ravb_main.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889
  1. /* Renesas Ethernet AVB device driver
  2. *
  3. * Copyright (C) 2014-2015 Renesas Electronics Corporation
  4. * Copyright (C) 2015 Renesas Solutions Corp.
  5. * Copyright (C) 2015 Cogent Embedded, Inc. <source@cogentembedded.com>
  6. *
  7. * Based on the SuperH Ethernet driver
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms and conditions of the GNU General Public License version 2,
  11. * as published by the Free Software Foundation.
  12. */
  13. #include <linux/cache.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/err.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ethtool.h>
  20. #include <linux/if_vlan.h>
  21. #include <linux/kernel.h>
  22. #include <linux/list.h>
  23. #include <linux/module.h>
  24. #include <linux/net_tstamp.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include <linux/of_irq.h>
  28. #include <linux/of_mdio.h>
  29. #include <linux/of_net.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/slab.h>
  32. #include <linux/spinlock.h>
  33. #include "ravb.h"
  34. #define RAVB_DEF_MSG_ENABLE \
  35. (NETIF_MSG_LINK | \
  36. NETIF_MSG_TIMER | \
  37. NETIF_MSG_RX_ERR | \
  38. NETIF_MSG_TX_ERR)
  39. int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
  40. {
  41. int i;
  42. for (i = 0; i < 10000; i++) {
  43. if ((ravb_read(ndev, reg) & mask) == value)
  44. return 0;
  45. udelay(10);
  46. }
  47. return -ETIMEDOUT;
  48. }
  49. static int ravb_config(struct net_device *ndev)
  50. {
  51. int error;
  52. /* Set config mode */
  53. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
  54. CCC);
  55. /* Check if the operating mode is changed to the config mode */
  56. error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
  57. if (error)
  58. netdev_err(ndev, "failed to switch device to config mode\n");
  59. return error;
  60. }
  61. static void ravb_set_duplex(struct net_device *ndev)
  62. {
  63. struct ravb_private *priv = netdev_priv(ndev);
  64. u32 ecmr = ravb_read(ndev, ECMR);
  65. if (priv->duplex) /* Full */
  66. ecmr |= ECMR_DM;
  67. else /* Half */
  68. ecmr &= ~ECMR_DM;
  69. ravb_write(ndev, ecmr, ECMR);
  70. }
  71. static void ravb_set_rate(struct net_device *ndev)
  72. {
  73. struct ravb_private *priv = netdev_priv(ndev);
  74. switch (priv->speed) {
  75. case 100: /* 100BASE */
  76. ravb_write(ndev, GECMR_SPEED_100, GECMR);
  77. break;
  78. case 1000: /* 1000BASE */
  79. ravb_write(ndev, GECMR_SPEED_1000, GECMR);
  80. break;
  81. default:
  82. break;
  83. }
  84. }
  85. static void ravb_set_buffer_align(struct sk_buff *skb)
  86. {
  87. u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
  88. if (reserve)
  89. skb_reserve(skb, RAVB_ALIGN - reserve);
  90. }
  91. /* Get MAC address from the MAC address registers
  92. *
  93. * Ethernet AVB device doesn't have ROM for MAC address.
  94. * This function gets the MAC address that was used by a bootloader.
  95. */
  96. static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
  97. {
  98. if (mac) {
  99. ether_addr_copy(ndev->dev_addr, mac);
  100. } else {
  101. ndev->dev_addr[0] = (ravb_read(ndev, MAHR) >> 24);
  102. ndev->dev_addr[1] = (ravb_read(ndev, MAHR) >> 16) & 0xFF;
  103. ndev->dev_addr[2] = (ravb_read(ndev, MAHR) >> 8) & 0xFF;
  104. ndev->dev_addr[3] = (ravb_read(ndev, MAHR) >> 0) & 0xFF;
  105. ndev->dev_addr[4] = (ravb_read(ndev, MALR) >> 8) & 0xFF;
  106. ndev->dev_addr[5] = (ravb_read(ndev, MALR) >> 0) & 0xFF;
  107. }
  108. }
  109. static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
  110. {
  111. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  112. mdiobb);
  113. u32 pir = ravb_read(priv->ndev, PIR);
  114. if (set)
  115. pir |= mask;
  116. else
  117. pir &= ~mask;
  118. ravb_write(priv->ndev, pir, PIR);
  119. }
  120. /* MDC pin control */
  121. static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
  122. {
  123. ravb_mdio_ctrl(ctrl, PIR_MDC, level);
  124. }
  125. /* Data I/O pin control */
  126. static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
  127. {
  128. ravb_mdio_ctrl(ctrl, PIR_MMD, output);
  129. }
  130. /* Set data bit */
  131. static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
  132. {
  133. ravb_mdio_ctrl(ctrl, PIR_MDO, value);
  134. }
  135. /* Get data bit */
  136. static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
  137. {
  138. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  139. mdiobb);
  140. return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
  141. }
  142. /* MDIO bus control struct */
  143. static struct mdiobb_ops bb_ops = {
  144. .owner = THIS_MODULE,
  145. .set_mdc = ravb_set_mdc,
  146. .set_mdio_dir = ravb_set_mdio_dir,
  147. .set_mdio_data = ravb_set_mdio_data,
  148. .get_mdio_data = ravb_get_mdio_data,
  149. };
  150. /* Free skb's and DMA buffers for Ethernet AVB */
  151. static void ravb_ring_free(struct net_device *ndev, int q)
  152. {
  153. struct ravb_private *priv = netdev_priv(ndev);
  154. int ring_size;
  155. int i;
  156. /* Free RX skb ringbuffer */
  157. if (priv->rx_skb[q]) {
  158. for (i = 0; i < priv->num_rx_ring[q]; i++)
  159. dev_kfree_skb(priv->rx_skb[q][i]);
  160. }
  161. kfree(priv->rx_skb[q]);
  162. priv->rx_skb[q] = NULL;
  163. /* Free TX skb ringbuffer */
  164. if (priv->tx_skb[q]) {
  165. for (i = 0; i < priv->num_tx_ring[q]; i++)
  166. dev_kfree_skb(priv->tx_skb[q][i]);
  167. }
  168. kfree(priv->tx_skb[q]);
  169. priv->tx_skb[q] = NULL;
  170. /* Free aligned TX buffers */
  171. kfree(priv->tx_align[q]);
  172. priv->tx_align[q] = NULL;
  173. if (priv->rx_ring[q]) {
  174. ring_size = sizeof(struct ravb_ex_rx_desc) *
  175. (priv->num_rx_ring[q] + 1);
  176. dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
  177. priv->rx_desc_dma[q]);
  178. priv->rx_ring[q] = NULL;
  179. }
  180. if (priv->tx_ring[q]) {
  181. ring_size = sizeof(struct ravb_tx_desc) *
  182. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  183. dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
  184. priv->tx_desc_dma[q]);
  185. priv->tx_ring[q] = NULL;
  186. }
  187. }
  188. /* Format skb and descriptor buffer for Ethernet AVB */
  189. static void ravb_ring_format(struct net_device *ndev, int q)
  190. {
  191. struct ravb_private *priv = netdev_priv(ndev);
  192. struct ravb_ex_rx_desc *rx_desc;
  193. struct ravb_tx_desc *tx_desc;
  194. struct ravb_desc *desc;
  195. int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
  196. int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
  197. NUM_TX_DESC;
  198. dma_addr_t dma_addr;
  199. int i;
  200. priv->cur_rx[q] = 0;
  201. priv->cur_tx[q] = 0;
  202. priv->dirty_rx[q] = 0;
  203. priv->dirty_tx[q] = 0;
  204. memset(priv->rx_ring[q], 0, rx_ring_size);
  205. /* Build RX ring buffer */
  206. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  207. /* RX descriptor */
  208. rx_desc = &priv->rx_ring[q][i];
  209. /* The size of the buffer should be on 16-byte boundary. */
  210. rx_desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
  211. dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
  212. ALIGN(PKT_BUF_SZ, 16),
  213. DMA_FROM_DEVICE);
  214. /* We just set the data size to 0 for a failed mapping which
  215. * should prevent DMA from happening...
