qlen;
  2275. rdp->n_cbs_adopted += rsp->qlen;
  2276. if (rsp->qlen_lazy != rsp->qlen)
  2277. rcu_idle_count_callbacks_posted();
  2278. rsp->qlen_lazy = 0;
  2279. rsp->qlen = 0;
  2280. /*
  2281. * We do not need a memory barrier here because the only way we
  2282. * can get here if there is an rcu_barrier() in flight is if
  2283. * we are the task doing the rcu_barrier().
  2284. */
  2285. /* First adopt the ready-to-invoke callbacks. */
  2286. if (rsp->orphan_donelist != NULL) {
  2287. *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
  2288. *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
  2289. for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
  2290. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  2291. rdp->nxttail[i] = rsp->orphan_donetail;
  2292. rsp->orphan_donelist = NULL;
  2293. rsp->orphan_donetail = &rsp->orphan_donelist;
  2294. }
  2295. /* And then adopt the callbacks that still need a grace period. */
  2296. if (rsp->orphan_nxtlist != NULL) {
  2297. *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
  2298. rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
  2299. rsp->orphan_nxtlist = NULL;
  2300. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  2301. }
  2302. }
  2303. /*
  2304. * Trace the fact that this CPU is going offline.
  2305. */
  2306. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  2307. {
  2308. RCU_TRACE(unsigned long mask);
  2309. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
  2310. RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
  2311. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2312. return;
  2313. RCU_TRACE(mask = rdp->grpmask);
  2314. trace_rcu_grace_period(rsp->name,
  2315. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  2316. TPS("cpuofl"));
  2317. }
  2318. /*
  2319. * All CPUs for the specified rcu_node structure have gone offline,
  2320. * and all tasks that were preempted within an RCU read-side critical
  2321. * section while running on one of those CPUs have since exited their RCU
  2322. * read-side critical section. Some other CPU is reporting this fact with
  2323. * the specified rcu_node structure's ->lock held and interrupts disabled.
  2324. * This function therefore goes up the tree of rcu_node structures,
  2325. * clearing the corresponding bits in the ->qsmaskinit fields. Note that
  2326. * the leaf rcu_node structure's ->qsmaskinit field has already been
  2327. * updated
  2328. *
  2329. * This function does check that the specified rcu_node structure has
  2330. * all CPUs offline and no blocked tasks, so it is OK to invoke it
  2331. * prematurely. That said, invoking it after the fact will cost you
  2332. * a needless lock acquisition. So once it has done its work, don't
  2333. * invoke it again.
  2334. */
  2335. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
  2336. {
  2337. long mask;
  2338. struct rcu_node *rnp = rnp_leaf;
  2339. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
  2340. rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
  2341. return;
  2342. for (;;) {
  2343. mask = rnp->grpmask;
  2344. rnp = rnp->parent;
  2345. if (!rnp)
  2346. break;
  2347. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  2348. smp_mb__after_unlock_lock(); /* GP memory ordering. */
  2349. rnp->qsmaskinit &= ~mask;
  2350. rnp->qsmask &= ~mask;
  2351. if (rnp->qsmaskinit) {
  2352. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2353. return;
  2354. }
  2355. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2356. }
  2357. }
  2358. /*
  2359. * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
  2360. * function. We now remove it from the rcu_node tree's ->qsmaskinit
  2361. * bit masks.
  2362. */
  2363. static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
  2364. {
  2365. unsigned long flags;
  2366. unsigned long mask;
  2367. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2368. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2369. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2370. return;
  2371. /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
  2372. mask = rdp->grpmask;
  2373. raw_spin_lock_irqsave(&rnp->lock, flags);
  2374. smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
  2375. rnp->qsmaskinitnext &= ~mask;
  2376. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2377. }
  2378. /*
  2379. * The CPU has been completely removed, and some other CPU is reporting
  2380. * this fact from process context. Do the remainder of the cleanup,
  2381. * including orphaning the outgoing CPU's RCU callbacks, and also
  2382. * adopting them. There can only be one CPU hotplug operation at a time,
  2383. * so no other CPU can be attempting to update rcu_cpu_kthread_task.
  2384. */
  2385. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  2386. {
  2387. unsigned long flags;
  2388. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2389. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2390. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2391. return;
  2392. /* Adjust any no-longer-needed kthreads. */
  2393. rcu_boost_kthread_setaffinity(rnp, -1);
  2394. /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
  2395. raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
  2396. rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
  2397. rcu_adopt_orphan_cbs(rsp, flags);
  2398. raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
  2399. WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
  2400. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
  2401. cpu, rdp->qlen, rdp->nxtlist);
  2402. }
  2403. /*
  2404. * Invoke any RCU callbacks that have made it to the end of their grace
  2405. * period. Thottle as specified by rdp->blimit.
  2406. */
  2407. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  2408. {
  2409. unsigned long flags;
  2410. struct rcu_head *next, *list, **tail;
  2411. long bl, count, count_lazy;
  2412. int i;
  2413. /* If no callbacks are ready, just return. */
  2414. if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
  2415. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
  2416. trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
  2417. need_resched(), is_idle_task(current),
  2418. rcu_is_callbacks_kthread());
  2419. return;
  2420. }
  2421. /*
  2422. * Extract the list of ready callbacks, disabling to prevent
  2423. * races with call_rcu() from interrupt handlers.
  2424. */
  2425. local_irq_save(flags);
  2426. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  2427. bl = rdp->blimit;
  2428. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
  2429. list = rdp->nxtlist;
  2430. rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
  2431. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  2432. tail = rdp->nxttail[RCU_DONE_TAIL];
  2433. for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
  2434. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  2435. rdp->nxttail[i] = &rdp->nxtlist;
  2436. local_irq_restore(flags);
  2437. /* Invoke callbacks. */
  2438. count = count_lazy = 0;
  2439. while (list) {
  2440. next = list->next;
  2441. prefetch(next);
  2442. debug_rcu_head_unqueue(list);
  2443. if (__rcu_reclaim(rsp->name, list))
  2444. count_lazy++;
  2445. list = next;
  2446. /* Stop only if limit reached and CPU has something to do. */
  2447. if (++count >= bl &&
  2448. (need_resched() ||
  2449. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  2450. break;
  2451. }
  2452. local_irq_save(flags);
  2453. trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
  2454. is_idle_task(current),
  2455. rcu_is_callbacks_kthread());
  2456. /* Update count, and requeue any remaining callbacks. */
  2457. if (list != NULL) {
  2458. *tail = rdp->nxtlist;
  2459. rdp->nxtlist = list;
  2460. for (i = 0; i < RCU_NEXT_SIZE; i++)
  2461. if (&rdp->nxtlist == rdp->nxttail[i])
  2462. rdp->nxttail[i] = tail;
  2463. else
  2464. break;
  2465. }
  2466. smp_mb(); /* List handling before counting for rcu_barrier(). */
  2467. rdp->qlen_lazy -= count_lazy;
  2468. WRITE_ONCE(rdp->qlen, rdp->qlen - count);
  2469. rdp->n_cbs_invoked += count;
  2470. /* Reinstate batch limit if we have worked down the excess. */
  2471. if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
  2472. rdp->blimit = blimit;
  2473. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  2474. if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
  2475. rdp->qlen_last_fqs_check = 0;
  2476. rdp->n_force_qs_snap = rsp->n_force_qs;
  2477. } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
  2478. rdp->qlen_last_fqs_check = rdp->qlen;
  2479. WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
  2480. local_irq_restore(flags);
  2481. /* Re-invoke RCU core processing if there are callbacks remaining. */
  2482. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2483. invoke_rcu_core();
  2484. }
  2485. /*
  2486. * Check to see if this CPU is in a non-context-switch quiescent state
  2487. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  2488. * Also schedule RCU core processing.
  2489. *
  2490. * This function must be called from hardirq context. It is normally
  2491. * invoked from the scheduling-clock interrupt. If rcu_pending returns
  2492. * false, there is no point in invoking rcu_check_callbacks().
  2493. */
  2494. void rcu_check_callbacks(int user)
  2495. {
  2496. trace_rcu_utilization(TPS("Start scheduler-tick"));
  2497. increment_cpu_stall_ticks();
  2498. if (user || rcu_is_cpu_rrupt_from_idle()) {
  2499. /*
  2500. * Get here if this CPU took its interrupt from user
  2501. * mode or from the idle loop, and if this is not a
  2502. * nested interrupt. In this case, the CPU is in
  2503. * a quiescent state, so note it.
  2504. *
  2505. * No memory barrier is required here because both
  2506. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  2507. * variables that other CPUs neither access nor modify,
  2508. * at least not while the corresponding CPU is online.
  2509. */
  2510. rcu_sched_qs();
  2511. rcu_bh_qs();
  2512. } else if (!in_softirq()) {
  2513. /*
  2514. * Get here if this CPU did not take its interrupt from
  2515. * softirq, in other words, if it is not interrupting
  2516. * a rcu_bh read-side critical section. This is an _bh
  2517. * critical section, so note it.
