of_reserved_mem.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Device tree based initialization code for reserved memory.
  4. *
  5. * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  6. * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  7. * http://www.samsung.com
  8. * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  9. * Author: Josh Cartwright <joshc@codeaurora.org>
  10. */
  11. #define pr_fmt(fmt) "OF: reserved mem: " fmt
  12. #include <linux/err.h>
  13. #include <linux/of.h>
  14. #include <linux/of_fdt.h>
  15. #include <linux/of_platform.h>
  16. #include <linux/mm.h>
  17. #include <linux/sizes.h>
  18. #include <linux/of_reserved_mem.h>
  19. #include <linux/sort.h>
  20. #include <linux/slab.h>
  21. #include <linux/memblock.h>
  22. #define MAX_RESERVED_REGIONS 32
  23. static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
  24. static int reserved_mem_count;
  25. int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  26. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  27. phys_addr_t *res_base)
  28. {
  29. phys_addr_t base;
  30. /*
  31. * We use __memblock_alloc_base() because memblock_alloc_base()
  32. * panic()s on allocation failure.
  33. */
  34. end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
  35. align = !align ? SMP_CACHE_BYTES : align;
  36. base = __memblock_alloc_base(size, align, end);
  37. if (!base)
  38. return -ENOMEM;
  39. /*
  40. * Check if the allocated region fits in to start..end window
  41. */
  42. if (base < start) {
  43. memblock_free(base, size);
  44. return -ENOMEM;
  45. }
  46. *res_base = base;
  47. if (nomap)
  48. return memblock_remove(base, size);
  49. return 0;
  50. }
  51. /**
  52. * res_mem_save_node() - save fdt node for second pass initialization
  53. */
  54. void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
  55. phys_addr_t base, phys_addr_t size)
  56. {
  57. struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
  58. if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
  59. pr_err("not enough space all defined regions.\n");
  60. return;
  61. }
  62. rmem->fdt_node = node;
  63. rmem->name = uname;
  64. rmem->base = base;
  65. rmem->size = size;
  66. reserved_mem_count++;
  67. return;
  68. }
  69. /**
  70. * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
  71. * and 'alloc-ranges' properties
  72. */
  73. static int __init __reserved_mem_alloc_size(unsigned long node,
  74. const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
  75. {
  76. int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
  77. phys_addr_t start = 0, end = 0;
  78. phys_addr_t base = 0, align = 0, size;
  79. int len;
  80. const __be32 *prop;
  81. int nomap;
  82. int ret;
  83. prop = of_get_flat_dt_prop(node, "size", &len);
  84. if (!prop)
  85. return -EINVAL;
  86. if (len != dt_root_size_cells * sizeof(__be32)) {
  87. pr_err("invalid size property in '%s' node.\n", uname);
  88. return -EINVAL;
  89. }
  90. size = dt_mem_next_cell(dt_root_size_cells, &prop);
  91. nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
  92. prop = of_get_flat_dt_prop(node, "alignment", &len);
  93. if (prop) {
  94. if (len != dt_root_addr_cells * sizeof(__be32)) {
  95. pr_err("invalid alignment property in '%s' node.\n",
  96. uname);
  97. return -EINVAL;
  98. }
  99. align = dt_mem_next_cell(dt_root_addr_cells, &prop);
  100. }
  101. /* Need adjust the alignment to satisfy the CMA requirement */
  102. if (IS_ENABLED(CONFIG_CMA)
  103. && of_flat_dt_is_compatible(node, "shared-dma-pool")
  104. && of_get_flat_dt_prop(node, "reusable", NULL)
  105. && !of_get_flat_dt_prop(node, "no-map", NULL)) {
  106. unsigned long order =
  107. max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
  108. align = max(align, (phys_addr_t)PAGE_SIZE << order);
  109. }
  110. prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
  111. if (prop) {
  112. if (len % t_len != 0) {
  113. pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
  114. uname);
  115. return -EINVAL;
  116. }
  117. base = 0;
  118. while (len > 0) {
  119. start = dt_mem_next_cell(dt_root_addr_cells, &prop);
  120. end = start + dt_mem_next_cell(dt_root_size_cells,
  121. &prop);
  122. ret = early_init_dt_alloc_reserved_memory_arch(size,
  123. align, start, end, nomap, &base);
  124. if (ret == 0) {
  125. pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
  126. uname, &base,
