inline.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. #include "node.h"
  14. bool f2fs_may_inline_data(struct inode *inode)
  15. {
  16. if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
  17. return false;
  18. if (f2fs_is_atomic_file(inode))
  19. return false;
  20. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  21. return false;
  22. if (i_size_read(inode) > MAX_INLINE_DATA)
  23. return false;
  24. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  25. return false;
  26. return true;
  27. }
  28. bool f2fs_may_inline_dentry(struct inode *inode)
  29. {
  30. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  31. return false;
  32. if (!S_ISDIR(inode->i_mode))
  33. return false;
  34. return true;
  35. }
  36. void read_inline_data(struct page *page, struct page *ipage)
  37. {
  38. void *src_addr, *dst_addr;
  39. if (PageUptodate(page))
  40. return;
  41. f2fs_bug_on(F2FS_P_SB(page), page->index);
  42. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  43. /* Copy the whole inline data block */
  44. src_addr = inline_data_addr(ipage);
  45. dst_addr = kmap_atomic(page);
  46. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  47. flush_dcache_page(page);
  48. kunmap_atomic(dst_addr);
  49. SetPageUptodate(page);
  50. }
  51. bool truncate_inline_inode(struct page *ipage, u64 from)
  52. {
  53. void *addr;
  54. if (from >= MAX_INLINE_DATA)
  55. return false;
  56. addr = inline_data_addr(ipage);
  57. f2fs_wait_on_page_writeback(ipage, NODE);
  58. memset(addr + from, 0, MAX_INLINE_DATA - from);
  59. return true;
  60. }
  61. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  62. {
  63. struct page *ipage;
  64. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  65. if (IS_ERR(ipage)) {
  66. unlock_page(page);
  67. return PTR_ERR(ipage);
  68. }
  69. if (!f2fs_has_inline_data(inode)) {
  70. f2fs_put_page(ipage, 1);
  71. return -EAGAIN;
  72. }
  73. if (page->index)
  74. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  75. else
  76. read_inline_data(page, ipage);
  77. SetPageUptodate(page);
  78. f2fs_put_page(ipage, 1);
  79. unlock_page(page);
  80. return 0;
  81. }
  82. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  83. {
  84. void *src_addr, *dst_addr;
  85. struct f2fs_io_info fio = {
  86. .sbi = F2FS_I_SB(dn->inode),
  87. .type = DATA,
  88. .rw = WRITE_SYNC | REQ_PRIO,
  89. .page = page,
  90. .encrypted_page = NULL,
  91. };
  92. int dirty, err;
  93. f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
  94. if (!f2fs_exist_data(dn->inode))
  95. goto clear_out;
  96. err = f2fs_reserve_block(dn, 0);
  97. if (err)
  98. return err;
  99. f2fs_wait_on_page_writeback(page, DATA);
  100. if (PageUptodate(page))
  101. goto no_update;
  102. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  103. /* Copy the whole inline data block */
  104. src_addr = inline_data_addr(dn->inode_page);
  105. dst_addr = kmap_atomic(page);
  106. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  107. flush_dcache_page(page);
  108. kunmap_atomic(dst_addr);
  109. SetPageUptodate(page);
  110. no_update:
  111. set_page_dirty(page);
  112. /* clear dirty state */
  113. dirty = clear_page_dirty_for_io(page);
  114. /* write data page to try to make data consistent */
  115. set_page_writeback(page);
  116. fio.blk_addr = dn->data_blkaddr;
  117. write_data_page(dn, &fio);
  118. set_data_blkaddr(dn);
  119. f2fs_update_extent_cache(dn);
  120. f2fs_wait_on_page_writeback(page, DATA);
  121. if (dirty)
  122. inode_dec_dirty_pages(dn->inode);
  123. /* this converted inline_data should be recovered. */
  124. set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
  125. /* clear inline data and flag after data writeback */
  126. truncate_inline_inode(dn->inode_page, 0);
  127. clear_out:
  128. stat_dec_inline_inode(dn->inode);
  129. f2fs_clear_inline_inode(dn->inode);
  130. sync_inode_page(dn);
  131. f2fs_put_dnode(dn);
  132. return 0;
  133. }
  134. int f2fs_convert_inline_inode(struct inode *inode)
  135. {
  136. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  137. struct dnode_of_data dn;
