igb_main.c 219 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248
  1. /* Intel(R) Gigabit Ethernet Linux driver
  2. * Copyright(c) 2007-2014 Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, see <http://www.gnu.org/licenses/>.
  15. *
  16. * The full GNU General Public License is included in this distribution in
  17. * the file called "COPYING".
  18. *
  19. * Contact Information:
  20. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22. */
  23. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24. #include <linux/module.h>
  25. #include <linux/types.h>
  26. #include <linux/init.h>
  27. #include <linux/bitops.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/ipv6.h>
  32. #include <linux/slab.h>
  33. #include <net/checksum.h>
  34. #include <net/ip6_checksum.h>
  35. #include <linux/net_tstamp.h>
  36. #include <linux/mii.h>
  37. #include <linux/ethtool.h>
  38. #include <linux/if.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/pci.h>
  41. #include <linux/pci-aspm.h>
  42. #include <linux/delay.h>
  43. #include <linux/interrupt.h>
  44. #include <linux/ip.h>
  45. #include <linux/tcp.h>
  46. #include <linux/sctp.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/aer.h>
  49. #include <linux/prefetch.h>
  50. #include <linux/pm_runtime.h>
  51. #ifdef CONFIG_IGB_DCA
  52. #include <linux/dca.h>
  53. #endif
  54. #include <linux/i2c.h>
  55. #include "igb.h"
  56. #define MAJ 5
  57. #define MIN 3
  58. #define BUILD 0
  59. #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  60. __stringify(BUILD) "-k"
  61. char igb_driver_name[] = "igb";
  62. char igb_driver_version[] = DRV_VERSION;
  63. static const char igb_driver_string[] =
  64. "Intel(R) Gigabit Ethernet Network Driver";
  65. static const char igb_copyright[] =
  66. "Copyright (c) 2007-2014 Intel Corporation.";
  67. static const struct e1000_info *igb_info_tbl[] = {
  68. [board_82575] = &e1000_82575_info,
  69. };
  70. static const struct pci_device_id igb_pci_tbl[] = {
  71. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  72. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  73. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  74. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  75. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  76. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  77. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  78. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  79. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  80. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  81. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  82. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  83. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  84. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  85. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  86. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  87. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  88. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  89. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  90. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  91. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  92. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  93. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  94. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  95. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  96. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  97. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  98. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  99. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  100. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  101. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
  102. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
  103. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
  104. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
  105. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
  106. /* required last entry */
  107. {0, }
  108. };
  109. MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
  110. static int igb_setup_all_tx_resources(struct igb_adapter *);
  111. static int igb_setup_all_rx_resources(struct igb_adapter *);
  112. static void igb_free_all_tx_resources(struct igb_adapter *);
  113. static void igb_free_all_rx_resources(struct igb_adapter *);
  114. static void igb_setup_mrqc(struct igb_adapter *);
  115. static int igb_probe(struct pci_dev *, const struct pci_device_id *);
  116. static void igb_remove(struct pci_dev *pdev);
  117. static int igb_sw_init(struct igb_adapter *);
  118. int igb_open(struct net_device *);
  119. int igb_close(struct net_device *);
  120. static void igb_configure(struct igb_adapter *);
  121. static void igb_configure_tx(struct igb_adapter *);
  122. static void igb_configure_rx(struct igb_adapter *);
  123. static void igb_clean_all_tx_rings(struct igb_adapter *);
  124. static void igb_clean_all_rx_rings(struct igb_adapter *);
  125. static void igb_clean_tx_ring(struct igb_ring *);
  126. static void igb_clean_rx_ring(struct igb_ring *);
  127. static void igb_set_rx_mode(struct net_device *);
  128. static void igb_update_phy_info(unsigned long);
  129. static void igb_watchdog(unsigned long);
  130. static void igb_watchdog_task(struct work_struct *);
  131. static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
  132. static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
  133. struct rtnl_link_stats64 *stats);
  134. static int igb_change_mtu(struct net_device *, int);
  135. static int igb_set_mac(struct net_device *, void *);
  136. static void igb_set_uta(struct igb_adapter *adapter, bool set);
  137. static irqreturn_t igb_intr(int irq, void *);
  138. static irqreturn_t igb_intr_msi(int irq, void *);
  139. static irqreturn_t igb_msix_other(int irq, void *);
  140. static irqreturn_t igb_msix_ring(int irq, void *);
  141. #ifdef CONFIG_IGB_DCA
  142. static void igb_update_dca(struct igb_q_vector *);
  143. static void igb_setup_dca(struct igb_adapter *);
  144. #endif /* CONFIG_IGB_DCA */
  145. static int igb_poll(struct napi_struct *, int);
  146. static bool igb_clean_tx_irq(struct igb_q_vector *);
  147. static int igb_clean_rx_irq(struct igb_q_vector *, int);
  148. static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
  149. static void igb_tx_timeout(struct net_device *);
  150. static void igb_reset_task(struct work_struct *);
  151. static void igb_vlan_mode(struct net_device *netdev,
  152. netdev_features_t features);
  153. static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
  154. static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
  155. static void igb_restore_vlan(struct igb_adapter *);
  156. static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
  157. static void igb_ping_all_vfs(struct igb_adapter *);
  158. static void igb_msg_task(struct igb_adapter *);
  159. static void igb_vmm_control(struct igb_adapter *);
  160. static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
  161. static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
  162. static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
  163. static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  164. int vf, u16 vlan, u8 qos);
  165. static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
  166. static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  167. bool setting);
  168. static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
  169. struct ifla_vf_info *ivi);
  170. static void igb_check_vf_rate_limit(struct igb_adapter *);
  171. #ifdef CONFIG_PCI_IOV
  172. static int igb_vf_configure(struct igb_adapter *adapter, int vf);
  173. static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
  174. static int igb_disable_sriov(struct pci_dev *dev);
  175. static int igb_pci_disable_sriov(struct pci_dev *dev);
  176. #endif
  177. #ifdef CONFIG_PM
  178. #ifdef CONFIG_PM_SLEEP
  179. static int igb_suspend(struct device *);
  180. #endif
  181. static int igb_resume(struct device *);
  182. static int igb_runtime_suspend(struct device *dev);
  183. static int igb_runtime_resume(struct device *dev);
  184. static int igb_runtime_idle(struct device *dev);
  185. static const struct dev_pm_ops igb_pm_ops = {
  186. SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
  187. SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
  188. igb_runtime_idle)
  189. };
  190. #endif
  191. static void igb_shutdown(struct pci_dev *);
  192. static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
  193. #ifdef CONFIG_IGB_DCA
  194. static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
  195. static struct notifier_block dca_notifier = {
  196. .notifier_call = igb_notify_dca,
  197. .next = NULL,
  198. .priority = 0
  199. };
  200. #endif
  201. #ifdef CONFIG_NET_POLL_CONTROLLER
  202. /* for netdump / net console */
  203. static void igb_netpoll(struct net_device *);
  204. #endif
  205. #ifdef CONFIG_PCI_IOV
  206. static unsigned int max_vfs;
  207. module_param(max_vfs, uint, 0);
  208. MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
  209. #endif /* CONFIG_PCI_IOV */
  210. static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
  211. pci_channel_state_t);
  212. static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
  213. static void igb_io_resume(struct pci_dev *);
  214. static const struct pci_error_handlers igb_err_handler = {
  215. .error_detected = igb_io_error_detected,
  216. .slot_reset = igb_io_slot_reset,
  217. .resume = igb_io_resume,
  218. };
  219. static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
  220. static struct pci_driver igb_driver = {
  221. .name = igb_driver_name,
  222. .id_table = igb_pci_tbl,
  223. .probe = igb_probe,
  224. .remove = igb_remove,
  225. #ifdef CONFIG_PM
  226. .driver.pm = &igb_pm_ops,
  227. #endif
  228. .shutdown = igb_shutdown,
  229. .sriov_configure = igb_pci_sriov_configure,
  230. .err_handler = &igb_err_handler
  231. };
  232. MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
  233. MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
  234. MODULE_LICENSE("GPL");
  235. MODULE_VERSION(DRV_VERSION);
  236. #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  237. static int debug = -1;
  238. module_param(debug, int, 0);
  239. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  240. struct igb_reg_info {
  241. u32 ofs;
  242. char *name;
  243. };
  244. static const struct igb_reg_info igb_reg_info_tbl[] = {
  245. /* General Registers */
  246. {E1000_CTRL, "CTRL"},
  247. {E1000_STATUS, "STATUS"},
  248. {E1000_CTRL_EXT, "CTRL_EXT"},
  249. /* Interrupt Registers */
  250. {E1000_ICR, "ICR"},
  251. /* RX Registers */
  252. {E1000_RCTL, "RCTL"},
  253. {E1000_RDLEN(0), "RDLEN"},
  254. {E1000_RDH(0), "RDH"},
  255. {E1000_RDT(0), "RDT"},
  256. {E1000_RXDCTL(0), "RXDCTL"},
  257. {E1000_RDBAL(0), "RDBAL"},
  258. {E1000_RDBAH(0), "RDBAH"},
  259. /* TX Registers */
  260. {E1000_TCTL, "TCTL"},
  261. {E1000_TDBAL(0), "TDBAL"},
  262. {E1000_TDBAH(0), "TDBAH"},
  263. {E1000_TDLEN(0), "TDLEN"},
  264. {E1000_TDH(0), "TDH"},
  265. {E1000_TDT(0), "TDT"},
  266. {E1000_TXDCTL(0), "TXDCTL"},
  267. {E1000_TDFH, "TDFH"},
  268. {E1000_TDFT, "TDFT"},
  269. {E1000_TDFHS, "TDFHS"},
  270. {E1000_TDFPC, "TDFPC"},
  271. /* List Terminator */
  272. {}
  273. };
  274. /* igb_regdump - register printout routine */
  275. static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
  276. {
  277. int n = 0;
  278. char rname[16];
  279. u32 regs[8];
  280. switch (reginfo->ofs) {
  281. case E1000_RDLEN(0):
  282. for (n = 0; n < 4; n++)
  283. regs[n] = rd32(E1000_RDLEN(n));
  284. break;
  285. case E1000_RDH(0):
  286. for (n = 0; n < 4; n++)
  287. regs[n] = rd32(E1000_RDH(n));
  288. break;
  289. case E1000_RDT(0):
  290. for (n = 0; n < 4; n++)
  291. regs[n] = rd32(E1000_RDT(n));
  292. break;
  293. case E1000_RXDCTL(0):
  294. for (n = 0; n < 4; n++)
  295. regs[n] = rd32(E1000_RXDCTL(n));
  296. break;
  297. case E1000_RDBAL(0):
  298. for (n = 0; n < 4; n++)
  299. regs[n] = rd32(E1000_RDBAL(n));
  300. break;
  301. case E1000_RDBAH(0):
  302. for (n = 0; n < 4; n++)
  303. regs[n] = rd32(E1000_RDBAH(n));
  304. break;
  305. case E1000_TDBAL(0):
  306. for (n = 0; n < 4; n++)
  307. regs[n] = rd32(E1000_RDBAL(n));
  308. break;
  309. case E1000_TDBAH(0):
  310. for (n = 0; n < 4; n++)
  311. regs[n] = rd32(E1000_TDBAH(n));
  312. break;
  313. case E1000_TDLEN(0):
  314. for (n = 0; n < 4; n++)
  315. regs[n] = rd32(E1000_TDLEN(n));
  316. break;
  317. case E1000_TDH(0):
  318. for (n = 0; n < 4; n++)
  319. regs[n] = rd32(E1000_TDH(n));
  320. break;
  321. case E1000_TDT(0):
  322. for (n = 0; n < 4; n++)
  323. regs[n] = rd32(E1000_TDT(n));
  324. break;
  325. case E1000_TXDCTL(0):
  326. for (n = 0; n < 4; n++)
  327. regs[n] = rd32(E1000_TXDCTL(n));
  328. break;
  329. default:
  330. pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
  331. return;
  332. }
  333. snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
  334. pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
  335. regs[2], regs[3]);
  336. }
  337. /* igb_dump - Print registers, Tx-rings and Rx-rings */
  338. static void igb_dump(struct igb_adapter *adapter)
  339. {
  340. struct net_device *netdev = adapter->netdev;
  341. struct e1000_hw *hw = &adapter->hw;
  342. struct igb_reg_info *reginfo;
  343. struct igb_ring *tx_ring;
  344. union e1000_adv_tx_desc *tx_desc;
  345. struct my_u0 { u64 a; u64 b; } *u0;
  346. struct igb_ring *rx_ring;
  347. union e1000_adv_rx_desc *rx_desc;
  348. u32 staterr;
  349. u16 i, n;
  350. if (!netif_msg_hw(adapter))
  351. return;
  352. /* Print netdevice Info */
  353. if (netdev) {
  354. dev_info(&adapter->pdev->dev, "Net device Info\n");
  355. pr_info("Device Name state trans_start last_rx\n");
  356. pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
  357. netdev->state, netdev->trans_start, netdev->last_rx);
  358. }
  359. /* Print Registers */
  360. dev_info(&adapter->pdev->dev, "Register Dump\n");
  361. pr_info(" Register Name Value\n");
  362. for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
  363. reginfo->name; reginfo++) {
  364. igb_regdump(hw, reginfo);
  365. }
  366. /* Print TX Ring Summary */
  367. if (!netdev || !netif_running(netdev))
  368. goto exit;
  369. dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
  370. pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
  371. for (n = 0; n < adapter->num_tx_queues; n++) {
  372. struct igb_tx_buffer *buffer_info;
  373. tx_ring = adapter->tx_ring[n];
  374. buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
  375. pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
  376. n, tx_ring->next_to_use, tx_ring->next_to_clean,
  377. (u64)dma_unmap_addr(buffer_info, dma),
  378. dma_unmap_len(buffer_info, len),
  379. buffer_info->next_to_watch,
  380. (u64)buffer_info->time_stamp);
  381. }
  382. /* Print TX Rings */
  383. if (!netif_msg_tx_done(adapter))
  384. goto rx_ring_summary;
  385. dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
  386. /* Transmit Descriptor Formats
  387. *
  388. * Advanced Transmit Descriptor
  389. * +--------------------------------------------------------------+
  390. * 0 | Buffer Address [63:0] |
  391. * +--------------------------------------------------------------+
  392. * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
