task_mmu.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651
  1. #include <linux/mm.h>
  2. #include <linux/vmacache.h>
  3. #include <linux/hugetlb.h>
  4. #include <linux/huge_mm.h>
  5. #include <linux/mount.h>
  6. #include <linux/seq_file.h>
  7. #include <linux/highmem.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/mempolicy.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/swapops.h>
  15. #include <linux/mmu_notifier.h>
  16. #include <linux/page_idle.h>
  17. #include <asm/elf.h>
  18. #include <asm/uaccess.h>
  19. #include <asm/tlbflush.h>
  20. #include "internal.h"
  21. void task_mem(struct seq_file *m, struct mm_struct *mm)
  22. {
  23. unsigned long data, text, lib, swap, ptes, pmds;
  24. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  25. /*
  26. * Note: to minimize their overhead, mm maintains hiwater_vm and
  27. * hiwater_rss only when about to *lower* total_vm or rss. Any
  28. * collector of these hiwater stats must therefore get total_vm
  29. * and rss too, which will usually be the higher. Barriers? not
  30. * worth the effort, such snapshots can always be inconsistent.
  31. */
  32. hiwater_vm = total_vm = mm->total_vm;
  33. if (hiwater_vm < mm->hiwater_vm)
  34. hiwater_vm = mm->hiwater_vm;
  35. hiwater_rss = total_rss = get_mm_rss(mm);
  36. if (hiwater_rss < mm->hiwater_rss)
  37. hiwater_rss = mm->hiwater_rss;
  38. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  39. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  40. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  41. swap = get_mm_counter(mm, MM_SWAPENTS);
  42. ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
  43. pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
  44. seq_printf(m,
  45. "VmPeak:\t%8lu kB\n"
  46. "VmSize:\t%8lu kB\n"
  47. "VmLck:\t%8lu kB\n"
  48. "VmPin:\t%8lu kB\n"
  49. "VmHWM:\t%8lu kB\n"
  50. "VmRSS:\t%8lu kB\n"
  51. "VmData:\t%8lu kB\n"
  52. "VmStk:\t%8lu kB\n"
  53. "VmExe:\t%8lu kB\n"
  54. "VmLib:\t%8lu kB\n"
  55. "VmPTE:\t%8lu kB\n"
  56. "VmPMD:\t%8lu kB\n"
  57. "VmSwap:\t%8lu kB\n",
  58. hiwater_vm << (PAGE_SHIFT-10),
  59. total_vm << (PAGE_SHIFT-10),
  60. mm->locked_vm << (PAGE_SHIFT-10),
  61. mm->pinned_vm << (PAGE_SHIFT-10),
  62. hiwater_rss << (PAGE_SHIFT-10),
  63. total_rss << (PAGE_SHIFT-10),
  64. data << (PAGE_SHIFT-10),
  65. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  66. ptes >> 10,
  67. pmds >> 10,
  68. swap << (PAGE_SHIFT-10));
  69. hugetlb_report_usage(m, mm);
  70. }
  71. unsigned long task_vsize(struct mm_struct *mm)
  72. {
  73. return PAGE_SIZE * mm->total_vm;
  74. }
  75. unsigned long task_statm(struct mm_struct *mm,
  76. unsigned long *shared, unsigned long *text,
  77. unsigned long *data, unsigned long *resident)
  78. {
  79. *shared = get_mm_counter(mm, MM_FILEPAGES);
  80. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  81. >> PAGE_SHIFT;
  82. *data = mm->total_vm - mm->shared_vm;
  83. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  84. return mm->total_vm;
  85. }
  86. #ifdef CONFIG_NUMA
  87. /*
  88. * Save get_task_policy() for show_numa_map().
  89. */
  90. static void hold_task_mempolicy(struct proc_maps_private *priv)
  91. {
  92. struct task_struct *task = priv->task;
  93. task_lock(task);
  94. priv->task_mempolicy = get_task_policy(task);
  95. mpol_get(priv->task_mempolicy);
  96. task_unlock(task);
  97. }
  98. static void release_task_mempolicy(struct proc_maps_private *priv)
  99. {
  100. mpol_put(priv->task_mempolicy);
  101. }
  102. #else
  103. static void hold_task_mempolicy(struct proc_maps_private *priv)
  104. {
  105. }
  106. static void release_task_mempolicy(struct proc_maps_private *priv)
  107. {
  108. }
  109. #endif
  110. static void vma_stop(struct proc_maps_private *priv)
  111. {
  112. struct mm_struct *mm = priv->mm;
  113. release_task_mempolicy(priv);
  114. up_read(&mm->mmap_sem);
  115. mmput(mm);
  116. }
  117. static struct vm_area_struct *
  118. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  119. {
  120. if (vma == priv->tail_vma)
  121. return NULL;
  122. return vma->vm_next ?: priv->tail_vma;
  123. }
  124. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  125. {
  126. if (m->count < m->size) /* vma is copied successfully */
  127. m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
  128. }
  129. static void *m_start(struct seq_file *m, loff_t *ppos)
  130. {
  131. struct proc_maps_private *priv = m->private;
  132. unsigned long last_addr = m->version;
  133. struct mm_struct *mm;
  134. struct vm_area_struct *vma;
  135. unsigned int pos = *ppos;
  136. /* See m_cache_vma(). Zero at the start or after lseek. */
  137. if (last_addr == -1UL)
  138. return NULL;
  139. priv->task = get_proc_task(priv->inode);
  140. if (!priv->task)
  141. return ERR_PTR(-ESRCH);
  142. mm = priv->mm;
  143. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  144. return NULL;
  145. down_read(&mm->mmap_sem);
  146. hold_task_mempolicy(priv);
  147. priv->tail_vma = get_gate_vma(mm);
  148. if (last_addr) {
  149. vma = find_vma(mm, last_addr);
  150. if (vma && (vma = m_next_vma(priv, vma)))
  151. return vma;
  152. }
  153. m->version = 0;
  154. if (pos < mm->map_count) {
  155. for (vma = mm->mmap; pos; pos--) {
  156. m->version = vma->vm_start;
  157. vma = vma->vm_next;
  158. }
  159. return vma;
  160. }
  161. /* we do not bother to update m->version in this case */
  162. if (pos == mm->map_count && priv->tail_vma)
  163. return priv->tail_vma;
  164. vma_stop(priv);
  165. return NULL;
  166. }
  167. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  168. {
  169. struct proc_maps_private *priv = m->private;
  170. struct vm_area_struct *next;
  171. (*pos)++;