  2518. */
  2519. rcu_bh_qs();
  2520. }
  2521. rcu_preempt_check_callbacks();
  2522. if (rcu_pending())
  2523. invoke_rcu_core();
  2524. if (user)
  2525. rcu_note_voluntary_context_switch(current);
  2526. trace_rcu_utilization(TPS("End scheduler-tick"));
  2527. }
  2528. /*
  2529. * Scan the leaf rcu_node structures, processing dyntick state for any that
  2530. * have not yet encountered a quiescent state, using the function specified.
  2531. * Also initiate boosting for any threads blocked on the root rcu_node.
  2532. *
  2533. * The caller must have suppressed start of new grace periods.
  2534. */
  2535. static void force_qs_rnp(struct rcu_state *rsp,
  2536. int (*f)(struct rcu_data *rsp, bool *isidle,
  2537. unsigned long *maxj),
  2538. bool *isidle, unsigned long *maxj)
  2539. {
  2540. unsigned long bit;
  2541. int cpu;
  2542. unsigned long flags;
  2543. unsigned long mask;
  2544. struct rcu_node *rnp;
  2545. rcu_for_each_leaf_node(rsp, rnp) {
  2546. cond_resched_rcu_qs();
  2547. mask = 0;
  2548. raw_spin_lock_irqsave(&rnp->lock, flags);
  2549. smp_mb__after_unlock_lock();
  2550. if (rnp->qsmask == 0) {
  2551. if (rcu_state_p == &rcu_sched_state ||
  2552. rsp != rcu_state_p ||
  2553. rcu_preempt_blocked_readers_cgp(rnp)) {
  2554. /*
  2555. * No point in scanning bits because they
  2556. * are all zero. But we might need to
  2557. * priority-boost blocked readers.
  2558. */
  2559. rcu_initiate_boost(rnp, flags);
  2560. /* rcu_initiate_boost() releases rnp->lock */
  2561. continue;
  2562. }
  2563. if (rnp->parent &&
  2564. (rnp->parent->qsmask & rnp->grpmask)) {
  2565. /*
  2566. * Race between grace-period
  2567. * initialization and task exiting RCU
  2568. * read-side critical section: Report.
  2569. */
  2570. rcu_report_unblock_qs_rnp(rsp, rnp, flags);
  2571. /* rcu_report_unblock_qs_rnp() rlses ->lock */
  2572. continue;
  2573. }
  2574. }
  2575. cpu = rnp->grplo;
  2576. bit = 1;
  2577. for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
  2578. if ((rnp->qsmask & bit) != 0) {
  2579. if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
  2580. mask |= bit;
  2581. }
  2582. }
  2583. if (mask != 0) {
  2584. /* Idle/offline CPUs, report (releases rnp->lock. */
  2585. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2586. } else {
  2587. /* Nothing to do here, so just drop the lock. */
  2588. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2589. }
  2590. }
  2591. }
  2592. /*
  2593. * Force quiescent states on reluctant CPUs, and also detect which
  2594. * CPUs are in dyntick-idle mode.
  2595. */
  2596. static void force_quiescent_state(struct rcu_state *rsp)
  2597. {
  2598. unsigned long flags;
  2599. bool ret;
  2600. struct rcu_node *rnp;
  2601. struct rcu_node *rnp_old = NULL;
  2602. /* Funnel through hierarchy to reduce memory contention. */
  2603. rnp = __this_cpu_read(rsp->rda->mynode);
  2604. for (; rnp != NULL; rnp = rnp->parent) {
  2605. ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2606. !raw_spin_trylock(&rnp->fqslock);
  2607. if (rnp_old != NULL)
  2608. raw_spin_unlock(&rnp_old->fqslock);
  2609. if (ret) {
  2610. rsp->n_force_qs_lh++;
  2611. return;
  2612. }
  2613. rnp_old = rnp;
  2614. }
  2615. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2616. /* Reached the root of the rcu_node tree, acquire lock. */
  2617. raw_spin_lock_irqsave(&rnp_old->lock, flags);
  2618. smp_mb__after_unlock_lock();
  2619. raw_spin_unlock(&rnp_old->fqslock);
  2620. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2621. rsp->n_force_qs_lh++;
  2622. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2623. return; /* Someone beat us to it. */
  2624. }
  2625. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2626. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2627. rcu_gp_kthread_wake(rsp);
  2628. }
  2629. /*
  2630. * This does the RCU core processing work for the specified rcu_state
  2631. * and rcu_data structures. This may be called only from the CPU to
  2632. * whom the rdp belongs.
  2633. */
  2634. static void
  2635. __rcu_process_callbacks(struct rcu_state *rsp)
  2636. {
  2637. unsigned long flags;
  2638. bool needwake;
  2639. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2640. WARN_ON_ONCE(rdp->beenonline == 0);
  2641. /* Update RCU state based on any recent quiescent states. */
  2642. rcu_check_quiescent_state(rsp, rdp);
  2643. /* Does this CPU require a not-yet-started grace period? */
  2644. local_irq_save(flags);
  2645. if (cpu_needs_another_gp(rsp, rdp)) {
  2646. raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
  2647. needwake = rcu_start_gp(rsp);
  2648. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  2649. if (needwake)
  2650. rcu_gp_kthread_wake(rsp);
  2651. } else {
  2652. local_irq_restore(flags);
  2653. }
  2654. /* If there are callbacks ready, invoke them. */
  2655. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2656. invoke_rcu_callbacks(rsp, rdp);
  2657. /* Do any needed deferred wakeups of rcuo kthreads. */
  2658. do_nocb_deferred_wakeup(rdp);
  2659. }
  2660. /*
  2661. * Do RCU core processing for the current CPU.
  2662. */
  2663. static void rcu_process_callbacks(struct softirq_action *unused)
  2664. {
  2665. struct rcu_state *rsp;
  2666. if (cpu_is_offline(smp_processor_id()))
  2667. return;
  2668. trace_rcu_utilization(TPS("Start RCU core"));
  2669. for_each_rcu_flavor(rsp)
  2670. __rcu_process_callbacks(rsp);
  2671. trace_rcu_utilization(TPS("End RCU core"));
  2672. }
  2673. /*
  2674. * Schedule RCU callback invocation. If the specified type of RCU
  2675. * does not support RCU priority boosting, just do a direct call,
  2676. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2677. * are running on the current CPU with softirqs disabled, the
  2678. * rcu_cpu_kthread_task cannot disappear out from under us.
  2679. */
  2680. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2681. {
  2682. if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
  2683. return;
  2684. if (likely(!rsp->boost)) {
  2685. rcu_do_batch(rsp, rdp);
  2686. return;
  2687. }
  2688. invoke_rcu_callbacks_kthread();
  2689. }
  2690. static void invoke_rcu_core(void)
  2691. {
  2692. if (cpu_online(smp_processor_id()))
  2693. raise_softirq(RCU_SOFTIRQ);
  2694. }
  2695. /*
  2696. * Handle any core-RCU processing required by a call_rcu() invocation.
  2697. */
  2698. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2699. struct rcu_head *head, unsigned long flags)
  2700. {
  2701. bool needwake;
  2702. /*
  2703. * If called from an extended quiescent state, invoke the RCU
  2704. * core in order to force a re-evaluation of RCU's idleness.
  2705. */
  2706. if (!rcu_is_watching())
  2707. invoke_rcu_core();
  2708. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2709. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2710. return;
  2711. /*
  2712. * Force the grace period if too many callbacks or too long waiting.
  2713. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2714. * if some other CPU has recently done so. Also, don't bother
  2715. * invoking force_quiescent_state() if the newly enqueued callback
  2716. * is the only one waiting for a grace period to complete.
  2717. */
  2718. if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
  2719. /* Are we ignoring a completed grace period? */
  2720. note_gp_changes(rsp, rdp);
  2721. /* Start a new grace period if one not already started. */
  2722. if (!rcu_gp_in_progress(rsp)) {
  2723. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2724. raw_spin_lock(&rnp_root->lock);
  2725. smp_mb__after_unlock_lock();
  2726. needwake = rcu_start_gp(rsp);
  2727. raw_spin_unlock(&rnp_root->lock);
  2728. if (needwake)
  2729. rcu_gp_kthread_wake(rsp);
  2730. } else {
  2731. /* Give the grace period a kick. */
  2732. rdp->blimit = LONG_MAX;
  2733. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2734. *rdp->nxttail[RCU_DONE_TAIL] != head)
  2735. force_quiescent_state(rsp);
  2736. rdp->n_force_qs_snap = rsp->n_force_qs;
  2737. rdp->qlen_last_fqs_check = rdp->qlen;
  2738. }
  2739. }
  2740. }
  2741. /*
  2742. * RCU callback function to leak a callback.
  2743. */
  2744. static void rcu_leak_callback(struct rcu_head *rhp)
  2745. {
  2746. }
  2747. /*
  2748. * Helper function for call_rcu() and friends. The cpu argument will
  2749. * normally be -1, indicating "currently running CPU". It may specify
  2750. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2751. * is expected to specify a CPU.
  2752. */
  2753. static void
  2754. __call_rcu(struct rcu_head *head, rcu_callback_t func,
  2755. struct rcu_state *rsp, int cpu, bool lazy)
  2756. {
  2757. unsigned long flags;
  2758. struct rcu_data *rdp;
  2759. WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
  2760. if (debug_rcu_head_queue(head)) {
  2761. /* Probable double call_rcu(), so leak the callback. */
  2762. WRITE_ONCE(head->func, rcu_leak_callback);
  2763. WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
  2764. return;
  2765. }
  2766. head->func = func;
  2767. head->next = NULL;
  2768. /*
  2769. * Opportunistically note grace-period endings and beginnings.