  393. * +--------------------------------------------------------------+
  394. * 63 46 45 40 39 38 36 35 32 31 24 15 0
  395. */
  396. for (n = 0; n < adapter->num_tx_queues; n++) {
  397. tx_ring = adapter->tx_ring[n];
  398. pr_info("------------------------------------\n");
  399. pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
  400. pr_info("------------------------------------\n");
  401. pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
  402. for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
  403. const char *next_desc;
  404. struct igb_tx_buffer *buffer_info;
  405. tx_desc = IGB_TX_DESC(tx_ring, i);
  406. buffer_info = &tx_ring->tx_buffer_info[i];
  407. u0 = (struct my_u0 *)tx_desc;
  408. if (i == tx_ring->next_to_use &&
  409. i == tx_ring->next_to_clean)
  410. next_desc = " NTC/U";
  411. else if (i == tx_ring->next_to_use)
  412. next_desc = " NTU";
  413. else if (i == tx_ring->next_to_clean)
  414. next_desc = " NTC";
  415. else
  416. next_desc = "";
  417. pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
  418. i, le64_to_cpu(u0->a),
  419. le64_to_cpu(u0->b),
  420. (u64)dma_unmap_addr(buffer_info, dma),
  421. dma_unmap_len(buffer_info, len),
  422. buffer_info->next_to_watch,
  423. (u64)buffer_info->time_stamp,
  424. buffer_info->skb, next_desc);
  425. if (netif_msg_pktdata(adapter) && buffer_info->skb)
  426. print_hex_dump(KERN_INFO, "",
  427. DUMP_PREFIX_ADDRESS,
  428. 16, 1, buffer_info->skb->data,
  429. dma_unmap_len(buffer_info, len),
  430. true);
  431. }
  432. }
  433. /* Print RX Rings Summary */
  434. rx_ring_summary:
  435. dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
  436. pr_info("Queue [NTU] [NTC]\n");
  437. for (n = 0; n < adapter->num_rx_queues; n++) {
  438. rx_ring = adapter->rx_ring[n];
  439. pr_info(" %5d %5X %5X\n",
  440. n, rx_ring->next_to_use, rx_ring->next_to_clean);
  441. }
  442. /* Print RX Rings */
  443. if (!netif_msg_rx_status(adapter))
  444. goto exit;
  445. dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
  446. /* Advanced Receive Descriptor (Read) Format
  447. * 63 1 0
  448. * +-----------------------------------------------------+
  449. * 0 | Packet Buffer Address [63:1] |A0/NSE|
  450. * +----------------------------------------------+------+
  451. * 8 | Header Buffer Address [63:1] | DD |
  452. * +-----------------------------------------------------+
  453. *
  454. *
  455. * Advanced Receive Descriptor (Write-Back) Format
  456. *
  457. * 63 48 47 32 31 30 21 20 17 16 4 3 0
  458. * +------------------------------------------------------+
  459. * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
  460. * | Checksum Ident | | | | Type | Type |
  461. * +------------------------------------------------------+
  462. * 8 | VLAN Tag | Length | Extended Error | Extended Status |
  463. * +------------------------------------------------------+
  464. * 63 48 47 32 31 20 19 0
  465. */
  466. for (n = 0; n < adapter->num_rx_queues; n++) {
  467. rx_ring = adapter->rx_ring[n];
  468. pr_info("------------------------------------\n");
  469. pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
  470. pr_info("------------------------------------\n");
  471. pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
  472. pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
  473. for (i = 0; i < rx_ring->count; i++) {
  474. const char *next_desc;
  475. struct igb_rx_buffer *buffer_info;
  476. buffer_info = &rx_ring->rx_buffer_info[i];
  477. rx_desc = IGB_RX_DESC(rx_ring, i);
  478. u0 = (struct my_u0 *)rx_desc;
  479. staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  480. if (i == rx_ring->next_to_use)
  481. next_desc = " NTU";
  482. else if (i == rx_ring->next_to_clean)
  483. next_desc = " NTC";
  484. else
  485. next_desc = "";
  486. if (staterr & E1000_RXD_STAT_DD) {
  487. /* Descriptor Done */
  488. pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
  489. "RWB", i,
  490. le64_to_cpu(u0->a),
  491. le64_to_cpu(u0->b),
  492. next_desc);
  493. } else {
  494. pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
  495. "R ", i,
  496. le64_to_cpu(u0->a),
  497. le64_to_cpu(u0->b),
  498. (u64)buffer_info->dma,
  499. next_desc);
  500. if (netif_msg_pktdata(adapter) &&
  501. buffer_info->dma && buffer_info->page) {
  502. print_hex_dump(KERN_INFO, "",
  503. DUMP_PREFIX_ADDRESS,
  504. 16, 1,
  505. page_address(buffer_info->page) +
  506. buffer_info->page_offset,
  507. IGB_RX_BUFSZ, true);
  508. }
  509. }
  510. }
  511. }
  512. exit:
  513. return;
  514. }
  515. /**
  516. * igb_get_i2c_data - Reads the I2C SDA data bit
  517. * @hw: pointer to hardware structure
  518. * @i2cctl: Current value of I2CCTL register
  519. *
  520. * Returns the I2C data bit value
  521. **/
  522. static int igb_get_i2c_data(void *data)
  523. {
  524. struct igb_adapter *adapter = (struct igb_adapter *)data;
  525. struct e1000_hw *hw = &adapter->hw;
  526. s32 i2cctl = rd32(E1000_I2CPARAMS);
  527. return !!(i2cctl & E1000_I2C_DATA_IN);
  528. }
  529. /**
  530. * igb_set_i2c_data - Sets the I2C data bit
  531. * @data: pointer to hardware structure
  532. * @state: I2C data value (0 or 1) to set
  533. *
  534. * Sets the I2C data bit
  535. **/
  536. static void igb_set_i2c_data(void *data, int state)
  537. {
  538. struct igb_adapter *adapter = (struct igb_adapter *)data;
  539. struct e1000_hw *hw = &adapter->hw;
  540. s32 i2cctl = rd32(E1000_I2CPARAMS);
  541. if (state)
  542. i2cctl |= E1000_I2C_DATA_OUT;
  543. else
  544. i2cctl &= ~E1000_I2C_DATA_OUT;
  545. i2cctl &= ~E1000_I2C_DATA_OE_N;
  546. i2cctl |= E1000_I2C_CLK_OE_N;
  547. wr32(E1000_I2CPARAMS, i2cctl);
  548. wrfl();
  549. }
  550. /**
  551. * igb_set_i2c_clk - Sets the I2C SCL clock
  552. * @data: pointer to hardware structure
  553. * @state: state to set clock
  554. *
  555. * Sets the I2C clock line to state
  556. **/
  557. static void igb_set_i2c_clk(void *data, int state)
  558. {
  559. struct igb_adapter *adapter = (struct igb_adapter *)data;
  560. struct e1000_hw *hw = &adapter->hw;
  561. s32 i2cctl = rd32(E1000_I2CPARAMS);
  562. if (state) {
  563. i2cctl |= E1000_I2C_CLK_OUT;
  564. i2cctl &= ~E1000_I2C_CLK_OE_N;
  565. } else {
  566. i2cctl &= ~E1000_I2C_CLK_OUT;
  567. i2cctl &= ~E1000_I2C_CLK_OE_N;
  568. }
  569. wr32(E1000_I2CPARAMS, i2cctl);
  570. wrfl();
  571. }
  572. /**
  573. * igb_get_i2c_clk - Gets the I2C SCL clock state
  574. * @data: pointer to hardware structure
  575. *
  576. * Gets the I2C clock state
  577. **/
  578. static int igb_get_i2c_clk(void *data)
  579. {
  580. struct igb_adapter *adapter = (struct igb_adapter *)data;
  581. struct e1000_hw *hw = &adapter->hw;
  582. s32 i2cctl = rd32(E1000_I2CPARAMS);
  583. return !!(i2cctl & E1000_I2C_CLK_IN);
  584. }
  585. static const struct i2c_algo_bit_data igb_i2c_algo = {
  586. .setsda = igb_set_i2c_data,
  587. .setscl = igb_set_i2c_clk,
  588. .getsda = igb_get_i2c_data,
  589. .getscl = igb_get_i2c_clk,
  590. .udelay = 5,
  591. .timeout = 20,
  592. };
  593. /**
  594. * igb_get_hw_dev - return device
  595. * @hw: pointer to hardware structure
  596. *
  597. * used by hardware layer to print debugging information
  598. **/
  599. struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
  600. {
  601. struct igb_adapter *adapter = hw->back;
  602. return adapter->netdev;
  603. }
  604. /**
  605. * igb_init_module - Driver Registration Routine
  606. *
  607. * igb_init_module is the first routine called when the driver is
  608. * loaded. All it does is register with the PCI subsystem.
  609. **/
  610. static int __init igb_init_module(void)
  611. {
  612. int ret;
  613. pr_info("%s - version %s\n",
  614. igb_driver_string, igb_driver_version);
  615. pr_info("%s\n", igb_copyright);
  616. #ifdef CONFIG_IGB_DCA
  617. dca_register_notify(&dca_notifier);
  618. #endif
  619. ret = pci_register_driver(&igb_driver);
  620. return ret;
  621. }
  622. module_init(igb_init_module);
  623. /**
  624. * igb_exit_module - Driver Exit Cleanup Routine
  625. *
  626. * igb_exit_module is called just before the driver is removed
  627. * from memory.
  628. **/
  629. static void __exit igb_exit_module(void)
  630. {
  631. #ifdef CONFIG_IGB_DCA
  632. dca_unregister_notify(&dca_notifier);
  633. #endif
  634. pci_unregister_driver(&igb_driver);
  635. }
  636. module_exit(igb_exit_module);
  637. #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
  638. /**
  639. * igb_cache_ring_register - Descriptor ring to register mapping
  640. * @adapter: board private structure to initialize
  641. *
  642. * Once we know the feature-set enabled for the device, we'll cache
  643. * the register offset the descriptor ring is assigned to.
  644. **/
  645. static void igb_cache_ring_register(struct igb_adapter *adapter)
  646. {
  647. int i = 0, j = 0;
  648. u32 rbase_offset = adapter->vfs_allocated_count;
  649. switch (adapter->hw.mac.type) {
  650. case e1000_82576:
  651. /* The queues are allocated for virtualization such that VF 0
  652. * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
  653. * In order to avoid collision we start at the first free queue
  654. * and continue consuming queues in the same sequence
  655. */
  656. if (adapter->vfs_allocated_count) {
  657. for (; i < adapter->rss_queues; i++)
  658. adapter->rx_ring[i]->reg_idx = rbase_offset +
  659. Q_IDX_82576(i);
  660. }
  661. /* Fall through */
  662. case e1000_82575:
  663. case e1000_82580:
  664. case e1000_i350:
  665. case e1000_i354:
  666. case e1000_i210:
  667. case e1000_i211:
  668. /* Fall through */
  669. default:
  670. for (; i < adapter->num_rx_queues; i++)
  671. adapter->rx_ring[i]->reg_idx = rbase_offset + i;
  672. for (; j < adapter->num_tx_queues; j++)
  673. adapter->tx_ring[j]->reg_idx = rbase_offset + j;
  674. break;
  675. }
  676. }
  677. u32 igb_rd32(struct e1000_hw *hw, u32 reg)
  678. {
  679. struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
  680. u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
  681. u32 value = 0;
  682. if (E1000_REMOVED(hw_addr))
  683. return ~value;
  684. value = readl(&hw_addr[reg]);
  685. /* reads should not return all F's */
  686. if (!(~value) && (!reg || !(~readl(hw_addr)))) {
  687. struct net_device *netdev = igb->netdev;
  688. hw->hw_addr = NULL;
  689. netif_device_detach(netdev);
  690. netdev_err(netdev, "PCIe link lost, device now detached\n");
  691. }
  692. return value;
  693. }
  694. /**
  695. * igb_write_ivar - configure ivar for given MSI-X vector
  696. * @hw: pointer to the HW structure
  697. * @msix_vector: vector number we are allocating to a given ring
  698. * @index: row index of IVAR register to write within IVAR table
  699. * @offset: column offset of in IVAR, should be multiple of 8
  700. *
  701. * This function is intended to handle the writing of the IVAR register
  702. * for adapters 82576 and newer. The IVAR table consists of 2 columns,
  703. * each containing an cause allocation for an Rx and Tx ring, and a
  704. * variable number of rows depending on the number of queues supported.
  705. **/
  706. static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
  707. int index, int offset)
  708. {
  709. u32 ivar = array_rd32(E1000_IVAR0, index);
  710. /* clear any bits that are currently set */
  711. ivar &= ~((u32)0xFF << offset);
  712. /* write vector and valid bit */
  713. ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
  714. array_wr32(E1000_IVAR0, index, ivar);
  715. }
  716. #define IGB_N0_QUEUE -1
  717. static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
  718. {
  719. struct igb_adapter *adapter = q_vector->adapter;
  720. struct e1000_hw *hw = &adapter->hw;
  721. int rx_queue = IGB_N0_QUEUE;
  722. int tx_queue = IGB_N0_QUEUE;
  723. u32 msixbm = 0;
  724. if (q_vector->rx.ring)
  725. rx_queue = q_vector->rx.ring->reg_idx;
  726. if (q_vector->tx.ring)
  727. tx_queue = q_vector->tx.ring->reg_idx;
  728. switch (hw->mac.type) {
  729. case e1000_82575:
  730. /* The 82575 assigns vectors using a bitmask, which matches the
  731. * bitmask for the EICR/EIMS/EIMC registers. To assign one
  732. * or more queues to a vector, we write the appropriate bits
  733. * into the MSIXBM register for that vector.
  734. */
  735. if (rx_queue > IGB_N0_QUEUE)
  736. msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
  737. if (tx_queue > IGB_N0_QUEUE)
  738. msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
  739. if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
  740. msixbm |= E1000_EIMS_OTHER;
  741. array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
  742. q_vector->eims_value = msixbm;
  743. break;
  744. case e1000_82576:
  745. /* 82576 uses a table that essentially consists of 2 columns
  746. * with 8 rows. The ordering is column-major so we use the
  747. * lower 3 bits as the row index, and the 4th bit as the
  748. * column offset.
  749. */
  750. if (rx_queue > IGB_N0_QUEUE)
  751. igb_write_ivar(hw, msix_vector,
  752. rx_queue & 0x7,
  753. (rx_queue & 0x8) << 1);
  754. if (tx_queue > IGB_N0_QUEUE)
  755. igb_write_ivar(hw, msix_vector,
  756. tx_queue & 0x7,
  757. ((tx_queue & 0x8) << 1) + 8);
  758. q_vector->eims_value = 1 << msix_vector;
  759. break;
  760. case e1000_82580:
  761. case e1000_i350:
  762. case e1000_i354:
  763. case e1000_i210:
  764. case e1000_i211:
  765. /* On 82580 and newer adapters the scheme is similar to 82576
  766. * however instead of ordering column-major we have things
  767. * ordered row-major. So we traverse the table by using
  768. * bit 0 as the column offset, and the remaining bits as the
  769. * row index.
  770. */
  771. if (rx_queue > IGB_N0_QUEUE)
  772. igb_write_ivar(hw, msix_vector,
  773. rx_queue >> 1,
  774. (rx_queue & 0x1) << 4);
  775. if (tx_queue > IGB_N0_QUEUE)
  776. igb_write_ivar(hw, msix_vector,
  777. tx_queue >> 1,
  778. ((tx_queue & 0x1) << 4) + 8);
  779. q_vector->eims_value = 1 << msix_vector;
  780. break;
  781. default:
  782. BUG();
  783. break;
  784. }
  785. /* add q_vector eims value to global eims_enable_mask */
  786. adapter->eims_enable_mask |= q_vector->eims_value;
  787. /* configure q_vector to set itr on first interrupt */
  788. q_vector->set_itr = 1;
  789. }
  790. /**
  791. * igb_configure_msix - Configure MSI-X hardware
  792. * @adapter: board private structure to initialize
  793. *
  794. * igb_configure_msix sets up the hardware to properly
  795. * generate MSI-X interrupts.
  796. **/
  797. static void igb_configure_msix(struct igb_adapter *adapter)
  798. {
  799. u32 tmp;
  800. int i, vector = 0;
  801. struct e1000_hw *hw = &adapter->hw;
  802. adapter->eims_enable_mask = 0;
  803. /* set vector for other causes, i.e. link changes */
  804. switch (hw->mac.type) {
  805. case e1000_82575:
  806. tmp = rd32(E1000_CTRL_EXT);
  807. /* enable MSI-X PBA support*/
  808. tmp |= E1000_CTRL_EXT_PBA_CLR;
  809. /* Auto-Mask interrupts upon ICR read. */
  810. tmp |= E1000_CTRL_EXT_EIAME;
  811. tmp |= E1000_CTRL_EXT_IRCA;
  812. wr32(E1000_CTRL_EXT, tmp);
  813. /* enable msix_other interrupt */
  814. array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
  815. adapter->eims_other = E1000_EIMS_OTHER;
  816. break;
  817. case e1000_82576:
  818. case e1000_82580:
  819. case e1000_i350:
  820. case e1000_i354:
  821. case e1000_i210:
  822. case e1000_i211:
  823. /* Turn on MSI-X capability first, or our settings
  824. * won't stick. And it will take days to debug.