  172. next = m_next_vma(priv, v);
  173. if (!next)
  174. vma_stop(priv);
  175. return next;
  176. }
  177. static void m_stop(struct seq_file *m, void *v)
  178. {
  179. struct proc_maps_private *priv = m->private;
  180. if (!IS_ERR_OR_NULL(v))
  181. vma_stop(priv);
  182. if (priv->task) {
  183. put_task_struct(priv->task);
  184. priv->task = NULL;
  185. }
  186. }
  187. static int proc_maps_open(struct inode *inode, struct file *file,
  188. const struct seq_operations *ops, int psize)
  189. {
  190. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  191. if (!priv)
  192. return -ENOMEM;
  193. priv->inode = inode;
  194. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  195. if (IS_ERR(priv->mm)) {
  196. int err = PTR_ERR(priv->mm);
  197. seq_release_private(inode, file);
  198. return err;
  199. }
  200. return 0;
  201. }
  202. static int proc_map_release(struct inode *inode, struct file *file)
  203. {
  204. struct seq_file *seq = file->private_data;
  205. struct proc_maps_private *priv = seq->private;
  206. if (priv->mm)
  207. mmdrop(priv->mm);
  208. return seq_release_private(inode, file);
  209. }
  210. static int do_maps_open(struct inode *inode, struct file *file,
  211. const struct seq_operations *ops)
  212. {
  213. return proc_maps_open(inode, file, ops,
  214. sizeof(struct proc_maps_private));
  215. }
  216. static pid_t pid_of_stack(struct proc_maps_private *priv,
  217. struct vm_area_struct *vma, bool is_pid)
  218. {
  219. struct inode *inode = priv->inode;
  220. struct task_struct *task;
  221. pid_t ret = 0;
  222. rcu_read_lock();
  223. task = pid_task(proc_pid(inode), PIDTYPE_PID);
  224. if (task) {
  225. task = task_of_stack(task, vma, is_pid);
  226. if (task)
  227. ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
  228. }
  229. rcu_read_unlock();
  230. return ret;
  231. }
  232. static void
  233. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  234. {
  235. struct mm_struct *mm = vma->vm_mm;
  236. struct file *file = vma->vm_file;
  237. struct proc_maps_private *priv = m->private;
  238. vm_flags_t flags = vma->vm_flags;
  239. unsigned long ino = 0;
  240. unsigned long long pgoff = 0;
  241. unsigned long start, end;
  242. dev_t dev = 0;
  243. const char *name = NULL;
  244. if (file) {
  245. struct inode *inode = file_inode(vma->vm_file);
  246. dev = inode->i_sb->s_dev;
  247. ino = inode->i_ino;
  248. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  249. }
  250. /* We don't show the stack guard page in /proc/maps */
  251. start = vma->vm_start;
  252. if (stack_guard_page_start(vma, start))
  253. start += PAGE_SIZE;
  254. end = vma->vm_end;
  255. if (stack_guard_page_end(vma, end))
  256. end -= PAGE_SIZE;
  257. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  258. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  259. start,
  260. end,
  261. flags & VM_READ ? 'r' : '-',
  262. flags & VM_WRITE ? 'w' : '-',
  263. flags & VM_EXEC ? 'x' : '-',
  264. flags & VM_MAYSHARE ? 's' : 'p',
  265. pgoff,
  266. MAJOR(dev), MINOR(dev), ino);
  267. /*
  268. * Print the dentry name for named mappings, and a
  269. * special [heap] marker for the heap:
  270. */
  271. if (file) {
  272. seq_pad(m, ' ');
  273. seq_file_path(m, file, "\n");
  274. goto done;
  275. }
  276. if (vma->vm_ops && vma->vm_ops->name) {
  277. name = vma->vm_ops->name(vma);
  278. if (name)
  279. goto done;
  280. }
  281. name = arch_vma_name(vma);
  282. if (!name) {
  283. pid_t tid;
  284. if (!mm) {
  285. name = "[vdso]";
  286. goto done;
  287. }
  288. if (vma->vm_start <= mm->brk &&
  289. vma->vm_end >= mm->start_brk) {
  290. name = "[heap]";
  291. goto done;
  292. }
  293. tid = pid_of_stack(priv, vma, is_pid);
  294. if (tid != 0) {
  295. /*
  296. * Thread stack in /proc/PID/task/TID/maps or
  297. * the main process stack.
  298. */
  299. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  300. vma->vm_end >= mm->start_stack)) {
  301. name = "[stack]";
  302. } else {
  303. /* Thread stack in /proc/PID/maps */
  304. seq_pad(m, ' ');
  305. seq_printf(m, "[stack:%d]", tid);
  306. }
  307. }
  308. }
  309. done:
  310. if (name) {
  311. seq_pad(m, ' ');
  312. seq_puts(m, name);
  313. }
  314. seq_putc(m, '\n');
  315. }
  316. static int show_map(struct seq_file *m, void *v, int is_pid)
  317. {
  318. show_map_vma(m, v, is_pid);
  319. m_cache_vma(m, v);
  320. return 0;
  321. }
  322. static int show_pid_map(struct seq_file *m, void *v)
  323. {
  324. return show_map(m, v, 1);
  325. }
  326. static int show_tid_map(struct seq_file *m, void *v)
  327. {
  328. return show_map(m, v, 0);
  329. }
  330. static const struct seq_operations proc_pid_maps_op = {
  331. .start = m_start,
  332. .next = m_next,
  333. .stop = m_stop,
  334. .show = show_pid_map
  335. };
  336. static const struct seq_operations proc_tid_maps_op = {
  337. .start = m_start,
  338. .next = m_next,
  339. .stop = m_stop,
  340. .show = show_tid_map
  341. };
  342. static int pid_maps_open(struct inode *inode, struct file *file)
  343. {
  344. return do_maps_open(inode, file, &proc_pid_maps_op);
  345. }
  346. static int tid_maps_open(struct inode *inode, struct file *file)
  347. {
  348. return do_maps_open(inode, file, &proc_tid_maps_op);
  349. }
  350. const struct file_operations proc_pid_maps_operations = {
  351. .open = pid_maps_open,
  352. .read = seq_read,
  353. .llseek = seq_lseek,
  354. .release = proc_map_release,
  355. };
  356. const struct file_operations proc_tid_maps_operations = {
  357. .open = tid_maps_open,
  358. .read = seq_read,
  359. .llseek = seq_lseek,
  360. .release = proc_map_release,
  361. };
  362. /*
  363. * Proportional Set Size(PSS): my share of RSS.