  138. struct page *ipage, *page;
  139. int err = 0;
  140. page = grab_cache_page(inode->i_mapping, 0);
  141. if (!page)
  142. return -ENOMEM;
  143. f2fs_lock_op(sbi);
  144. ipage = get_node_page(sbi, inode->i_ino);
  145. if (IS_ERR(ipage)) {
  146. err = PTR_ERR(ipage);
  147. goto out;
  148. }
  149. set_new_dnode(&dn, inode, ipage, ipage, 0);
  150. if (f2fs_has_inline_data(inode))
  151. err = f2fs_convert_inline_page(&dn, page);
  152. f2fs_put_dnode(&dn);
  153. out:
  154. f2fs_unlock_op(sbi);
  155. f2fs_put_page(page, 1);
  156. return err;
  157. }
  158. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  159. {
  160. void *src_addr, *dst_addr;
  161. struct dnode_of_data dn;
  162. int err;
  163. set_new_dnode(&dn, inode, NULL, NULL, 0);
  164. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  165. if (err)
  166. return err;
  167. if (!f2fs_has_inline_data(inode)) {
  168. f2fs_put_dnode(&dn);
  169. return -EAGAIN;
  170. }
  171. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  172. f2fs_wait_on_page_writeback(dn.inode_page, NODE);
  173. src_addr = kmap_atomic(page);
  174. dst_addr = inline_data_addr(dn.inode_page);
  175. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  176. kunmap_atomic(src_addr);
  177. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  178. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  179. sync_inode_page(&dn);
  180. f2fs_put_dnode(&dn);
  181. return 0;
  182. }
  183. bool recover_inline_data(struct inode *inode, struct page *npage)
  184. {
  185. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  186. struct f2fs_inode *ri = NULL;
  187. void *src_addr, *dst_addr;
  188. struct page *ipage;
  189. /*
  190. * The inline_data recovery policy is as follows.
  191. * [prev.] [next] of inline_data flag
  192. * o o -> recover inline_data
  193. * o x -> remove inline_data, and then recover data blocks
  194. * x o -> remove inline_data, and then recover inline_data
  195. * x x -> recover data blocks
  196. */
  197. if (IS_INODE(npage))
  198. ri = F2FS_INODE(npage);
  199. if (f2fs_has_inline_data(inode) &&
  200. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  201. process_inline:
  202. ipage = get_node_page(sbi, inode->i_ino);
  203. f2fs_bug_on(sbi, IS_ERR(ipage));
  204. f2fs_wait_on_page_writeback(ipage, NODE);
  205. src_addr = inline_data_addr(npage);
  206. dst_addr = inline_data_addr(ipage);
  207. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  208. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  209. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  210. update_inode(inode, ipage);
  211. f2fs_put_page(ipage, 1);
  212. return true;
  213. }
  214. if (f2fs_has_inline_data(inode)) {
  215. ipage = get_node_page(sbi, inode->i_ino);
  216. f2fs_bug_on(sbi, IS_ERR(ipage));
  217. if (!truncate_inline_inode(ipage, 0))
  218. return false;
  219. f2fs_clear_inline_inode(inode);
  220. update_inode(inode, ipage);
  221. f2fs_put_page(ipage, 1);
  222. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  223. if (truncate_blocks(inode, 0, false))
  224. return false;
  225. goto process_inline;
  226. }
  227. return false;
  228. }
  229. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  230. struct f2fs_filename *fname, struct page **res_page)
  231. {
  232. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  233. struct f2fs_inline_dentry *inline_dentry;
  234. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  235. struct f2fs_dir_entry *de;
  236. struct f2fs_dentry_ptr d;
  237. struct page *ipage;
  238. f2fs_hash_t namehash;
  239. ipage = get_node_page(sbi, dir->i_ino);
  240. if (IS_ERR(ipage))
  241. return NULL;
  242. namehash = f2fs_dentry_hash(&name);
  243. inline_dentry = inline_data_addr(ipage);
  244. make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
  245. de = find_target_dentry(fname, namehash, NULL, &d);
  246. unlock_page(ipage);
  247. if (de)
  248. *res_page = ipage;
  249. else
  250. f2fs_put_page(ipage, 0);
  251. /*
  252. * For the most part, it should be a bug when name_len is zero.