  825. */
  826. wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
  827. E1000_GPIE_PBA | E1000_GPIE_EIAME |
  828. E1000_GPIE_NSICR);
  829. /* enable msix_other interrupt */
  830. adapter->eims_other = 1 << vector;
  831. tmp = (vector++ | E1000_IVAR_VALID) << 8;
  832. wr32(E1000_IVAR_MISC, tmp);
  833. break;
  834. default:
  835. /* do nothing, since nothing else supports MSI-X */
  836. break;
  837. } /* switch (hw->mac.type) */
  838. adapter->eims_enable_mask |= adapter->eims_other;
  839. for (i = 0; i < adapter->num_q_vectors; i++)
  840. igb_assign_vector(adapter->q_vector[i], vector++);
  841. wrfl();
  842. }
  843. /**
  844. * igb_request_msix - Initialize MSI-X interrupts
  845. * @adapter: board private structure to initialize
  846. *
  847. * igb_request_msix allocates MSI-X vectors and requests interrupts from the
  848. * kernel.
  849. **/
  850. static int igb_request_msix(struct igb_adapter *adapter)
  851. {
  852. struct net_device *netdev = adapter->netdev;
  853. int i, err = 0, vector = 0, free_vector = 0;
  854. err = request_irq(adapter->msix_entries[vector].vector,
  855. igb_msix_other, 0, netdev->name, adapter);
  856. if (err)
  857. goto err_out;
  858. for (i = 0; i < adapter->num_q_vectors; i++) {
  859. struct igb_q_vector *q_vector = adapter->q_vector[i];
  860. vector++;
  861. q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
  862. if (q_vector->rx.ring && q_vector->tx.ring)
  863. sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
  864. q_vector->rx.ring->queue_index);
  865. else if (q_vector->tx.ring)
  866. sprintf(q_vector->name, "%s-tx-%u", netdev->name,
  867. q_vector->tx.ring->queue_index);
  868. else if (q_vector->rx.ring)
  869. sprintf(q_vector->name, "%s-rx-%u", netdev->name,
  870. q_vector->rx.ring->queue_index);
  871. else
  872. sprintf(q_vector->name, "%s-unused", netdev->name);
  873. err = request_irq(adapter->msix_entries[vector].vector,
  874. igb_msix_ring, 0, q_vector->name,
  875. q_vector);
  876. if (err)
  877. goto err_free;
  878. }
  879. igb_configure_msix(adapter);
  880. return 0;
  881. err_free:
  882. /* free already assigned IRQs */
  883. free_irq(adapter->msix_entries[free_vector++].vector, adapter);
  884. vector--;
  885. for (i = 0; i < vector; i++) {
  886. free_irq(adapter->msix_entries[free_vector++].vector,
  887. adapter->q_vector[i]);
  888. }
  889. err_out:
  890. return err;
  891. }
  892. /**
  893. * igb_free_q_vector - Free memory allocated for specific interrupt vector
  894. * @adapter: board private structure to initialize
  895. * @v_idx: Index of vector to be freed
  896. *
  897. * This function frees the memory allocated to the q_vector.
  898. **/
  899. static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
  900. {
  901. struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  902. adapter->q_vector[v_idx] = NULL;
  903. /* igb_get_stats64() might access the rings on this vector,
  904. * we must wait a grace period before freeing it.
  905. */
  906. if (q_vector)
  907. kfree_rcu(q_vector, rcu);
  908. }
  909. /**
  910. * igb_reset_q_vector - Reset config for interrupt vector
  911. * @adapter: board private structure to initialize
  912. * @v_idx: Index of vector to be reset
  913. *
  914. * If NAPI is enabled it will delete any references to the
  915. * NAPI struct. This is preparation for igb_free_q_vector.
  916. **/
  917. static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
  918. {
  919. struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  920. /* Coming from igb_set_interrupt_capability, the vectors are not yet
  921. * allocated. So, q_vector is NULL so we should stop here.
  922. */
  923. if (!q_vector)
  924. return;
  925. if (q_vector->tx.ring)
  926. adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
  927. if (q_vector->rx.ring)
  928. adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
  929. netif_napi_del(&q_vector->napi);
  930. }
  931. static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
  932. {
  933. int v_idx = adapter->num_q_vectors;
  934. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  935. pci_disable_msix(adapter->pdev);
  936. else if (adapter->flags & IGB_FLAG_HAS_MSI)
  937. pci_disable_msi(adapter->pdev);
  938. while (v_idx--)
  939. igb_reset_q_vector(adapter, v_idx);
  940. }
  941. /**
  942. * igb_free_q_vectors - Free memory allocated for interrupt vectors
  943. * @adapter: board private structure to initialize
  944. *
  945. * This function frees the memory allocated to the q_vectors. In addition if
  946. * NAPI is enabled it will delete any references to the NAPI struct prior
  947. * to freeing the q_vector.
  948. **/
  949. static void igb_free_q_vectors(struct igb_adapter *adapter)
  950. {
  951. int v_idx = adapter->num_q_vectors;
  952. adapter->num_tx_queues = 0;
  953. adapter->num_rx_queues = 0;
  954. adapter->num_q_vectors = 0;
  955. while (v_idx--) {
  956. igb_reset_q_vector(adapter, v_idx);
  957. igb_free_q_vector(adapter, v_idx);
  958. }
  959. }
  960. /**
  961. * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
  962. * @adapter: board private structure to initialize
  963. *
  964. * This function resets the device so that it has 0 Rx queues, Tx queues, and
  965. * MSI-X interrupts allocated.
  966. */
  967. static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
  968. {
  969. igb_free_q_vectors(adapter);
  970. igb_reset_interrupt_capability(adapter);
  971. }
  972. /**
  973. * igb_set_interrupt_capability - set MSI or MSI-X if supported
  974. * @adapter: board private structure to initialize
  975. * @msix: boolean value of MSIX capability
  976. *
  977. * Attempt to configure interrupts using the best available
  978. * capabilities of the hardware and kernel.
  979. **/
  980. static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
  981. {
  982. int err;
  983. int numvecs, i;
  984. if (!msix)
  985. goto msi_only;
  986. adapter->flags |= IGB_FLAG_HAS_MSIX;
  987. /* Number of supported queues. */
  988. adapter->num_rx_queues = adapter->rss_queues;
  989. if (adapter->vfs_allocated_count)
  990. adapter->num_tx_queues = 1;
  991. else
  992. adapter->num_tx_queues = adapter->rss_queues;
  993. /* start with one vector for every Rx queue */
  994. numvecs = adapter->num_rx_queues;
  995. /* if Tx handler is separate add 1 for every Tx queue */
  996. if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
  997. numvecs += adapter->num_tx_queues;
  998. /* store the number of vectors reserved for queues */
  999. adapter->num_q_vectors = numvecs;
  1000. /* add 1 vector for link status interrupts */
  1001. numvecs++;
  1002. for (i = 0; i < numvecs; i++)
  1003. adapter->msix_entries[i].entry = i;
  1004. err = pci_enable_msix_range(adapter->pdev,
  1005. adapter->msix_entries,
  1006. numvecs,
  1007. numvecs);
  1008. if (err > 0)
  1009. return;
  1010. igb_reset_interrupt_capability(adapter);
  1011. /* If we can't do MSI-X, try MSI */
  1012. msi_only:
  1013. adapter->flags &= ~IGB_FLAG_HAS_MSIX;
  1014. #ifdef CONFIG_PCI_IOV
  1015. /* disable SR-IOV for non MSI-X configurations */
  1016. if (adapter->vf_data) {
  1017. struct e1000_hw *hw = &adapter->hw;
  1018. /* disable iov and allow time for transactions to clear */
  1019. pci_disable_sriov(adapter->pdev);
  1020. msleep(500);
  1021. kfree(adapter->vf_data);
  1022. adapter->vf_data = NULL;
  1023. wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
  1024. wrfl();
  1025. msleep(100);
  1026. dev_info(&adapter->pdev->dev, "IOV Disabled\n");
  1027. }
  1028. #endif
  1029. adapter->vfs_allocated_count = 0;
  1030. adapter->rss_queues = 1;
  1031. adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
  1032. adapter->num_rx_queues = 1;
  1033. adapter->num_tx_queues = 1;
  1034. adapter->num_q_vectors = 1;
  1035. if (!pci_enable_msi(adapter->pdev))
  1036. adapter->flags |= IGB_FLAG_HAS_MSI;
  1037. }
  1038. static void igb_add_ring(struct igb_ring *ring,
  1039. struct igb_ring_container *head)
  1040. {
  1041. head->ring = ring;
  1042. head->count++;
  1043. }
  1044. /**
  1045. * igb_alloc_q_vector - Allocate memory for a single interrupt vector
  1046. * @adapter: board private structure to initialize
  1047. * @v_count: q_vectors allocated on adapter, used for ring interleaving
  1048. * @v_idx: index of vector in adapter struct
  1049. * @txr_count: total number of Tx rings to allocate
  1050. * @txr_idx: index of first Tx ring to allocate
  1051. * @rxr_count: total number of Rx rings to allocate
  1052. * @rxr_idx: index of first Rx ring to allocate
  1053. *
  1054. * We allocate one q_vector. If allocation fails we return -ENOMEM.
  1055. **/
  1056. static int igb_alloc_q_vector(struct igb_adapter *adapter,
  1057. int v_count, int v_idx,
  1058. int txr_count, int txr_idx,
  1059. int rxr_count, int rxr_idx)
  1060. {
  1061. struct igb_q_vector *q_vector;
  1062. struct igb_ring *ring;
  1063. int ring_count, size;
  1064. /* igb only supports 1 Tx and/or 1 Rx queue per vector */
  1065. if (txr_count > 1 || rxr_count > 1)
  1066. return -ENOMEM;
  1067. ring_count = txr_count + rxr_count;
  1068. size = sizeof(struct igb_q_vector) +
  1069. (sizeof(struct igb_ring) * ring_count);
  1070. /* allocate q_vector and rings */
  1071. q_vector = adapter->q_vector[v_idx];
  1072. if (!q_vector) {
  1073. q_vector = kzalloc(size, GFP_KERNEL);
  1074. } else if (size > ksize(q_vector)) {
  1075. kfree_rcu(q_vector, rcu);
  1076. q_vector = kzalloc(size, GFP_KERNEL);
  1077. } else {
  1078. memset(q_vector, 0, size);
  1079. }
  1080. if (!q_vector)
  1081. return -ENOMEM;
  1082. /* initialize NAPI */
  1083. netif_napi_add(adapter->netdev, &q_vector->napi,
  1084. igb_poll, 64);
  1085. /* tie q_vector and adapter together */
  1086. adapter->q_vector[v_idx] = q_vector;
  1087. q_vector->adapter = adapter;
  1088. /* initialize work limits */
  1089. q_vector->tx.work_limit = adapter->tx_work_limit;
  1090. /* initialize ITR configuration */
  1091. q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
  1092. q_vector->itr_val = IGB_START_ITR;
  1093. /* initialize pointer to rings */
  1094. ring = q_vector->ring;
  1095. /* intialize ITR */
  1096. if (rxr_count) {
  1097. /* rx or rx/tx vector */
  1098. if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
  1099. q_vector->itr_val = adapter->rx_itr_setting;
  1100. } else {
  1101. /* tx only vector */
  1102. if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
  1103. q_vector->itr_val = adapter->tx_itr_setting;
  1104. }
  1105. if (txr_count) {
  1106. /* assign generic ring traits */
  1107. ring->dev = &adapter->pdev->dev;
  1108. ring->netdev = adapter->netdev;
  1109. /* configure backlink on ring */
  1110. ring->q_vector = q_vector;
  1111. /* update q_vector Tx values */
  1112. igb_add_ring(ring, &q_vector->tx);
  1113. /* For 82575, context index must be unique per ring. */
  1114. if (adapter->hw.mac.type == e1000_82575)
  1115. set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
  1116. /* apply Tx specific ring traits */
  1117. ring->count = adapter->tx_ring_count;
  1118. ring->queue_index = txr_idx;
  1119. u64_stats_init(&ring->tx_syncp);
  1120. u64_stats_init(&ring->tx_syncp2);
  1121. /* assign ring to adapter */
  1122. adapter->tx_ring[txr_idx] = ring;
  1123. /* push pointer to next ring */
  1124. ring++;
  1125. }
  1126. if (rxr_count) {
  1127. /* assign generic ring traits */
  1128. ring->dev = &adapter->pdev->dev;
  1129. ring->netdev = adapter->netdev;
  1130. /* configure backlink on ring */
  1131. ring->q_vector = q_vector;
  1132. /* update q_vector Rx values */
  1133. igb_add_ring(ring, &q_vector->rx);
  1134. /* set flag indicating ring supports SCTP checksum offload */
  1135. if (adapter->hw.mac.type >= e1000_82576)
  1136. set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
  1137. /* On i350, i354, i210, and i211, loopback VLAN packets
  1138. * have the tag byte-swapped.
  1139. */
  1140. if (adapter->hw.mac.type >= e1000_i350)
  1141. set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
  1142. /* apply Rx specific ring traits */
  1143. ring->count = adapter->rx_ring_count;
  1144. ring->queue_index = rxr_idx;
  1145. u64_stats_init(&ring->rx_syncp);
  1146. /* assign ring to adapter */
  1147. adapter->rx_ring[rxr_idx] = ring;
  1148. }
  1149. return 0;
  1150. }
  1151. /**
  1152. * igb_alloc_q_vectors - Allocate memory for interrupt vectors
  1153. * @adapter: board private structure to initialize
  1154. *
  1155. * We allocate one q_vector per queue interrupt. If allocation fails we
  1156. * return -ENOMEM.
  1157. **/
  1158. static int igb_alloc_q_vectors(struct igb_adapter *adapter)
  1159. {
  1160. int q_vectors = adapter->num_q_vectors;
  1161. int rxr_remaining = adapter->num_rx_queues;
  1162. int txr_remaining = adapter->num_tx_queues;
  1163. int rxr_idx = 0, txr_idx = 0, v_idx = 0;
  1164. int err;
  1165. if (q_vectors >= (rxr_remaining + txr_remaining)) {
  1166. for (; rxr_remaining; v_idx++) {
  1167. err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
  1168. 0, 0, 1, rxr_idx);
  1169. if (err)
  1170. goto err_out;
  1171. /* update counts and index */
  1172. rxr_remaining--;
  1173. rxr_idx++;
  1174. }
  1175. }
  1176. for (; v_idx < q_vectors; v_idx++) {
  1177. int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
  1178. int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
  1179. err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
  1180. tqpv, txr_idx, rqpv, rxr_idx);
  1181. if (err)
  1182. goto err_out;
  1183. /* update counts and index */
  1184. rxr_remaining -= rqpv;
  1185. txr_remaining -= tqpv;
  1186. rxr_idx++;
  1187. txr_idx++;
  1188. }
  1189. return 0;
  1190. err_out:
  1191. adapter->num_tx_queues = 0;
  1192. adapter->num_rx_queues = 0;
  1193. adapter->num_q_vectors = 0;
  1194. while (v_idx--)
  1195. igb_free_q_vector(adapter, v_idx);
  1196. return -ENOMEM;
  1197. }
  1198. /**
  1199. * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
  1200. * @adapter: board private structure to initialize
  1201. * @msix: boolean value of MSIX capability
  1202. *
  1203. * This function initializes the interrupts and allocates all of the queues.
  1204. **/
  1205. static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
  1206. {
  1207. struct pci_dev *pdev = adapter->pdev;
  1208. int err;
  1209. igb_set_interrupt_capability(adapter, msix);
  1210. err = igb_alloc_q_vectors(adapter);
  1211. if (err) {
  1212. dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
  1213. goto err_alloc_q_vectors;
  1214. }
  1215. igb_cache_ring_register(adapter);
  1216. return 0;
  1217. err_alloc_q_vectors:
  1218. igb_reset_interrupt_capability(adapter);
  1219. return err;
  1220. }
  1221. /**
  1222. * igb_request_irq - initialize interrupts
  1223. * @adapter: board private structure to initialize
  1224. *
  1225. * Attempts to configure interrupts using the best available
  1226. * capabilities of the hardware and kernel.
