algif_aead.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. /*
  2. * algif_aead: User-space interface for AEAD algorithms
  3. *
  4. * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
  5. *
  6. * This file provides the user-space API for AEAD ciphers.
  7. *
  8. * This file is derived from algif_skcipher.c.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License as published by the Free
  12. * Software Foundation; either version 2 of the License, or (at your option)
  13. * any later version.
  14. */
  15. #include <crypto/aead.h>
  16. #include <crypto/scatterwalk.h>
  17. #include <crypto/if_alg.h>
  18. #include <linux/init.h>
  19. #include <linux/list.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/net.h>
  24. #include <net/sock.h>
  25. struct aead_sg_list {
  26. unsigned int cur;
  27. struct scatterlist sg[ALG_MAX_PAGES];
  28. };
  29. struct aead_ctx {
  30. struct aead_sg_list tsgl;
  31. /*
  32. * RSGL_MAX_ENTRIES is an artificial limit where user space at maximum
  33. * can cause the kernel to allocate RSGL_MAX_ENTRIES * ALG_MAX_PAGES
  34. * pages
  35. */
  36. #define RSGL_MAX_ENTRIES ALG_MAX_PAGES
  37. struct af_alg_sgl rsgl[RSGL_MAX_ENTRIES];
  38. void *iv;
  39. struct af_alg_completion completion;
  40. unsigned long used;
  41. unsigned int len;
  42. bool more;
  43. bool merge;
  44. bool enc;
  45. size_t aead_assoclen;
  46. struct aead_request aead_req;
  47. };
  48. static inline int aead_sndbuf(struct sock *sk)
  49. {
  50. struct alg_sock *ask = alg_sk(sk);
  51. struct aead_ctx *ctx = ask->private;
  52. return max_t(int, max_t(int, sk->sk_sndbuf & PAGE_MASK, PAGE_SIZE) -
  53. ctx->used, 0);
  54. }
  55. static inline bool aead_writable(struct sock *sk)
  56. {
  57. return PAGE_SIZE <= aead_sndbuf(sk);
  58. }
  59. static inline bool aead_sufficient_data(struct aead_ctx *ctx)
  60. {
  61. unsigned as = crypto_aead_authsize(crypto_aead_reqtfm(&ctx->aead_req));
  62. return ctx->used >= ctx->aead_assoclen + as;
  63. }
  64. static void aead_put_sgl(struct sock *sk)
  65. {
  66. struct alg_sock *ask = alg_sk(sk);
  67. struct aead_ctx *ctx = ask->private;
  68. struct aead_sg_list *sgl = &ctx->tsgl;
  69. struct scatterlist *sg = sgl->sg;
  70. unsigned int i;
  71. for (i = 0; i < sgl->cur; i++) {
  72. if (!sg_page(sg + i))
  73. continue;
  74. put_page(sg_page(sg + i));
  75. sg_assign_page(sg + i, NULL);
  76. }
  77. sg_init_table(sg, ALG_MAX_PAGES);
  78. sgl->cur = 0;
  79. ctx->used = 0;
  80. ctx->more = 0;
  81. ctx->merge = 0;
  82. }
  83. static void aead_wmem_wakeup(struct sock *sk)
  84. {
  85. struct socket_wq *wq;
  86. if (!aead_writable(sk))
  87. return;
  88. rcu_read_lock();
  89. wq = rcu_dereference(sk->sk_wq);
  90. if (wq_has_sleeper(wq))
  91. wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
  92. POLLRDNORM |
  93. POLLRDBAND);
  94. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  95. rcu_read_unlock();
  96. }
  97. static int aead_wait_for_data(struct sock *sk, unsigned flags)
  98. {
  99. struct alg_sock *ask = alg_sk(sk);
  100. struct aead_ctx *ctx = ask->private;
  101. long timeout;