  2770. * Note that we might see a beginning right after we see an
  2771. * end, but never vice versa, since this CPU has to pass through
  2772. * a quiescent state betweentimes.
  2773. */
  2774. local_irq_save(flags);
  2775. rdp = this_cpu_ptr(rsp->rda);
  2776. /* Add the callback to our list. */
  2777. if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
  2778. int offline;
  2779. if (cpu != -1)
  2780. rdp = per_cpu_ptr(rsp->rda, cpu);
  2781. if (likely(rdp->mynode)) {
  2782. /* Post-boot, so this should be for a no-CBs CPU. */
  2783. offline = !__call_rcu_nocb(rdp, head, lazy, flags);
  2784. WARN_ON_ONCE(offline);
  2785. /* Offline CPU, _call_rcu() illegal, leak callback. */
  2786. local_irq_restore(flags);
  2787. return;
  2788. }
  2789. /*
  2790. * Very early boot, before rcu_init(). Initialize if needed
  2791. * and then drop through to queue the callback.
  2792. */
  2793. BUG_ON(cpu != -1);
  2794. WARN_ON_ONCE(!rcu_is_watching());
  2795. if (!likely(rdp->nxtlist))
  2796. init_default_callback_list(rdp);
  2797. }
  2798. WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
  2799. if (lazy)
  2800. rdp->qlen_lazy++;
  2801. else
  2802. rcu_idle_count_callbacks_posted();
  2803. smp_mb(); /* Count before adding callback for rcu_barrier(). */
  2804. *rdp->nxttail[RCU_NEXT_TAIL] = head;
  2805. rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
  2806. if (__is_kfree_rcu_offset((unsigned long)func))
  2807. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2808. rdp->qlen_lazy, rdp->qlen);
  2809. else
  2810. trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
  2811. /* Go handle any RCU core processing required. */
  2812. __call_rcu_core(rsp, rdp, head, flags);
  2813. local_irq_restore(flags);
  2814. }
  2815. /*
  2816. * Queue an RCU-sched callback for invocation after a grace period.
  2817. */
  2818. void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
  2819. {
  2820. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2821. }
  2822. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2823. /*
  2824. * Queue an RCU callback for invocation after a quicker grace period.
  2825. */
  2826. void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
  2827. {
  2828. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2829. }
  2830. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2831. /*
  2832. * Queue an RCU callback for lazy invocation after a grace period.
  2833. * This will likely be later named something like "call_rcu_lazy()",
  2834. * but this change will require some way of tagging the lazy RCU
  2835. * callbacks in the list of pending callbacks. Until then, this
  2836. * function may only be called from __kfree_rcu().
  2837. */
  2838. void kfree_call_rcu(struct rcu_head *head,
  2839. rcu_callback_t func)
  2840. {
  2841. __call_rcu(head, func, rcu_state_p, -1, 1);
  2842. }
  2843. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  2844. /*
  2845. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2846. * any blocking grace-period wait automatically implies a grace period
  2847. * if there is only one CPU online at any point time during execution
  2848. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2849. * occasionally incorrectly indicate that there are multiple CPUs online
  2850. * when there was in fact only one the whole time, as this just adds
  2851. * some overhead: RCU still operates correctly.
  2852. */
  2853. static inline int rcu_blocking_is_gp(void)
  2854. {
  2855. int ret;
  2856. might_sleep(); /* Check for RCU read-side critical section. */
  2857. preempt_disable();
  2858. ret = num_online_cpus() <= 1;
  2859. preempt_enable();
  2860. return ret;
  2861. }
  2862. /**
  2863. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2864. *
  2865. * Control will return to the caller some time after a full rcu-sched
  2866. * grace period has elapsed, in other words after all currently executing
  2867. * rcu-sched read-side critical sections have completed. These read-side
  2868. * critical sections are delimited by rcu_read_lock_sched() and
  2869. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2870. * local_irq_disable(), and so on may be used in place of
  2871. * rcu_read_lock_sched().
  2872. *
  2873. * This means that all preempt_disable code sequences, including NMI and
  2874. * non-threaded hardware-interrupt handlers, in progress on entry will
  2875. * have completed before this primitive returns. However, this does not
  2876. * guarantee that softirq handlers will have completed, since in some
  2877. * kernels, these handlers can run in process context, and can block.
  2878. *
  2879. * Note that this guarantee implies further memory-ordering guarantees.
  2880. * On systems with more than one CPU, when synchronize_sched() returns,
  2881. * each CPU is guaranteed to have executed a full memory barrier since the
  2882. * end of its last RCU-sched read-side critical section whose beginning
  2883. * preceded the call to synchronize_sched(). In addition, each CPU having
  2884. * an RCU read-side critical section that extends beyond the return from
  2885. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2886. * after the beginning of synchronize_sched() and before the beginning of
  2887. * that RCU read-side critical section. Note that these guarantees include
  2888. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2889. * that are executing in the kernel.
  2890. *
  2891. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2892. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2893. * to have executed a full memory barrier during the execution of
  2894. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2895. * again only if the system has more than one CPU).
  2896. *
  2897. * This primitive provides the guarantees made by the (now removed)
  2898. * synchronize_kernel() API. In contrast, synchronize_rcu() only
  2899. * guarantees that rcu_read_lock() sections will have completed.
  2900. * In "classic RCU", these two guarantees happen to be one and
  2901. * the same, but can differ in realtime RCU implementations.
  2902. */
  2903. void synchronize_sched(void)
  2904. {
  2905. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2906. lock_is_held(&rcu_lock_map) ||
  2907. lock_is_held(&rcu_sched_lock_map),
  2908. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2909. if (rcu_blocking_is_gp())
  2910. return;
  2911. if (rcu_gp_is_expedited())
  2912. synchronize_sched_expedited();
  2913. else
  2914. wait_rcu_gp(call_rcu_sched);
  2915. }
  2916. EXPORT_SYMBOL_GPL(synchronize_sched);
  2917. /**
  2918. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2919. *
  2920. * Control will return to the caller some time after a full rcu_bh grace
  2921. * period has elapsed, in other words after all currently executing rcu_bh
  2922. * read-side critical sections have completed. RCU read-side critical
  2923. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2924. * and may be nested.
  2925. *
  2926. * See the description of synchronize_sched() for more detailed information
  2927. * on memory ordering guarantees.
  2928. */
  2929. void synchronize_rcu_bh(void)
  2930. {
  2931. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2932. lock_is_held(&rcu_lock_map) ||
  2933. lock_is_held(&rcu_sched_lock_map),
  2934. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2935. if (rcu_blocking_is_gp())
  2936. return;
  2937. if (rcu_gp_is_expedited())
  2938. synchronize_rcu_bh_expedited();
  2939. else
  2940. wait_rcu_gp(call_rcu_bh);
  2941. }
  2942. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2943. /**
  2944. * get_state_synchronize_rcu - Snapshot current RCU state
  2945. *
  2946. * Returns a cookie that is used by a later call to cond_synchronize_rcu()
  2947. * to determine whether or not a full grace period has elapsed in the
  2948. * meantime.
  2949. */
  2950. unsigned long get_state_synchronize_rcu(void)
  2951. {
  2952. /*
  2953. * Any prior manipulation of RCU-protected data must happen
  2954. * before the load from ->gpnum.
  2955. */
  2956. smp_mb(); /* ^^^ */
  2957. /*
  2958. * Make sure this load happens before the purportedly
  2959. * time-consuming work between get_state_synchronize_rcu()
  2960. * and cond_synchronize_rcu().
  2961. */
  2962. return smp_load_acquire(&rcu_state_p->gpnum);
  2963. }
  2964. EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
  2965. /**
  2966. * cond_synchronize_rcu - Conditionally wait for an RCU grace period
  2967. *
  2968. * @oldstate: return value from earlier call to get_state_synchronize_rcu()
  2969. *
  2970. * If a full RCU grace period has elapsed since the earlier call to
  2971. * get_state_synchronize_rcu(), just return. Otherwise, invoke
  2972. * synchronize_rcu() to wait for a full grace period.
  2973. *
  2974. * Yes, this function does not take counter wrap into account. But
  2975. * counter wrap is harmless. If the counter wraps, we have waited for
  2976. * more than 2 billion grace periods (and way more on a 64-bit system!),
  2977. * so waiting for one additional grace period should be just fine.
  2978. */
  2979. void cond_synchronize_rcu(unsigned long oldstate)
  2980. {
  2981. unsigned long newstate;
  2982. /*
  2983. * Ensure that this load happens before any RCU-destructive
  2984. * actions the caller might carry out after we return.
  2985. */
  2986. newstate = smp_load_acquire(&rcu_state_p->completed);
  2987. if (ULONG_CMP_GE(oldstate, newstate))
  2988. synchronize_rcu();
  2989. }
  2990. EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
  2991. /**
  2992. * get_state_synchronize_sched - Snapshot current RCU-sched state
  2993. *
  2994. * Returns a cookie that is used by a later call to cond_synchronize_sched()
  2995. * to determine whether or not a full grace period has elapsed in the
  2996. * meantime.