  127. (unsigned long)size / SZ_1M);
  128. break;
  129. }
  130. len -= t_len;
  131. }
  132. } else {
  133. ret = early_init_dt_alloc_reserved_memory_arch(size, align,
  134. 0, 0, nomap, &base);
  135. if (ret == 0)
  136. pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
  137. uname, &base, (unsigned long)size / SZ_1M);
  138. }
  139. if (base == 0) {
  140. pr_info("failed to allocate memory for node '%s'\n", uname);
  141. return -ENOMEM;
  142. }
  143. *res_base = base;
  144. *res_size = size;
  145. return 0;
  146. }
  147. static const struct of_device_id __rmem_of_table_sentinel
  148. __used __section(__reservedmem_of_table_end);
  149. /**
  150. * res_mem_init_node() - call region specific reserved memory init code
  151. */
  152. static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
  153. {
  154. extern const struct of_device_id __reservedmem_of_table[];
  155. const struct of_device_id *i;
  156. for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
  157. reservedmem_of_init_fn initfn = i->data;
  158. const char *compat = i->compatible;
  159. if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
  160. continue;
  161. if (initfn(rmem) == 0) {
  162. pr_info("initialized node %s, compatible id %s\n",
  163. rmem->name, compat);
  164. return 0;
  165. }
  166. }
  167. return -ENOENT;
  168. }
  169. static int __init __rmem_cmp(const void *a, const void *b)
  170. {
  171. const struct reserved_mem *ra = a, *rb = b;
  172. if (ra->base < rb->base)
  173. return -1;
  174. if (ra->base > rb->base)
  175. return 1;
  176. return 0;
  177. }
  178. static void __init __rmem_check_for_overlap(void)
  179. {
  180. int i;
  181. if (reserved_mem_count < 2)
  182. return;
  183. sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
  184. __rmem_cmp, NULL);
  185. for (i = 0; i < reserved_mem_count - 1; i++) {
  186. struct reserved_mem *this, *next;
  187. this = &reserved_mem[i];
  188. next = &reserved_mem[i + 1];
  189. if (!(this->base && next->base))
  190. continue;
  191. if (this->base + this->size > next->base) {
  192. phys_addr_t this_end, next_end;
  193. this_end = this->base + this->size;
  194. next_end = next->base + next->size;
  195. pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
  196. this->name, &this->base, &this_end,
  197. next->name, &next->base, &next_end);
  198. }
  199. }
  200. }
  201. /**
  202. * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
  203. */
  204. void __init fdt_init_reserved_mem(void)
  205. {
  206. int i;
  207. /* check for overlapping reserved regions */
  208. __rmem_check_for_overlap();
  209. for (i = 0; i < reserved_mem_count; i++) {
  210. struct reserved_mem *rmem = &reserved_mem[i];
  211. unsigned long node = rmem->fdt_node;
  212. int len;
  213. const __be32 *prop;
  214. int err = 0;
  215. prop = of_get_flat_dt_prop(node, "phandle", &len);
  216. if (!prop)
  217. prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
  218. if (prop)
  219. rmem->phandle = of_read_number(prop, len/4);
  220. if (rmem->size == 0)
  221. err = __reserved_mem_alloc_size(node, rmem->name,
  222. &rmem->base, &rmem->size);
  223. if (err == 0)
  224. __reserved_mem_init_node(rmem);
  225. }
  226. }
  227. static inline struct reserved_mem *__find_rmem(struct device_node *node)
  228. {
  229. unsigned int i;
  230. if (!node->phandle)
  231. return NULL;
  232. for (i = 0; i < reserved_mem_count; i++)
  233. if (reserved_mem[i].phandle == node->phandle)
  234. return &reserved_mem[i];
  235. return NULL;
  236. }
  237. struct rmem_assigned_device {
  238. struct device *dev;
  239. struct reserved_mem *rmem;
  240. struct list_head list;
  241. };
  242. static LIST_HEAD(of_rmem_assigned_device_list);
  243. static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
  244. /**
  245. * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
  246. * given device
  247. * @dev: Pointer to the device to configure
  248. * @np: Pointer to the device_node with 'reserved-memory' property
  249. * @idx: Index of selected region
  250. *
  251. * This function assigns respective DMA-mapping operations based on reserved
  252. * memory region specified by 'memory-region' property in @np node to the @dev
  253. * device. When driver needs to use more than one reserved memory region, it
  254. * should allocate child devices and initialize regions by name for each of
  255. * child device.