  1227. **/
  1228. static int igb_request_irq(struct igb_adapter *adapter)
  1229. {
  1230. struct net_device *netdev = adapter->netdev;
  1231. struct pci_dev *pdev = adapter->pdev;
  1232. int err = 0;
  1233. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1234. err = igb_request_msix(adapter);
  1235. if (!err)
  1236. goto request_done;
  1237. /* fall back to MSI */
  1238. igb_free_all_tx_resources(adapter);
  1239. igb_free_all_rx_resources(adapter);
  1240. igb_clear_interrupt_scheme(adapter);
  1241. err = igb_init_interrupt_scheme(adapter, false);
  1242. if (err)
  1243. goto request_done;
  1244. igb_setup_all_tx_resources(adapter);
  1245. igb_setup_all_rx_resources(adapter);
  1246. igb_configure(adapter);
  1247. }
  1248. igb_assign_vector(adapter->q_vector[0], 0);
  1249. if (adapter->flags & IGB_FLAG_HAS_MSI) {
  1250. err = request_irq(pdev->irq, igb_intr_msi, 0,
  1251. netdev->name, adapter);
  1252. if (!err)
  1253. goto request_done;
  1254. /* fall back to legacy interrupts */
  1255. igb_reset_interrupt_capability(adapter);
  1256. adapter->flags &= ~IGB_FLAG_HAS_MSI;
  1257. }
  1258. err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
  1259. netdev->name, adapter);
  1260. if (err)
  1261. dev_err(&pdev->dev, "Error %d getting interrupt\n",
  1262. err);
  1263. request_done:
  1264. return err;
  1265. }
  1266. static void igb_free_irq(struct igb_adapter *adapter)
  1267. {
  1268. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1269. int vector = 0, i;
  1270. free_irq(adapter->msix_entries[vector++].vector, adapter);
  1271. for (i = 0; i < adapter->num_q_vectors; i++)
  1272. free_irq(adapter->msix_entries[vector++].vector,
  1273. adapter->q_vector[i]);
  1274. } else {
  1275. free_irq(adapter->pdev->irq, adapter);
  1276. }
  1277. }
  1278. /**
  1279. * igb_irq_disable - Mask off interrupt generation on the NIC
  1280. * @adapter: board private structure
  1281. **/
  1282. static void igb_irq_disable(struct igb_adapter *adapter)
  1283. {
  1284. struct e1000_hw *hw = &adapter->hw;
  1285. /* we need to be careful when disabling interrupts. The VFs are also
  1286. * mapped into these registers and so clearing the bits can cause
  1287. * issues on the VF drivers so we only need to clear what we set
  1288. */
  1289. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1290. u32 regval = rd32(E1000_EIAM);
  1291. wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
  1292. wr32(E1000_EIMC, adapter->eims_enable_mask);
  1293. regval = rd32(E1000_EIAC);
  1294. wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
  1295. }
  1296. wr32(E1000_IAM, 0);
  1297. wr32(E1000_IMC, ~0);
  1298. wrfl();
  1299. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1300. int i;
  1301. for (i = 0; i < adapter->num_q_vectors; i++)
  1302. synchronize_irq(adapter->msix_entries[i].vector);
  1303. } else {
  1304. synchronize_irq(adapter->pdev->irq);
  1305. }
  1306. }
  1307. /**
  1308. * igb_irq_enable - Enable default interrupt generation settings
  1309. * @adapter: board private structure
  1310. **/
  1311. static void igb_irq_enable(struct igb_adapter *adapter)
  1312. {
  1313. struct e1000_hw *hw = &adapter->hw;
  1314. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1315. u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
  1316. u32 regval = rd32(E1000_EIAC);
  1317. wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
  1318. regval = rd32(E1000_EIAM);
  1319. wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
  1320. wr32(E1000_EIMS, adapter->eims_enable_mask);
  1321. if (adapter->vfs_allocated_count) {
  1322. wr32(E1000_MBVFIMR, 0xFF);
  1323. ims |= E1000_IMS_VMMB;
  1324. }
  1325. wr32(E1000_IMS, ims);
  1326. } else {
  1327. wr32(E1000_IMS, IMS_ENABLE_MASK |
  1328. E1000_IMS_DRSTA);
  1329. wr32(E1000_IAM, IMS_ENABLE_MASK |
  1330. E1000_IMS_DRSTA);
  1331. }
  1332. }
  1333. static void igb_update_mng_vlan(struct igb_adapter *adapter)
  1334. {
  1335. struct e1000_hw *hw = &adapter->hw;
  1336. u16 pf_id = adapter->vfs_allocated_count;
  1337. u16 vid = adapter->hw.mng_cookie.vlan_id;
  1338. u16 old_vid = adapter->mng_vlan_id;
  1339. if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
  1340. /* add VID to filter table */
  1341. igb_vfta_set(hw, vid, pf_id, true, true);
  1342. adapter->mng_vlan_id = vid;
  1343. } else {
  1344. adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
  1345. }
  1346. if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
  1347. (vid != old_vid) &&
  1348. !test_bit(old_vid, adapter->active_vlans)) {
  1349. /* remove VID from filter table */
  1350. igb_vfta_set(hw, vid, pf_id, false, true);
  1351. }
  1352. }
  1353. /**
  1354. * igb_release_hw_control - release control of the h/w to f/w
  1355. * @adapter: address of board private structure
  1356. *
  1357. * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
  1358. * For ASF and Pass Through versions of f/w this means that the
  1359. * driver is no longer loaded.
  1360. **/
  1361. static void igb_release_hw_control(struct igb_adapter *adapter)
  1362. {
  1363. struct e1000_hw *hw = &adapter->hw;
  1364. u32 ctrl_ext;
  1365. /* Let firmware take over control of h/w */
  1366. ctrl_ext = rd32(E1000_CTRL_EXT);
  1367. wr32(E1000_CTRL_EXT,
  1368. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  1369. }
  1370. /**
  1371. * igb_get_hw_control - get control of the h/w from f/w
  1372. * @adapter: address of board private structure
  1373. *
  1374. * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
  1375. * For ASF and Pass Through versions of f/w this means that
  1376. * the driver is loaded.
  1377. **/
  1378. static void igb_get_hw_control(struct igb_adapter *adapter)
  1379. {
  1380. struct e1000_hw *hw = &adapter->hw;
  1381. u32 ctrl_ext;
  1382. /* Let firmware know the driver has taken over */
  1383. ctrl_ext = rd32(E1000_CTRL_EXT);
  1384. wr32(E1000_CTRL_EXT,
  1385. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  1386. }
  1387. /**
  1388. * igb_configure - configure the hardware for RX and TX
  1389. * @adapter: private board structure
  1390. **/
  1391. static void igb_configure(struct igb_adapter *adapter)
  1392. {
  1393. struct net_device *netdev = adapter->netdev;
  1394. int i;
  1395. igb_get_hw_control(adapter);
  1396. igb_set_rx_mode(netdev);
  1397. igb_restore_vlan(adapter);
  1398. igb_setup_tctl(adapter);
  1399. igb_setup_mrqc(adapter);
  1400. igb_setup_rctl(adapter);
  1401. igb_configure_tx(adapter);
  1402. igb_configure_rx(adapter);
  1403. igb_rx_fifo_flush_82575(&adapter->hw);
  1404. /* call igb_desc_unused which always leaves
  1405. * at least 1 descriptor unused to make sure
  1406. * next_to_use != next_to_clean
  1407. */
  1408. for (i = 0; i < adapter->num_rx_queues; i++) {
  1409. struct igb_ring *ring = adapter->rx_ring[i];
  1410. igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
  1411. }
  1412. }
  1413. /**
  1414. * igb_power_up_link - Power up the phy/serdes link
  1415. * @adapter: address of board private structure
  1416. **/
  1417. void igb_power_up_link(struct igb_adapter *adapter)
  1418. {
  1419. igb_reset_phy(&adapter->hw);
  1420. if (adapter->hw.phy.media_type == e1000_media_type_copper)
  1421. igb_power_up_phy_copper(&adapter->hw);
  1422. else
  1423. igb_power_up_serdes_link_82575(&adapter->hw);
  1424. igb_setup_link(&adapter->hw);
  1425. }
  1426. /**
  1427. * igb_power_down_link - Power down the phy/serdes link
  1428. * @adapter: address of board private structure
  1429. */
  1430. static void igb_power_down_link(struct igb_adapter *adapter)
  1431. {
  1432. if (adapter->hw.phy.media_type == e1000_media_type_copper)
  1433. igb_power_down_phy_copper_82575(&adapter->hw);
  1434. else
  1435. igb_shutdown_serdes_link_82575(&adapter->hw);
  1436. }
  1437. /**
  1438. * Detect and switch function for Media Auto Sense
  1439. * @adapter: address of the board private structure
  1440. **/
  1441. static void igb_check_swap_media(struct igb_adapter *adapter)
  1442. {
  1443. struct e1000_hw *hw = &adapter->hw;
  1444. u32 ctrl_ext, connsw;
  1445. bool swap_now = false;
  1446. ctrl_ext = rd32(E1000_CTRL_EXT);
  1447. connsw = rd32(E1000_CONNSW);
  1448. /* need to live swap if current media is copper and we have fiber/serdes
  1449. * to go to.
  1450. */
  1451. if ((hw->phy.media_type == e1000_media_type_copper) &&
  1452. (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
  1453. swap_now = true;
  1454. } else if (!(connsw & E1000_CONNSW_SERDESD)) {
  1455. /* copper signal takes time to appear */
  1456. if (adapter->copper_tries < 4) {
  1457. adapter->copper_tries++;
  1458. connsw |= E1000_CONNSW_AUTOSENSE_CONF;
  1459. wr32(E1000_CONNSW, connsw);
  1460. return;
  1461. } else {
  1462. adapter->copper_tries = 0;
  1463. if ((connsw & E1000_CONNSW_PHYSD) &&
  1464. (!(connsw & E1000_CONNSW_PHY_PDN))) {
  1465. swap_now = true;
  1466. connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
  1467. wr32(E1000_CONNSW, connsw);
  1468. }
  1469. }
  1470. }
  1471. if (!swap_now)
  1472. return;
  1473. switch (hw->phy.media_type) {
  1474. case e1000_media_type_copper:
  1475. netdev_info(adapter->netdev,
  1476. "MAS: changing media to fiber/serdes\n");
  1477. ctrl_ext |=
  1478. E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  1479. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  1480. adapter->copper_tries = 0;
  1481. break;
  1482. case e1000_media_type_internal_serdes:
  1483. case e1000_media_type_fiber:
  1484. netdev_info(adapter->netdev,
  1485. "MAS: changing media to copper\n");
  1486. ctrl_ext &=
  1487. ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  1488. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  1489. break;
  1490. default:
  1491. /* shouldn't get here during regular operation */
  1492. netdev_err(adapter->netdev,
  1493. "AMS: Invalid media type found, returning\n");
  1494. break;
  1495. }
  1496. wr32(E1000_CTRL_EXT, ctrl_ext);
  1497. }
  1498. /**
  1499. * igb_up - Open the interface and prepare it to handle traffic
  1500. * @adapter: board private structure
  1501. **/
  1502. int igb_up(struct igb_adapter *adapter)
  1503. {
  1504. struct e1000_hw *hw = &adapter->hw;
  1505. int i;
  1506. /* hardware has been reset, we need to reload some things */
  1507. igb_configure(adapter);
  1508. clear_bit(__IGB_DOWN, &adapter->state);
  1509. for (i = 0; i < adapter->num_q_vectors; i++)
  1510. napi_enable(&(adapter->q_vector[i]->napi));
  1511. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  1512. igb_configure_msix(adapter);
  1513. else
  1514. igb_assign_vector(adapter->q_vector[0], 0);
  1515. /* Clear any pending interrupts. */
  1516. rd32(E1000_ICR);
  1517. igb_irq_enable(adapter);
  1518. /* notify VFs that reset has been completed */
  1519. if (adapter->vfs_allocated_count) {
  1520. u32 reg_data = rd32(E1000_CTRL_EXT);
  1521. reg_data |= E1000_CTRL_EXT_PFRSTD;
  1522. wr32(E1000_CTRL_EXT, reg_data);
  1523. }
  1524. netif_tx_start_all_queues(adapter->netdev);
  1525. /* start the watchdog. */
  1526. hw->mac.get_link_status = 1;
  1527. schedule_work(&adapter->watchdog_task);
  1528. if ((adapter->flags & IGB_FLAG_EEE) &&
  1529. (!hw->dev_spec._82575.eee_disable))
  1530. adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
  1531. return 0;
  1532. }
  1533. void igb_down(struct igb_adapter *adapter)
  1534. {
  1535. struct net_device *netdev = adapter->netdev;
  1536. struct e1000_hw *hw = &adapter->hw;
  1537. u32 tctl, rctl;
  1538. int i;
  1539. /* signal that we're down so the interrupt handler does not
  1540. * reschedule our watchdog timer
  1541. */
  1542. set_bit(__IGB_DOWN, &adapter->state);
  1543. /* disable receives in the hardware */
  1544. rctl = rd32(E1000_RCTL);
  1545. wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
  1546. /* flush and sleep below */
  1547. netif_carrier_off(netdev);
  1548. netif_tx_stop_all_queues(netdev);
  1549. /* disable transmits in the hardware */
  1550. tctl = rd32(E1000_TCTL);
  1551. tctl &= ~E1000_TCTL_EN;
  1552. wr32(E1000_TCTL, tctl);
  1553. /* flush both disables and wait for them to finish */
  1554. wrfl();
  1555. usleep_range(10000, 11000);
  1556. igb_irq_disable(adapter);
  1557. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  1558. for (i = 0; i < adapter->num_q_vectors; i++) {
  1559. if (adapter->q_vector[i]) {
  1560. napi_synchronize(&adapter->q_vector[i]->napi);
  1561. napi_disable(&adapter->q_vector[i]->napi);
  1562. }
  1563. }
  1564. del_timer_sync(&adapter->watchdog_timer);
  1565. del_timer_sync(&adapter->phy_info_timer);
  1566. /* record the stats before reset*/
  1567. spin_lock(&adapter->stats64_lock);
  1568. igb_update_stats(adapter, &adapter->stats64);
  1569. spin_unlock(&adapter->stats64_lock);
  1570. adapter->link_speed = 0;
  1571. adapter->link_duplex = 0;
  1572. if (!pci_channel_offline(adapter->pdev))
  1573. igb_reset(adapter);
  1574. /* clear VLAN promisc flag so VFTA will be updated if necessary */
  1575. adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
  1576. igb_clean_all_tx_rings(adapter);
  1577. igb_clean_all_rx_rings(adapter);
  1578. #ifdef CONFIG_IGB_DCA
  1579. /* since we reset the hardware DCA settings were cleared */
  1580. igb_setup_dca(adapter);
  1581. #endif
  1582. }
  1583. void igb_reinit_locked(struct igb_adapter *adapter)
  1584. {
  1585. WARN_ON(in_interrupt());
  1586. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  1587. usleep_range(1000, 2000);
  1588. igb_down(adapter);
  1589. igb_up(adapter);
  1590. clear_bit(__IGB_RESETTING, &adapter->state);
  1591. }
  1592. /** igb_enable_mas - Media Autosense re-enable after swap
  1593. *
  1594. * @adapter: adapter struct
  1595. **/
  1596. static void igb_enable_mas(struct igb_adapter *adapter)
  1597. {
  1598. struct e1000_hw *hw = &adapter->hw;
  1599. u32 connsw = rd32(E1000_CONNSW);
  1600. /* configure for SerDes media detect */
  1601. if ((hw->phy.media_type == e1000_media_type_copper) &&
  1602. (!(connsw & E1000_CONNSW_SERDESD))) {
  1603. connsw |= E1000_CONNSW_ENRGSRC;
  1604. connsw |= E1000_CONNSW_AUTOSENSE_EN;
  1605. wr32(E1000_CONNSW, connsw);
  1606. wrfl();
  1607. }
  1608. }
  1609. void igb_reset(struct igb_adapter *adapter)
  1610. {
  1611. struct pci_dev *pdev = adapter->pdev;
  1612. struct e1000_hw *hw = &adapter->hw;
  1613. struct e1000_mac_info *mac = &hw->mac;
  1614. struct e1000_fc_info *fc = &hw->fc;
  1615. u32 pba, hwm;
  1616. /* Repartition Pba for greater than 9k mtu
  1617. * To take effect CTRL.RST is required.