  253. * We stop here for figuring out where the bugs has occurred.
  254. */
  255. f2fs_bug_on(sbi, d.max < 0);
  256. return de;
  257. }
  258. struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
  259. struct page **p)
  260. {
  261. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  262. struct page *ipage;
  263. struct f2fs_dir_entry *de;
  264. struct f2fs_inline_dentry *dentry_blk;
  265. ipage = get_node_page(sbi, dir->i_ino);
  266. if (IS_ERR(ipage))
  267. return NULL;
  268. dentry_blk = inline_data_addr(ipage);
  269. de = &dentry_blk->dentry[1];
  270. *p = ipage;
  271. unlock_page(ipage);
  272. return de;
  273. }
  274. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  275. struct page *ipage)
  276. {
  277. struct f2fs_inline_dentry *dentry_blk;
  278. struct f2fs_dentry_ptr d;
  279. dentry_blk = inline_data_addr(ipage);
  280. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  281. do_make_empty_dir(inode, parent, &d);
  282. set_page_dirty(ipage);
  283. /* update i_size to MAX_INLINE_DATA */
  284. if (i_size_read(inode) < MAX_INLINE_DATA) {
  285. i_size_write(inode, MAX_INLINE_DATA);
  286. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  287. }
  288. return 0;
  289. }
  290. /*
  291. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  292. * release ipage in this function.
  293. */
  294. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  295. struct f2fs_inline_dentry *inline_dentry)
  296. {
  297. struct page *page;
  298. struct dnode_of_data dn;
  299. struct f2fs_dentry_block *dentry_blk;
  300. int err;
  301. page = grab_cache_page(dir->i_mapping, 0);
  302. if (!page) {
  303. f2fs_put_page(ipage, 1);
  304. return -ENOMEM;
  305. }
  306. set_new_dnode(&dn, dir, ipage, NULL, 0);
  307. err = f2fs_reserve_block(&dn, 0);
  308. if (err)
  309. goto out;
  310. f2fs_wait_on_page_writeback(page, DATA);
  311. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  312. dentry_blk = kmap_atomic(page);
  313. /* copy data from inline dentry block to new dentry block */
  314. memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
  315. INLINE_DENTRY_BITMAP_SIZE);
  316. memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
  317. SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
  318. /*
  319. * we do not need to zero out remainder part of dentry and filename
  320. * field, since we have used bitmap for marking the usage status of
  321. * them, besides, we can also ignore copying/zeroing reserved space
  322. * of dentry block, because them haven't been used so far.
  323. */
  324. memcpy(dentry_blk->dentry, inline_dentry->dentry,
  325. sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
  326. memcpy(dentry_blk->filename, inline_dentry->filename,
  327. NR_INLINE_DENTRY * F2FS_SLOT_LEN);
  328. kunmap_atomic(dentry_blk);
  329. SetPageUptodate(page);
  330. set_page_dirty(page);
  331. /* clear inline dir and flag after data writeback */
  332. truncate_inline_inode(ipage, 0);
  333. stat_dec_inline_dir(dir);
  334. clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
  335. if (i_size_read(dir) < PAGE_CACHE_SIZE) {
  336. i_size_write(dir, PAGE_CACHE_SIZE);
  337. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  338. }
  339. sync_inode_page(&dn);
  340. out:
  341. f2fs_put_page(page, 1);
  342. return err;
  343. }
  344. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
  345. struct inode *inode, nid_t ino, umode_t mode)
  346. {
  347. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  348. struct page *ipage;
  349. unsigned int bit_pos;
  350. f2fs_hash_t name_hash;
  351. size_t namelen = name->len;
  352. struct f2fs_inline_dentry *dentry_blk = NULL;
  353. struct f2fs_dentry_ptr d;
  354. int slots = GET_DENTRY_SLOTS(namelen);
  355. struct page *page = NULL;
  356. int err = 0;
  357. ipage = get_node_page(sbi, dir->i_ino);
  358. if (IS_ERR(ipage))
  359. return PTR_ERR(ipage);
  360. dentry_blk = inline_data_addr(ipage);
  361. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  362. slots, NR_INLINE_DENTRY);
  363. if (bit_pos >= NR_INLINE_DENTRY) {
  364. err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