  364. *
  365. * PSS of a process is the count of pages it has in memory, where each
  366. * page is divided by the number of processes sharing it. So if a
  367. * process has 1000 pages all to itself, and 1000 shared with one other
  368. * process, its PSS will be 1500.
  369. *
  370. * To keep (accumulated) division errors low, we adopt a 64bit
  371. * fixed-point pss counter to minimize division errors. So (pss >>
  372. * PSS_SHIFT) would be the real byte count.
  373. *
  374. * A shift of 12 before division means (assuming 4K page size):
  375. * - 1M 3-user-pages add up to 8KB errors;
  376. * - supports mapcount up to 2^24, or 16M;
  377. * - supports PSS up to 2^52 bytes, or 4PB.
  378. */
  379. #define PSS_SHIFT 12
  380. #ifdef CONFIG_PROC_PAGE_MONITOR
  381. struct mem_size_stats {
  382. unsigned long resident;
  383. unsigned long shared_clean;
  384. unsigned long shared_dirty;
  385. unsigned long private_clean;
  386. unsigned long private_dirty;
  387. unsigned long referenced;
  388. unsigned long anonymous;
  389. unsigned long anonymous_thp;
  390. unsigned long swap;
  391. unsigned long shared_hugetlb;
  392. unsigned long private_hugetlb;
  393. u64 pss;
  394. u64 swap_pss;
  395. };
  396. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  397. unsigned long size, bool young, bool dirty)
  398. {
  399. int mapcount;
  400. if (PageAnon(page))
  401. mss->anonymous += size;
  402. mss->resident += size;
  403. /* Accumulate the size in pages that have been accessed. */
  404. if (young || page_is_young(page) || PageReferenced(page))
  405. mss->referenced += size;
  406. mapcount = page_mapcount(page);
  407. if (mapcount >= 2) {
  408. u64 pss_delta;
  409. if (dirty || PageDirty(page))
  410. mss->shared_dirty += size;
  411. else
  412. mss->shared_clean += size;
  413. pss_delta = (u64)size << PSS_SHIFT;
  414. do_div(pss_delta, mapcount);
  415. mss->pss += pss_delta;
  416. } else {
  417. if (dirty || PageDirty(page))
  418. mss->private_dirty += size;
  419. else
  420. mss->private_clean += size;
  421. mss->pss += (u64)size << PSS_SHIFT;
  422. }
  423. }
  424. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  425. struct mm_walk *walk)
  426. {
  427. struct mem_size_stats *mss = walk->private;
  428. struct vm_area_struct *vma = walk->vma;
  429. struct page *page = NULL;
  430. if (pte_present(*pte)) {
  431. page = vm_normal_page(vma, addr, *pte);
  432. } else if (is_swap_pte(*pte)) {
  433. swp_entry_t swpent = pte_to_swp_entry(*pte);
  434. if (!non_swap_entry(swpent)) {
  435. int mapcount;
  436. mss->swap += PAGE_SIZE;
  437. mapcount = swp_swapcount(swpent);
  438. if (mapcount >= 2) {
  439. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  440. do_div(pss_delta, mapcount);
  441. mss->swap_pss += pss_delta;
  442. } else {
  443. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  444. }
  445. } else if (is_migration_entry(swpent))
  446. page = migration_entry_to_page(swpent);
  447. }
  448. if (!page)
  449. return;
  450. smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
  451. }
  452. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  453. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  454. struct mm_walk *walk)
  455. {
  456. struct mem_size_stats *mss = walk->private;
  457. struct vm_area_struct *vma = walk->vma;
  458. struct page *page;
  459. /* FOLL_DUMP will return -EFAULT on huge zero page */
  460. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  461. if (IS_ERR_OR_NULL(page))
  462. return;
  463. mss->anonymous_thp += HPAGE_PMD_SIZE;
  464. smaps_account(mss, page, HPAGE_PMD_SIZE,
  465. pmd_young(*pmd), pmd_dirty(*pmd));
  466. }
  467. #else
  468. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  469. struct mm_walk *walk)
  470. {
  471. }
  472. #endif
  473. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  474. struct mm_walk *walk)
  475. {
  476. struct vm_area_struct *vma = walk->vma;
  477. pte_t *pte;
  478. spinlock_t *ptl;
  479. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  480. smaps_pmd_entry(pmd, addr, walk);
  481. spin_unlock(ptl);
  482. return 0;
  483. }
  484. if (pmd_trans_unstable(pmd))
  485. return 0;
  486. /*
  487. * The mmap_sem held all the way back in m_start() is what
  488. * keeps khugepaged out of here and from collapsing things
  489. * in here.
  490. */
  491. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  492. for (; addr != end; pte++, addr += PAGE_SIZE)
  493. smaps_pte_entry(pte, addr, walk);
  494. pte_unmap_unlock(pte - 1, ptl);
  495. cond_resched();
  496. return 0;
  497. }
  498. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  499. {
  500. /*
  501. * Don't forget to update Documentation/ on changes.
  502. */
  503. static const char mnemonics[BITS_PER_LONG][2] = {
  504. /*
  505. * In case if we meet a flag we don't know about.