  1618. */
  1619. switch (mac->type) {
  1620. case e1000_i350:
  1621. case e1000_i354:
  1622. case e1000_82580:
  1623. pba = rd32(E1000_RXPBS);
  1624. pba = igb_rxpbs_adjust_82580(pba);
  1625. break;
  1626. case e1000_82576:
  1627. pba = rd32(E1000_RXPBS);
  1628. pba &= E1000_RXPBS_SIZE_MASK_82576;
  1629. break;
  1630. case e1000_82575:
  1631. case e1000_i210:
  1632. case e1000_i211:
  1633. default:
  1634. pba = E1000_PBA_34K;
  1635. break;
  1636. }
  1637. if (mac->type == e1000_82575) {
  1638. u32 min_rx_space, min_tx_space, needed_tx_space;
  1639. /* write Rx PBA so that hardware can report correct Tx PBA */
  1640. wr32(E1000_PBA, pba);
  1641. /* To maintain wire speed transmits, the Tx FIFO should be
  1642. * large enough to accommodate two full transmit packets,
  1643. * rounded up to the next 1KB and expressed in KB. Likewise,
  1644. * the Rx FIFO should be large enough to accommodate at least
  1645. * one full receive packet and is similarly rounded up and
  1646. * expressed in KB.
  1647. */
  1648. min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
  1649. /* The Tx FIFO also stores 16 bytes of information about the Tx
  1650. * but don't include Ethernet FCS because hardware appends it.
  1651. * We only need to round down to the nearest 512 byte block
  1652. * count since the value we care about is 2 frames, not 1.
  1653. */
  1654. min_tx_space = adapter->max_frame_size;
  1655. min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
  1656. min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
  1657. /* upper 16 bits has Tx packet buffer allocation size in KB */
  1658. needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
  1659. /* If current Tx allocation is less than the min Tx FIFO size,
  1660. * and the min Tx FIFO size is less than the current Rx FIFO
  1661. * allocation, take space away from current Rx allocation.
  1662. */
  1663. if (needed_tx_space < pba) {
  1664. pba -= needed_tx_space;
  1665. /* if short on Rx space, Rx wins and must trump Tx
  1666. * adjustment
  1667. */
  1668. if (pba < min_rx_space)
  1669. pba = min_rx_space;
  1670. }
  1671. /* adjust PBA for jumbo frames */
  1672. wr32(E1000_PBA, pba);
  1673. }
  1674. /* flow control settings
  1675. * The high water mark must be low enough to fit one full frame
  1676. * after transmitting the pause frame. As such we must have enough
  1677. * space to allow for us to complete our current transmit and then
  1678. * receive the frame that is in progress from the link partner.
  1679. * Set it to:
  1680. * - the full Rx FIFO size minus one full Tx plus one full Rx frame
  1681. */
  1682. hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
  1683. fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
  1684. fc->low_water = fc->high_water - 16;
  1685. fc->pause_time = 0xFFFF;
  1686. fc->send_xon = 1;
  1687. fc->current_mode = fc->requested_mode;
  1688. /* disable receive for all VFs and wait one second */
  1689. if (adapter->vfs_allocated_count) {
  1690. int i;
  1691. for (i = 0 ; i < adapter->vfs_allocated_count; i++)
  1692. adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
  1693. /* ping all the active vfs to let them know we are going down */
  1694. igb_ping_all_vfs(adapter);
  1695. /* disable transmits and receives */
  1696. wr32(E1000_VFRE, 0);
  1697. wr32(E1000_VFTE, 0);
  1698. }
  1699. /* Allow time for pending master requests to run */
  1700. hw->mac.ops.reset_hw(hw);
  1701. wr32(E1000_WUC, 0);
  1702. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  1703. /* need to resetup here after media swap */
  1704. adapter->ei.get_invariants(hw);
  1705. adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
  1706. }
  1707. if ((mac->type == e1000_82575) &&
  1708. (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
  1709. igb_enable_mas(adapter);
  1710. }
  1711. if (hw->mac.ops.init_hw(hw))
  1712. dev_err(&pdev->dev, "Hardware Error\n");
  1713. /* Flow control settings reset on hardware reset, so guarantee flow
  1714. * control is off when forcing speed.
  1715. */
  1716. if (!hw->mac.autoneg)
  1717. igb_force_mac_fc(hw);
  1718. igb_init_dmac(adapter, pba);
  1719. #ifdef CONFIG_IGB_HWMON
  1720. /* Re-initialize the thermal sensor on i350 devices. */
  1721. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  1722. if (mac->type == e1000_i350 && hw->bus.func == 0) {
  1723. /* If present, re-initialize the external thermal sensor
  1724. * interface.
  1725. */
  1726. if (adapter->ets)
  1727. mac->ops.init_thermal_sensor_thresh(hw);
  1728. }
  1729. }
  1730. #endif
  1731. /* Re-establish EEE setting */
  1732. if (hw->phy.media_type == e1000_media_type_copper) {
  1733. switch (mac->type) {
  1734. case e1000_i350:
  1735. case e1000_i210:
  1736. case e1000_i211:
  1737. igb_set_eee_i350(hw, true, true);
  1738. break;
  1739. case e1000_i354:
  1740. igb_set_eee_i354(hw, true, true);
  1741. break;
  1742. default:
  1743. break;
  1744. }
  1745. }
  1746. if (!netif_running(adapter->netdev))
  1747. igb_power_down_link(adapter);
  1748. igb_update_mng_vlan(adapter);
  1749. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  1750. wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
  1751. /* Re-enable PTP, where applicable. */
  1752. igb_ptp_reset(adapter);
  1753. igb_get_phy_info(hw);
  1754. }
  1755. static netdev_features_t igb_fix_features(struct net_device *netdev,
  1756. netdev_features_t features)
  1757. {
  1758. /* Since there is no support for separate Rx/Tx vlan accel
  1759. * enable/disable make sure Tx flag is always in same state as Rx.
  1760. */
  1761. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  1762. features |= NETIF_F_HW_VLAN_CTAG_TX;
  1763. else
  1764. features &= ~NETIF_F_HW_VLAN_CTAG_TX;
  1765. return features;
  1766. }
  1767. static int igb_set_features(struct net_device *netdev,
  1768. netdev_features_t features)
  1769. {
  1770. netdev_features_t changed = netdev->features ^ features;
  1771. struct igb_adapter *adapter = netdev_priv(netdev);
  1772. if (changed & NETIF_F_HW_VLAN_CTAG_RX)
  1773. igb_vlan_mode(netdev, features);
  1774. if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
  1775. return 0;
  1776. netdev->features = features;
  1777. if (netif_running(netdev))
  1778. igb_reinit_locked(adapter);
  1779. else
  1780. igb_reset(adapter);
  1781. return 0;
  1782. }
  1783. static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
  1784. struct net_device *dev,
  1785. const unsigned char *addr, u16 vid,
  1786. u16 flags)
  1787. {
  1788. /* guarantee we can provide a unique filter for the unicast address */
  1789. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
  1790. struct igb_adapter *adapter = netdev_priv(dev);
  1791. struct e1000_hw *hw = &adapter->hw;
  1792. int vfn = adapter->vfs_allocated_count;
  1793. int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
  1794. if (netdev_uc_count(dev) >= rar_entries)
  1795. return -ENOMEM;
  1796. }
  1797. return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
  1798. }
  1799. static const struct net_device_ops igb_netdev_ops = {
  1800. .ndo_open = igb_open,
  1801. .ndo_stop = igb_close,
  1802. .ndo_start_xmit = igb_xmit_frame,
  1803. .ndo_get_stats64 = igb_get_stats64,
  1804. .ndo_set_rx_mode = igb_set_rx_mode,
  1805. .ndo_set_mac_address = igb_set_mac,
  1806. .ndo_change_mtu = igb_change_mtu,
  1807. .ndo_do_ioctl = igb_ioctl,
  1808. .ndo_tx_timeout = igb_tx_timeout,
  1809. .ndo_validate_addr = eth_validate_addr,
  1810. .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
  1811. .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
  1812. .ndo_set_vf_mac = igb_ndo_set_vf_mac,
  1813. .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
  1814. .ndo_set_vf_rate = igb_ndo_set_vf_bw,
  1815. .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
  1816. .ndo_get_vf_config = igb_ndo_get_vf_config,
  1817. #ifdef CONFIG_NET_POLL_CONTROLLER
  1818. .ndo_poll_controller = igb_netpoll,
  1819. #endif
  1820. .ndo_fix_features = igb_fix_features,
  1821. .ndo_set_features = igb_set_features,
  1822. .ndo_fdb_add = igb_ndo_fdb_add,
  1823. .ndo_features_check = passthru_features_check,
  1824. };
  1825. /**
  1826. * igb_set_fw_version - Configure version string for ethtool
  1827. * @adapter: adapter struct
  1828. **/
  1829. void igb_set_fw_version(struct igb_adapter *adapter)
  1830. {
  1831. struct e1000_hw *hw = &adapter->hw;
  1832. struct e1000_fw_version fw;
  1833. igb_get_fw_version(hw, &fw);
  1834. switch (hw->mac.type) {
  1835. case e1000_i210:
  1836. case e1000_i211:
  1837. if (!(igb_get_flash_presence_i210(hw))) {
  1838. snprintf(adapter->fw_version,
  1839. sizeof(adapter->fw_version),
  1840. "%2d.%2d-%d",
  1841. fw.invm_major, fw.invm_minor,
  1842. fw.invm_img_type);
  1843. break;
  1844. }
  1845. /* fall through */
  1846. default:
  1847. /* if option is rom valid, display its version too */
  1848. if (fw.or_valid) {
  1849. snprintf(adapter->fw_version,
  1850. sizeof(adapter->fw_version),
  1851. "%d.%d, 0x%08x, %d.%d.%d",
  1852. fw.eep_major, fw.eep_minor, fw.etrack_id,
  1853. fw.or_major, fw.or_build, fw.or_patch);
  1854. /* no option rom */
  1855. } else if (fw.etrack_id != 0X0000) {
  1856. snprintf(adapter->fw_version,
  1857. sizeof(adapter->fw_version),
  1858. "%d.%d, 0x%08x",
  1859. fw.eep_major, fw.eep_minor, fw.etrack_id);
  1860. } else {
  1861. snprintf(adapter->fw_version,
  1862. sizeof(adapter->fw_version),
  1863. "%d.%d.%d",
  1864. fw.eep_major, fw.eep_minor, fw.eep_build);
  1865. }
  1866. break;
  1867. }
  1868. }
  1869. /**
  1870. * igb_init_mas - init Media Autosense feature if enabled in the NVM
  1871. *
  1872. * @adapter: adapter struct
  1873. **/
  1874. static void igb_init_mas(struct igb_adapter *adapter)
  1875. {
  1876. struct e1000_hw *hw = &adapter->hw;
  1877. u16 eeprom_data;
  1878. hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
  1879. switch (hw->bus.func) {
  1880. case E1000_FUNC_0:
  1881. if (eeprom_data & IGB_MAS_ENABLE_0) {
  1882. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1883. netdev_info(adapter->netdev,
  1884. "MAS: Enabling Media Autosense for port %d\n",
  1885. hw->bus.func);
  1886. }
  1887. break;
  1888. case E1000_FUNC_1:
  1889. if (eeprom_data & IGB_MAS_ENABLE_1) {
  1890. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1891. netdev_info(adapter->netdev,
  1892. "MAS: Enabling Media Autosense for port %d\n",
  1893. hw->bus.func);
  1894. }
  1895. break;
  1896. case E1000_FUNC_2:
  1897. if (eeprom_data & IGB_MAS_ENABLE_2) {
  1898. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1899. netdev_info(adapter->netdev,
  1900. "MAS: Enabling Media Autosense for port %d\n",
  1901. hw->bus.func);
  1902. }
  1903. break;
  1904. case E1000_FUNC_3:
  1905. if (eeprom_data & IGB_MAS_ENABLE_3) {
  1906. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1907. netdev_info(adapter->netdev,
  1908. "MAS: Enabling Media Autosense for port %d\n",
  1909. hw->bus.func);
  1910. }
  1911. break;
  1912. default:
  1913. /* Shouldn't get here */
  1914. netdev_err(adapter->netdev,
  1915. "MAS: Invalid port configuration, returning\n");
  1916. break;
  1917. }
  1918. }
  1919. /**
  1920. * igb_init_i2c - Init I2C interface
  1921. * @adapter: pointer to adapter structure
  1922. **/
  1923. static s32 igb_init_i2c(struct igb_adapter *adapter)
  1924. {
  1925. s32 status = 0;
  1926. /* I2C interface supported on i350 devices */
  1927. if (adapter->hw.mac.type != e1000_i350)
  1928. return 0;
  1929. /* Initialize the i2c bus which is controlled by the registers.
  1930. * This bus will use the i2c_algo_bit structue that implements
  1931. * the protocol through toggling of the 4 bits in the register.
  1932. */
  1933. adapter->i2c_adap.owner = THIS_MODULE;
  1934. adapter->i2c_algo = igb_i2c_algo;
  1935. adapter->i2c_algo.data = adapter;
  1936. adapter->i2c_adap.algo_data = &adapter->i2c_algo;
  1937. adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
  1938. strlcpy(adapter->i2c_adap.name, "igb BB",
  1939. sizeof(adapter->i2c_adap.name));
  1940. status = i2c_bit_add_bus(&adapter->i2c_adap);
  1941. return status;
  1942. }
  1943. /**
  1944. * igb_probe - Device Initialization Routine
  1945. * @pdev: PCI device information struct
  1946. * @ent: entry in igb_pci_tbl
  1947. *
  1948. * Returns 0 on success, negative on failure
  1949. *
  1950. * igb_probe initializes an adapter identified by a pci_dev structure.
  1951. * The OS initialization, configuring of the adapter private structure,
  1952. * and a hardware reset occur.
  1953. **/
  1954. static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1955. {
  1956. struct net_device *netdev;
  1957. struct igb_adapter *adapter;
  1958. struct e1000_hw *hw;
  1959. u16 eeprom_data = 0;
  1960. s32 ret_val;
  1961. static int global_quad_port_a; /* global quad port a indication */
  1962. const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
  1963. int err, pci_using_dac;
  1964. u8 part_str[E1000_PBANUM_LENGTH];
  1965. /* Catch broken hardware that put the wrong VF device ID in
  1966. * the PCIe SR-IOV capability.