  2997. */
  2998. unsigned long get_state_synchronize_sched(void)
  2999. {
  3000. /*
  3001. * Any prior manipulation of RCU-protected data must happen
  3002. * before the load from ->gpnum.
  3003. */
  3004. smp_mb(); /* ^^^ */
  3005. /*
  3006. * Make sure this load happens before the purportedly
  3007. * time-consuming work between get_state_synchronize_sched()
  3008. * and cond_synchronize_sched().
  3009. */
  3010. return smp_load_acquire(&rcu_sched_state.gpnum);
  3011. }
  3012. EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
  3013. /**
  3014. * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
  3015. *
  3016. * @oldstate: return value from earlier call to get_state_synchronize_sched()
  3017. *
  3018. * If a full RCU-sched grace period has elapsed since the earlier call to
  3019. * get_state_synchronize_sched(), just return. Otherwise, invoke
  3020. * synchronize_sched() to wait for a full grace period.
  3021. *
  3022. * Yes, this function does not take counter wrap into account. But
  3023. * counter wrap is harmless. If the counter wraps, we have waited for
  3024. * more than 2 billion grace periods (and way more on a 64-bit system!),
  3025. * so waiting for one additional grace period should be just fine.
  3026. */
  3027. void cond_synchronize_sched(unsigned long oldstate)
  3028. {
  3029. unsigned long newstate;
  3030. /*
  3031. * Ensure that this load happens before any RCU-destructive
  3032. * actions the caller might carry out after we return.
  3033. */
  3034. newstate = smp_load_acquire(&rcu_sched_state.completed);
  3035. if (ULONG_CMP_GE(oldstate, newstate))
  3036. synchronize_sched();
  3037. }
  3038. EXPORT_SYMBOL_GPL(cond_synchronize_sched);
  3039. /* Adjust sequence number for start of update-side operation. */
  3040. static void rcu_seq_start(unsigned long *sp)
  3041. {
  3042. WRITE_ONCE(*sp, *sp + 1);
  3043. smp_mb(); /* Ensure update-side operation after counter increment. */
  3044. WARN_ON_ONCE(!(*sp & 0x1));
  3045. }
  3046. /* Adjust sequence number for end of update-side operation. */
  3047. static void rcu_seq_end(unsigned long *sp)
  3048. {
  3049. smp_mb(); /* Ensure update-side operation before counter increment. */
  3050. WRITE_ONCE(*sp, *sp + 1);
  3051. WARN_ON_ONCE(*sp & 0x1);
  3052. }
  3053. /* Take a snapshot of the update side's sequence number. */
  3054. static unsigned long rcu_seq_snap(unsigned long *sp)
  3055. {
  3056. unsigned long s;
  3057. smp_mb(); /* Caller's modifications seen first by other CPUs. */
  3058. s = (READ_ONCE(*sp) + 3) & ~0x1;
  3059. smp_mb(); /* Above access must not bleed into critical section. */
  3060. return s;
  3061. }
  3062. /*
  3063. * Given a snapshot from rcu_seq_snap(), determine whether or not a
  3064. * full update-side operation has occurred.
  3065. */
  3066. static bool rcu_seq_done(unsigned long *sp, unsigned long s)
  3067. {
  3068. return ULONG_CMP_GE(READ_ONCE(*sp), s);
  3069. }
  3070. /* Wrapper functions for expedited grace periods. */
  3071. static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
  3072. {
  3073. rcu_seq_start(&rsp->expedited_sequence);
  3074. }
  3075. static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
  3076. {
  3077. rcu_seq_end(&rsp->expedited_sequence);
  3078. smp_mb(); /* Ensure that consecutive grace periods serialize. */
  3079. }
  3080. static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
  3081. {
  3082. return rcu_seq_snap(&rsp->expedited_sequence);
  3083. }
  3084. static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
  3085. {
  3086. return rcu_seq_done(&rsp->expedited_sequence, s);
  3087. }
  3088. /*
  3089. * Reset the ->expmaskinit values in the rcu_node tree to reflect any
  3090. * recent CPU-online activity. Note that these masks are not cleared
  3091. * when CPUs go offline, so they reflect the union of all CPUs that have
  3092. * ever been online. This means that this function normally takes its
  3093. * no-work-to-do fastpath.
  3094. */
  3095. static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
  3096. {
  3097. bool done;
  3098. unsigned long flags;
  3099. unsigned long mask;
  3100. unsigned long oldmask;
  3101. int ncpus = READ_ONCE(rsp->ncpus);
  3102. struct rcu_node *rnp;
  3103. struct rcu_node *rnp_up;
  3104. /* If no new CPUs onlined since last time, nothing to do. */
  3105. if (likely(ncpus == rsp->ncpus_snap))
  3106. return;
  3107. rsp->ncpus_snap = ncpus;
  3108. /*
  3109. * Each pass through the following loop propagates newly onlined
  3110. * CPUs for the current rcu_node structure up the rcu_node tree.
  3111. */
  3112. rcu_for_each_leaf_node(rsp, rnp) {
  3113. raw_spin_lock_irqsave(&rnp->lock, flags);
  3114. smp_mb__after_unlock_lock();
  3115. if (rnp->expmaskinit == rnp->expmaskinitnext) {
  3116. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3117. continue; /* No new CPUs, nothing to do. */
  3118. }
  3119. /* Update this node's mask, track old value for propagation. */
  3120. oldmask = rnp->expmaskinit;
  3121. rnp->expmaskinit = rnp->expmaskinitnext;
  3122. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3123. /* If was already nonzero, nothing to propagate. */
  3124. if (oldmask)
  3125. continue;
  3126. /* Propagate the new CPU up the tree. */
  3127. mask = rnp->grpmask;
  3128. rnp_up = rnp->parent;
  3129. done = false;
  3130. while (rnp_up) {
  3131. raw_spin_lock_irqsave(&rnp_up->lock, flags);
  3132. smp_mb__after_unlock_lock();
  3133. if (rnp_up->expmaskinit)
  3134. done = true;
  3135. rnp_up->expmaskinit |= mask;
  3136. raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
  3137. if (done)
  3138. break;
  3139. mask = rnp_up->grpmask;
  3140. rnp_up = rnp_up->parent;
  3141. }
  3142. }
  3143. }
  3144. /*
  3145. * Reset the ->expmask values in the rcu_node tree in preparation for
  3146. * a new expedited grace period.
  3147. */
  3148. static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
  3149. {
  3150. unsigned long flags;
  3151. struct rcu_node *rnp;
  3152. sync_exp_reset_tree_hotplug(rsp);
  3153. rcu_for_each_node_breadth_first(rsp, rnp) {
  3154. raw_spin_lock_irqsave(&rnp->lock, flags);
  3155. smp_mb__after_unlock_lock();
  3156. WARN_ON_ONCE(rnp->expmask);
  3157. rnp->expmask = rnp->expmaskinit;
  3158. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3159. }
  3160. }
  3161. /*
  3162. * Return non-zero if there is no RCU expedited grace period in progress
  3163. * for the specified rcu_node structure, in other words, if all CPUs and
  3164. * tasks covered by the specified rcu_node structure have done their bit
  3165. * for the current expedited grace period. Works only for preemptible
  3166. * RCU -- other RCU implementation use other means.
  3167. *
  3168. * Caller must hold the root rcu_node's exp_funnel_mutex.
  3169. */
  3170. static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  3171. {
  3172. return rnp->exp_tasks == NULL &&
  3173. READ_ONCE(rnp->expmask) == 0;
  3174. }
  3175. /*
  3176. * Report the exit from RCU read-side critical section for the last task
  3177. * that queued itself during or before the current expedited preemptible-RCU
  3178. * grace period. This event is reported either to the rcu_node structure on
  3179. * which the task was queued or to one of that rcu_node structure's ancestors,
  3180. * recursively up the tree. (Calm down, calm down, we do the recursion
  3181. * iteratively!)
  3182. *
  3183. * Caller must hold the root rcu_node's exp_funnel_mutex and the
  3184. * specified rcu_node structure's ->lock.
  3185. */
  3186. static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  3187. bool wake, unsigned long flags)
  3188. __releases(rnp->lock)
  3189. {
  3190. unsigned long mask;
  3191. for (;;) {
  3192. if (!sync_rcu_preempt_exp_done(rnp)) {
  3193. if (!rnp->expmask)
  3194. rcu_initiate_boost(rnp, flags);
  3195. else
  3196. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3197. break;
  3198. }
  3199. if (rnp->parent == NULL) {
  3200. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3201. if (wake) {
  3202. smp_mb(); /* EGP done before wake_up(). */
  3203. wake_up(&rsp->expedited_wq);
  3204. }
  3205. break;
  3206. }
  3207. mask = rnp->grpmask;
  3208. raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
  3209. rnp = rnp->parent;
  3210. raw_spin_lock(&rnp->lock); /* irqs already disabled */
  3211. smp_mb__after_unlock_lock();
  3212. WARN_ON_ONCE(!(rnp->expmask & mask));
  3213. rnp->expmask &= ~mask;
  3214. }
  3215. }
  3216. /*
  3217. * Report expedited quiescent state for specified node. This is a
  3218. * lock-acquisition wrapper function for __rcu_report_exp_rnp().