  216. */
  217. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  218. rx_desc->ds_cc = cpu_to_le16(0);
  219. rx_desc->dptr = cpu_to_le32(dma_addr);
  220. rx_desc->die_dt = DT_FEMPTY;
  221. }
  222. rx_desc = &priv->rx_ring[q][i];
  223. rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  224. rx_desc->die_dt = DT_LINKFIX; /* type */
  225. memset(priv->tx_ring[q], 0, tx_ring_size);
  226. /* Build TX ring buffer */
  227. for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
  228. i++, tx_desc++) {
  229. tx_desc->die_dt = DT_EEMPTY;
  230. tx_desc++;
  231. tx_desc->die_dt = DT_EEMPTY;
  232. }
  233. tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  234. tx_desc->die_dt = DT_LINKFIX; /* type */
  235. /* RX descriptor base address for best effort */
  236. desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
  237. desc->die_dt = DT_LINKFIX; /* type */
  238. desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  239. /* TX descriptor base address for best effort */
  240. desc = &priv->desc_bat[q];
  241. desc->die_dt = DT_LINKFIX; /* type */
  242. desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  243. }
  244. /* Init skb and descriptor buffer for Ethernet AVB */
  245. static int ravb_ring_init(struct net_device *ndev, int q)
  246. {
  247. struct ravb_private *priv = netdev_priv(ndev);
  248. struct sk_buff *skb;
  249. int ring_size;
  250. int i;
  251. /* Allocate RX and TX skb rings */
  252. priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
  253. sizeof(*priv->rx_skb[q]), GFP_KERNEL);
  254. priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
  255. sizeof(*priv->tx_skb[q]), GFP_KERNEL);
  256. if (!priv->rx_skb[q] || !priv->tx_skb[q])
  257. goto error;
  258. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  259. skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
  260. if (!skb)
  261. goto error;
  262. ravb_set_buffer_align(skb);
  263. priv->rx_skb[q][i] = skb;
  264. }
  265. /* Allocate rings for the aligned buffers */
  266. priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
  267. DPTR_ALIGN - 1, GFP_KERNEL);
  268. if (!priv->tx_align[q])
  269. goto error;
  270. /* Allocate all RX descriptors. */
  271. ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
  272. priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  273. &priv->rx_desc_dma[q],
  274. GFP_KERNEL);
  275. if (!priv->rx_ring[q])
  276. goto error;
  277. priv->dirty_rx[q] = 0;
  278. /* Allocate all TX descriptors. */
  279. ring_size = sizeof(struct ravb_tx_desc) *
  280. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  281. priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  282. &priv->tx_desc_dma[q],
  283. GFP_KERNEL);
  284. if (!priv->tx_ring[q])
  285. goto error;
  286. return 0;
  287. error:
  288. ravb_ring_free(ndev, q);
  289. return -ENOMEM;
  290. }
  291. /* E-MAC init function */
  292. static void ravb_emac_init(struct net_device *ndev)
  293. {
  294. struct ravb_private *priv = netdev_priv(ndev);
  295. u32 ecmr;
  296. /* Receive frame limit set register */
  297. ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
  298. /* PAUSE prohibition */
  299. ecmr = ravb_read(ndev, ECMR);
  300. ecmr &= ECMR_DM;
  301. ecmr |= ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  302. ravb_write(ndev, ecmr, ECMR);
  303. ravb_set_rate(ndev);
  304. /* Set MAC address */
  305. ravb_write(ndev,
  306. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  307. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  308. ravb_write(ndev,
  309. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  310. ravb_write(ndev, 1, MPR);
  311. /* E-MAC status register clear */
  312. ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
  313. /* E-MAC interrupt enable register */
  314. ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
  315. }
  316. /* Device init function for Ethernet AVB */
  317. static int ravb_dmac_init(struct net_device *ndev)
  318. {
  319. int error;
  320. /* Set CONFIG mode */
  321. error = ravb_config(ndev);
  322. if (error)
  323. return error;
  324. error = ravb_ring_init(ndev, RAVB_BE);
  325. if (error)
  326. return error;
  327. error = ravb_ring_init(ndev, RAVB_NC);
  328. if (error) {
  329. ravb_ring_free(ndev, RAVB_BE);
  330. return error;
  331. }
  332. /* Descriptor format */
  333. ravb_ring_format(ndev, RAVB_BE);
  334. ravb_ring_format(ndev, RAVB_NC);
  335. #if defined(__LITTLE_ENDIAN)
  336. ravb_write(ndev, ravb_read(ndev, CCC) & ~CCC_BOC, CCC);
  337. #else
  338. ravb_write(ndev, ravb_read(ndev, CCC) | CCC_BOC, CCC);
  339. #endif
  340. /* Set AVB RX */
  341. ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR);
  342. /* Set FIFO size */
  343. ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
  344. /* Timestamp enable */
  345. ravb_write(ndev, TCCR_TFEN, TCCR);
  346. /* Interrupt enable: */
  347. /* Frame receive */
  348. ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
  349. /* Receive FIFO full error, descriptor empty */
  350. ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
  351. /* Frame transmitted, timestamp FIFO updated */
  352. ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
  353. /* Setting the control will start the AVB-DMAC process. */
  354. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_OPERATION,
  355. CCC);
  356. return 0;
  357. }
  358. /* Free TX skb function for AVB-IP */
  359. static int ravb_tx_free(struct net_device *ndev, int q)
  360. {
  361. struct ravb_private *priv = netdev_priv(ndev);
  362. struct net_device_stats *stats = &priv->stats[q];
  363. struct ravb_tx_desc *desc;
  364. int free_num = 0;
  365. int entry;
  366. u32 size;
  367. for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
  368. entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
  369. NUM_TX_DESC);
  370. desc = &priv->tx_ring[q][entry];
  371. if (desc->die_dt != DT_FEMPTY)
  372. break;
  373. /* Descriptor type must be checked before all other reads */
  374. dma_rmb();
  375. size = le16_to_cpu(desc->ds_tagl) & TX_DS;
  376. /* Free the original skb. */
  377. if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
  378. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  379. size, DMA_TO_DEVICE);
  380. /* Last packet descriptor? */
  381. if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
  382. entry /= NUM_TX_DESC;
  383. dev_kfree_skb_any(priv->tx_skb[q][entry]);
  384. priv->tx_skb[q][entry] = NULL;
  385. stats->tx_packets++;
  386. }
  387. free_num++;
  388. }
  389. stats->tx_bytes += size;
  390. desc->die_dt = DT_EEMPTY;
  391. }
  392. return free_num;
  393. }
  394. static void ravb_get_tx_tstamp(struct net_device *ndev)
  395. {
  396. struct ravb_private *priv = netdev_priv(ndev);
  397. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  398. struct skb_shared_hwtstamps shhwtstamps;
  399. struct sk_buff *skb;
  400. struct timespec64 ts;
  401. u16 tag, tfa_tag;
  402. int count;
  403. u32 tfa2;
  404. count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
  405. while (count--) {
  406. tfa2 = ravb_read(ndev, TFA2);
  407. tfa_tag = (tfa2 & TFA2_TST) >> 16;
  408. ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
  409. ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
  410. ravb_read(ndev, TFA1);
  411. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  412. shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
  413. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
  414. list) {
  415. skb = ts_skb->skb;
  416. tag = ts_skb->tag;
  417. list_del(&ts_skb->list);
  418. kfree(ts_skb);
  419. if (tag == tfa_tag) {
  420. skb_tstamp_tx(skb, &shhwtstamps);
  421. break;
  422. }
  423. }
  424. ravb_write(ndev, ravb_read(ndev, TCCR) | TCCR_TFR, TCCR);
  425. }
  426. }
  427. /* Packet receive function for Ethernet AVB */
  428. static bool ravb_rx(struct net_device *ndev, int *quota, int q)
  429. {
  430. struct ravb_private *priv = netdev_priv(ndev);
  431. int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
  432. int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
  433. priv->cur_rx[q];
  434. struct net_device_stats *stats = &priv->stats[q];
  435. struct ravb_ex_rx_desc *desc;
  436. struct sk_buff *skb;
  437. dma_addr_t dma_addr;
  438. struct timespec64 ts;
  439. u8 desc_status;
  440. u16 pkt_len;
  441. int limit;
  442. boguscnt = min(boguscnt, *quota);
  443. limit = boguscnt;
  444. desc = &priv->rx_ring[q][entry];
  445. while (desc->die_dt != DT_FEMPTY) {
  446. /* Descriptor type must be checked before all other reads */
  447. dma_rmb();
  448. desc_status = desc->msc;
  449. pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
  450. if (--boguscnt < 0)
  451. break;
  452. /* We use 0-byte descriptors to mark the DMA mapping errors */
  453. if (!pkt_len)
  454. continue;
  455. if (desc_status & MSC_MC)
  456. stats->multicast++;
  457. if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
  458. MSC_CEEF)) {
  459. stats->rx_errors++;
  460. if (desc_status & MSC_CRC)
  461. stats->rx_crc_errors++;
  462. if (desc_status & MSC_RFE)
  463. stats->rx_frame_errors++;
  464. if (desc_status & (MSC_RTLF | MSC_RTSF))
  465. stats->rx_length_errors++;
  466. if (desc_status & MSC_CEEF)
  467. stats->rx_missed_errors++;
  468. } else {
  469. u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
  470. skb = priv->rx_skb[q][entry];
  471. priv->rx_skb[q][entry] = NULL;
  472. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  473. ALIGN(PKT_BUF_SZ, 16),
  474. DMA_FROM_DEVICE);
  475. get_ts &= (q == RAVB_NC) ?