  1967. */
  1968. if (pdev->is_virtfn) {
  1969. WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
  1970. pci_name(pdev), pdev->vendor, pdev->device);
  1971. return -EINVAL;
  1972. }
  1973. err = pci_enable_device_mem(pdev);
  1974. if (err)
  1975. return err;
  1976. pci_using_dac = 0;
  1977. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
  1978. if (!err) {
  1979. pci_using_dac = 1;
  1980. } else {
  1981. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
  1982. if (err) {
  1983. dev_err(&pdev->dev,
  1984. "No usable DMA configuration, aborting\n");
  1985. goto err_dma;
  1986. }
  1987. }
  1988. err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
  1989. IORESOURCE_MEM),
  1990. igb_driver_name);
  1991. if (err)
  1992. goto err_pci_reg;
  1993. pci_enable_pcie_error_reporting(pdev);
  1994. pci_set_master(pdev);
  1995. pci_save_state(pdev);
  1996. err = -ENOMEM;
  1997. netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
  1998. IGB_MAX_TX_QUEUES);
  1999. if (!netdev)
  2000. goto err_alloc_etherdev;
  2001. SET_NETDEV_DEV(netdev, &pdev->dev);
  2002. pci_set_drvdata(pdev, netdev);
  2003. adapter = netdev_priv(netdev);
  2004. adapter->netdev = netdev;
  2005. adapter->pdev = pdev;
  2006. hw = &adapter->hw;
  2007. hw->back = adapter;
  2008. adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
  2009. err = -EIO;
  2010. adapter->io_addr = pci_iomap(pdev, 0, 0);
  2011. if (!adapter->io_addr)
  2012. goto err_ioremap;
  2013. /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
  2014. hw->hw_addr = adapter->io_addr;
  2015. netdev->netdev_ops = &igb_netdev_ops;
  2016. igb_set_ethtool_ops(netdev);
  2017. netdev->watchdog_timeo = 5 * HZ;
  2018. strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
  2019. netdev->mem_start = pci_resource_start(pdev, 0);
  2020. netdev->mem_end = pci_resource_end(pdev, 0);
  2021. /* PCI config space info */
  2022. hw->vendor_id = pdev->vendor;
  2023. hw->device_id = pdev->device;
  2024. hw->revision_id = pdev->revision;
  2025. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  2026. hw->subsystem_device_id = pdev->subsystem_device;
  2027. /* Copy the default MAC, PHY and NVM function pointers */
  2028. memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
  2029. memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
  2030. memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
  2031. /* Initialize skew-specific constants */
  2032. err = ei->get_invariants(hw);
  2033. if (err)
  2034. goto err_sw_init;
  2035. /* setup the private structure */
  2036. err = igb_sw_init(adapter);
  2037. if (err)
  2038. goto err_sw_init;
  2039. igb_get_bus_info_pcie(hw);
  2040. hw->phy.autoneg_wait_to_complete = false;
  2041. /* Copper options */
  2042. if (hw->phy.media_type == e1000_media_type_copper) {
  2043. hw->phy.mdix = AUTO_ALL_MODES;
  2044. hw->phy.disable_polarity_correction = false;
  2045. hw->phy.ms_type = e1000_ms_hw_default;
  2046. }
  2047. if (igb_check_reset_block(hw))
  2048. dev_info(&pdev->dev,
  2049. "PHY reset is blocked due to SOL/IDER session.\n");
  2050. /* features is initialized to 0 in allocation, it might have bits
  2051. * set by igb_sw_init so we should use an or instead of an
  2052. * assignment.
  2053. */
  2054. netdev->features |= NETIF_F_SG |
  2055. NETIF_F_TSO |
  2056. NETIF_F_TSO6 |
  2057. NETIF_F_RXHASH |
  2058. NETIF_F_RXCSUM |
  2059. NETIF_F_HW_CSUM |
  2060. NETIF_F_HW_VLAN_CTAG_RX |
  2061. NETIF_F_HW_VLAN_CTAG_TX;
  2062. if (hw->mac.type >= e1000_82576)
  2063. netdev->features |= NETIF_F_SCTP_CRC;
  2064. /* copy netdev features into list of user selectable features */
  2065. netdev->hw_features |= netdev->features;
  2066. netdev->hw_features |= NETIF_F_RXALL;
  2067. if (hw->mac.type >= e1000_i350)
  2068. netdev->hw_features |= NETIF_F_NTUPLE;
  2069. /* set this bit last since it cannot be part of hw_features */
  2070. netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
  2071. netdev->vlan_features |= NETIF_F_SG |
  2072. NETIF_F_TSO |
  2073. NETIF_F_TSO6 |
  2074. NETIF_F_HW_CSUM |
  2075. NETIF_F_SCTP_CRC;
  2076. netdev->mpls_features |= NETIF_F_HW_CSUM;
  2077. netdev->hw_enc_features |= NETIF_F_HW_CSUM;
  2078. netdev->priv_flags |= IFF_SUPP_NOFCS;
  2079. if (pci_using_dac) {
  2080. netdev->features |= NETIF_F_HIGHDMA;
  2081. netdev->vlan_features |= NETIF_F_HIGHDMA;
  2082. }
  2083. netdev->priv_flags |= IFF_UNICAST_FLT;
  2084. adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
  2085. /* before reading the NVM, reset the controller to put the device in a
  2086. * known good starting state
  2087. */
  2088. hw->mac.ops.reset_hw(hw);
  2089. /* make sure the NVM is good , i211/i210 parts can have special NVM
  2090. * that doesn't contain a checksum
  2091. */
  2092. switch (hw->mac.type) {
  2093. case e1000_i210:
  2094. case e1000_i211:
  2095. if (igb_get_flash_presence_i210(hw)) {
  2096. if (hw->nvm.ops.validate(hw) < 0) {
  2097. dev_err(&pdev->dev,
  2098. "The NVM Checksum Is Not Valid\n");
  2099. err = -EIO;
  2100. goto err_eeprom;
  2101. }
  2102. }
  2103. break;
  2104. default:
  2105. if (hw->nvm.ops.validate(hw) < 0) {
  2106. dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
  2107. err = -EIO;
  2108. goto err_eeprom;
  2109. }
  2110. break;
  2111. }
  2112. /* copy the MAC address out of the NVM */
  2113. if (hw->mac.ops.read_mac_addr(hw))
  2114. dev_err(&pdev->dev, "NVM Read Error\n");
  2115. memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
  2116. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2117. dev_err(&pdev->dev, "Invalid MAC Address\n");
  2118. err = -EIO;
  2119. goto err_eeprom;
  2120. }
  2121. /* get firmware version for ethtool -i */
  2122. igb_set_fw_version(adapter);
  2123. /* configure RXPBSIZE and TXPBSIZE */
  2124. if (hw->mac.type == e1000_i210) {
  2125. wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
  2126. wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
  2127. }
  2128. setup_timer(&adapter->watchdog_timer, igb_watchdog,
  2129. (unsigned long) adapter);
  2130. setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
  2131. (unsigned long) adapter);
  2132. INIT_WORK(&adapter->reset_task, igb_reset_task);
  2133. INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
  2134. /* Initialize link properties that are user-changeable */
  2135. adapter->fc_autoneg = true;
  2136. hw->mac.autoneg = true;
  2137. hw->phy.autoneg_advertised = 0x2f;
  2138. hw->fc.requested_mode = e1000_fc_default;
  2139. hw->fc.current_mode = e1000_fc_default;
  2140. igb_validate_mdi_setting(hw);
  2141. /* By default, support wake on port A */
  2142. if (hw->bus.func == 0)
  2143. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2144. /* Check the NVM for wake support on non-port A ports */
  2145. if (hw->mac.type >= e1000_82580)
  2146. hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
  2147. NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
  2148. &eeprom_data);
  2149. else if (hw->bus.func == 1)
  2150. hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  2151. if (eeprom_data & IGB_EEPROM_APME)
  2152. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2153. /* now that we have the eeprom settings, apply the special cases where
  2154. * the eeprom may be wrong or the board simply won't support wake on
  2155. * lan on a particular port
  2156. */
  2157. switch (pdev->device) {
  2158. case E1000_DEV_ID_82575GB_QUAD_COPPER:
  2159. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2160. break;
  2161. case E1000_DEV_ID_82575EB_FIBER_SERDES:
  2162. case E1000_DEV_ID_82576_FIBER:
  2163. case E1000_DEV_ID_82576_SERDES:
  2164. /* Wake events only supported on port A for dual fiber
  2165. * regardless of eeprom setting
  2166. */
  2167. if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
  2168. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2169. break;
  2170. case E1000_DEV_ID_82576_QUAD_COPPER:
  2171. case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
  2172. /* if quad port adapter, disable WoL on all but port A */
  2173. if (global_quad_port_a != 0)
  2174. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2175. else
  2176. adapter->flags |= IGB_FLAG_QUAD_PORT_A;
  2177. /* Reset for multiple quad port adapters */
  2178. if (++global_quad_port_a == 4)
  2179. global_quad_port_a = 0;
  2180. break;
  2181. default:
  2182. /* If the device can't wake, don't set software support */
  2183. if (!device_can_wakeup(&adapter->pdev->dev))
  2184. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2185. }
  2186. /* initialize the wol settings based on the eeprom settings */
  2187. if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
  2188. adapter->wol |= E1000_WUFC_MAG;
  2189. /* Some vendors want WoL disabled by default, but still supported */
  2190. if ((hw->mac.type == e1000_i350) &&
  2191. (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
  2192. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2193. adapter->wol = 0;
  2194. }
  2195. /* Some vendors want the ability to Use the EEPROM setting as
  2196. * enable/disable only, and not for capability
  2197. */
  2198. if (((hw->mac.type == e1000_i350) ||
  2199. (hw->mac.type == e1000_i354)) &&
  2200. (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
  2201. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2202. adapter->wol = 0;
  2203. }
  2204. if (hw->mac.type == e1000_i350) {
  2205. if (((pdev->subsystem_device == 0x5001) ||
  2206. (pdev->subsystem_device == 0x5002)) &&
  2207. (hw->bus.func == 0)) {
  2208. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2209. adapter->wol = 0;
  2210. }
  2211. if (pdev->subsystem_device == 0x1F52)
  2212. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2213. }
  2214. device_set_wakeup_enable(&adapter->pdev->dev,
  2215. adapter->flags & IGB_FLAG_WOL_SUPPORTED);
  2216. /* reset the hardware with the new settings */
  2217. igb_reset(adapter);
  2218. /* Init the I2C interface */
  2219. err = igb_init_i2c(adapter);
  2220. if (err) {
  2221. dev_err(&pdev->dev, "failed to init i2c interface\n");
  2222. goto err_eeprom;
  2223. }
  2224. /* let the f/w know that the h/w is now under the control of the
  2225. * driver.
  2226. */
  2227. igb_get_hw_control(adapter);
  2228. strcpy(netdev->name, "eth%d");
  2229. err = register_netdev(netdev);
  2230. if (err)
  2231. goto err_register;
  2232. /* carrier off reporting is important to ethtool even BEFORE open */
  2233. netif_carrier_off(netdev);
  2234. #ifdef CONFIG_IGB_DCA
  2235. if (dca_add_requester(&pdev->dev) == 0) {
  2236. adapter->flags |= IGB_FLAG_DCA_ENABLED;
  2237. dev_info(&pdev->dev, "DCA enabled\n");
  2238. igb_setup_dca(adapter);
  2239. }
  2240. #endif
  2241. #ifdef CONFIG_IGB_HWMON
  2242. /* Initialize the thermal sensor on i350 devices. */
  2243. if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
  2244. u16 ets_word;
  2245. /* Read the NVM to determine if this i350 device supports an
  2246. * external thermal sensor.
  2247. */
  2248. hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
  2249. if (ets_word != 0x0000 && ets_word != 0xFFFF)
  2250. adapter->ets = true;
  2251. else
  2252. adapter->ets = false;
  2253. if (igb_sysfs_init(adapter))
  2254. dev_err(&pdev->dev,
  2255. "failed to allocate sysfs resources\n");
  2256. } else {
  2257. adapter->ets = false;
  2258. }
  2259. #endif
  2260. /* Check if Media Autosense is enabled */
  2261. adapter->ei = *ei;
  2262. if (hw->dev_spec._82575.mas_capable)
  2263. igb_init_mas(adapter);
  2264. /* do hw tstamp init after resetting */
  2265. igb_ptp_init(adapter);
  2266. dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
  2267. /* print bus type/speed/width info, not applicable to i354 */
  2268. if (hw->mac.type != e1000_i354) {
  2269. dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
  2270. netdev->name,
  2271. ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
  2272. (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
  2273. "unknown"),
  2274. ((hw->bus.width == e1000_bus_width_pcie_x4) ?
  2275. "Width x4" :
  2276. (hw->bus.width == e1000_bus_width_pcie_x2) ?
  2277. "Width x2" :
  2278. (hw->bus.width == e1000_bus_width_pcie_x1) ?
  2279. "Width x1" : "unknown"), netdev->dev_addr);
  2280. }
  2281. if ((hw->mac.type >= e1000_i210 ||
  2282. igb_get_flash_presence_i210(hw))) {
  2283. ret_val = igb_read_part_string(hw, part_str,
  2284. E1000_PBANUM_LENGTH);
  2285. } else {
  2286. ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
  2287. }
  2288. if (ret_val)
  2289. strcpy(part_str, "Unknown");
  2290. dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
  2291. dev_info(&pdev->dev,
  2292. "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
  2293. (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
  2294. (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
  2295. adapter->num_rx_queues, adapter->num_tx_queues);
  2296. if (hw->phy.media_type == e1000_media_type_copper) {
  2297. switch (hw->mac.type) {
  2298. case e1000_i350:
  2299. case e1000_i210:
  2300. case e1000_i211:
  2301. /* Enable EEE for internal copper PHY devices */
  2302. err = igb_set_eee_i350(hw, true, true);
  2303. if ((!err) &&
  2304. (!hw->dev_spec._82575.eee_disable)) {
  2305. adapter->eee_advert =
  2306. MDIO_EEE_100TX | MDIO_EEE_1000T;
  2307. adapter->flags |= IGB_FLAG_EEE;
  2308. }
  2309. break;
  2310. case e1000_i354:
  2311. if ((rd32(E1000_CTRL_EXT) &
  2312. E1000_CTRL_EXT_LINK_MODE_SGMII)) {
  2313. err = igb_set_eee_i354(hw, true, true);
  2314. if ((!err) &&
  2315. (!hw->dev_spec._82575.eee_disable)) {
  2316. adapter->eee_advert =
  2317. MDIO_EEE_100TX | MDIO_EEE_1000T;
  2318. adapter->flags |= IGB_FLAG_EEE;
  2319. }
  2320. }
  2321. break;
  2322. default:
  2323. break;
  2324. }
  2325. }
  2326. pm_runtime_put_noidle(&pdev->dev);
  2327. return 0;
  2328. err_register:
  2329. igb_release_hw_control(adapter);
  2330. memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
  2331. err_eeprom:
  2332. if (!igb_check_reset_block(hw))
  2333. igb_reset_phy(hw);
  2334. if (hw->flash_address)
  2335. iounmap(hw->flash_address);
  2336. err_sw_init:
  2337. kfree(adapter->shadow_vfta);
  2338. igb_clear_interrupt_scheme(adapter);
  2339. #ifdef CONFIG_PCI_IOV
  2340. igb_disable_sriov(pdev);
  2341. #endif
  2342. pci_iounmap(pdev, adapter->io_addr);
  2343. err_ioremap:
  2344. free_netdev(netdev);
  2345. err_alloc_etherdev:
  2346. pci_release_selected_regions(pdev,
  2347. pci_select_bars(pdev, IORESOURCE_MEM));
  2348. err_pci_reg:
  2349. err_dma:
  2350. pci_disable_device(pdev);
  2351. return err;
  2352. }
  2353. #ifdef CONFIG_PCI_IOV
  2354. static int igb_disable_sriov(struct pci_dev *pdev)
  2355. {
  2356. struct net_device *netdev = pci_get_drvdata(pdev);
  2357. struct igb_adapter *adapter = netdev_priv(netdev);
  2358. struct e1000_hw *hw = &adapter->hw;
  2359. /* reclaim resources allocated to VFs */
  2360. if (adapter->vf_data) {
  2361. /* disable iov and allow time for transactions to clear */
  2362. if (pci_vfs_assigned(pdev)) {
  2363. dev_warn(&pdev->dev,
  2364. "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
  2365. return -EPERM;
  2366. } else {
  2367. pci_disable_sriov(pdev);
  2368. msleep(500);
  2369. }
  2370. kfree(adapter->vf_data);
  2371. adapter->vf_data = NULL;
  2372. adapter->vfs_allocated_count = 0;
  2373. wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
  2374. wrfl();
  2375. msleep(100);
  2376. dev_info(&pdev->dev, "IOV Disabled\n");
  2377. /* Re-enable DMA Coalescing flag since IOV is turned off */
  2378. adapter->flags |= IGB_FLAG_DMAC;
  2379. }
  2380. return 0;
  2381. }
  2382. static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
  2383. {
  2384. struct net_device *netdev = pci_get_drvdata(pdev);
  2385. struct igb_adapter *adapter = netdev_priv(netdev);
  2386. int old_vfs = pci_num_vf(pdev);
  2387. int err = 0;
  2388. int i;
  2389. if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
  2390. err = -EPERM;
  2391. goto out;
  2392. }
  2393. if (!num_vfs)
  2394. goto out;
  2395. if (old_vfs) {
  2396. dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
  2397. old_vfs, max_vfs);
  2398. adapter->vfs_allocated_count = old_vfs;
  2399. } else
  2400. adapter->vfs_allocated_count = num_vfs;
  2401. adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
  2402. sizeof(struct vf_data_storage), GFP_KERNEL);
  2403. /* if allocation failed then we do not support SR-IOV */
  2404. if (!adapter->vf_data) {
  2405. adapter->vfs_allocated_count = 0;
  2406. dev_err(&pdev->dev,
  2407. "Unable to allocate memory for VF Data Storage\n");
  2408. err = -ENOMEM;
  2409. goto out;
  2410. }
  2411. /* only call pci_enable_sriov() if no VFs are allocated already */
  2412. if (!old_vfs) {
  2413. err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
  2414. if (err)
  2415. goto err_out;
  2416. }
  2417. dev_info(&pdev->dev, "%d VFs allocated\n",
  2418. adapter->vfs_allocated_count);
  2419. for (i = 0; i < adapter->vfs_allocated_count; i++)
  2420. igb_vf_configure(adapter, i);
  2421. /* DMA Coalescing is not supported in IOV mode. */
  2422. adapter->flags &= ~IGB_FLAG_DMAC;
  2423. goto out;
  2424. err_out:
  2425. kfree(adapter->vf_data);
  2426. adapter->vf_data = NULL;
  2427. adapter->vfs_allocated_count = 0;
  2428. out:
  2429. return err;
  2430. }
  2431. #endif
  2432. /**
  2433. * igb_remove_i2c - Cleanup I2C interface
  2434. * @adapter: pointer to adapter structure
  2435. **/
  2436. static void igb_remove_i2c(struct igb_adapter *adapter)
  2437. {
  2438. /* free the adapter bus structure */
  2439. i2c_del_adapter(&adapter->i2c_adap);
  2440. }
  2441. /**
  2442. * igb_remove - Device Removal Routine
  2443. * @pdev: PCI device information struct
  2444. *
  2445. * igb_remove is called by the PCI subsystem to alert the driver
  2446. * that it should release a PCI device. The could be caused by a
  2447. * Hot-Plug event, or because the driver is going to be removed from
  2448. * memory.