  365. if (err)
  366. return err;
  367. err = -EAGAIN;
  368. goto out;
  369. }
  370. if (inode) {
  371. down_write(&F2FS_I(inode)->i_sem);
  372. page = init_inode_metadata(inode, dir, name, ipage);
  373. if (IS_ERR(page)) {
  374. err = PTR_ERR(page);
  375. goto fail;
  376. }
  377. }
  378. f2fs_wait_on_page_writeback(ipage, NODE);
  379. name_hash = f2fs_dentry_hash(name);
  380. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  381. f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
  382. set_page_dirty(ipage);
  383. /* we don't need to mark_inode_dirty now */
  384. if (inode) {
  385. F2FS_I(inode)->i_pino = dir->i_ino;
  386. update_inode(inode, page);
  387. f2fs_put_page(page, 1);
  388. }
  389. update_parent_metadata(dir, inode, 0);
  390. fail:
  391. if (inode)
  392. up_write(&F2FS_I(inode)->i_sem);
  393. if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
  394. update_inode(dir, ipage);
  395. clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  396. }
  397. out:
  398. f2fs_put_page(ipage, 1);
  399. return err;
  400. }
  401. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  402. struct inode *dir, struct inode *inode)
  403. {
  404. struct f2fs_inline_dentry *inline_dentry;
  405. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  406. unsigned int bit_pos;
  407. int i;
  408. lock_page(page);
  409. f2fs_wait_on_page_writeback(page, NODE);
  410. inline_dentry = inline_data_addr(page);
  411. bit_pos = dentry - inline_dentry->dentry;
  412. for (i = 0; i < slots; i++)
  413. test_and_clear_bit_le(bit_pos + i,
  414. &inline_dentry->dentry_bitmap);
  415. set_page_dirty(page);
  416. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  417. if (inode)
  418. f2fs_drop_nlink(dir, inode, page);
  419. f2fs_put_page(page, 1);
  420. }
  421. bool f2fs_empty_inline_dir(struct inode *dir)
  422. {
  423. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  424. struct page *ipage;
  425. unsigned int bit_pos = 2;
  426. struct f2fs_inline_dentry *dentry_blk;
  427. ipage = get_node_page(sbi, dir->i_ino);
  428. if (IS_ERR(ipage))
  429. return false;
  430. dentry_blk = inline_data_addr(ipage);
  431. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  432. NR_INLINE_DENTRY,
  433. bit_pos);
  434. f2fs_put_page(ipage, 1);
  435. if (bit_pos < NR_INLINE_DENTRY)
  436. return false;
  437. return true;
  438. }
  439. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  440. struct f2fs_str *fstr)
  441. {
  442. struct inode *inode = file_inode(file);
  443. struct f2fs_inline_dentry *inline_dentry = NULL;
  444. struct page *ipage = NULL;
  445. struct f2fs_dentry_ptr d;
  446. if (ctx->pos == NR_INLINE_DENTRY)
  447. return 0;
  448. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  449. if (IS_ERR(ipage))
  450. return PTR_ERR(ipage);
  451. inline_dentry = inline_data_addr(ipage);
  452. make_dentry_ptr(inode, &d, (void *)inline_dentry, 2);
  453. if (!f2fs_fill_dentries(ctx, &d, 0, fstr))
  454. ctx->pos = NR_INLINE_DENTRY;
  455. f2fs_put_page(ipage, 1);
  456. return 0;
  457. }
  458. int f2fs_inline_data_fiemap(struct inode *inode,
  459. struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
  460. {
  461. __u64 byteaddr, ilen;
  462. __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
  463. FIEMAP_EXTENT_LAST;
  464. struct node_info ni;
  465. struct page *ipage;
  466. int err = 0;
  467. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  468. if (IS_ERR(ipage))
  469. return PTR_ERR(ipage);
  470. if (!f2fs_has_inline_data(inode)) {
  471. err = -EAGAIN;
  472. goto out;
  473. }
  474. ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
  475. if (start >= ilen)
  476. goto out;
  477. if (start + len < ilen)
  478. ilen = start + len;
  479. ilen -= start;
  480. get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
  481. byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
  482. byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
  483. err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
  484. out:
  485. f2fs_put_page(ipage, 1);
  486. return err;
  487. }