  476. RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
  477. ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  478. if (get_ts) {
  479. struct skb_shared_hwtstamps *shhwtstamps;
  480. shhwtstamps = skb_hwtstamps(skb);
  481. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  482. ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
  483. 32) | le32_to_cpu(desc->ts_sl);
  484. ts.tv_nsec = le32_to_cpu(desc->ts_n);
  485. shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
  486. }
  487. skb_put(skb, pkt_len);
  488. skb->protocol = eth_type_trans(skb, ndev);
  489. napi_gro_receive(&priv->napi[q], skb);
  490. stats->rx_packets++;
  491. stats->rx_bytes += pkt_len;
  492. }
  493. entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
  494. desc = &priv->rx_ring[q][entry];
  495. }
  496. /* Refill the RX ring buffers. */
  497. for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
  498. entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
  499. desc = &priv->rx_ring[q][entry];
  500. /* The size of the buffer should be on 16-byte boundary. */
  501. desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
  502. if (!priv->rx_skb[q][entry]) {
  503. skb = netdev_alloc_skb(ndev,
  504. PKT_BUF_SZ + RAVB_ALIGN - 1);
  505. if (!skb)
  506. break; /* Better luck next round. */
  507. ravb_set_buffer_align(skb);
  508. dma_addr = dma_map_single(ndev->dev.parent, skb->data,
  509. le16_to_cpu(desc->ds_cc),
  510. DMA_FROM_DEVICE);
  511. skb_checksum_none_assert(skb);
  512. /* We just set the data size to 0 for a failed mapping
  513. * which should prevent DMA from happening...
  514. */
  515. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  516. desc->ds_cc = cpu_to_le16(0);
  517. desc->dptr = cpu_to_le32(dma_addr);
  518. priv->rx_skb[q][entry] = skb;
  519. }
  520. /* Descriptor type must be set after all the above writes */
  521. dma_wmb();
  522. desc->die_dt = DT_FEMPTY;
  523. }
  524. *quota -= limit - (++boguscnt);
  525. return boguscnt <= 0;
  526. }
  527. static void ravb_rcv_snd_disable(struct net_device *ndev)
  528. {
  529. /* Disable TX and RX */
  530. ravb_write(ndev, ravb_read(ndev, ECMR) & ~(ECMR_RE | ECMR_TE), ECMR);
  531. }
  532. static void ravb_rcv_snd_enable(struct net_device *ndev)
  533. {
  534. /* Enable TX and RX */
  535. ravb_write(ndev, ravb_read(ndev, ECMR) | ECMR_RE | ECMR_TE, ECMR);
  536. }
  537. /* function for waiting dma process finished */
  538. static int ravb_stop_dma(struct net_device *ndev)
  539. {
  540. int error;
  541. /* Wait for stopping the hardware TX process */
  542. error = ravb_wait(ndev, TCCR,
  543. TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
  544. if (error)
  545. return error;
  546. error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
  547. 0);
  548. if (error)
  549. return error;
  550. /* Stop the E-MAC's RX/TX processes. */
  551. ravb_rcv_snd_disable(ndev);
  552. /* Wait for stopping the RX DMA process */
  553. error = ravb_wait(ndev, CSR, CSR_RPO, 0);
  554. if (error)
  555. return error;
  556. /* Stop AVB-DMAC process */
  557. return ravb_config(ndev);
  558. }
  559. /* E-MAC interrupt handler */
  560. static void ravb_emac_interrupt(struct net_device *ndev)
  561. {
  562. struct ravb_private *priv = netdev_priv(ndev);
  563. u32 ecsr, psr;
  564. ecsr = ravb_read(ndev, ECSR);
  565. ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
  566. if (ecsr & ECSR_ICD)
  567. ndev->stats.tx_carrier_errors++;
  568. if (ecsr & ECSR_LCHNG) {
  569. /* Link changed */
  570. if (priv->no_avb_link)
  571. return;
  572. psr = ravb_read(ndev, PSR);
  573. if (priv->avb_link_active_low)
  574. psr ^= PSR_LMON;
  575. if (!(psr & PSR_LMON)) {
  576. /* DIsable RX and TX */
  577. ravb_rcv_snd_disable(ndev);
  578. } else {
  579. /* Enable RX and TX */
  580. ravb_rcv_snd_enable(ndev);
  581. }
  582. }
  583. }
  584. /* Error interrupt handler */
  585. static void ravb_error_interrupt(struct net_device *ndev)
  586. {
  587. struct ravb_private *priv = netdev_priv(ndev);
  588. u32 eis, ris2;
  589. eis = ravb_read(ndev, EIS);
  590. ravb_write(ndev, ~EIS_QFS, EIS);
  591. if (eis & EIS_QFS) {
  592. ris2 = ravb_read(ndev, RIS2);
  593. ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
  594. /* Receive Descriptor Empty int */
  595. if (ris2 & RIS2_QFF0)
  596. priv->stats[RAVB_BE].rx_over_errors++;
  597. /* Receive Descriptor Empty int */
  598. if (ris2 & RIS2_QFF1)
  599. priv->stats[RAVB_NC].rx_over_errors++;
  600. /* Receive FIFO Overflow int */
  601. if (ris2 & RIS2_RFFF)
  602. priv->rx_fifo_errors++;
  603. }
  604. }
  605. static irqreturn_t ravb_interrupt(int irq, void *dev_id)
  606. {
  607. struct net_device *ndev = dev_id;
  608. struct ravb_private *priv = netdev_priv(ndev);
  609. irqreturn_t result = IRQ_NONE;
  610. u32 iss;
  611. spin_lock(&priv->lock);
  612. /* Get interrupt status */
  613. iss = ravb_read(ndev, ISS);
  614. /* Received and transmitted interrupts */
  615. if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
  616. u32 ris0 = ravb_read(ndev, RIS0);