  506. */
  507. [0 ... (BITS_PER_LONG-1)] = "??",
  508. [ilog2(VM_READ)] = "rd",
  509. [ilog2(VM_WRITE)] = "wr",
  510. [ilog2(VM_EXEC)] = "ex",
  511. [ilog2(VM_SHARED)] = "sh",
  512. [ilog2(VM_MAYREAD)] = "mr",
  513. [ilog2(VM_MAYWRITE)] = "mw",
  514. [ilog2(VM_MAYEXEC)] = "me",
  515. [ilog2(VM_MAYSHARE)] = "ms",
  516. [ilog2(VM_GROWSDOWN)] = "gd",
  517. [ilog2(VM_PFNMAP)] = "pf",
  518. [ilog2(VM_DENYWRITE)] = "dw",
  519. #ifdef CONFIG_X86_INTEL_MPX
  520. [ilog2(VM_MPX)] = "mp",
  521. #endif
  522. [ilog2(VM_LOCKED)] = "lo",
  523. [ilog2(VM_IO)] = "io",
  524. [ilog2(VM_SEQ_READ)] = "sr",
  525. [ilog2(VM_RAND_READ)] = "rr",
  526. [ilog2(VM_DONTCOPY)] = "dc",
  527. [ilog2(VM_DONTEXPAND)] = "de",
  528. [ilog2(VM_ACCOUNT)] = "ac",
  529. [ilog2(VM_NORESERVE)] = "nr",
  530. [ilog2(VM_HUGETLB)] = "ht",
  531. [ilog2(VM_ARCH_1)] = "ar",
  532. [ilog2(VM_DONTDUMP)] = "dd",
  533. #ifdef CONFIG_MEM_SOFT_DIRTY
  534. [ilog2(VM_SOFTDIRTY)] = "sd",
  535. #endif
  536. [ilog2(VM_MIXEDMAP)] = "mm",
  537. [ilog2(VM_HUGEPAGE)] = "hg",
  538. [ilog2(VM_NOHUGEPAGE)] = "nh",
  539. [ilog2(VM_MERGEABLE)] = "mg",
  540. [ilog2(VM_UFFD_MISSING)]= "um",
  541. [ilog2(VM_UFFD_WP)] = "uw",
  542. };
  543. size_t i;
  544. seq_puts(m, "VmFlags: ");
  545. for (i = 0; i < BITS_PER_LONG; i++) {
  546. if (vma->vm_flags & (1UL << i)) {
  547. seq_printf(m, "%c%c ",
  548. mnemonics[i][0], mnemonics[i][1]);
  549. }
  550. }
  551. seq_putc(m, '\n');
  552. }
  553. #ifdef CONFIG_HUGETLB_PAGE
  554. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  555. unsigned long addr, unsigned long end,
  556. struct mm_walk *walk)
  557. {
  558. struct mem_size_stats *mss = walk->private;
  559. struct vm_area_struct *vma = walk->vma;
  560. struct page *page = NULL;
  561. if (pte_present(*pte)) {
  562. page = vm_normal_page(vma, addr, *pte);
  563. } else if (is_swap_pte(*pte)) {
  564. swp_entry_t swpent = pte_to_swp_entry(*pte);
  565. if (is_migration_entry(swpent))
  566. page = migration_entry_to_page(swpent);
  567. }
  568. if (page) {
  569. int mapcount = page_mapcount(page);
  570. if (mapcount >= 2)
  571. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  572. else
  573. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  574. }
  575. return 0;
  576. }
  577. #endif /* HUGETLB_PAGE */
  578. static int show_smap(struct seq_file *m, void *v, int is_pid)
  579. {
  580. struct vm_area_struct *vma = v;
  581. struct mem_size_stats mss;
  582. struct mm_walk smaps_walk = {
  583. .pmd_entry = smaps_pte_range,
  584. #ifdef CONFIG_HUGETLB_PAGE
  585. .hugetlb_entry = smaps_hugetlb_range,
  586. #endif
  587. .mm = vma->vm_mm,
  588. .private = &mss,
  589. };
  590. memset(&mss, 0, sizeof mss);
  591. /* mmap_sem is held in m_start */
  592. walk_page_vma(vma, &smaps_walk);
  593. show_map_vma(m, vma, is_pid);
  594. seq_printf(m,
  595. "Size: %8lu kB\n"
  596. "Rss: %8lu kB\n"
  597. "Pss: %8lu kB\n"
  598. "Shared_Clean: %8lu kB\n"
  599. "Shared_Dirty: %8lu kB\n"
  600. "Private_Clean: %8lu kB\n"
  601. "Private_Dirty: %8lu kB\n"
  602. "Referenced: %8lu kB\n"
  603. "Anonymous: %8lu kB\n"
  604. "AnonHugePages: %8lu kB\n"
  605. "Shared_Hugetlb: %8lu kB\n"
  606. "Private_Hugetlb: %7lu kB\n"
  607. "Swap: %8lu kB\n"
  608. "SwapPss: %8lu kB\n"
  609. "KernelPageSize: %8lu kB\n"
  610. "MMUPageSize: %8lu kB\n"
  611. "Locked: %8lu kB\n",
  612. (vma->vm_end - vma->vm_start) >> 10,
  613. mss.resident >> 10,
  614. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  615. mss.shared_clean >> 10,
  616. mss.shared_dirty >> 10,
  617. mss.private_clean >> 10,
  618. mss.private_dirty >> 10,
  619. mss.referenced >> 10,
  620. mss.anonymous >> 10,
  621. mss.anonymous_thp >> 10,
  622. mss.shared_hugetlb >> 10,
  623. mss.private_hugetlb >> 10,
  624. mss.swap >> 10,
  625. (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
  626. vma_kernel_pagesize(vma) >> 10,
  627. vma_mmu_pagesize(vma) >> 10,
  628. (vma->vm_flags & VM_LOCKED) ?
  629. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  630. show_smap_vma_flags(m, vma);
  631. m_cache_vma(m, vma);
  632. return 0;
  633. }
  634. static int show_pid_smap(struct seq_file *m, void *v)
  635. {
  636. return show_smap(m, v, 1);
  637. }
  638. static int show_tid_smap(struct seq_file *m, void *v)
  639. {
  640. return show_smap(m, v, 0);
  641. }
  642. static const struct seq_operations proc_pid_smaps_op = {
  643. .start = m_start,
  644. .next = m_next,
  645. .stop = m_stop,
  646. .show = show_pid_smap
  647. };
  648. static const struct seq_operations proc_tid_smaps_op = {
  649. .start = m_start,
  650. .next = m_next,
  651. .stop = m_stop,
  652. .show = show_tid_smap
  653. };
  654. static int pid_smaps_open(struct inode *inode, struct file *file)
  655. {
  656. return do_maps_open(inode, file, &proc_pid_smaps_op);
  657. }
  658. static int tid_smaps_open(struct inode *inode, struct file *file)
  659. {
  660. return do_maps_open(inode, file, &proc_tid_smaps_op);
  661. }
  662. const struct file_operations proc_pid_smaps_operations = {
  663. .open = pid_smaps_open,
  664. .read = seq_read,
  665. .llseek = seq_lseek,
  666. .release = proc_map_release,
  667. };
  668. const struct file_operations proc_tid_smaps_operations = {
  669. .open = tid_smaps_open,
  670. .read = seq_read,
  671. .llseek = seq_lseek,
  672. .release = proc_map_release,
  673. };
  674. enum clear_refs_types {
  675. CLEAR_REFS_ALL = 1,
  676. CLEAR_REFS_ANON,
  677. CLEAR_REFS_MAPPED,
  678. CLEAR_REFS_SOFT_DIRTY,
  679. CLEAR_REFS_MM_HIWATER_RSS,
  680. CLEAR_REFS_LAST,
  681. };
  682. struct clear_refs_private {
  683. enum clear_refs_types type;
  684. };
  685. #ifdef CONFIG_MEM_SOFT_DIRTY
  686. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  687. unsigned long addr, pte_t *pte)
  688. {
  689. /*
  690. * The soft-dirty tracker uses #PF-s to catch writes
  691. * to pages, so write-protect the pte as well. See the
  692. * Documentation/vm/soft-dirty.txt for full description
  693. * of how soft-dirty works.