  102. DEFINE_WAIT(wait);
  103. int err = -ERESTARTSYS;
  104. if (flags & MSG_DONTWAIT)
  105. return -EAGAIN;
  106. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  107. for (;;) {
  108. if (signal_pending(current))
  109. break;
  110. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  111. timeout = MAX_SCHEDULE_TIMEOUT;
  112. if (sk_wait_event(sk, &timeout, !ctx->more)) {
  113. err = 0;
  114. break;
  115. }
  116. }
  117. finish_wait(sk_sleep(sk), &wait);
  118. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  119. return err;
  120. }
  121. static void aead_data_wakeup(struct sock *sk)
  122. {
  123. struct alg_sock *ask = alg_sk(sk);
  124. struct aead_ctx *ctx = ask->private;
  125. struct socket_wq *wq;
  126. if (ctx->more)
  127. return;
  128. if (!ctx->used)
  129. return;
  130. rcu_read_lock();
  131. wq = rcu_dereference(sk->sk_wq);
  132. if (wq_has_sleeper(wq))
  133. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  134. POLLRDNORM |
  135. POLLRDBAND);
  136. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  137. rcu_read_unlock();
  138. }
  139. static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
  140. {
  141. struct sock *sk = sock->sk;
  142. struct alg_sock *ask = alg_sk(sk);
  143. struct aead_ctx *ctx = ask->private;
  144. unsigned ivsize =
  145. crypto_aead_ivsize(crypto_aead_reqtfm(&ctx->aead_req));
  146. struct aead_sg_list *sgl = &ctx->tsgl;
  147. struct af_alg_control con = {};
  148. long copied = 0;
  149. bool enc = 0;
  150. bool init = 0;
  151. int err = -EINVAL;
  152. if (msg->msg_controllen) {
  153. err = af_alg_cmsg_send(msg, &con);
  154. if (err)
  155. return err;
  156. init = 1;
  157. switch (con.op) {
  158. case ALG_OP_ENCRYPT:
  159. enc = 1;
  160. break;
  161. case ALG_OP_DECRYPT:
  162. enc = 0;
  163. break;
  164. default:
  165. return -EINVAL;
  166. }
  167. if (con.iv && con.iv->ivlen != ivsize)
  168. return -EINVAL;
  169. }
  170. lock_sock(sk);
  171. if (!ctx->more && ctx->used)
  172. goto unlock;
  173. if (init) {
  174. ctx->enc = enc;
  175. if (con.iv)
  176. memcpy(ctx->iv, con.iv->iv, ivsize);
  177. ctx->aead_assoclen = con.aead_assoclen;
  178. }
  179. while (size) {
  180. unsigned long len = size;
  181. struct scatterlist *sg = NULL;
  182. /* use the existing memory in an allocated page */
  183. if (ctx->merge) {
  184. sg = sgl->sg + sgl->cur - 1;
  185. len = min_t(unsigned long, len,
  186. PAGE_SIZE - sg->offset - sg->length);
  187. err = memcpy_from_msg(page_address(sg_page(sg)) +
  188. sg->offset + sg->length,
  189. msg, len);
  190. if (err)
  191. goto unlock;
  192. sg->length += len;
  193. ctx->merge = (sg->offset + sg->length) &
  194. (PAGE_SIZE - 1);
  195. ctx->used += len;
  196. copied += len;
  197. size -= len;
  198. continue;
  199. }
  200. if (!aead_writable(sk)) {
  201. /* user space sent too much data */
  202. aead_put_sgl(sk);
  203. err = -EMSGSIZE;
  204. goto unlock;
  205. }
  206. /* allocate a new page */
  207. len = min_t(unsigned long, size, aead_sndbuf(sk));
  208. while (len) {
  209. int plen = 0;
  210. if (sgl->cur >= ALG_MAX_PAGES) {