  617. u32 ric0 = ravb_read(ndev, RIC0);
  618. u32 tis = ravb_read(ndev, TIS);
  619. u32 tic = ravb_read(ndev, TIC);
  620. int q;
  621. /* Timestamp updated */
  622. if (tis & TIS_TFUF) {
  623. ravb_write(ndev, ~TIS_TFUF, TIS);
  624. ravb_get_tx_tstamp(ndev);
  625. result = IRQ_HANDLED;
  626. }
  627. /* Network control and best effort queue RX/TX */
  628. for (q = RAVB_NC; q >= RAVB_BE; q--) {
  629. if (((ris0 & ric0) & BIT(q)) ||
  630. ((tis & tic) & BIT(q))) {
  631. if (napi_schedule_prep(&priv->napi[q])) {
  632. /* Mask RX and TX interrupts */
  633. ric0 &= ~BIT(q);
  634. tic &= ~BIT(q);
  635. ravb_write(ndev, ric0, RIC0);
  636. ravb_write(ndev, tic, TIC);
  637. __napi_schedule(&priv->napi[q]);
  638. } else {
  639. netdev_warn(ndev,
  640. "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
  641. ris0, ric0);
  642. netdev_warn(ndev,
  643. " tx status 0x%08x, tx mask 0x%08x.\n",
  644. tis, tic);
  645. }
  646. result = IRQ_HANDLED;
  647. }
  648. }
  649. }
  650. /* E-MAC status summary */
  651. if (iss & ISS_MS) {
  652. ravb_emac_interrupt(ndev);
  653. result = IRQ_HANDLED;
  654. }
  655. /* Error status summary */
  656. if (iss & ISS_ES) {
  657. ravb_error_interrupt(ndev);
  658. result = IRQ_HANDLED;
  659. }
  660. if (iss & ISS_CGIS)
  661. result = ravb_ptp_interrupt(ndev);
  662. mmiowb();
  663. spin_unlock(&priv->lock);
  664. return result;
  665. }
  666. static int ravb_poll(struct napi_struct *napi, int budget)
  667. {
  668. struct net_device *ndev = napi->dev;
  669. struct ravb_private *priv = netdev_priv(ndev);
  670. unsigned long flags;
  671. int q = napi - priv->napi;
  672. int mask = BIT(q);
  673. int quota = budget;
  674. u32 ris0, tis;
  675. for (;;) {
  676. tis = ravb_read(ndev, TIS);
  677. ris0 = ravb_read(ndev, RIS0);
  678. if (!((ris0 & mask) || (tis & mask)))
  679. break;
  680. /* Processing RX Descriptor Ring */
  681. if (ris0 & mask) {
  682. /* Clear RX interrupt */
  683. ravb_write(ndev, ~mask, RIS0);
  684. if (ravb_rx(ndev, &quota, q))
  685. goto out;
  686. }
  687. /* Processing TX Descriptor Ring */
  688. if (tis & mask) {
  689. spin_lock_irqsave(&priv->lock, flags);
  690. /* Clear TX interrupt */
  691. ravb_write(ndev, ~mask, TIS);
  692. ravb_tx_free(ndev, q);
  693. netif_wake_subqueue(ndev, q);
  694. mmiowb();
  695. spin_unlock_irqrestore(&priv->lock, flags);
  696. }
  697. }
  698. napi_complete(napi);
  699. /* Re-enable RX/TX interrupts */
  700. spin_lock_irqsave(&priv->lock, flags);
  701. ravb_write(ndev, ravb_read(ndev, RIC0) | mask, RIC0);
  702. ravb_write(ndev, ravb_read(ndev, TIC) | mask, TIC);
  703. mmiowb();
  704. spin_unlock_irqrestore(&priv->lock, flags);
  705. /* Receive error message handling */
  706. priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
  707. priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
  708. if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
  709. ndev->stats.rx_over_errors = priv->rx_over_errors;
  710. netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
  711. }
  712. if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
  713. ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
  714. netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
  715. }
  716. out:
  717. return budget - quota;
  718. }
  719. /* PHY state control function */
  720. static void ravb_adjust_link(struct net_device *ndev)
  721. {
  722. struct ravb_private *priv = netdev_priv(ndev);
  723. struct phy_device *phydev = priv->phydev;
  724. bool new_state = false;
  725. if (phydev->link) {
  726. if (phydev->duplex != priv->duplex) {
  727. new_state = true;
  728. priv->duplex = phydev->duplex;
  729. ravb_set_duplex(ndev);
  730. }
  731. if (phydev->speed != priv->speed) {
  732. new_state = true;
  733. priv->speed = phydev->speed;
  734. ravb_set_rate(ndev);
  735. }
  736. if (!priv->link) {
  737. ravb_write(ndev, ravb_read(ndev, ECMR) & ~ECMR_TXF,
  738. ECMR);
  739. new_state = true;
  740. priv->link = phydev->link;
  741. if (priv->no_avb_link)
  742. ravb_rcv_snd_enable(ndev);
  743. }
  744. } else if (priv->link) {
  745. new_state = true;
  746. priv->link = 0;
  747. priv->speed = 0;
  748. priv->duplex = -1;
  749. if (priv->no_avb_link)
  750. ravb_rcv_snd_disable(ndev);
  751. }
  752. if (new_state && netif_msg_link(priv))
  753. phy_print_status(phydev);
  754. }
  755. /* PHY init function */
  756. static int ravb_phy_init(struct net_device *ndev)
  757. {
  758. struct device_node *np = ndev->dev.parent->of_node;
  759. struct ravb_private *priv = netdev_priv(ndev);
  760. struct phy_device *phydev;
  761. struct device_node *pn;
  762. priv->link = 0;
  763. priv->speed = 0;
  764. priv->duplex = -1;
  765. /* Try connecting to PHY */
  766. pn = of_parse_phandle(np, "phy-handle", 0);
  767. phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
  768. priv->phy_interface);
  769. if (!phydev) {
  770. netdev_err(ndev, "failed to connect PHY\n");
  771. return -ENOENT;
  772. }
  773. /* This driver only support 10/100Mbit speeds on Gen3
  774. * at this time.