  3219. *
  3220. * Caller must hold the root rcu_node's exp_funnel_mutex.
  3221. */
  3222. static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
  3223. struct rcu_node *rnp, bool wake)
  3224. {
  3225. unsigned long flags;
  3226. raw_spin_lock_irqsave(&rnp->lock, flags);
  3227. smp_mb__after_unlock_lock();
  3228. __rcu_report_exp_rnp(rsp, rnp, wake, flags);
  3229. }
  3230. /*
  3231. * Report expedited quiescent state for multiple CPUs, all covered by the
  3232. * specified leaf rcu_node structure. Caller must hold the root
  3233. * rcu_node's exp_funnel_mutex.
  3234. */
  3235. static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
  3236. unsigned long mask, bool wake)
  3237. {
  3238. unsigned long flags;
  3239. raw_spin_lock_irqsave(&rnp->lock, flags);
  3240. smp_mb__after_unlock_lock();
  3241. if (!(rnp->expmask & mask)) {
  3242. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3243. return;
  3244. }
  3245. rnp->expmask &= ~mask;
  3246. __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
  3247. }
  3248. /*
  3249. * Report expedited quiescent state for specified rcu_data (CPU).
  3250. * Caller must hold the root rcu_node's exp_funnel_mutex.
  3251. */
  3252. static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
  3253. bool wake)
  3254. {
  3255. rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
  3256. }
  3257. /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
  3258. static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
  3259. struct rcu_data *rdp,
  3260. atomic_long_t *stat, unsigned long s)
  3261. {
  3262. if (rcu_exp_gp_seq_done(rsp, s)) {
  3263. if (rnp)
  3264. mutex_unlock(&rnp->exp_funnel_mutex);
  3265. else if (rdp)
  3266. mutex_unlock(&rdp->exp_funnel_mutex);
  3267. /* Ensure test happens before caller kfree(). */
  3268. smp_mb__before_atomic(); /* ^^^ */
  3269. atomic_long_inc(stat);
  3270. return true;
  3271. }
  3272. return false;
  3273. }
  3274. /*
  3275. * Funnel-lock acquisition for expedited grace periods. Returns a
  3276. * pointer to the root rcu_node structure, or NULL if some other
  3277. * task did the expedited grace period for us.
  3278. */
  3279. static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
  3280. {
  3281. struct rcu_data *rdp;
  3282. struct rcu_node *rnp0;
  3283. struct rcu_node *rnp1 = NULL;
  3284. /*
  3285. * First try directly acquiring the root lock in order to reduce
  3286. * latency in the common case where expedited grace periods are
  3287. * rare. We check mutex_is_locked() to avoid pathological levels of
  3288. * memory contention on ->exp_funnel_mutex in the heavy-load case.
  3289. */
  3290. rnp0 = rcu_get_root(rsp);
  3291. if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
  3292. if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
  3293. if (sync_exp_work_done(rsp, rnp0, NULL,
  3294. &rsp->expedited_workdone0, s))
  3295. return NULL;
  3296. return rnp0;
  3297. }
  3298. }
  3299. /*
  3300. * Each pass through the following loop works its way
  3301. * up the rcu_node tree, returning if others have done the
  3302. * work or otherwise falls through holding the root rnp's
  3303. * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
  3304. * can be inexact, as it is just promoting locality and is not
  3305. * strictly needed for correctness.
  3306. */
  3307. rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
  3308. if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
  3309. return NULL;
  3310. mutex_lock(&rdp->exp_funnel_mutex);
  3311. rnp0 = rdp->mynode;
  3312. for (; rnp0 != NULL; rnp0 = rnp0->parent) {
  3313. if (sync_exp_work_done(rsp, rnp1, rdp,
  3314. &rsp->expedited_workdone2, s))
  3315. return NULL;
  3316. mutex_lock(&rnp0->exp_funnel_mutex);
  3317. if (rnp1)
  3318. mutex_unlock(&rnp1->exp_funnel_mutex);
  3319. else
  3320. mutex_unlock(&rdp->exp_funnel_mutex);
  3321. rnp1 = rnp0;
  3322. }
  3323. if (sync_exp_work_done(rsp, rnp1, rdp,
  3324. &rsp->expedited_workdone3, s))
  3325. return NULL;
  3326. return rnp1;
  3327. }
  3328. /* Invoked on each online non-idle CPU for expedited quiescent state. */
  3329. static void sync_sched_exp_handler(void *data)
  3330. {
  3331. struct rcu_data *rdp;
  3332. struct rcu_node *rnp;
  3333. struct rcu_state *rsp = data;
  3334. rdp = this_cpu_ptr(rsp->rda);
  3335. rnp = rdp->mynode;
  3336. if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
  3337. __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
  3338. return;
  3339. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
  3340. resched_cpu(smp_processor_id());
  3341. }
  3342. /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
  3343. static void sync_sched_exp_online_cleanup(int cpu)
  3344. {
  3345. struct rcu_data *rdp;
  3346. int ret;
  3347. struct rcu_node *rnp;
  3348. struct rcu_state *rsp = &rcu_sched_state;
  3349. rdp = per_cpu_ptr(rsp->rda, cpu);
  3350. rnp = rdp->mynode;
  3351. if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
  3352. return;
  3353. ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
  3354. WARN_ON_ONCE(ret);
  3355. }
  3356. /*
  3357. * Select the nodes that the upcoming expedited grace period needs
  3358. * to wait for.
  3359. */
  3360. static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
  3361. smp_call_func_t func)
  3362. {
  3363. int cpu;
  3364. unsigned long flags;
  3365. unsigned long mask;
  3366. unsigned long mask_ofl_test;
  3367. unsigned long mask_ofl_ipi;
  3368. int ret;
  3369. struct rcu_node *rnp;
  3370. sync_exp_reset_tree(rsp);
  3371. rcu_for_each_leaf_node(rsp, rnp) {
  3372. raw_spin_lock_irqsave(&rnp->lock, flags);
  3373. smp_mb__after_unlock_lock();
  3374. /* Each pass checks a CPU for identity, offline, and idle. */
  3375. mask_ofl_test = 0;
  3376. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
  3377. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3378. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  3379. if (raw_smp_processor_id() == cpu ||
  3380. !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
  3381. mask_ofl_test |= rdp->grpmask;
  3382. }
  3383. mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
  3384. /*
  3385. * Need to wait for any blocked tasks as well. Note that
  3386. * additional blocking tasks will also block the expedited
  3387. * GP until such time as the ->expmask bits are cleared.
  3388. */
  3389. if (rcu_preempt_has_tasks(rnp))
  3390. rnp->exp_tasks = rnp->blkd_tasks.next;
  3391. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3392. /* IPI the remaining CPUs for expedited quiescent state. */
  3393. mask = 1;
  3394. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
  3395. if (!(mask_ofl_ipi & mask))
  3396. continue;
  3397. retry_ipi:
  3398. ret = smp_call_function_single(cpu, func, rsp, 0);
  3399. if (!ret) {
  3400. mask_ofl_ipi &= ~mask;
  3401. } else {
  3402. /* Failed, raced with offline. */
  3403. raw_spin_lock_irqsave(&rnp->lock, flags);
  3404. if (cpu_online(cpu) &&
  3405. (rnp->expmask & mask)) {
  3406. raw_spin_unlock_irqrestore(&rnp->lock,
  3407. flags);
  3408. schedule_timeout_uninterruptible(1);
  3409. if (cpu_online(cpu) &&
  3410. (rnp->expmask & mask))
  3411. goto retry_ipi;
  3412. raw_spin_lock_irqsave(&rnp->lock,
  3413. flags);
  3414. }
  3415. if (!(rnp->expmask & mask))
  3416. mask_ofl_ipi &= ~mask;
  3417. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3418. }
  3419. }
  3420. /* Report quiescent states for those that went offline. */
  3421. mask_ofl_test |= mask_ofl_ipi;
  3422. if (mask_ofl_test)
  3423. rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
  3424. }
  3425. }
  3426. static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
  3427. {
  3428. int cpu;
  3429. unsigned long jiffies_stall;
  3430. unsigned long jiffies_start;
  3431. unsigned long mask;
  3432. struct rcu_node *rnp;
  3433. struct rcu_node *rnp_root = rcu_get_root(rsp);
  3434. int ret;
  3435. jiffies_stall = rcu_jiffies_till_stall_check();
  3436. jiffies_start = jiffies;
  3437. for (;;) {
  3438. ret = wait_event_interruptible_timeout(
  3439. rsp->expedited_wq,
  3440. sync_rcu_preempt_exp_done(rnp_root),
  3441. jiffies_stall);
  3442. if (ret > 0)
  3443. return;
  3444. if (ret < 0) {
  3445. /* Hit a signal, disable CPU stall warnings. */
  3446. wait_event(rsp->expedited_wq,
  3447. sync_rcu_preempt_exp_done(rnp_root));
  3448. return;
  3449. }
  3450. pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
  3451. rsp->name);
  3452. rcu_for_each_leaf_node(rsp, rnp) {
  3453. (void)rcu_print_task_exp_stall(rnp);
  3454. mask = 1;
  3455. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
  3456. struct rcu_data *rdp;
  3457. if (!(rnp->expmask & mask))
  3458. continue;
  3459. rdp = per_cpu_ptr(rsp->rda, cpu);
  3460. pr_cont(" %d-%c%c%c", cpu,
  3461. "O."[cpu_online(cpu)],
  3462. "o."[!!(rdp->grpmask & rnp->expmaskinit)],
  3463. "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
  3464. }
  3465. mask <<= 1;
  3466. }
  3467. pr_cont(" } %lu jiffies s: %lu\n",
  3468. jiffies - jiffies_start, rsp->expedited_sequence);
  3469. rcu_for_each_leaf_node(rsp, rnp) {
  3470. mask = 1;
  3471. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
  3472. if (!(rnp->expmask & mask))
  3473. continue;
  3474. dump_cpu_task(cpu);
  3475. }
  3476. }
  3477. jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
  3478. }
  3479. }
  3480. /**
  3481. * synchronize_sched_expedited - Brute-force RCU-sched grace period
  3482. *
  3483. * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
  3484. * approach to force the grace period to end quickly. This consumes
  3485. * significant time on all CPUs and is unfriendly to real-time workloads,
  3486. * so is thus not recommended for any sort of common-case code. In fact,
  3487. * if you are using synchronize_sched_expedited() in a loop, please
  3488. * restructure your code to batch your updates, and then use a single
  3489. * synchronize_sched() instead.