  211. aead_put_sgl(sk);
  212. err = -E2BIG;
  213. goto unlock;
  214. }
  215. sg = sgl->sg + sgl->cur;
  216. plen = min_t(int, len, PAGE_SIZE);
  217. sg_assign_page(sg, alloc_page(GFP_KERNEL));
  218. err = -ENOMEM;
  219. if (!sg_page(sg))
  220. goto unlock;
  221. err = memcpy_from_msg(page_address(sg_page(sg)),
  222. msg, plen);
  223. if (err) {
  224. __free_page(sg_page(sg));
  225. sg_assign_page(sg, NULL);
  226. goto unlock;
  227. }
  228. sg->offset = 0;
  229. sg->length = plen;
  230. len -= plen;
  231. ctx->used += plen;
  232. copied += plen;
  233. sgl->cur++;
  234. size -= plen;
  235. ctx->merge = plen & (PAGE_SIZE - 1);
  236. }
  237. }
  238. err = 0;
  239. ctx->more = msg->msg_flags & MSG_MORE;
  240. if (!ctx->more && !aead_sufficient_data(ctx)) {
  241. aead_put_sgl(sk);
  242. err = -EMSGSIZE;
  243. }
  244. unlock:
  245. aead_data_wakeup(sk);
  246. release_sock(sk);
  247. return err ?: copied;
  248. }
  249. static ssize_t aead_sendpage(struct socket *sock, struct page *page,
  250. int offset, size_t size, int flags)
  251. {
  252. struct sock *sk = sock->sk;
  253. struct alg_sock *ask = alg_sk(sk);
  254. struct aead_ctx *ctx = ask->private;
  255. struct aead_sg_list *sgl = &ctx->tsgl;
  256. int err = -EINVAL;
  257. if (flags & MSG_SENDPAGE_NOTLAST)
  258. flags |= MSG_MORE;
  259. if (sgl->cur >= ALG_MAX_PAGES)
  260. return -E2BIG;
  261. lock_sock(sk);
  262. if (!ctx->more && ctx->used)
  263. goto unlock;
  264. if (!size)
  265. goto done;
  266. if (!aead_writable(sk)) {
  267. /* user space sent too much data */
  268. aead_put_sgl(sk);
  269. err = -EMSGSIZE;
  270. goto unlock;
  271. }
  272. ctx->merge = 0;
  273. get_page(page);
  274. sg_set_page(sgl->sg + sgl->cur, page, size, offset);
  275. sgl->cur++;
  276. ctx->used += size;
  277. err = 0;
  278. done:
  279. ctx->more = flags & MSG_MORE;
  280. if (!ctx->more && !aead_sufficient_data(ctx)) {
  281. aead_put_sgl(sk);
  282. err = -EMSGSIZE;
  283. }
  284. unlock:
  285. aead_data_wakeup(sk);
  286. release_sock(sk);
  287. return err ?: size;
  288. }
  289. static int aead_recvmsg(struct socket *sock, struct msghdr *msg, size_t ignored, int flags)
  290. {
  291. struct sock *sk = sock->sk;
  292. struct alg_sock *ask = alg_sk(sk);
  293. struct aead_ctx *ctx = ask->private;
  294. unsigned as = crypto_aead_authsize(crypto_aead_reqtfm(&ctx->aead_req));
  295. struct aead_sg_list *sgl = &ctx->tsgl;
  296. unsigned int i = 0;
  297. int err = -EINVAL;
  298. unsigned long used = 0;
  299. size_t outlen = 0;
  300. size_t usedpages = 0;
  301. unsigned int cnt = 0;
  302. /* Limit number of IOV blocks to be accessed below */
  303. if (msg->msg_iter.nr_segs > RSGL_MAX_ENTRIES)
  304. return -ENOMSG;
  305. lock_sock(sk);
  306. /*
  307. * AEAD memory structure: For encryption, the tag is appended to the
  308. * ciphertext which implies that the memory allocated for the ciphertext
  309. * must be increased by the tag length. For decryption, the tag
  310. * is expected to be concatenated to the ciphertext. The plaintext
  311. * therefore has a memory size of the ciphertext minus the tag length.