  775. */
  776. if (priv->chip_id == RCAR_GEN3) {
  777. int err;
  778. err = phy_set_max_speed(phydev, SPEED_100);
  779. if (err) {
  780. netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
  781. phy_disconnect(phydev);
  782. return err;
  783. }
  784. netdev_info(ndev, "limited PHY to 100Mbit/s\n");
  785. }
  786. netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
  787. phydev->addr, phydev->irq, phydev->drv->name);
  788. priv->phydev = phydev;
  789. return 0;
  790. }
  791. /* PHY control start function */
  792. static int ravb_phy_start(struct net_device *ndev)
  793. {
  794. struct ravb_private *priv = netdev_priv(ndev);
  795. int error;
  796. error = ravb_phy_init(ndev);
  797. if (error)
  798. return error;
  799. phy_start(priv->phydev);
  800. return 0;
  801. }
  802. static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  803. {
  804. struct ravb_private *priv = netdev_priv(ndev);
  805. int error = -ENODEV;
  806. unsigned long flags;
  807. if (priv->phydev) {
  808. spin_lock_irqsave(&priv->lock, flags);
  809. error = phy_ethtool_gset(priv->phydev, ecmd);
  810. spin_unlock_irqrestore(&priv->lock, flags);
  811. }
  812. return error;
  813. }
  814. static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  815. {
  816. struct ravb_private *priv = netdev_priv(ndev);
  817. unsigned long flags;
  818. int error;
  819. if (!priv->phydev)
  820. return -ENODEV;
  821. spin_lock_irqsave(&priv->lock, flags);
  822. /* Disable TX and RX */
  823. ravb_rcv_snd_disable(ndev);
  824. error = phy_ethtool_sset(priv->phydev, ecmd);
  825. if (error)
  826. goto error_exit;
  827. if (ecmd->duplex == DUPLEX_FULL)
  828. priv->duplex = 1;
  829. else
  830. priv->duplex = 0;
  831. ravb_set_duplex(ndev);
  832. error_exit:
  833. mdelay(1);
  834. /* Enable TX and RX */
  835. ravb_rcv_snd_enable(ndev);
  836. mmiowb();
  837. spin_unlock_irqrestore(&priv->lock, flags);
  838. return error;
  839. }
  840. static int ravb_nway_reset(struct net_device *ndev)
  841. {
  842. struct ravb_private *priv = netdev_priv(ndev);
  843. int error = -ENODEV;
  844. unsigned long flags;
  845. if (priv->phydev) {
  846. spin_lock_irqsave(&priv->lock, flags);
  847. error = phy_start_aneg(priv->phydev);
  848. spin_unlock_irqrestore(&priv->lock, flags);
  849. }
  850. return error;
  851. }
  852. static u32 ravb_get_msglevel(struct net_device *ndev)
  853. {
  854. struct ravb_private *priv = netdev_priv(ndev);
  855. return priv->msg_enable;
  856. }
  857. static void ravb_set_msglevel(struct net_device *ndev, u32 value)
  858. {
  859. struct ravb_private *priv = netdev_priv(ndev);
  860. priv->msg_enable = value;
  861. }
  862. static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
  863. "rx_queue_0_current",
  864. "tx_queue_0_current",
  865. "rx_queue_0_dirty",
  866. "tx_queue_0_dirty",
  867. "rx_queue_0_packets",
  868. "tx_queue_0_packets",
  869. "rx_queue_0_bytes",
  870. "tx_queue_0_bytes",
  871. "rx_queue_0_mcast_packets",
  872. "rx_queue_0_errors",
  873. "rx_queue_0_crc_errors",
  874. "rx_queue_0_frame_errors",
  875. "rx_queue_0_length_errors",
  876. "rx_queue_0_missed_errors",
  877. "rx_queue_0_over_errors",
  878. "rx_queue_1_current",
  879. "tx_queue_1_current",
  880. "rx_queue_1_dirty",
  881. "tx_queue_1_dirty",
  882. "rx_queue_1_packets",
  883. "tx_queue_1_packets",
  884. "rx_queue_1_bytes",
  885. "tx_queue_1_bytes",
  886. "rx_queue_1_mcast_packets",
  887. "rx_queue_1_errors",
  888. "rx_queue_1_crc_errors",
  889. "rx_queue_1_frame_errors_",
  890. "rx_queue_1_length_errors",
  891. "rx_queue_1_missed_errors",
  892. "rx_queue_1_over_errors",
  893. };
  894. #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
  895. static int ravb_get_sset_count(struct net_device *netdev, int sset)
  896. {
  897. switch (sset) {
  898. case ETH_SS_STATS:
  899. return RAVB_STATS_LEN;
  900. default:
  901. return -EOPNOTSUPP;
  902. }
  903. }
  904. static void ravb_get_ethtool_stats(struct net_device *ndev,
  905. struct ethtool_stats *stats, u64 *data)
  906. {
  907. struct ravb_private *priv = netdev_priv(ndev);
  908. int i = 0;
  909. int q;
  910. /* Device-specific stats */
  911. for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
  912. struct net_device_stats *stats = &priv->stats[q];
  913. data[i++] = priv->cur_rx[q];
  914. data[i++] = priv->cur_tx[q];
  915. data[i++] = priv->dirty_rx[q];
  916. data[i++] = priv->dirty_tx[q];
  917. data[i++] = stats->rx_packets;
  918. data[i++] = stats->tx_packets;
  919. data[i++] = stats->rx_bytes;
  920. data[i++] = stats->tx_bytes;
  921. data[i++] = stats->multicast;
  922. data[i++] = stats->rx_errors;
  923. data[i++] = stats->rx_crc_errors;
  924. data[i++] = stats->rx_frame_errors;
  925. data[i++] = stats->rx_length_errors;
  926. data[i++] = stats->rx_missed_errors;
  927. data[i++] = stats->rx_over_errors;
  928. }
  929. }
  930. static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  931. {
  932. switch (stringset) {
  933. case ETH_SS_STATS:
  934. memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
  935. break;
  936. }
  937. }
  938. static void ravb_get_ringparam(struct net_device *ndev,
  939. struct ethtool_ringparam *ring)
  940. {
  941. struct ravb_private *priv = netdev_priv(ndev);
  942. ring->rx_max_pending = BE_RX_RING_MAX;
  943. ring->tx_max_pending = BE_TX_RING_MAX;
  944. ring->rx_pending = priv->num_rx_ring[RAVB_BE];
  945. ring->tx_pending = priv->num_tx_ring[RAVB_BE];
  946. }
  947. static int ravb_set_ringparam(struct net_device *ndev,
  948. struct ethtool_ringparam *ring)
  949. {
  950. struct ravb_private *priv = netdev_priv(ndev);
  951. int error;
  952. if (ring->tx_pending > BE_TX_RING_MAX ||
  953. ring->rx_pending > BE_RX_RING_MAX ||
  954. ring->tx_pending < BE_TX_RING_MIN ||
  955. ring->rx_pending < BE_RX_RING_MIN)
  956. return -EINVAL;
  957. if (ring->rx_mini_pending || ring->rx_jumbo_pending)
  958. return -EINVAL;
  959. if (netif_running(ndev)) {
  960. netif_device_detach(ndev);
  961. /* Stop PTP Clock driver */
  962. ravb_ptp_stop(ndev);
  963. /* Wait for DMA stopping */
  964. error = ravb_stop_dma(ndev);
  965. if (error) {
  966. netdev_err(ndev,
  967. "cannot set ringparam! Any AVB processes are still running?\n");
  968. return error;
  969. }
  970. synchronize_irq(ndev->irq);
  971. /* Free all the skb's in the RX queue and the DMA buffers. */
  972. ravb_ring_free(ndev, RAVB_BE);
  973. ravb_ring_free(ndev, RAVB_NC);
  974. }
  975. /* Set new parameters */
  976. priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
  977. priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
  978. if (netif_running(ndev)) {
  979. error = ravb_dmac_init(ndev);
  980. if (error) {
  981. netdev_err(ndev,
  982. "%s: ravb_dmac_init() failed, error %d\n",
  983. __func__, error);
  984. return error;
  985. }
  986. ravb_emac_init(ndev);
  987. /* Initialise PTP Clock driver */
  988. ravb_ptp_init(ndev, priv->pdev);
  989. netif_device_attach(ndev);
  990. }
  991. return 0;
  992. }
  993. static int ravb_get_ts_info(struct net_device *ndev,
  994. struct ethtool_ts_info *info)
  995. {
  996. struct ravb_private *priv = netdev_priv(ndev);
  997. info->so_timestamping =
  998. SOF_TIMESTAMPING_TX_SOFTWARE |
  999. SOF_TIMESTAMPING_RX_SOFTWARE |
  1000. SOF_TIMESTAMPING_SOFTWARE |
  1001. SOF_TIMESTAMPING_TX_HARDWARE |
  1002. SOF_TIMESTAMPING_RX_HARDWARE |