  694. */
  695. pte_t ptent = *pte;
  696. if (pte_present(ptent)) {
  697. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  698. ptent = pte_wrprotect(ptent);
  699. ptent = pte_clear_soft_dirty(ptent);
  700. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  701. } else if (is_swap_pte(ptent)) {
  702. ptent = pte_swp_clear_soft_dirty(ptent);
  703. set_pte_at(vma->vm_mm, addr, pte, ptent);
  704. }
  705. }
  706. #else
  707. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  708. unsigned long addr, pte_t *pte)
  709. {
  710. }
  711. #endif
  712. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  713. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  714. unsigned long addr, pmd_t *pmdp)
  715. {
  716. pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
  717. pmd = pmd_wrprotect(pmd);
  718. pmd = pmd_clear_soft_dirty(pmd);
  719. if (vma->vm_flags & VM_SOFTDIRTY)
  720. vma->vm_flags &= ~VM_SOFTDIRTY;
  721. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  722. }
  723. #else
  724. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  725. unsigned long addr, pmd_t *pmdp)
  726. {
  727. }
  728. #endif
  729. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  730. unsigned long end, struct mm_walk *walk)
  731. {
  732. struct clear_refs_private *cp = walk->private;
  733. struct vm_area_struct *vma = walk->vma;
  734. pte_t *pte, ptent;
  735. spinlock_t *ptl;
  736. struct page *page;
  737. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  738. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  739. clear_soft_dirty_pmd(vma, addr, pmd);
  740. goto out;
  741. }
  742. page = pmd_page(*pmd);
  743. /* Clear accessed and referenced bits. */
  744. pmdp_test_and_clear_young(vma, addr, pmd);
  745. test_and_clear_page_young(page);
  746. ClearPageReferenced(page);
  747. out:
  748. spin_unlock(ptl);
  749. return 0;
  750. }
  751. if (pmd_trans_unstable(pmd))
  752. return 0;
  753. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  754. for (; addr != end; pte++, addr += PAGE_SIZE) {
  755. ptent = *pte;
  756. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  757. clear_soft_dirty(vma, addr, pte);
  758. continue;
  759. }
  760. if (!pte_present(ptent))
  761. continue;
  762. page = vm_normal_page(vma, addr, ptent);
  763. if (!page)
  764. continue;
  765. /* Clear accessed and referenced bits. */
  766. ptep_test_and_clear_young(vma, addr, pte);
  767. test_and_clear_page_young(page);
  768. ClearPageReferenced(page);
  769. }
  770. pte_unmap_unlock(pte - 1, ptl);
  771. cond_resched();
  772. return 0;
  773. }
  774. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  775. struct mm_walk *walk)
  776. {
  777. struct clear_refs_private *cp = walk->private;
  778. struct vm_area_struct *vma = walk->vma;
  779. if (vma->vm_flags & VM_PFNMAP)
  780. return 1;
  781. /*
  782. * Writing 1 to /proc/pid/clear_refs affects all pages.
  783. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  784. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  785. * Writing 4 to /proc/pid/clear_refs affects all pages.
  786. */
  787. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  788. return 1;
  789. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  790. return 1;
  791. return 0;
  792. }
  793. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  794. size_t count, loff_t *ppos)
  795. {
  796. struct task_struct *task;
  797. char buffer[PROC_NUMBUF];
  798. struct mm_struct *mm;
  799. struct vm_area_struct *vma;
  800. enum clear_refs_types type;
  801. int itype;
  802. int rv;
  803. memset(buffer, 0, sizeof(buffer));
  804. if (count > sizeof(buffer) - 1)
  805. count = sizeof(buffer) - 1;
  806. if (copy_from_user(buffer, buf, count))
  807. return -EFAULT;
  808. rv = kstrtoint(strstrip(buffer), 10, &itype);
  809. if (rv < 0)
  810. return rv;
  811. type = (enum clear_refs_types)itype;
  812. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  813. return -EINVAL;
  814. task = get_proc_task(file_inode(file));
  815. if (!task)
  816. return -ESRCH;
  817. mm = get_task_mm(task);
  818. if (mm) {
  819. struct clear_refs_private cp = {
  820. .type = type,
  821. };
  822. struct mm_walk clear_refs_walk = {
  823. .pmd_entry = clear_refs_pte_range,
  824. .test_walk = clear_refs_test_walk,
  825. .mm = mm,
  826. .private = &cp,
  827. };
  828. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  829. /*
  830. * Writing 5 to /proc/pid/clear_refs resets the peak
  831. * resident set size to this mm's current rss value.