  312. *
  313. * The memory structure for cipher operation has the following
  314. * structure:
  315. * AEAD encryption input: assoc data || plaintext
  316. * AEAD encryption output: cipherntext || auth tag
  317. * AEAD decryption input: assoc data || ciphertext || auth tag
  318. * AEAD decryption output: plaintext
  319. */
  320. if (ctx->more) {
  321. err = aead_wait_for_data(sk, flags);
  322. if (err)
  323. goto unlock;
  324. }
  325. used = ctx->used;
  326. /*
  327. * Make sure sufficient data is present -- note, the same check is
  328. * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
  329. * shall provide an information to the data sender that something is
  330. * wrong, but they are irrelevant to maintain the kernel integrity.
  331. * We need this check here too in case user space decides to not honor
  332. * the error message in sendmsg/sendpage and still call recvmsg. This
  333. * check here protects the kernel integrity.
  334. */
  335. if (!aead_sufficient_data(ctx))
  336. goto unlock;
  337. outlen = used;
  338. /*
  339. * The cipher operation input data is reduced by the associated data
  340. * length as this data is processed separately later on.
  341. */
  342. used -= ctx->aead_assoclen + (ctx->enc ? as : 0);
  343. /* convert iovecs of output buffers into scatterlists */
  344. while (iov_iter_count(&msg->msg_iter)) {
  345. size_t seglen = min_t(size_t, iov_iter_count(&msg->msg_iter),
  346. (outlen - usedpages));
  347. /* make one iovec available as scatterlist */
  348. err = af_alg_make_sg(&ctx->rsgl[cnt], &msg->msg_iter,
  349. seglen);
  350. if (err < 0)
  351. goto unlock;
  352. usedpages += err;
  353. /* chain the new scatterlist with previous one */
  354. if (cnt)
  355. af_alg_link_sg(&ctx->rsgl[cnt-1], &ctx->rsgl[cnt]);
  356. /* we do not need more iovecs as we have sufficient memory */
  357. if (outlen <= usedpages)
  358. break;
  359. iov_iter_advance(&msg->msg_iter, err);
  360. cnt++;
  361. }
  362. err = -EINVAL;
  363. /* ensure output buffer is sufficiently large */
  364. if (usedpages < outlen)
  365. goto unlock;
  366. sg_mark_end(sgl->sg + sgl->cur - 1);
  367. aead_request_set_crypt(&ctx->aead_req, sgl->sg, ctx->rsgl[0].sg,
  368. used, ctx->iv);
  369. aead_request_set_ad(&ctx->aead_req, ctx->aead_assoclen);
  370. err = af_alg_wait_for_completion(ctx->enc ?
  371. crypto_aead_encrypt(&ctx->aead_req) :
  372. crypto_aead_decrypt(&ctx->aead_req),
  373. &ctx->completion);
  374. if (err) {
  375. /* EBADMSG implies a valid cipher operation took place */
  376. if (err == -EBADMSG)
  377. aead_put_sgl(sk);
  378. goto unlock;
  379. }
  380. aead_put_sgl(sk);
  381. err = 0;
  382. unlock:
  383. for (i = 0; i < cnt; i++)
  384. af_alg_free_sg(&ctx->rsgl[i]);
  385. aead_wmem_wakeup(sk);
  386. release_sock(sk);
  387. return err ? err : outlen;
  388. }
  389. static unsigned int aead_poll(struct file *file, struct socket *sock,
  390. poll_table *wait)
  391. {
  392. struct sock *sk = sock->sk;
  393. struct alg_sock *ask = alg_sk(sk);
  394. struct aead_ctx *ctx = ask->private;
  395. unsigned int mask;
  396. sock_poll_wait(file, sk_sleep(sk), wait);
  397. mask = 0;
  398. if (!ctx->more)
  399. mask |= POLLIN | POLLRDNORM;
  400. if (aead_writable(sk))
  401. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  402. return mask;
  403. }
  404. static struct proto_ops algif_aead_ops = {