  1003. SOF_TIMESTAMPING_RAW_HARDWARE;
  1004. info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
  1005. info->rx_filters =
  1006. (1 << HWTSTAMP_FILTER_NONE) |
  1007. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1008. (1 << HWTSTAMP_FILTER_ALL);
  1009. info->phc_index = ptp_clock_index(priv->ptp.clock);
  1010. return 0;
  1011. }
  1012. static const struct ethtool_ops ravb_ethtool_ops = {
  1013. .get_settings = ravb_get_settings,
  1014. .set_settings = ravb_set_settings,
  1015. .nway_reset = ravb_nway_reset,
  1016. .get_msglevel = ravb_get_msglevel,
  1017. .set_msglevel = ravb_set_msglevel,
  1018. .get_link = ethtool_op_get_link,
  1019. .get_strings = ravb_get_strings,
  1020. .get_ethtool_stats = ravb_get_ethtool_stats,
  1021. .get_sset_count = ravb_get_sset_count,
  1022. .get_ringparam = ravb_get_ringparam,
  1023. .set_ringparam = ravb_set_ringparam,
  1024. .get_ts_info = ravb_get_ts_info,
  1025. };
  1026. /* Network device open function for Ethernet AVB */
  1027. static int ravb_open(struct net_device *ndev)
  1028. {
  1029. struct ravb_private *priv = netdev_priv(ndev);
  1030. int error;
  1031. napi_enable(&priv->napi[RAVB_BE]);
  1032. napi_enable(&priv->napi[RAVB_NC]);
  1033. error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name,
  1034. ndev);
  1035. if (error) {
  1036. netdev_err(ndev, "cannot request IRQ\n");
  1037. goto out_napi_off;
  1038. }
  1039. if (priv->chip_id == RCAR_GEN3) {
  1040. error = request_irq(priv->emac_irq, ravb_interrupt,
  1041. IRQF_SHARED, ndev->name, ndev);
  1042. if (error) {
  1043. netdev_err(ndev, "cannot request IRQ\n");
  1044. goto out_free_irq;
  1045. }
  1046. }
  1047. /* Device init */
  1048. error = ravb_dmac_init(ndev);
  1049. if (error)
  1050. goto out_free_irq;
  1051. ravb_emac_init(ndev);
  1052. /* Initialise PTP Clock driver */
  1053. ravb_ptp_init(ndev, priv->pdev);
  1054. netif_tx_start_all_queues(ndev);
  1055. /* PHY control start */
  1056. error = ravb_phy_start(ndev);
  1057. if (error)
  1058. goto out_ptp_stop;
  1059. return 0;
  1060. out_ptp_stop:
  1061. /* Stop PTP Clock driver */
  1062. ravb_ptp_stop(ndev);
  1063. out_free_irq:
  1064. free_irq(ndev->irq, ndev);
  1065. free_irq(priv->emac_irq, ndev);
  1066. out_napi_off:
  1067. napi_disable(&priv->napi[RAVB_NC]);
  1068. napi_disable(&priv->napi[RAVB_BE]);
  1069. return error;
  1070. }
  1071. /* Timeout function for Ethernet AVB */
  1072. static void ravb_tx_timeout(struct net_device *ndev)
  1073. {
  1074. struct ravb_private *priv = netdev_priv(ndev);
  1075. netif_err(priv, tx_err, ndev,
  1076. "transmit timed out, status %08x, resetting...\n",
  1077. ravb_read(ndev, ISS));
  1078. /* tx_errors count up */
  1079. ndev->stats.tx_errors++;
  1080. schedule_work(&priv->work);
  1081. }
  1082. static void ravb_tx_timeout_work(struct work_struct *work)
  1083. {
  1084. struct ravb_private *priv = container_of(work, struct ravb_private,
  1085. work);
  1086. struct net_device *ndev = priv->ndev;
  1087. netif_tx_stop_all_queues(ndev);
  1088. /* Stop PTP Clock driver */
  1089. ravb_ptp_stop(ndev);
  1090. /* Wait for DMA stopping */
  1091. ravb_stop_dma(ndev);
  1092. ravb_ring_free(ndev, RAVB_BE);
  1093. ravb_ring_free(ndev, RAVB_NC);
  1094. /* Device init */
  1095. ravb_dmac_init(ndev);
  1096. ravb_emac_init(ndev);
  1097. /* Initialise PTP Clock driver */
  1098. ravb_ptp_init(ndev, priv->pdev);
  1099. netif_tx_start_all_queues(ndev);
  1100. }
  1101. /* Packet transmit function for Ethernet AVB */
  1102. static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1103. {
  1104. struct ravb_private *priv = netdev_priv(ndev);
  1105. u16 q = skb_get_queue_mapping(skb);
  1106. struct ravb_tstamp_skb *ts_skb;
  1107. struct ravb_tx_desc *desc;
  1108. unsigned long flags;
  1109. u32 dma_addr;
  1110. void *buffer;
  1111. u32 entry;
  1112. u32 len;
  1113. spin_lock_irqsave(&priv->lock, flags);
  1114. if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
  1115. NUM_TX_DESC) {
  1116. netif_err(priv, tx_queued, ndev,
  1117. "still transmitting with the full ring!\n");
  1118. netif_stop_subqueue(ndev, q);
  1119. spin_unlock_irqrestore(&priv->lock, flags);
  1120. return NETDEV_TX_BUSY;
  1121. }
  1122. entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
  1123. priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
  1124. if (skb_put_padto(skb, ETH_ZLEN))
  1125. goto drop;
  1126. buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
  1127. entry / NUM_TX_DESC * DPTR_ALIGN;
  1128. len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
  1129. memcpy(buffer, skb->data, len);
  1130. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1131. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1132. goto drop;
  1133. desc = &priv->tx_ring[q][entry];
  1134. desc->ds_tagl = cpu_to_le16(len);
  1135. desc->dptr = cpu_to_le32(dma_addr);
  1136. buffer = skb->data + len;
  1137. len = skb->len - len;
  1138. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1139. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1140. goto unmap;
  1141. desc++;
  1142. desc->ds_tagl = cpu_to_le16(len);
  1143. desc->dptr = cpu_to_le32(dma_addr);
  1144. /* TX timestamp required */
  1145. if (q == RAVB_NC) {
  1146. ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
  1147. if (!ts_skb) {
  1148. desc--;
  1149. dma_unmap_single(ndev->dev.parent, dma_addr, len,
  1150. DMA_TO_DEVICE);
  1151. goto unmap;
  1152. }
  1153. ts_skb->skb = skb;
  1154. ts_skb->tag = priv->ts_skb_tag++;
  1155. priv->ts_skb_tag &= 0x3ff;
  1156. list_add_tail(&ts_skb->list, &priv->ts_skb_list);
  1157. /* TAG and timestamp required flag */
  1158. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1159. skb_tx_timestamp(skb);
  1160. desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
  1161. desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
  1162. }
  1163. /* Descriptor type must be set after all the above writes */
  1164. dma_wmb();
  1165. desc->die_dt = DT_FEND;
  1166. desc--;
  1167. desc->die_dt = DT_FSTART;
  1168. ravb_write(ndev, ravb_read(ndev, TCCR) | (TCCR_TSRQ0 << q), TCCR);
  1169. priv->cur_tx[q] += NUM_TX_DESC;
  1170. if (priv->cur_tx[q] - priv->dirty_tx[q] >
  1171. (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
  1172. netif_stop_subqueue(ndev, q);
  1173. exit:
  1174. mmiowb();
  1175. spin_unlock_irqrestore(&priv->lock, flags);
  1176. return NETDEV_TX_OK;
  1177. unmap:
  1178. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  1179. le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
  1180. drop:
  1181. dev_kfree_skb_any(skb);
  1182. priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
  1183. goto exit;
  1184. }
  1185. static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
  1186. void *accel_priv, select_queue_fallback_t fallback)
  1187. {
  1188. /* If skb needs TX timestamp, it is handled in network control queue */
  1189. return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
  1190. RAVB_BE;
  1191. }
  1192. static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
  1193. {
  1194. struct ravb_private *priv = netdev_priv(ndev);
  1195. struct net_device_stats *nstats, *stats0, *stats1;
  1196. nstats = &ndev->stats;
  1197. stats0 = &priv->stats[RAVB_BE];
  1198. stats1 = &priv->stats[RAVB_NC];
  1199. nstats->tx_dropped += ravb_read(ndev, TROCR);
  1200. ravb_write(ndev, 0, TROCR); /* (write clear) */