  3490. *
  3491. * This implementation can be thought of as an application of sequence
  3492. * locking to expedited grace periods, but using the sequence counter to
  3493. * determine when someone else has already done the work instead of for
  3494. * retrying readers.
  3495. */
  3496. void synchronize_sched_expedited(void)
  3497. {
  3498. unsigned long s;
  3499. struct rcu_node *rnp;
  3500. struct rcu_state *rsp = &rcu_sched_state;
  3501. /* Take a snapshot of the sequence number. */
  3502. s = rcu_exp_gp_seq_snap(rsp);
  3503. rnp = exp_funnel_lock(rsp, s);
  3504. if (rnp == NULL)
  3505. return; /* Someone else did our work for us. */
  3506. rcu_exp_gp_seq_start(rsp);
  3507. sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
  3508. synchronize_sched_expedited_wait(rsp);
  3509. rcu_exp_gp_seq_end(rsp);
  3510. mutex_unlock(&rnp->exp_funnel_mutex);
  3511. }
  3512. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  3513. /*
  3514. * Check to see if there is any immediate RCU-related work to be done
  3515. * by the current CPU, for the specified type of RCU, returning 1 if so.
  3516. * The checks are in order of increasing expense: checks that can be
  3517. * carried out against CPU-local state are performed first. However,
  3518. * we must check for CPU stalls first, else we might not get a chance.
  3519. */
  3520. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  3521. {
  3522. struct rcu_node *rnp = rdp->mynode;
  3523. rdp->n_rcu_pending++;
  3524. /* Check for CPU stalls, if enabled. */
  3525. check_cpu_stall(rsp, rdp);
  3526. /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
  3527. if (rcu_nohz_full_cpu(rsp))
  3528. return 0;
  3529. /* Is the RCU core waiting for a quiescent state from this CPU? */
  3530. if (rcu_scheduler_fully_active &&
  3531. rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
  3532. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
  3533. rdp->n_rp_core_needs_qs++;
  3534. } else if (rdp->core_needs_qs &&
  3535. (!rdp->cpu_no_qs.b.norm ||
  3536. rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
  3537. rdp->n_rp_report_qs++;
  3538. return 1;
  3539. }
  3540. /* Does this CPU have callbacks ready to invoke? */
  3541. if (cpu_has_callbacks_ready_to_invoke(rdp)) {
  3542. rdp->n_rp_cb_ready++;
  3543. return 1;
  3544. }
  3545. /* Has RCU gone idle with this CPU needing another grace period? */
  3546. if (cpu_needs_another_gp(rsp, rdp)) {
  3547. rdp->n_rp_cpu_needs_gp++;
  3548. return 1;
  3549. }
  3550. /* Has another RCU grace period completed? */
  3551. if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  3552. rdp->n_rp_gp_completed++;
  3553. return 1;
  3554. }
  3555. /* Has a new RCU grace period started? */
  3556. if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
  3557. unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
  3558. rdp->n_rp_gp_started++;
  3559. return 1;
  3560. }
  3561. /* Does this CPU need a deferred NOCB wakeup? */
  3562. if (rcu_nocb_need_deferred_wakeup(rdp)) {
  3563. rdp->n_rp_nocb_defer_wakeup++;
  3564. return 1;
  3565. }
  3566. /* nothing to do */
  3567. rdp->n_rp_need_nothing++;
  3568. return 0;
  3569. }
  3570. /*
  3571. * Check to see if there is any immediate RCU-related work to be done
  3572. * by the current CPU, returning 1 if so. This function is part of the
  3573. * RCU implementation; it is -not- an exported member of the RCU API.
  3574. */
  3575. static int rcu_pending(void)
  3576. {
  3577. struct rcu_state *rsp;
  3578. for_each_rcu_flavor(rsp)
  3579. if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
  3580. return 1;
  3581. return 0;
  3582. }
  3583. /*
  3584. * Return true if the specified CPU has any callback. If all_lazy is
  3585. * non-NULL, store an indication of whether all callbacks are lazy.
  3586. * (If there are no callbacks, all of them are deemed to be lazy.)
  3587. */
  3588. static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
  3589. {
  3590. bool al = true;
  3591. bool hc = false;
  3592. struct rcu_data *rdp;
  3593. struct rcu_state *rsp;
  3594. for_each_rcu_flavor(rsp) {
  3595. rdp = this_cpu_ptr(rsp->rda);
  3596. if (!rdp->nxtlist)
  3597. continue;
  3598. hc = true;
  3599. if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
  3600. al = false;
  3601. break;
  3602. }
  3603. }
  3604. if (all_lazy)
  3605. *all_lazy = al;
  3606. return hc;
  3607. }
  3608. /*
  3609. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  3610. * the compiler is expected to optimize this away.
  3611. */
  3612. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  3613. int cpu, unsigned long done)
  3614. {
  3615. trace_rcu_barrier(rsp->name, s, cpu,
  3616. atomic_read(&rsp->barrier_cpu_count), done);
  3617. }
  3618. /*
  3619. * RCU callback function for _rcu_barrier(). If we are last, wake
  3620. * up the task executing _rcu_barrier().
  3621. */
  3622. static void rcu_barrier_callback(struct rcu_head *rhp)
  3623. {
  3624. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  3625. struct rcu_state *rsp = rdp->rsp;
  3626. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  3627. _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
  3628. complete(&rsp->barrier_completion);
  3629. } else {
  3630. _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
  3631. }
  3632. }
  3633. /*
  3634. * Called with preemption disabled, and from cross-cpu IRQ context.
  3635. */
  3636. static void rcu_barrier_func(void *type)
  3637. {
  3638. struct rcu_state *rsp = type;
  3639. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  3640. _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
  3641. atomic_inc(&rsp->barrier_cpu_count);
  3642. rsp->call(&rdp->barrier_head, rcu_barrier_callback);
  3643. }
  3644. /*
  3645. * Orchestrate the specified type of RCU barrier, waiting for all
  3646. * RCU callbacks of the specified type to complete.
  3647. */
  3648. static void _rcu_barrier(struct rcu_state *rsp)
  3649. {
  3650. int cpu;
  3651. struct rcu_data *rdp;
  3652. unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
  3653. _rcu_barrier_trace(rsp, "Begin", -1, s);
  3654. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  3655. mutex_lock(&rsp->barrier_mutex);
  3656. /* Did someone else do our work for us? */
  3657. if (rcu_seq_done(&rsp->barrier_sequence, s)) {
  3658. _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
  3659. smp_mb(); /* caller's subsequent code after above check. */
  3660. mutex_unlock(&rsp->barrier_mutex);
  3661. return;
  3662. }
  3663. /* Mark the start of the barrier operation. */
  3664. rcu_seq_start(&rsp->barrier_sequence);
  3665. _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
  3666. /*
  3667. * Initialize the count to one rather than to zero in order to
  3668. * avoid a too-soon return to zero in case of a short grace period
  3669. * (or preemption of this task). Exclude CPU-hotplug operations
  3670. * to ensure that no offline CPU has callbacks queued.
  3671. */
  3672. init_completion(&rsp->barrier_completion);
  3673. atomic_set(&rsp->barrier_cpu_count, 1);
  3674. get_online_cpus();
  3675. /*
  3676. * Force each CPU with callbacks to register a new callback.
  3677. * When that callback is invoked, we will know that all of the
  3678. * corresponding CPU's preceding callbacks have been invoked.