  405. .family = PF_ALG,
  406. .connect = sock_no_connect,
  407. .socketpair = sock_no_socketpair,
  408. .getname = sock_no_getname,
  409. .ioctl = sock_no_ioctl,
  410. .listen = sock_no_listen,
  411. .shutdown = sock_no_shutdown,
  412. .getsockopt = sock_no_getsockopt,
  413. .mmap = sock_no_mmap,
  414. .bind = sock_no_bind,
  415. .accept = sock_no_accept,
  416. .setsockopt = sock_no_setsockopt,
  417. .release = af_alg_release,
  418. .sendmsg = aead_sendmsg,
  419. .sendpage = aead_sendpage,
  420. .recvmsg = aead_recvmsg,
  421. .poll = aead_poll,
  422. };
  423. static void *aead_bind(const char *name, u32 type, u32 mask)
  424. {
  425. return crypto_alloc_aead(name, type, mask);
  426. }
  427. static void aead_release(void *private)
  428. {
  429. crypto_free_aead(private);
  430. }
  431. static int aead_setauthsize(void *private, unsigned int authsize)
  432. {
  433. return crypto_aead_setauthsize(private, authsize);
  434. }
  435. static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
  436. {
  437. return crypto_aead_setkey(private, key, keylen);
  438. }
  439. static void aead_sock_destruct(struct sock *sk)
  440. {
  441. struct alg_sock *ask = alg_sk(sk);
  442. struct aead_ctx *ctx = ask->private;
  443. unsigned int ivlen = crypto_aead_ivsize(
  444. crypto_aead_reqtfm(&ctx->aead_req));
  445. aead_put_sgl(sk);
  446. sock_kzfree_s(sk, ctx->iv, ivlen);
  447. sock_kfree_s(sk, ctx, ctx->len);
  448. af_alg_release_parent(sk);
  449. }
  450. static int aead_accept_parent(void *private, struct sock *sk)
  451. {
  452. struct aead_ctx *ctx;
  453. struct alg_sock *ask = alg_sk(sk);
  454. unsigned int len = sizeof(*ctx) + crypto_aead_reqsize(private);
  455. unsigned int ivlen = crypto_aead_ivsize(private);
  456. ctx = sock_kmalloc(sk, len, GFP_KERNEL);
  457. if (!ctx)
  458. return -ENOMEM;
  459. memset(ctx, 0, len);
  460. ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
  461. if (!ctx->iv) {
  462. sock_kfree_s(sk, ctx, len);
  463. return -ENOMEM;
  464. }
  465. memset(ctx->iv, 0, ivlen);
  466. ctx->len = len;
  467. ctx->used = 0;
  468. ctx->more = 0;
  469. ctx->merge = 0;
  470. ctx->enc = 0;
  471. ctx->tsgl.cur = 0;
  472. ctx->aead_assoclen = 0;
  473. af_alg_init_completion(&ctx->completion);
  474. sg_init_table(ctx->tsgl.sg, ALG_MAX_PAGES);
  475. ask->private = ctx;
  476. aead_request_set_tfm(&ctx->aead_req, private);
  477. aead_request_set_callback(&ctx->aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  478. af_alg_complete, &ctx->completion);
  479. sk->sk_destruct = aead_sock_destruct;
  480. return 0;
  481. }
  482. static const struct af_alg_type algif_type_aead = {
  483. .bind = aead_bind,
  484. .release = aead_release,
  485. .setkey = aead_setkey,
  486. .setauthsize = aead_setauthsize,
  487. .accept = aead_accept_parent,
  488. .ops = &algif_aead_ops,
  489. .name = "aead",
  490. .owner = THIS_MODULE
  491. };
  492. static int __init algif_aead_init(void)
  493. {
  494. return af_alg_register_type(&algif_type_aead);
  495. }
  496. static void __exit algif_aead_exit(void)
  497. {
  498. int err = af_alg_unregister_type(&algif_type_aead);
  499. BUG_ON(err);
  500. }
  501. module_init(algif_aead_init);
  502. module_exit(algif_aead_exit);
  503. MODULE_LICENSE("GPL");
  504. MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
  505. MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");