  1201. nstats->collisions += ravb_read(ndev, CDCR);
  1202. ravb_write(ndev, 0, CDCR); /* (write clear) */
  1203. nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
  1204. ravb_write(ndev, 0, LCCR); /* (write clear) */
  1205. nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
  1206. ravb_write(ndev, 0, CERCR); /* (write clear) */
  1207. nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
  1208. ravb_write(ndev, 0, CEECR); /* (write clear) */
  1209. nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
  1210. nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
  1211. nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
  1212. nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
  1213. nstats->multicast = stats0->multicast + stats1->multicast;
  1214. nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
  1215. nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
  1216. nstats->rx_frame_errors =
  1217. stats0->rx_frame_errors + stats1->rx_frame_errors;
  1218. nstats->rx_length_errors =
  1219. stats0->rx_length_errors + stats1->rx_length_errors;
  1220. nstats->rx_missed_errors =
  1221. stats0->rx_missed_errors + stats1->rx_missed_errors;
  1222. nstats->rx_over_errors =
  1223. stats0->rx_over_errors + stats1->rx_over_errors;
  1224. return nstats;
  1225. }
  1226. /* Update promiscuous bit */
  1227. static void ravb_set_rx_mode(struct net_device *ndev)
  1228. {
  1229. struct ravb_private *priv = netdev_priv(ndev);
  1230. unsigned long flags;
  1231. u32 ecmr;
  1232. spin_lock_irqsave(&priv->lock, flags);
  1233. ecmr = ravb_read(ndev, ECMR);
  1234. if (ndev->flags & IFF_PROMISC)
  1235. ecmr |= ECMR_PRM;
  1236. else
  1237. ecmr &= ~ECMR_PRM;
  1238. ravb_write(ndev, ecmr, ECMR);
  1239. mmiowb();
  1240. spin_unlock_irqrestore(&priv->lock, flags);
  1241. }
  1242. /* Device close function for Ethernet AVB */
  1243. static int ravb_close(struct net_device *ndev)
  1244. {
  1245. struct ravb_private *priv = netdev_priv(ndev);
  1246. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  1247. netif_tx_stop_all_queues(ndev);
  1248. /* Disable interrupts by clearing the interrupt masks. */
  1249. ravb_write(ndev, 0, RIC0);
  1250. ravb_write(ndev, 0, RIC1);
  1251. ravb_write(ndev, 0, RIC2);
  1252. ravb_write(ndev, 0, TIC);
  1253. /* Stop PTP Clock driver */
  1254. ravb_ptp_stop(ndev);
  1255. /* Set the config mode to stop the AVB-DMAC's processes */
  1256. if (ravb_stop_dma(ndev) < 0)
  1257. netdev_err(ndev,
  1258. "device will be stopped after h/w processes are done.\n");
  1259. /* Clear the timestamp list */
  1260. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
  1261. list_del(&ts_skb->list);
  1262. kfree(ts_skb);
  1263. }
  1264. /* PHY disconnect */
  1265. if (priv->phydev) {
  1266. phy_stop(priv->phydev);
  1267. phy_disconnect(priv->phydev);
  1268. priv->phydev = NULL;
  1269. }
  1270. free_irq(ndev->irq, ndev);
  1271. napi_disable(&priv->napi[RAVB_NC]);
  1272. napi_disable(&priv->napi[RAVB_BE]);
  1273. /* Free all the skb's in the RX queue and the DMA buffers. */
  1274. ravb_ring_free(ndev, RAVB_BE);
  1275. ravb_ring_free(ndev, RAVB_NC);
  1276. return 0;
  1277. }
  1278. static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
  1279. {
  1280. struct ravb_private *priv = netdev_priv(ndev);
  1281. struct hwtstamp_config config;
  1282. config.flags = 0;
  1283. config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
  1284. HWTSTAMP_TX_OFF;
  1285. if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
  1286. config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
  1287. else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
  1288. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1289. else
  1290. config.rx_filter = HWTSTAMP_FILTER_NONE;
  1291. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1292. -EFAULT : 0;
  1293. }
  1294. /* Control hardware time stamping */
  1295. static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
  1296. {
  1297. struct ravb_private *priv = netdev_priv(ndev);
  1298. struct hwtstamp_config config;
  1299. u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
  1300. u32 tstamp_tx_ctrl;
  1301. if (copy_from_user(&config, req->ifr_data, sizeof(config)))
  1302. return -EFAULT;
  1303. /* Reserved for future extensions */
  1304. if (config.flags)
  1305. return -EINVAL;
  1306. switch (config.tx_type) {
  1307. case HWTSTAMP_TX_OFF:
  1308. tstamp_tx_ctrl = 0;
  1309. break;
  1310. case HWTSTAMP_TX_ON:
  1311. tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
  1312. break;
  1313. default:
  1314. return -ERANGE;
  1315. }
  1316. switch (config.rx_filter) {
  1317. case HWTSTAMP_FILTER_NONE:
  1318. tstamp_rx_ctrl = 0;
  1319. break;
  1320. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1321. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  1322. break;
  1323. default:
  1324. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1325. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
  1326. }
  1327. priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
  1328. priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
  1329. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1330. -EFAULT : 0;
  1331. }
  1332. /* ioctl to device function */
  1333. static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
  1334. {
  1335. struct ravb_private *priv = netdev_priv(ndev);
  1336. struct phy_device *phydev = priv->phydev;
  1337. if (!netif_running(ndev))
  1338. return -EINVAL;
  1339. if (!phydev)
  1340. return -ENODEV;
  1341. switch (cmd) {
  1342. case SIOCGHWTSTAMP:
  1343. return ravb_hwtstamp_get(ndev, req);
  1344. case SIOCSHWTSTAMP:
  1345. return ravb_hwtstamp_set(ndev, req);
  1346. }
  1347. return phy_mii_ioctl(phydev, req, cmd);
  1348. }
  1349. static const struct net_device_ops ravb_netdev_ops = {
  1350. .ndo_open = ravb_open,
  1351. .ndo_stop = ravb_close,
  1352. .ndo_start_xmit = ravb_start_xmit,
  1353. .ndo_select_queue = ravb_select_queue,
  1354. .ndo_get_stats = ravb_get_stats,
  1355. .ndo_set_rx_mode = ravb_set_rx_mode,
  1356. .ndo_tx_timeout = ravb_tx_timeout,
  1357. .ndo_do_ioctl = ravb_do_ioctl,
  1358. .ndo_validate_addr = eth_validate_addr,
  1359. .ndo_set_mac_address = eth_mac_addr,
  1360. .ndo_change_mtu = eth_change_mtu,
  1361. };
  1362. /* MDIO bus init function */
  1363. static int ravb_mdio_init(struct ravb_private *priv)
  1364. {
  1365. struct platform_device *pdev = priv->pdev;
  1366. struct device *dev = &pdev->dev;
  1367. int error;
  1368. /* Bitbang init */
  1369. priv->mdiobb.ops = &bb_ops;
  1370. /* MII controller setting */
  1371. priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
  1372. if (!priv->mii_bus)
  1373. return -ENOMEM;
  1374. /* Hook up MII support for ethtool */
  1375. priv->mii_bus->name = "ravb_mii";
  1376. priv->mii_bus->parent = dev;
  1377. snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1378. pdev->name, pdev->id);
  1379. /* Register MDIO bus */
  1380. error = of_mdiobus_register(priv->mii_bus, dev->of_node);
  1381. if (error)
  1382. goto out_free_bus;
  1383. return 0;
  1384. out_free_bus:
  1385. free_mdio_bitbang(priv->mii_bus);
  1386. return error;
  1387. }
  1388. /* MDIO bus release function */
  1389. static int ravb_mdio_release(struct ravb_private *priv)
  1390. {
  1391. /* Unregister mdio bus */
  1392. mdiobus_unregister(priv->mii_bus);