  832. */
  833. down_write(&mm->mmap_sem);
  834. reset_mm_hiwater_rss(mm);
  835. up_write(&mm->mmap_sem);
  836. goto out_mm;
  837. }
  838. down_read(&mm->mmap_sem);
  839. if (type == CLEAR_REFS_SOFT_DIRTY) {
  840. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  841. if (!(vma->vm_flags & VM_SOFTDIRTY))
  842. continue;
  843. up_read(&mm->mmap_sem);
  844. down_write(&mm->mmap_sem);
  845. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  846. vma->vm_flags &= ~VM_SOFTDIRTY;
  847. vma_set_page_prot(vma);
  848. }
  849. downgrade_write(&mm->mmap_sem);
  850. break;
  851. }
  852. mmu_notifier_invalidate_range_start(mm, 0, -1);
  853. }
  854. walk_page_range(0, ~0UL, &clear_refs_walk);
  855. if (type == CLEAR_REFS_SOFT_DIRTY)
  856. mmu_notifier_invalidate_range_end(mm, 0, -1);
  857. flush_tlb_mm(mm);
  858. up_read(&mm->mmap_sem);
  859. out_mm:
  860. mmput(mm);
  861. }
  862. put_task_struct(task);
  863. return count;
  864. }
  865. const struct file_operations proc_clear_refs_operations = {
  866. .write = clear_refs_write,
  867. .llseek = noop_llseek,
  868. };
  869. typedef struct {
  870. u64 pme;
  871. } pagemap_entry_t;
  872. struct pagemapread {
  873. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  874. pagemap_entry_t *buffer;
  875. bool show_pfn;
  876. };
  877. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  878. #define PAGEMAP_WALK_MASK (PMD_MASK)
  879. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  880. #define PM_PFRAME_BITS 55
  881. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  882. #define PM_SOFT_DIRTY BIT_ULL(55)
  883. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  884. #define PM_FILE BIT_ULL(61)
  885. #define PM_SWAP BIT_ULL(62)
  886. #define PM_PRESENT BIT_ULL(63)
  887. #define PM_END_OF_BUFFER 1
  888. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  889. {
  890. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  891. }
  892. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  893. struct pagemapread *pm)
  894. {
  895. pm->buffer[pm->pos++] = *pme;
  896. if (pm->pos >= pm->len)
  897. return PM_END_OF_BUFFER;
  898. return 0;
  899. }
  900. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  901. struct mm_walk *walk)
  902. {
  903. struct pagemapread *pm = walk->private;
  904. unsigned long addr = start;
  905. int err = 0;
  906. while (addr < end) {
  907. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  908. pagemap_entry_t pme = make_pme(0, 0);
  909. /* End of address space hole, which we mark as non-present. */
  910. unsigned long hole_end;
  911. if (vma)
  912. hole_end = min(end, vma->vm_start);
  913. else
  914. hole_end = end;
  915. for (; addr < hole_end; addr += PAGE_SIZE) {
  916. err = add_to_pagemap(addr, &pme, pm);
  917. if (err)
  918. goto out;
  919. }
  920. if (!vma)
  921. break;
  922. /* Addresses in the VMA. */
  923. if (vma->vm_flags & VM_SOFTDIRTY)
  924. pme = make_pme(0, PM_SOFT_DIRTY);
  925. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  926. err = add_to_pagemap(addr, &pme, pm);
  927. if (err)
  928. goto out;
  929. }
  930. }
  931. out:
  932. return err;
  933. }
  934. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  935. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  936. {
  937. u64 frame = 0, flags = 0;
  938. struct page *page = NULL;
  939. if (pte_present(pte)) {
  940. if (pm->show_pfn)
  941. frame = pte_pfn(pte);
  942. flags |= PM_PRESENT;
  943. page = vm_normal_page(vma, addr, pte);
  944. if (pte_soft_dirty(pte))
  945. flags |= PM_SOFT_DIRTY;
  946. } else if (is_swap_pte(pte)) {
  947. swp_entry_t entry;
  948. if (pte_swp_soft_dirty(pte))
  949. flags |= PM_SOFT_DIRTY;
  950. entry = pte_to_swp_entry(pte);
  951. frame = swp_type(entry) |
  952. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  953. flags |= PM_SWAP;
  954. if (is_migration_entry(entry))
  955. page = migration_entry_to_page(entry);
  956. }
  957. if (page && !PageAnon(page))
  958. flags |= PM_FILE;
  959. if (page && page_mapcount(page) == 1)
  960. flags |= PM_MMAP_EXCLUSIVE;
  961. if (vma->vm_flags & VM_SOFTDIRTY)
  962. flags |= PM_SOFT_DIRTY;
  963. return make_pme(frame, flags);
  964. }
  965. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  966. struct mm_walk *walk)
  967. {
  968. struct vm_area_struct *vma = walk->vma;
  969. struct pagemapread *pm = walk->private;
  970. spinlock_t *ptl;
  971. pte_t *pte, *orig_pte;
  972. int err = 0;
  973. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  974. if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
  975. u64 flags = 0, frame = 0;
  976. pmd_t pmd = *pmdp;
  977. if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
  978. flags |= PM_SOFT_DIRTY;
  979. /*
  980. * Currently pmd for thp is always present because thp
  981. * can not be swapped-out, migrated, or HWPOISONed
  982. * (split in such cases instead.)
  983. * This if-check is just to prepare for future implementation.
  984. */
  985. if (pmd_present(pmd)) {
  986. struct page *page = pmd_page(pmd);
  987. if (page_mapcount(page) == 1)
  988. flags |= PM_MMAP_EXCLUSIVE;
  989. flags |= PM_PRESENT;
  990. if (pm->show_pfn)
  991. frame = pmd_pfn(pmd) +
  992. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  993. }
  994. for (; addr != end; addr += PAGE_SIZE) {
  995. pagemap_entry_t pme = make_pme(frame, flags);
  996. err = add_to_pagemap(addr, &pme, pm);
  997. if (err)
  998. break;
  999. if (pm->show_pfn && (flags & PM_PRESENT))
  1000. frame++;
  1001. }
  1002. spin_unlock(ptl);
  1003. return err;
  1004. }
  1005. if (pmd_trans_unstable(pmdp))
  1006. return 0;
  1007. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1008. /*
  1009. * We can assume that @vma always points to a valid one and @end never
  1010. * goes beyond vma->vm_end.
  1011. */
  1012. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1013. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1014. pagemap_entry_t pme;
  1015. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1016. err = add_to_pagemap(addr, &pme, pm);
  1017. if (err)
  1018. break;
  1019. }
  1020. pte_unmap_unlock(orig_pte, ptl);
  1021. cond_resched();
  1022. return err;
  1023. }
  1024. #ifdef CONFIG_HUGETLB_PAGE
  1025. /* This function walks within one hugetlb entry in the single call */
  1026. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1027. unsigned long addr, unsigned long end,
  1028. struct mm_walk *walk)
  1029. {
  1030. struct pagemapread *pm = walk->private;
  1031. struct vm_area_struct *vma = walk->vma;
  1032. u64 flags = 0, frame = 0;
  1033. int err = 0;
  1034. pte_t pte;
  1035. if (vma->vm_flags & VM_SOFTDIRTY)
  1036. flags |= PM_SOFT_DIRTY;
  1037. pte = huge_ptep_get(ptep);
  1038. if (pte_present(pte)) {
  1039. struct page *page = pte_page(pte);
  1040. if (!PageAnon(page))
  1041. flags |= PM_FILE;
  1042. if (page_mapcount(page) == 1)
  1043. flags |= PM_MMAP_EXCLUSIVE;
  1044. flags |= PM_PRESENT;
  1045. if (pm->show_pfn)
  1046. frame = pte_pfn(pte) +
  1047. ((addr & ~hmask) >> PAGE_SHIFT);
  1048. }
  1049. for (; addr != end; addr += PAGE_SIZE) {
  1050. pagemap_entry_t pme = make_pme(frame, flags);
  1051. err = add_to_pagemap(addr, &pme, pm);
  1052. if (err)
  1053. return err;
  1054. if (pm->show_pfn && (flags & PM_PRESENT))
  1055. frame++;
  1056. }
  1057. cond_resched();
  1058. return err;
  1059. }
  1060. #endif /* HUGETLB_PAGE */
  1061. /*
  1062. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1063. *
  1064. * For each page in the address space, this file contains one 64-bit entry
  1065. * consisting of the following:
  1066. *
  1067. * Bits 0-54 page frame number (PFN) if present
  1068. * Bits 0-4 swap type if swapped
  1069. * Bits 5-54 swap offset if swapped
  1070. * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
  1071. * Bit 56 page exclusively mapped
  1072. * Bits 57-60 zero
  1073. * Bit 61 page is file-page or shared-anon
  1074. * Bit 62 page swapped
  1075. * Bit 63 page present
  1076. *
  1077. * If the page is not present but in swap, then the PFN contains an
  1078. * encoding of the swap file number and the page's offset into the
  1079. * swap. Unmapped pages return a null PFN. This allows determining
  1080. * precisely which pages are mapped (or in swap) and comparing mapped
  1081. * pages between processes.