  2449. **/
  2450. static void igb_remove(struct pci_dev *pdev)
  2451. {
  2452. struct net_device *netdev = pci_get_drvdata(pdev);
  2453. struct igb_adapter *adapter = netdev_priv(netdev);
  2454. struct e1000_hw *hw = &adapter->hw;
  2455. pm_runtime_get_noresume(&pdev->dev);
  2456. #ifdef CONFIG_IGB_HWMON
  2457. igb_sysfs_exit(adapter);
  2458. #endif
  2459. igb_remove_i2c(adapter);
  2460. igb_ptp_stop(adapter);
  2461. /* The watchdog timer may be rescheduled, so explicitly
  2462. * disable watchdog from being rescheduled.
  2463. */
  2464. set_bit(__IGB_DOWN, &adapter->state);
  2465. del_timer_sync(&adapter->watchdog_timer);
  2466. del_timer_sync(&adapter->phy_info_timer);
  2467. cancel_work_sync(&adapter->reset_task);
  2468. cancel_work_sync(&adapter->watchdog_task);
  2469. #ifdef CONFIG_IGB_DCA
  2470. if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
  2471. dev_info(&pdev->dev, "DCA disabled\n");
  2472. dca_remove_requester(&pdev->dev);
  2473. adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
  2474. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
  2475. }
  2476. #endif
  2477. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  2478. * would have already happened in close and is redundant.
  2479. */
  2480. igb_release_hw_control(adapter);
  2481. #ifdef CONFIG_PCI_IOV
  2482. igb_disable_sriov(pdev);
  2483. #endif
  2484. unregister_netdev(netdev);
  2485. igb_clear_interrupt_scheme(adapter);
  2486. pci_iounmap(pdev, adapter->io_addr);
  2487. if (hw->flash_address)
  2488. iounmap(hw->flash_address);
  2489. pci_release_selected_regions(pdev,
  2490. pci_select_bars(pdev, IORESOURCE_MEM));
  2491. kfree(adapter->shadow_vfta);
  2492. free_netdev(netdev);
  2493. pci_disable_pcie_error_reporting(pdev);
  2494. pci_disable_device(pdev);
  2495. }
  2496. /**
  2497. * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
  2498. * @adapter: board private structure to initialize
  2499. *
  2500. * This function initializes the vf specific data storage and then attempts to
  2501. * allocate the VFs. The reason for ordering it this way is because it is much
  2502. * mor expensive time wise to disable SR-IOV than it is to allocate and free
  2503. * the memory for the VFs.
  2504. **/
  2505. static void igb_probe_vfs(struct igb_adapter *adapter)
  2506. {
  2507. #ifdef CONFIG_PCI_IOV
  2508. struct pci_dev *pdev = adapter->pdev;
  2509. struct e1000_hw *hw = &adapter->hw;
  2510. /* Virtualization features not supported on i210 family. */
  2511. if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
  2512. return;
  2513. /* Of the below we really only want the effect of getting
  2514. * IGB_FLAG_HAS_MSIX set (if available), without which
  2515. * igb_enable_sriov() has no effect.
  2516. */
  2517. igb_set_interrupt_capability(adapter, true);
  2518. igb_reset_interrupt_capability(adapter);
  2519. pci_sriov_set_totalvfs(pdev, 7);
  2520. igb_enable_sriov(pdev, max_vfs);
  2521. #endif /* CONFIG_PCI_IOV */
  2522. }
  2523. static void igb_init_queue_configuration(struct igb_adapter *adapter)
  2524. {
  2525. struct e1000_hw *hw = &adapter->hw;
  2526. u32 max_rss_queues;
  2527. /* Determine the maximum number of RSS queues supported. */
  2528. switch (hw->mac.type) {
  2529. case e1000_i211:
  2530. max_rss_queues = IGB_MAX_RX_QUEUES_I211;
  2531. break;
  2532. case e1000_82575:
  2533. case e1000_i210:
  2534. max_rss_queues = IGB_MAX_RX_QUEUES_82575;
  2535. break;
  2536. case e1000_i350:
  2537. /* I350 cannot do RSS and SR-IOV at the same time */
  2538. if (!!adapter->vfs_allocated_count) {
  2539. max_rss_queues = 1;
  2540. break;
  2541. }
  2542. /* fall through */
  2543. case e1000_82576:
  2544. if (!!adapter->vfs_allocated_count) {
  2545. max_rss_queues = 2;
  2546. break;
  2547. }
  2548. /* fall through */
  2549. case e1000_82580:
  2550. case e1000_i354:
  2551. default:
  2552. max_rss_queues = IGB_MAX_RX_QUEUES;
  2553. break;
  2554. }
  2555. adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
  2556. igb_set_flag_queue_pairs(adapter, max_rss_queues);
  2557. }
  2558. void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
  2559. const u32 max_rss_queues)
  2560. {
  2561. struct e1000_hw *hw = &adapter->hw;
  2562. /* Determine if we need to pair queues. */
  2563. switch (hw->mac.type) {
  2564. case e1000_82575:
  2565. case e1000_i211:
  2566. /* Device supports enough interrupts without queue pairing. */
  2567. break;
  2568. case e1000_82576:
  2569. case e1000_82580:
  2570. case e1000_i350:
  2571. case e1000_i354:
  2572. case e1000_i210:
  2573. default:
  2574. /* If rss_queues > half of max_rss_queues, pair the queues in
  2575. * order to conserve interrupts due to limited supply.
  2576. */
  2577. if (adapter->rss_queues > (max_rss_queues / 2))
  2578. adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
  2579. else
  2580. adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
  2581. break;
  2582. }
  2583. }
  2584. /**
  2585. * igb_sw_init - Initialize general software structures (struct igb_adapter)
  2586. * @adapter: board private structure to initialize
  2587. *
  2588. * igb_sw_init initializes the Adapter private data structure.
  2589. * Fields are initialized based on PCI device information and
  2590. * OS network device settings (MTU size).
  2591. **/
  2592. static int igb_sw_init(struct igb_adapter *adapter)
  2593. {
  2594. struct e1000_hw *hw = &adapter->hw;
  2595. struct net_device *netdev = adapter->netdev;
  2596. struct pci_dev *pdev = adapter->pdev;
  2597. pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
  2598. /* set default ring sizes */
  2599. adapter->tx_ring_count = IGB_DEFAULT_TXD;
  2600. adapter->rx_ring_count = IGB_DEFAULT_RXD;
  2601. /* set default ITR values */
  2602. adapter->rx_itr_setting = IGB_DEFAULT_ITR;
  2603. adapter->tx_itr_setting = IGB_DEFAULT_ITR;
  2604. /* set default work limits */
  2605. adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
  2606. adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
  2607. VLAN_HLEN;
  2608. adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
  2609. spin_lock_init(&adapter->stats64_lock);
  2610. #ifdef CONFIG_PCI_IOV
  2611. switch (hw->mac.type) {
  2612. case e1000_82576:
  2613. case e1000_i350:
  2614. if (max_vfs > 7) {
  2615. dev_warn(&pdev->dev,
  2616. "Maximum of 7 VFs per PF, using max\n");
  2617. max_vfs = adapter->vfs_allocated_count = 7;
  2618. } else
  2619. adapter->vfs_allocated_count = max_vfs;
  2620. if (adapter->vfs_allocated_count)
  2621. dev_warn(&pdev->dev,
  2622. "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
  2623. break;
  2624. default:
  2625. break;
  2626. }
  2627. #endif /* CONFIG_PCI_IOV */
  2628. /* Assume MSI-X interrupts, will be checked during IRQ allocation */
  2629. adapter->flags |= IGB_FLAG_HAS_MSIX;
  2630. igb_probe_vfs(adapter);
  2631. igb_init_queue_configuration(adapter);
  2632. /* Setup and initialize a copy of the hw vlan table array */
  2633. adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
  2634. GFP_ATOMIC);
  2635. /* This call may decrease the number of queues */
  2636. if (igb_init_interrupt_scheme(adapter, true)) {
  2637. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  2638. return -ENOMEM;
  2639. }
  2640. /* Explicitly disable IRQ since the NIC can be in any state. */
  2641. igb_irq_disable(adapter);
  2642. if (hw->mac.type >= e1000_i350)
  2643. adapter->flags &= ~IGB_FLAG_DMAC;
  2644. set_bit(__IGB_DOWN, &adapter->state);
  2645. return 0;
  2646. }
  2647. /**
  2648. * igb_open - Called when a network interface is made active
  2649. * @netdev: network interface device structure
  2650. *
  2651. * Returns 0 on success, negative value on failure
  2652. *
  2653. * The open entry point is called when a network interface is made
  2654. * active by the system (IFF_UP). At this point all resources needed
  2655. * for transmit and receive operations are allocated, the interrupt
  2656. * handler is registered with the OS, the watchdog timer is started,
  2657. * and the stack is notified that the interface is ready.
  2658. **/
  2659. static int __igb_open(struct net_device *netdev, bool resuming)
  2660. {
  2661. struct igb_adapter *adapter = netdev_priv(netdev);
  2662. struct e1000_hw *hw = &adapter->hw;
  2663. struct pci_dev *pdev = adapter->pdev;
  2664. int err;
  2665. int i;
  2666. /* disallow open during test */
  2667. if (test_bit(__IGB_TESTING, &adapter->state)) {
  2668. WARN_ON(resuming);
  2669. return -EBUSY;
  2670. }
  2671. if (!resuming)
  2672. pm_runtime_get_sync(&pdev->dev);
  2673. netif_carrier_off(netdev);
  2674. /* allocate transmit descriptors */
  2675. err = igb_setup_all_tx_resources(adapter);
  2676. if (err)
  2677. goto err_setup_tx;
  2678. /* allocate receive descriptors */
  2679. err = igb_setup_all_rx_resources(adapter);
  2680. if (err)
  2681. goto err_setup_rx;
  2682. igb_power_up_link(adapter);
  2683. /* before we allocate an interrupt, we must be ready to handle it.
  2684. * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
  2685. * as soon as we call pci_request_irq, so we have to setup our
  2686. * clean_rx handler before we do so.
  2687. */
  2688. igb_configure(adapter);
  2689. err = igb_request_irq(adapter);
  2690. if (err)
  2691. goto err_req_irq;
  2692. /* Notify the stack of the actual queue counts. */
  2693. err = netif_set_real_num_tx_queues(adapter->netdev,
  2694. adapter->num_tx_queues);
  2695. if (err)
  2696. goto err_set_queues;
  2697. err = netif_set_real_num_rx_queues(adapter->netdev,
  2698. adapter->num_rx_queues);
  2699. if (err)
  2700. goto err_set_queues;
  2701. /* From here on the code is the same as igb_up() */
  2702. clear_bit(__IGB_DOWN, &adapter->state);
  2703. for (i = 0; i < adapter->num_q_vectors; i++)
  2704. napi_enable(&(adapter->q_vector[i]->napi));
  2705. /* Clear any pending interrupts. */
  2706. rd32(E1000_ICR);
  2707. igb_irq_enable(adapter);
  2708. /* notify VFs that reset has been completed */
  2709. if (adapter->vfs_allocated_count) {
  2710. u32 reg_data = rd32(E1000_CTRL_EXT);
  2711. reg_data |= E1000_CTRL_EXT_PFRSTD;
  2712. wr32(E1000_CTRL_EXT, reg_data);
  2713. }
  2714. netif_tx_start_all_queues(netdev);
  2715. if (!resuming)
  2716. pm_runtime_put(&pdev->dev);
  2717. /* start the watchdog. */
  2718. hw->mac.get_link_status = 1;
  2719. schedule_work(&adapter->watchdog_task);
  2720. return 0;
  2721. err_set_queues:
  2722. igb_free_irq(adapter);
  2723. err_req_irq:
  2724. igb_release_hw_control(adapter);
  2725. igb_power_down_link(adapter);
  2726. igb_free_all_rx_resources(adapter);
  2727. err_setup_rx:
  2728. igb_free_all_tx_resources(adapter);
  2729. err_setup_tx:
  2730. igb_reset(adapter);
  2731. if (!resuming)
  2732. pm_runtime_put(&pdev->dev);
  2733. return err;
  2734. }
  2735. int igb_open(struct net_device *netdev)
  2736. {
  2737. return __igb_open(netdev, false);
  2738. }
  2739. /**
  2740. * igb_close - Disables a network interface
  2741. * @netdev: network interface device structure
  2742. *
  2743. * Returns 0, this is not allowed to fail
  2744. *
  2745. * The close entry point is called when an interface is de-activated
  2746. * by the OS. The hardware is still under the driver's control, but
  2747. * needs to be disabled. A global MAC reset is issued to stop the
  2748. * hardware, and all transmit and receive resources are freed.