  1393. /* Free bitbang info */
  1394. free_mdio_bitbang(priv->mii_bus);
  1395. return 0;
  1396. }
  1397. static const struct of_device_id ravb_match_table[] = {
  1398. { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
  1399. { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
  1400. { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
  1401. { }
  1402. };
  1403. MODULE_DEVICE_TABLE(of, ravb_match_table);
  1404. static int ravb_probe(struct platform_device *pdev)
  1405. {
  1406. struct device_node *np = pdev->dev.of_node;
  1407. const struct of_device_id *match;
  1408. struct ravb_private *priv;
  1409. enum ravb_chip_id chip_id;
  1410. struct net_device *ndev;
  1411. int error, irq, q;
  1412. struct resource *res;
  1413. if (!np) {
  1414. dev_err(&pdev->dev,
  1415. "this driver is required to be instantiated from device tree\n");
  1416. return -EINVAL;
  1417. }
  1418. /* Get base address */
  1419. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1420. if (!res) {
  1421. dev_err(&pdev->dev, "invalid resource\n");
  1422. return -EINVAL;
  1423. }
  1424. ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
  1425. NUM_TX_QUEUE, NUM_RX_QUEUE);
  1426. if (!ndev)
  1427. return -ENOMEM;
  1428. pm_runtime_enable(&pdev->dev);
  1429. pm_runtime_get_sync(&pdev->dev);
  1430. /* The Ether-specific entries in the device structure. */
  1431. ndev->base_addr = res->start;
  1432. ndev->dma = -1;
  1433. match = of_match_device(of_match_ptr(ravb_match_table), &pdev->dev);
  1434. chip_id = (enum ravb_chip_id)match->data;
  1435. if (chip_id == RCAR_GEN3)
  1436. irq = platform_get_irq_byname(pdev, "ch22");
  1437. else
  1438. irq = platform_get_irq(pdev, 0);
  1439. if (irq < 0) {
  1440. error = irq;
  1441. goto out_release;
  1442. }
  1443. ndev->irq = irq;
  1444. SET_NETDEV_DEV(ndev, &pdev->dev);
  1445. priv = netdev_priv(ndev);
  1446. priv->ndev = ndev;
  1447. priv->pdev = pdev;
  1448. priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
  1449. priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
  1450. priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
  1451. priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
  1452. priv->addr = devm_ioremap_resource(&pdev->dev, res);
  1453. if (IS_ERR(priv->addr)) {
  1454. error = PTR_ERR(priv->addr);
  1455. goto out_release;
  1456. }
  1457. spin_lock_init(&priv->lock);
  1458. INIT_WORK(&priv->work, ravb_tx_timeout_work);
  1459. priv->phy_interface = of_get_phy_mode(np);
  1460. priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
  1461. priv->avb_link_active_low =
  1462. of_property_read_bool(np, "renesas,ether-link-active-low");
  1463. if (chip_id == RCAR_GEN3) {
  1464. irq = platform_get_irq_byname(pdev, "ch24");
  1465. if (irq < 0) {
  1466. error = irq;
  1467. goto out_release;
  1468. }
  1469. priv->emac_irq = irq;
  1470. }
  1471. priv->chip_id = chip_id;
  1472. /* Set function */
  1473. ndev->netdev_ops = &ravb_netdev_ops;
  1474. ndev->ethtool_ops = &ravb_ethtool_ops;
  1475. /* Set AVB config mode */
  1476. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
  1477. CCC);
  1478. /* Set CSEL value */
  1479. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) | CCC_CSEL_HPB,
  1480. CCC);
  1481. /* Set GTI value */
  1482. ravb_write(ndev, ((1000 << 20) / 130) & GTI_TIV, GTI);
  1483. /* Request GTI loading */
  1484. ravb_write(ndev, ravb_read(ndev, GCCR) | GCCR_LTI, GCCR);
  1485. /* Allocate descriptor base address table */
  1486. priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
  1487. priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
  1488. &priv->desc_bat_dma, GFP_KERNEL);
  1489. if (!priv->desc_bat) {
  1490. dev_err(&pdev->dev,
  1491. "Cannot allocate desc base address table (size %d bytes)\n",
  1492. priv->desc_bat_size);
  1493. error = -ENOMEM;
  1494. goto out_release;
  1495. }
  1496. for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
  1497. priv->desc_bat[q].die_dt = DT_EOS;
  1498. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  1499. /* Initialise HW timestamp list */
  1500. INIT_LIST_HEAD(&priv->ts_skb_list);
  1501. /* Debug message level */
  1502. priv->msg_enable = RAVB_DEF_MSG_ENABLE;
  1503. /* Read and set MAC address */
  1504. ravb_read_mac_address(ndev, of_get_mac_address(np));
  1505. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1506. dev_warn(&pdev->dev,
  1507. "no valid MAC address supplied, using a random one\n");
  1508. eth_hw_addr_random(ndev);
  1509. }
  1510. /* MDIO bus init */
  1511. error = ravb_mdio_init(priv);
  1512. if (error) {
  1513. dev_err(&pdev->dev, "failed to initialize MDIO\n");
  1514. goto out_dma_free;
  1515. }
  1516. netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
  1517. netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
  1518. /* Network device register */
  1519. error = register_netdev(ndev);
  1520. if (error)
  1521. goto out_napi_del;
  1522. /* Print device information */
  1523. netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
  1524. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1525. platform_set_drvdata(pdev, ndev);
  1526. return 0;
  1527. out_napi_del:
  1528. netif_napi_del(&priv->napi[RAVB_NC]);
  1529. netif_napi_del(&priv->napi[RAVB_BE]);
  1530. ravb_mdio_release(priv);
  1531. out_dma_free:
  1532. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1533. priv->desc_bat_dma);
  1534. out_release:
  1535. if (ndev)
  1536. free_netdev(ndev);
  1537. pm_runtime_put(&pdev->dev);
  1538. pm_runtime_disable(&pdev->dev);
  1539. return error;
  1540. }
  1541. static int ravb_remove(struct platform_device *pdev)
  1542. {
  1543. struct net_device *ndev = platform_get_drvdata(pdev);
  1544. struct ravb_private *priv = netdev_priv(ndev);
  1545. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1546. priv->desc_bat_dma);
  1547. /* Set reset mode */
  1548. ravb_write(ndev, CCC_OPC_RESET, CCC);
  1549. pm_runtime_put_sync(&pdev->dev);
  1550. unregister_netdev(ndev);
  1551. netif_napi_del(&priv->napi[RAVB_NC]);
  1552. netif_napi_del(&priv->napi[RAVB_BE]);
  1553. ravb_mdio_release(priv);
  1554. pm_runtime_disable(&pdev->dev);
  1555. free_netdev(ndev);
  1556. platform_set_drvdata(pdev, NULL);
  1557. return 0;
  1558. }
  1559. #ifdef CONFIG_PM
  1560. static int ravb_runtime_nop(struct device *dev)
  1561. {
  1562. /* Runtime PM callback shared between ->runtime_suspend()
  1563. * and ->runtime_resume(). Simply returns success.
  1564. *
  1565. * This driver re-initializes all registers after
  1566. * pm_runtime_get_sync() anyway so there is no need
  1567. * to save and restore registers here.
  1568. */
  1569. return 0;
  1570. }
  1571. static const struct dev_pm_ops ravb_dev_pm_ops = {
  1572. .runtime_suspend = ravb_runtime_nop,
  1573. .runtime_resume = ravb_runtime_nop,
  1574. };
  1575. #define RAVB_PM_OPS (&ravb_dev_pm_ops)
  1576. #else
  1577. #define RAVB_PM_OPS NULL
  1578. #endif
  1579. static struct platform_driver ravb_driver = {
  1580. .probe = ravb_probe,
  1581. .remove = ravb_remove,
  1582. .driver = {
  1583. .name = "ravb",
  1584. .pm = RAVB_PM_OPS,
  1585. .of_match_table = ravb_match_table,
  1586. },
  1587. };
  1588. module_platform_driver(ravb_driver);
  1589. MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
  1590. MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
  1591. MODULE_LICENSE("GPL v2");