  3679. */
  3680. for_each_possible_cpu(cpu) {
  3681. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  3682. continue;
  3683. rdp = per_cpu_ptr(rsp->rda, cpu);
  3684. if (rcu_is_nocb_cpu(cpu)) {
  3685. if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
  3686. _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
  3687. rsp->barrier_sequence);
  3688. } else {
  3689. _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
  3690. rsp->barrier_sequence);
  3691. smp_mb__before_atomic();
  3692. atomic_inc(&rsp->barrier_cpu_count);
  3693. __call_rcu(&rdp->barrier_head,
  3694. rcu_barrier_callback, rsp, cpu, 0);
  3695. }
  3696. } else if (READ_ONCE(rdp->qlen)) {
  3697. _rcu_barrier_trace(rsp, "OnlineQ", cpu,
  3698. rsp->barrier_sequence);
  3699. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  3700. } else {
  3701. _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
  3702. rsp->barrier_sequence);
  3703. }
  3704. }
  3705. put_online_cpus();
  3706. /*
  3707. * Now that we have an rcu_barrier_callback() callback on each
  3708. * CPU, and thus each counted, remove the initial count.
  3709. */
  3710. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  3711. complete(&rsp->barrier_completion);
  3712. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  3713. wait_for_completion(&rsp->barrier_completion);
  3714. /* Mark the end of the barrier operation. */
  3715. _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
  3716. rcu_seq_end(&rsp->barrier_sequence);
  3717. /* Other rcu_barrier() invocations can now safely proceed. */
  3718. mutex_unlock(&rsp->barrier_mutex);
  3719. }
  3720. /**
  3721. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  3722. */
  3723. void rcu_barrier_bh(void)
  3724. {
  3725. _rcu_barrier(&rcu_bh_state);
  3726. }
  3727. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  3728. /**
  3729. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  3730. */
  3731. void rcu_barrier_sched(void)
  3732. {
  3733. _rcu_barrier(&rcu_sched_state);
  3734. }
  3735. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  3736. /*
  3737. * Propagate ->qsinitmask bits up the rcu_node tree to account for the
  3738. * first CPU in a given leaf rcu_node structure coming online. The caller
  3739. * must hold the corresponding leaf rcu_node ->lock with interrrupts
  3740. * disabled.
  3741. */
  3742. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
  3743. {
  3744. long mask;
  3745. struct rcu_node *rnp = rnp_leaf;
  3746. for (;;) {
  3747. mask = rnp->grpmask;
  3748. rnp = rnp->parent;
  3749. if (rnp == NULL)
  3750. return;
  3751. raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
  3752. rnp->qsmaskinit |= mask;
  3753. raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
  3754. }
  3755. }
  3756. /*
  3757. * Do boot-time initialization of a CPU's per-CPU RCU data.
  3758. */
  3759. static void __init
  3760. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  3761. {
  3762. unsigned long flags;
  3763. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3764. struct rcu_node *rnp = rcu_get_root(rsp);
  3765. /* Set up local state, ensuring consistent view of global state. */
  3766. raw_spin_lock_irqsave(&rnp->lock, flags);
  3767. rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
  3768. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  3769. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  3770. WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
  3771. rdp->cpu = cpu;
  3772. rdp->rsp = rsp;
  3773. mutex_init(&rdp->exp_funnel_mutex);
  3774. rcu_boot_init_nocb_percpu_data(rdp);
  3775. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3776. }
  3777. /*
  3778. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  3779. * offline event can be happening at a given time. Note also that we
  3780. * can accept some slop in the rsp->completed access due to the fact
  3781. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  3782. */
  3783. static void
  3784. rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
  3785. {
  3786. unsigned long flags;
  3787. unsigned long mask;
  3788. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3789. struct rcu_node *rnp = rcu_get_root(rsp);
  3790. /* Set up local state, ensuring consistent view of global state. */
  3791. raw_spin_lock_irqsave(&rnp->lock, flags);
  3792. rdp->qlen_last_fqs_check = 0;
  3793. rdp->n_force_qs_snap = rsp->n_force_qs;
  3794. rdp->blimit = blimit;
  3795. if (!rdp->nxtlist)
  3796. init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
  3797. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  3798. rcu_sysidle_init_percpu_data(rdp->dynticks);
  3799. atomic_set(&rdp->dynticks->dynticks,
  3800. (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
  3801. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  3802. /*
  3803. * Add CPU to leaf rcu_node pending-online bitmask. Any needed
  3804. * propagation up the rcu_node tree will happen at the beginning
  3805. * of the next grace period.
  3806. */
  3807. rnp = rdp->mynode;
  3808. mask = rdp->grpmask;
  3809. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  3810. smp_mb__after_unlock_lock();
  3811. rnp->qsmaskinitnext |= mask;
  3812. rnp->expmaskinitnext |= mask;
  3813. if (!rdp->beenonline)
  3814. WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
  3815. rdp->beenonline = true; /* We have now been online. */
  3816. rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
  3817. rdp->completed = rnp->completed;
  3818. rdp->cpu_no_qs.b.norm = true;
  3819. rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
  3820. rdp->core_needs_qs = false;
  3821. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  3822. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3823. }
  3824. static void rcu_prepare_cpu(int cpu)
  3825. {
  3826. struct rcu_state *rsp;
  3827. for_each_rcu_flavor(rsp)
  3828. rcu_init_percpu_data(cpu, rsp);
  3829. }
  3830. /*
  3831. * Handle CPU online/offline notification events.
  3832. */
  3833. int rcu_cpu_notify(struct notifier_block *self,
  3834. unsigned long action, void *hcpu)
  3835. {
  3836. long cpu = (long)hcpu;
  3837. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  3838. struct rcu_node *rnp = rdp->mynode;
  3839. struct rcu_state *rsp;
  3840. switch (action) {
  3841. case CPU_UP_PREPARE:
  3842. case CPU_UP_PREPARE_FROZEN:
  3843. rcu_prepare_cpu(cpu);
  3844. rcu_prepare_kthreads(cpu);
  3845. rcu_spawn_all_nocb_kthreads(cpu);
  3846. break;
  3847. case CPU_ONLINE:
  3848. case CPU_DOWN_FAILED:
  3849. sync_sched_exp_online_cleanup(cpu);
  3850. rcu_boost_kthread_setaffinity(rnp, -1);
  3851. break;
  3852. case CPU_DOWN_PREPARE:
  3853. rcu_boost_kthread_setaffinity(rnp, cpu);
  3854. break;
  3855. case CPU_DYING:
  3856. case CPU_DYING_FROZEN:
  3857. for_each_rcu_flavor(rsp)
  3858. rcu_cleanup_dying_cpu(rsp);
  3859. break;
  3860. case CPU_DYING_IDLE:
  3861. /* QS for any half-done expedited RCU-sched GP. */
  3862. preempt_disable();
  3863. rcu_report_exp_rdp(&rcu_sched_state,
  3864. this_cpu_ptr(rcu_sched_state.rda), true);
  3865. preempt_enable();
  3866. for_each_rcu_flavor(rsp) {
  3867. rcu_cleanup_dying_idle_cpu(cpu, rsp);
  3868. }
  3869. break;
  3870. case CPU_DEAD:
  3871. case CPU_DEAD_FROZEN:
  3872. case CPU_UP_CANCELED:
  3873. case CPU_UP_CANCELED_FROZEN:
  3874. for_each_rcu_flavor(rsp) {
  3875. rcu_cleanup_dead_cpu(cpu, rsp);
  3876. do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
  3877. }
  3878. break;
  3879. default:
  3880. break;
  3881. }
  3882. return NOTIFY_OK;
  3883. }
  3884. static int rcu_pm_notify(struct notifier_block *self,
  3885. unsigned long action, void *hcpu)
  3886. {
  3887. switch (action) {
  3888. case PM_HIBERNATION_PREPARE:
  3889. case PM_SUSPEND_PREPARE:
  3890. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3891. rcu_expedite_gp();
  3892. break;
  3893. case PM_POST_HIBERNATION:
  3894. case PM_POST_SUSPEND:
  3895. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3896. rcu_unexpedite_gp();
  3897. break;
  3898. default:
  3899. break;
  3900. }
  3901. return NOTIFY_OK;
  3902. }
  3903. /*
  3904. * Spawn the kthreads that handle each RCU flavor's grace periods.
  3905. */
  3906. static int __init rcu_spawn_gp_kthread(void)
  3907. {
  3908. unsigned long flags;
  3909. int kthread_prio_in = kthread_prio;
  3910. struct rcu_node *rnp;
  3911. struct rcu_state *rsp;
  3912. struct sched_param sp;
  3913. struct task_struct *t;
  3914. /* Force priority into range. */
  3915. if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
  3916. kthread_prio = 1;
  3917. else if (kthread_prio < 0)
  3918. kthread_prio = 0;
  3919. else if (kthread_prio > 99)
  3920. kthread_prio = 99;
  3921. if (kthread_prio != kthread_prio_in)
  3922. pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
  3923. kthread_prio, kthread_prio_in);
  3924. rcu_scheduler_fully_active = 1;
  3925. for_each_rcu_flavor(rsp) {
  3926. t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
  3927. BUG_ON(IS_ERR(t));
  3928. rnp = rcu_get_root(rsp);
  3929. raw_spin_lock_irqsave(&rnp->lock, flags);
  3930. rsp->gp_kthread = t;
  3931. if (kthread_prio) {
  3932. sp.sched_priority = kthread_prio;
  3933. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  3934. }
  3935. wake_up_process(t);
  3936. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3937. }
  3938. rcu_spawn_nocb_kthreads();
  3939. rcu_spawn_boost_kthreads();
  3940. return 0;
  3941. }
  3942. early_initcall(rcu_spawn_gp_kthread);
  3943. /*
  3944. * This function is invoked towards the end of the scheduler's initialization
  3945. * process. Before this is called, the idle task might contain
  3946. * RCU read-side critical sections (during which time, this idle
  3947. * task is booting the system). After this function is called, the
  3948. * idle tasks are prohibited from containing RCU read-side critical
  3949. * sections. This function also enables RCU lockdep checking.