  256. *
  257. * Returns error code or zero on success.
  258. */
  259. int of_reserved_mem_device_init_by_idx(struct device *dev,
  260. struct device_node *np, int idx)
  261. {
  262. struct rmem_assigned_device *rd;
  263. struct device_node *target;
  264. struct reserved_mem *rmem;
  265. int ret;
  266. if (!np || !dev)
  267. return -EINVAL;
  268. target = of_parse_phandle(np, "memory-region", idx);
  269. if (!target)
  270. return -ENODEV;
  271. rmem = __find_rmem(target);
  272. of_node_put(target);
  273. if (!rmem || !rmem->ops || !rmem->ops->device_init)
  274. return -EINVAL;
  275. rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
  276. if (!rd)
  277. return -ENOMEM;
  278. ret = rmem->ops->device_init(rmem, dev);
  279. if (ret == 0) {
  280. rd->dev = dev;
  281. rd->rmem = rmem;
  282. mutex_lock(&of_rmem_assigned_device_mutex);
  283. list_add(&rd->list, &of_rmem_assigned_device_list);
  284. mutex_unlock(&of_rmem_assigned_device_mutex);
  285. /* ensure that dma_ops is set for virtual devices
  286. * using reserved memory
  287. */
  288. of_dma_configure(dev, np, true);
  289. dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
  290. } else {
  291. kfree(rd);
  292. }
  293. return ret;
  294. }
  295. EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
  296. /**
  297. * of_reserved_mem_device_release() - release reserved memory device structures
  298. * @dev: Pointer to the device to deconfigure
  299. *
  300. * This function releases structures allocated for memory region handling for
  301. * the given device.
  302. */
  303. void of_reserved_mem_device_release(struct device *dev)
  304. {
  305. struct rmem_assigned_device *rd;
  306. struct reserved_mem *rmem = NULL;
  307. mutex_lock(&of_rmem_assigned_device_mutex);
  308. list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
  309. if (rd->dev == dev) {
  310. rmem = rd->rmem;
  311. list_del(&rd->list);
  312. kfree(rd);
  313. break;
  314. }
  315. }
  316. mutex_unlock(&of_rmem_assigned_device_mutex);
  317. if (!rmem || !rmem->ops || !rmem->ops->device_release)
  318. return;
  319. rmem->ops->device_release(rmem, dev);
  320. }
  321. EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
  322. /**
  323. * of_reserved_mem_lookup() - acquire reserved_mem from a device node
  324. * @np: node pointer of the desired reserved-memory region
  325. *
  326. * This function allows drivers to acquire a reference to the reserved_mem
  327. * struct based on a device node handle.
  328. *
  329. * Returns a reserved_mem reference, or NULL on error.
  330. */
  331. struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
  332. {
  333. const char *name;
  334. int i;
  335. if (!np->full_name)
  336. return NULL;
  337. name = kbasename(np->full_name);
  338. for (i = 0; i < reserved_mem_count; i++)
  339. if (!strcmp(reserved_mem[i].name, name))
  340. return &reserved_mem[i];
  341. return NULL;
  342. }
  343. EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);