  1082. *
  1083. * Efficient users of this interface will use /proc/pid/maps to
  1084. * determine which areas of memory are actually mapped and llseek to
  1085. * skip over unmapped regions.
  1086. */
  1087. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1088. size_t count, loff_t *ppos)
  1089. {
  1090. struct mm_struct *mm = file->private_data;
  1091. struct pagemapread pm;
  1092. struct mm_walk pagemap_walk = {};
  1093. unsigned long src;
  1094. unsigned long svpfn;
  1095. unsigned long start_vaddr;
  1096. unsigned long end_vaddr;
  1097. int ret = 0, copied = 0;
  1098. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  1099. goto out;
  1100. ret = -EINVAL;
  1101. /* file position must be aligned */
  1102. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1103. goto out_mm;
  1104. ret = 0;
  1105. if (!count)
  1106. goto out_mm;
  1107. /* do not disclose physical addresses: attack vector */
  1108. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1109. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1110. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  1111. ret = -ENOMEM;
  1112. if (!pm.buffer)
  1113. goto out_mm;
  1114. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1115. pagemap_walk.pte_hole = pagemap_pte_hole;
  1116. #ifdef CONFIG_HUGETLB_PAGE
  1117. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1118. #endif
  1119. pagemap_walk.mm = mm;
  1120. pagemap_walk.private = &pm;
  1121. src = *ppos;
  1122. svpfn = src / PM_ENTRY_BYTES;
  1123. start_vaddr = svpfn << PAGE_SHIFT;
  1124. end_vaddr = mm->task_size;
  1125. /* watch out for wraparound */
  1126. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1127. start_vaddr = end_vaddr;
  1128. /*
  1129. * The odds are that this will stop walking way
  1130. * before end_vaddr, because the length of the
  1131. * user buffer is tracked in "pm", and the walk
  1132. * will stop when we hit the end of the buffer.
  1133. */
  1134. ret = 0;
  1135. while (count && (start_vaddr < end_vaddr)) {
  1136. int len;
  1137. unsigned long end;
  1138. pm.pos = 0;
  1139. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1140. /* overflow ? */
  1141. if (end < start_vaddr || end > end_vaddr)
  1142. end = end_vaddr;
  1143. down_read(&mm->mmap_sem);
  1144. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1145. up_read(&mm->mmap_sem);
  1146. start_vaddr = end;
  1147. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1148. if (copy_to_user(buf, pm.buffer, len)) {
  1149. ret = -EFAULT;
  1150. goto out_free;
  1151. }
  1152. copied += len;
  1153. buf += len;
  1154. count -= len;
  1155. }
  1156. *ppos += copied;
  1157. if (!ret || ret == PM_END_OF_BUFFER)
  1158. ret = copied;
  1159. out_free:
  1160. kfree(pm.buffer);
  1161. out_mm:
  1162. mmput(mm);
  1163. out:
  1164. return ret;
  1165. }
  1166. static int pagemap_open(struct inode *inode, struct file *file)
  1167. {
  1168. struct mm_struct *mm;
  1169. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1170. if (IS_ERR(mm))
  1171. return PTR_ERR(mm);
  1172. file->private_data = mm;
  1173. return 0;
  1174. }
  1175. static int pagemap_release(struct inode *inode, struct file *file)
  1176. {
  1177. struct mm_struct *mm = file->private_data;
  1178. if (mm)
  1179. mmdrop(mm);
  1180. return 0;
  1181. }
  1182. const struct file_operations proc_pagemap_operations = {
  1183. .llseek = mem_lseek, /* borrow this */
  1184. .read = pagemap_read,
  1185. .open = pagemap_open,
  1186. .release = pagemap_release,
  1187. };
  1188. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1189. #ifdef CONFIG_NUMA
  1190. struct numa_maps {
  1191. unsigned long pages;
  1192. unsigned long anon;
  1193. unsigned long active;
  1194. unsigned long writeback;
  1195. unsigned long mapcount_max;
  1196. unsigned long dirty;
  1197. unsigned long swapcache;
  1198. unsigned long node[MAX_NUMNODES];
  1199. };
  1200. struct numa_maps_private {
  1201. struct proc_maps_private proc_maps;
  1202. struct numa_maps md;
  1203. };
  1204. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1205. unsigned long nr_pages)
  1206. {
  1207. int count = page_mapcount(page);
  1208. md->pages += nr_pages;
  1209. if (pte_dirty || PageDirty(page))
  1210. md->dirty += nr_pages;
  1211. if (PageSwapCache(page))
  1212. md->swapcache += nr_pages;
  1213. if (PageActive(page) || PageUnevictable(page))
  1214. md->active += nr_pages;
  1215. if (PageWriteback(page))
  1216. md->writeback += nr_pages;
  1217. if (PageAnon(page))
  1218. md->anon += nr_pages;
  1219. if (count > md->mapcount_max)
  1220. md->mapcount_max = count;
  1221. md->node[page_to_nid(page)] += nr_pages;
  1222. }
  1223. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1224. unsigned long addr)
  1225. {
  1226. struct page *page;
  1227. int nid;
  1228. if (!pte_present(pte))
  1229. return NULL;
  1230. page = vm_normal_page(vma, addr, pte);
  1231. if (!page)
  1232. return NULL;
  1233. if (PageReserved(page))
  1234. return NULL;
  1235. nid = page_to_nid(page);
  1236. if (!node_isset(nid, node_states[N_MEMORY]))
  1237. return NULL;
  1238. return page;
  1239. }
  1240. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1241. unsigned long end, struct mm_walk *walk)
  1242. {
  1243. struct numa_maps *md = walk->private;
  1244. struct vm_area_struct *vma = walk->vma;
  1245. spinlock_t *ptl;
  1246. pte_t *orig_pte;
  1247. pte_t *pte;
  1248. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1249. pte_t huge_pte = *(pte_t *)pmd;
  1250. struct page *page;