  3950. */
  3951. void rcu_scheduler_starting(void)
  3952. {
  3953. WARN_ON(num_online_cpus() != 1);
  3954. WARN_ON(nr_context_switches() > 0);
  3955. rcu_scheduler_active = 1;
  3956. }
  3957. /*
  3958. * Compute the per-level fanout, either using the exact fanout specified
  3959. * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
  3960. */
  3961. static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
  3962. {
  3963. int i;
  3964. if (rcu_fanout_exact) {
  3965. levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
  3966. for (i = rcu_num_lvls - 2; i >= 0; i--)
  3967. levelspread[i] = RCU_FANOUT;
  3968. } else {
  3969. int ccur;
  3970. int cprv;
  3971. cprv = nr_cpu_ids;
  3972. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3973. ccur = levelcnt[i];
  3974. levelspread[i] = (cprv + ccur - 1) / ccur;
  3975. cprv = ccur;
  3976. }
  3977. }
  3978. }
  3979. /*
  3980. * Helper function for rcu_init() that initializes one rcu_state structure.
  3981. */
  3982. static void __init rcu_init_one(struct rcu_state *rsp,
  3983. struct rcu_data __percpu *rda)
  3984. {
  3985. static const char * const buf[] = RCU_NODE_NAME_INIT;
  3986. static const char * const fqs[] = RCU_FQS_NAME_INIT;
  3987. static const char * const exp[] = RCU_EXP_NAME_INIT;
  3988. static u8 fl_mask = 0x1;
  3989. int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
  3990. int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
  3991. int cpustride = 1;
  3992. int i;
  3993. int j;
  3994. struct rcu_node *rnp;
  3995. BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  3996. /* Silence gcc 4.8 false positive about array index out of range. */
  3997. if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
  3998. panic("rcu_init_one: rcu_num_lvls out of range");
  3999. /* Initialize the level-tracking arrays. */
  4000. for (i = 0; i < rcu_num_lvls; i++)
  4001. levelcnt[i] = num_rcu_lvl[i];
  4002. for (i = 1; i < rcu_num_lvls; i++)
  4003. rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
  4004. rcu_init_levelspread(levelspread, levelcnt);
  4005. rsp->flavor_mask = fl_mask;
  4006. fl_mask <<= 1;
  4007. /* Initialize the elements themselves, starting from the leaves. */
  4008. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  4009. cpustride *= levelspread[i];
  4010. rnp = rsp->level[i];
  4011. for (j = 0; j < levelcnt[i]; j++, rnp++) {
  4012. raw_spin_lock_init(&rnp->lock);
  4013. lockdep_set_class_and_name(&rnp->lock,
  4014. &rcu_node_class[i], buf[i]);
  4015. raw_spin_lock_init(&rnp->fqslock);
  4016. lockdep_set_class_and_name(&rnp->fqslock,
  4017. &rcu_fqs_class[i], fqs[i]);
  4018. rnp->gpnum = rsp->gpnum;
  4019. rnp->completed = rsp->completed;
  4020. rnp->qsmask = 0;
  4021. rnp->qsmaskinit = 0;
  4022. rnp->grplo = j * cpustride;
  4023. rnp->grphi = (j + 1) * cpustride - 1;
  4024. if (rnp->grphi >= nr_cpu_ids)
  4025. rnp->grphi = nr_cpu_ids - 1;
  4026. if (i == 0) {
  4027. rnp->grpnum = 0;
  4028. rnp->grpmask = 0;
  4029. rnp->parent = NULL;
  4030. } else {
  4031. rnp->grpnum = j % levelspread[i - 1];
  4032. rnp->grpmask = 1UL << rnp->grpnum;
  4033. rnp->parent = rsp->level[i - 1] +
  4034. j / levelspread[i - 1];
  4035. }
  4036. rnp->level = i;
  4037. INIT_LIST_HEAD(&rnp->blkd_tasks);
  4038. rcu_init_one_nocb(rnp);
  4039. mutex_init(&rnp->exp_funnel_mutex);
  4040. lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
  4041. &rcu_exp_class[i], exp[i]);
  4042. }
  4043. }
  4044. init_waitqueue_head(&rsp->gp_wq);
  4045. init_waitqueue_head(&rsp->expedited_wq);
  4046. rnp = rsp->level[rcu_num_lvls - 1];
  4047. for_each_possible_cpu(i) {
  4048. while (i > rnp->grphi)
  4049. rnp++;
  4050. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  4051. rcu_boot_init_percpu_data(i, rsp);
  4052. }
  4053. list_add(&rsp->flavors, &rcu_struct_flavors);
  4054. }
  4055. /*
  4056. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  4057. * replace the definitions in tree.h because those are needed to size
  4058. * the ->node array in the rcu_state structure.
  4059. */
  4060. static void __init rcu_init_geometry(void)
  4061. {
  4062. ulong d;
  4063. int i;
  4064. int rcu_capacity[RCU_NUM_LVLS];
  4065. /*
  4066. * Initialize any unspecified boot parameters.
  4067. * The default values of jiffies_till_first_fqs and
  4068. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  4069. * value, which is a function of HZ, then adding one for each
  4070. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  4071. */
  4072. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  4073. if (jiffies_till_first_fqs == ULONG_MAX)
  4074. jiffies_till_first_fqs = d;
  4075. if (jiffies_till_next_fqs == ULONG_MAX)
  4076. jiffies_till_next_fqs = d;
  4077. /* If the compile-time values are accurate, just leave. */
  4078. if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
  4079. nr_cpu_ids == NR_CPUS)
  4080. return;
  4081. pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
  4082. rcu_fanout_leaf, nr_cpu_ids);
  4083. /*
  4084. * The boot-time rcu_fanout_leaf parameter must be at least two
  4085. * and cannot exceed the number of bits in the rcu_node masks.
  4086. * Complain and fall back to the compile-time values if this
  4087. * limit is exceeded.
  4088. */
  4089. if (rcu_fanout_leaf < 2 ||
  4090. rcu_fanout_leaf > sizeof(unsigned long) * 8) {
  4091. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  4092. WARN_ON(1);
  4093. return;
  4094. }
  4095. /*
  4096. * Compute number of nodes that can be handled an rcu_node tree
  4097. * with the given number of levels.
  4098. */
  4099. rcu_capacity[0] = rcu_fanout_leaf;
  4100. for (i = 1; i < RCU_NUM_LVLS; i++)
  4101. rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
  4102. /*
  4103. * The tree must be able to accommodate the configured number of CPUs.
  4104. * If this limit is exceeded, fall back to the compile-time values.
  4105. */
  4106. if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
  4107. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  4108. WARN_ON(1);
  4109. return;
  4110. }
  4111. /* Calculate the number of levels in the tree. */
  4112. for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
  4113. }
  4114. rcu_num_lvls = i + 1;
  4115. /* Calculate the number of rcu_nodes at each level of the tree. */
  4116. for (i = 0; i < rcu_num_lvls; i++) {
  4117. int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
  4118. num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
  4119. }
  4120. /* Calculate the total number of rcu_node structures. */
  4121. rcu_num_nodes = 0;
  4122. for (i = 0; i < rcu_num_lvls; i++)
  4123. rcu_num_nodes += num_rcu_lvl[i];
  4124. }
  4125. /*
  4126. * Dump out the structure of the rcu_node combining tree associated
  4127. * with the rcu_state structure referenced by rsp.
  4128. */
  4129. static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
  4130. {
  4131. int level = 0;
  4132. struct rcu_node *rnp;
  4133. pr_info("rcu_node tree layout dump\n");
  4134. pr_info(" ");
  4135. rcu_for_each_node_breadth_first(rsp, rnp) {
  4136. if (rnp->level != level) {
  4137. pr_cont("\n");
  4138. pr_info(" ");
  4139. level = rnp->level;
  4140. }
  4141. pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
  4142. }
  4143. pr_cont("\n");
  4144. }
  4145. void __init rcu_init(void)
  4146. {
  4147. int cpu;
  4148. rcu_early_boot_tests();
  4149. rcu_bootup_announce();
  4150. rcu_init_geometry();
  4151. rcu_init_one(&rcu_bh_state, &rcu_bh_data);
  4152. rcu_init_one(&rcu_sched_state, &rcu_sched_data);
  4153. if (dump_tree)
  4154. rcu_dump_rcu_node_tree(&rcu_sched_state);
  4155. __rcu_init_preempt();
  4156. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  4157. /*
  4158. * We don't need protection against CPU-hotplug here because
  4159. * this is called early in boot, before either interrupts
  4160. * or the scheduler are operational.
  4161. */
  4162. cpu_notifier(rcu_cpu_notify, 0);
  4163. pm_notifier(rcu_pm_notify, 0);
  4164. for_each_online_cpu(cpu)
  4165. rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
  4166. }
  4167. #include "tree_plugin.h"