  1251. page = can_gather_numa_stats(huge_pte, vma, addr);
  1252. if (page)
  1253. gather_stats(page, md, pte_dirty(huge_pte),
  1254. HPAGE_PMD_SIZE/PAGE_SIZE);
  1255. spin_unlock(ptl);
  1256. return 0;
  1257. }
  1258. if (pmd_trans_unstable(pmd))
  1259. return 0;
  1260. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1261. do {
  1262. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1263. if (!page)
  1264. continue;
  1265. gather_stats(page, md, pte_dirty(*pte), 1);
  1266. } while (pte++, addr += PAGE_SIZE, addr != end);
  1267. pte_unmap_unlock(orig_pte, ptl);
  1268. return 0;
  1269. }
  1270. #ifdef CONFIG_HUGETLB_PAGE
  1271. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1272. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1273. {
  1274. struct numa_maps *md;
  1275. struct page *page;
  1276. if (!pte_present(*pte))
  1277. return 0;
  1278. page = pte_page(*pte);
  1279. if (!page)
  1280. return 0;
  1281. md = walk->private;
  1282. gather_stats(page, md, pte_dirty(*pte), 1);
  1283. return 0;
  1284. }
  1285. #else
  1286. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1287. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1288. {
  1289. return 0;
  1290. }
  1291. #endif
  1292. /*
  1293. * Display pages allocated per node and memory policy via /proc.
  1294. */
  1295. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1296. {
  1297. struct numa_maps_private *numa_priv = m->private;
  1298. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1299. struct vm_area_struct *vma = v;
  1300. struct numa_maps *md = &numa_priv->md;
  1301. struct file *file = vma->vm_file;
  1302. struct mm_struct *mm = vma->vm_mm;
  1303. struct mm_walk walk = {
  1304. .hugetlb_entry = gather_hugetlb_stats,
  1305. .pmd_entry = gather_pte_stats,
  1306. .private = md,
  1307. .mm = mm,
  1308. };
  1309. struct mempolicy *pol;
  1310. char buffer[64];
  1311. int nid;
  1312. if (!mm)
  1313. return 0;
  1314. /* Ensure we start with an empty set of numa_maps statistics. */
  1315. memset(md, 0, sizeof(*md));
  1316. pol = __get_vma_policy(vma, vma->vm_start);
  1317. if (pol) {
  1318. mpol_to_str(buffer, sizeof(buffer), pol);
  1319. mpol_cond_put(pol);
  1320. } else {
  1321. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1322. }
  1323. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1324. if (file) {
  1325. seq_puts(m, " file=");
  1326. seq_file_path(m, file, "\n\t= ");
  1327. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1328. seq_puts(m, " heap");
  1329. } else {
  1330. pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
  1331. if (tid != 0) {
  1332. /*
  1333. * Thread stack in /proc/PID/task/TID/maps or
  1334. * the main process stack.
  1335. */
  1336. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1337. vma->vm_end >= mm->start_stack))
  1338. seq_puts(m, " stack");
  1339. else
  1340. seq_printf(m, " stack:%d", tid);
  1341. }
  1342. }
  1343. if (is_vm_hugetlb_page(vma))
  1344. seq_puts(m, " huge");
  1345. /* mmap_sem is held by m_start */
  1346. walk_page_vma(vma, &walk);
  1347. if (!md->pages)
  1348. goto out;
  1349. if (md->anon)
  1350. seq_printf(m, " anon=%lu", md->anon);
  1351. if (md->dirty)
  1352. seq_printf(m, " dirty=%lu", md->dirty);
  1353. if (md->pages != md->anon && md->pages != md->dirty)
  1354. seq_printf(m, " mapped=%lu", md->pages);
  1355. if (md->mapcount_max > 1)
  1356. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1357. if (md->swapcache)
  1358. seq_printf(m, " swapcache=%lu", md->swapcache);
  1359. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1360. seq_printf(m, " active=%lu", md->active);
  1361. if (md->writeback)
  1362. seq_printf(m, " writeback=%lu", md->writeback);
  1363. for_each_node_state(nid, N_MEMORY)
  1364. if (md->node[nid])
  1365. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1366. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1367. out:
  1368. seq_putc(m, '\n');
  1369. m_cache_vma(m, vma);
  1370. return 0;
  1371. }
  1372. static int show_pid_numa_map(struct seq_file *m, void *v)
  1373. {
  1374. return show_numa_map(m, v, 1);
  1375. }
  1376. static int show_tid_numa_map(struct seq_file *m, void *v)
  1377. {
  1378. return show_numa_map(m, v, 0);
  1379. }
  1380. static const struct seq_operations proc_pid_numa_maps_op = {
  1381. .start = m_start,
  1382. .next = m_next,
  1383. .stop = m_stop,
  1384. .show = show_pid_numa_map,
  1385. };
  1386. static const struct seq_operations proc_tid_numa_maps_op = {
  1387. .start = m_start,
  1388. .next = m_next,
  1389. .stop = m_stop,
  1390. .show = show_tid_numa_map,
  1391. };
  1392. static int numa_maps_open(struct inode *inode, struct file *file,
  1393. const struct seq_operations *ops)
  1394. {
  1395. return proc_maps_open(inode, file, ops,
  1396. sizeof(struct numa_maps_private));
  1397. }
  1398. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1399. {
  1400. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1401. }
  1402. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1403. {
  1404. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1405. }
  1406. const struct file_operations proc_pid_numa_maps_operations = {
  1407. .open = pid_numa_maps_open,
  1408. .read = seq_read,
  1409. .llseek = seq_lseek,
  1410. .release = proc_map_release,
  1411. };
  1412. const struct file_operations proc_tid_numa_maps_operations = {
  1413. .open = tid_numa_maps_open,
  1414. .read = seq_read,
  1415. .llseek = seq_lseek,
  1416. .release = proc_map_release,
  1417. };
  1418. #endif /* CONFIG_NUMA */