  2749. **/
  2750. static int __igb_close(struct net_device *netdev, bool suspending)
  2751. {
  2752. struct igb_adapter *adapter = netdev_priv(netdev);
  2753. struct pci_dev *pdev = adapter->pdev;
  2754. WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
  2755. if (!suspending)
  2756. pm_runtime_get_sync(&pdev->dev);
  2757. igb_down(adapter);
  2758. igb_free_irq(adapter);
  2759. igb_free_all_tx_resources(adapter);
  2760. igb_free_all_rx_resources(adapter);
  2761. if (!suspending)
  2762. pm_runtime_put_sync(&pdev->dev);
  2763. return 0;
  2764. }
  2765. int igb_close(struct net_device *netdev)
  2766. {
  2767. return __igb_close(netdev, false);
  2768. }
  2769. /**
  2770. * igb_setup_tx_resources - allocate Tx resources (Descriptors)
  2771. * @tx_ring: tx descriptor ring (for a specific queue) to setup
  2772. *
  2773. * Return 0 on success, negative on failure
  2774. **/
  2775. int igb_setup_tx_resources(struct igb_ring *tx_ring)
  2776. {
  2777. struct device *dev = tx_ring->dev;
  2778. int size;
  2779. size = sizeof(struct igb_tx_buffer) * tx_ring->count;
  2780. tx_ring->tx_buffer_info = vzalloc(size);
  2781. if (!tx_ring->tx_buffer_info)
  2782. goto err;
  2783. /* round up to nearest 4K */
  2784. tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
  2785. tx_ring->size = ALIGN(tx_ring->size, 4096);
  2786. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  2787. &tx_ring->dma, GFP_KERNEL);
  2788. if (!tx_ring->desc)
  2789. goto err;
  2790. tx_ring->next_to_use = 0;
  2791. tx_ring->next_to_clean = 0;
  2792. return 0;
  2793. err:
  2794. vfree(tx_ring->tx_buffer_info);
  2795. tx_ring->tx_buffer_info = NULL;
  2796. dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
  2797. return -ENOMEM;
  2798. }
  2799. /**
  2800. * igb_setup_all_tx_resources - wrapper to allocate Tx resources
  2801. * (Descriptors) for all queues
  2802. * @adapter: board private structure
  2803. *
  2804. * Return 0 on success, negative on failure
  2805. **/
  2806. static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
  2807. {
  2808. struct pci_dev *pdev = adapter->pdev;
  2809. int i, err = 0;
  2810. for (i = 0; i < adapter->num_tx_queues; i++) {
  2811. err = igb_setup_tx_resources(adapter->tx_ring[i]);
  2812. if (err) {
  2813. dev_err(&pdev->dev,
  2814. "Allocation for Tx Queue %u failed\n", i);
  2815. for (i--; i >= 0; i--)
  2816. igb_free_tx_resources(adapter->tx_ring[i]);
  2817. break;
  2818. }
  2819. }
  2820. return err;
  2821. }
  2822. /**
  2823. * igb_setup_tctl - configure the transmit control registers
  2824. * @adapter: Board private structure
  2825. **/
  2826. void igb_setup_tctl(struct igb_adapter *adapter)
  2827. {
  2828. struct e1000_hw *hw = &adapter->hw;
  2829. u32 tctl;
  2830. /* disable queue 0 which is enabled by default on 82575 and 82576 */
  2831. wr32(E1000_TXDCTL(0), 0);
  2832. /* Program the Transmit Control Register */
  2833. tctl = rd32(E1000_TCTL);
  2834. tctl &= ~E1000_TCTL_CT;
  2835. tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
  2836. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  2837. igb_config_collision_dist(hw);
  2838. /* Enable transmits */
  2839. tctl |= E1000_TCTL_EN;
  2840. wr32(E1000_TCTL, tctl);
  2841. }
  2842. /**
  2843. * igb_configure_tx_ring - Configure transmit ring after Reset
  2844. * @adapter: board private structure
  2845. * @ring: tx ring to configure
  2846. *
  2847. * Configure a transmit ring after a reset.
  2848. **/
  2849. void igb_configure_tx_ring(struct igb_adapter *adapter,
  2850. struct igb_ring *ring)
  2851. {
  2852. struct e1000_hw *hw = &adapter->hw;
  2853. u32 txdctl = 0;
  2854. u64 tdba = ring->dma;
  2855. int reg_idx = ring->reg_idx;
  2856. /* disable the queue */
  2857. wr32(E1000_TXDCTL(reg_idx), 0);
  2858. wrfl();
  2859. mdelay(10);
  2860. wr32(E1000_TDLEN(reg_idx),
  2861. ring->count * sizeof(union e1000_adv_tx_desc));
  2862. wr32(E1000_TDBAL(reg_idx),
  2863. tdba & 0x00000000ffffffffULL);
  2864. wr32(E1000_TDBAH(reg_idx), tdba >> 32);
  2865. ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
  2866. wr32(E1000_TDH(reg_idx), 0);
  2867. writel(0, ring->tail);
  2868. txdctl |= IGB_TX_PTHRESH;
  2869. txdctl |= IGB_TX_HTHRESH << 8;
  2870. txdctl |= IGB_TX_WTHRESH << 16;
  2871. txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
  2872. wr32(E1000_TXDCTL(reg_idx), txdctl);
  2873. }
  2874. /**
  2875. * igb_configure_tx - Configure transmit Unit after Reset
  2876. * @adapter: board private structure
  2877. *
  2878. * Configure the Tx unit of the MAC after a reset.
  2879. **/
  2880. static void igb_configure_tx(struct igb_adapter *adapter)
  2881. {
  2882. int i;
  2883. for (i = 0; i < adapter->num_tx_queues; i++)
  2884. igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
  2885. }
  2886. /**
  2887. * igb_setup_rx_resources - allocate Rx resources (Descriptors)
  2888. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  2889. *
  2890. * Returns 0 on success, negative on failure
  2891. **/
  2892. int igb_setup_rx_resources(struct igb_ring *rx_ring)
  2893. {
  2894. struct device *dev = rx_ring->dev;
  2895. int size;
  2896. size = sizeof(struct igb_rx_buffer) * rx_ring->count;
  2897. rx_ring->rx_buffer_info = vzalloc(size);
  2898. if (!rx_ring->rx_buffer_info)
  2899. goto err;
  2900. /* Round up to nearest 4K */
  2901. rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
  2902. rx_ring->size = ALIGN(rx_ring->size, 4096);
  2903. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  2904. &rx_ring->dma, GFP_KERNEL);
  2905. if (!rx_ring->desc)
  2906. goto err;
  2907. rx_ring->next_to_alloc = 0;
  2908. rx_ring->next_to_clean = 0;
  2909. rx_ring->next_to_use = 0;
  2910. return 0;
  2911. err:
  2912. vfree(rx_ring->rx_buffer_info);
  2913. rx_ring->rx_buffer_info = NULL;
  2914. dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
  2915. return -ENOMEM;
  2916. }
  2917. /**
  2918. * igb_setup_all_rx_resources - wrapper to allocate Rx resources
  2919. * (Descriptors) for all queues
  2920. * @adapter: board private structure
  2921. *
  2922. * Return 0 on success, negative on failure
  2923. **/
  2924. static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
  2925. {
  2926. struct pci_dev *pdev = adapter->pdev;
  2927. int i, err = 0;
  2928. for (i = 0; i < adapter->num_rx_queues; i++) {
  2929. err = igb_setup_rx_resources(adapter->rx_ring[i]);
  2930. if (err) {
  2931. dev_err(&pdev->dev,
  2932. "Allocation for Rx Queue %u failed\n", i);
  2933. for (i--; i >= 0; i--)
  2934. igb_free_rx_resources(adapter->rx_ring[i]);
  2935. break;
  2936. }
  2937. }
  2938. return err;
  2939. }
  2940. /**
  2941. * igb_setup_mrqc - configure the multiple receive queue control registers
  2942. * @adapter: Board private structure
  2943. **/
  2944. static void igb_setup_mrqc(struct igb_adapter *adapter)
  2945. {
  2946. struct e1000_hw *hw = &adapter->hw;
  2947. u32 mrqc, rxcsum;
  2948. u32 j, num_rx_queues;
  2949. u32 rss_key[10];
  2950. netdev_rss_key_fill(rss_key, sizeof(rss_key));
  2951. for (j = 0; j < 10; j++)
  2952. wr32(E1000_RSSRK(j), rss_key[j]);
  2953. num_rx_queues = adapter->rss_queues;
  2954. switch (hw->mac.type) {
  2955. case e1000_82576:
  2956. /* 82576 supports 2 RSS queues for SR-IOV */
  2957. if (adapter->vfs_allocated_count)
  2958. num_rx_queues = 2;
  2959. break;
  2960. default:
  2961. break;
  2962. }
  2963. if (adapter->rss_indir_tbl_init != num_rx_queues) {
  2964. for (j = 0; j < IGB_RETA_SIZE; j++)
  2965. adapter->rss_indir_tbl[j] =
  2966. (j * num_rx_queues) / IGB_RETA_SIZE;
  2967. adapter->rss_indir_tbl_init = num_rx_queues;
  2968. }
  2969. igb_write_rss_indir_tbl(adapter);
  2970. /* Disable raw packet checksumming so that RSS hash is placed in
  2971. * descriptor on writeback. No need to enable TCP/UDP/IP checksum
  2972. * offloads as they are enabled by default
  2973. */
  2974. rxcsum = rd32(E1000_RXCSUM);
  2975. rxcsum |= E1000_RXCSUM_PCSD;
  2976. if (adapter->hw.mac.type >= e1000_82576)
  2977. /* Enable Receive Checksum Offload for SCTP */
  2978. rxcsum |= E1000_RXCSUM_CRCOFL;
  2979. /* Don't need to set TUOFL or IPOFL, they default to 1 */
  2980. wr32(E1000_RXCSUM, rxcsum);
  2981. /* Generate RSS hash based on packet types, TCP/UDP
  2982. * port numbers and/or IPv4/v6 src and dst addresses
  2983. */
  2984. mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
  2985. E1000_MRQC_RSS_FIELD_IPV4_TCP |
  2986. E1000_MRQC_RSS_FIELD_IPV6 |
  2987. E1000_MRQC_RSS_FIELD_IPV6_TCP |
  2988. E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
  2989. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2990. mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
  2991. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2992. mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
  2993. /* If VMDq is enabled then we set the appropriate mode for that, else
  2994. * we default to RSS so that an RSS hash is calculated per packet even
  2995. * if we are only using one queue
  2996. */
  2997. if (adapter->vfs_allocated_count) {
  2998. if (hw->mac.type > e1000_82575) {
  2999. /* Set the default pool for the PF's first queue */
  3000. u32 vtctl = rd32(E1000_VT_CTL);
  3001. vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
  3002. E1000_VT_CTL_DISABLE_DEF_POOL);
  3003. vtctl |= adapter->vfs_allocated_count <<
  3004. E1000_VT_CTL_DEFAULT_POOL_SHIFT;
  3005. wr32(E1000_VT_CTL, vtctl);
  3006. }
  3007. if (adapter->rss_queues > 1)
  3008. mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
  3009. else
  3010. mrqc |= E1000_MRQC_ENABLE_VMDQ;
  3011. } else {
  3012. if (hw->mac.type != e1000_i211)
  3013. mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
  3014. }
  3015. igb_vmm_control(adapter);
  3016. wr32(E1000_MRQC, mrqc);
  3017. }
  3018. /**
  3019. * igb_setup_rctl - configure the receive control registers
  3020. * @adapter: Board private structure
  3021. **/
  3022. void igb_setup_rctl(struct igb_adapter *adapter)
  3023. {
  3024. struct e1000_hw *hw = &adapter->hw;
  3025. u32 rctl;
  3026. rctl = rd32(E1000_RCTL);
  3027. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  3028. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  3029. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
  3030. (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
  3031. /* enable stripping of CRC. It's unlikely this will break BMC
  3032. * redirection as it did with e1000. Newer features require
  3033. * that the HW strips the CRC.
  3034. */
  3035. rctl |= E1000_RCTL_SECRC;
  3036. /* disable store bad packets and clear size bits. */
  3037. rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
  3038. /* enable LPE to allow for reception of jumbo frames */
  3039. rctl |= E1000_RCTL_LPE;
  3040. /* disable queue 0 to prevent tail write w/o re-config */
  3041. wr32(E1000_RXDCTL(0), 0);
  3042. /* Attention!!! For SR-IOV PF driver operations you must enable
  3043. * queue drop for all VF and PF queues to prevent head of line blocking
  3044. * if an un-trusted VF does not provide descriptors to hardware.
  3045. */
  3046. if (adapter->vfs_allocated_count) {
  3047. /* set all queue drop enable bits */
  3048. wr32(E1000_QDE, ALL_QUEUES);
  3049. }
  3050. /* This is useful for sniffing bad packets. */
  3051. if (adapter->netdev->features & NETIF_F_RXALL) {
  3052. /* UPE and MPE will be handled by normal PROMISC logic
  3053. * in e1000e_set_rx_mode
  3054. */
  3055. rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
  3056. E1000_RCTL_BAM | /* RX All Bcast Pkts */
  3057. E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
  3058. rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
  3059. E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
  3060. /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
  3061. * and that breaks VLANs.
  3062. */
  3063. }
  3064. wr32(E1000_RCTL, rctl);
  3065. }
  3066. static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
  3067. int vfn)
  3068. {
  3069. struct e1000_hw *hw = &adapter->hw;
  3070. u32 vmolr;
  3071. if (size > MAX_JUMBO_FRAME_SIZE)
  3072. size = MAX_JUMBO_FRAME_SIZE;
  3073. vmolr = rd32(E1000_VMOLR(vfn));
  3074. vmolr &= ~E1000_VMOLR_RLPML_MASK;
  3075. vmolr |= size | E1000_VMOLR_LPE;
  3076. wr32(E1000_VMOLR(vfn), vmolr);
  3077. return 0;
  3078. }
  3079. static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
  3080. int vfn, bool enable)
  3081. {
  3082. struct e1000_hw *hw = &adapter->hw;
  3083. u32 val, reg;
  3084. if (hw->mac.type < e1000_82576)
  3085. return;
  3086. if (hw->mac.type == e1000_i350)
  3087. reg = E1000_DVMOLR(vfn);
  3088. else
  3089. reg = E1000_VMOLR(vfn);
  3090. val = rd32(reg);
  3091. if (enable)
  3092. val |= E1000_VMOLR_STRVLAN;
  3093. else
  3094. val &= ~(E1000_VMOLR_STRVLAN);
  3095. wr32(reg, val);
  3096. }
  3097. static inline void igb_set_vmolr(struct igb_adapter *adapter,
  3098. int vfn, bool aupe)
  3099. {
  3100. struct e1000_hw *hw = &adapter->hw;
  3101. u32 vmolr;
  3102. /* This register exists only on 82576 and newer so if we are older then
  3103. * we should exit and do nothing
  3104. */
  3105. if (hw->mac.type < e1000_82576)
  3106. return;
  3107. vmolr = rd32(E1000_VMOLR(vfn));
  3108. if (aupe)
  3109. vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
  3110. else
  3111. vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
  3112. /* clear all bits that might not be set */
  3113. vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
  3114. if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
  3115. vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
  3116. /* for VMDq only allow the VFs and pool 0 to accept broadcast and
  3117. * multicast packets
  3118. */
  3119. if (vfn <= adapter->vfs_allocated_count)
  3120. vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
  3121. wr32(E1000_VMOLR(vfn), vmolr);
  3122. }
  3123. /**
  3124. * igb_configure_rx_ring - Configure a receive ring after Reset
  3125. * @adapter: board private structure
  3126. * @ring: receive ring to be configured
  3127. *
  3128. * Configure the Rx unit of the MAC after a reset.
  3129. **/
  3130. void igb_configure_rx_ring(struct igb_adapter *adapter,
  3131. struct igb_ring *ring)
  3132. {
  3133. struct e1000_hw *hw = &adapter->hw;
  3134. u64 rdba = ring->dma;
  3135. int reg_idx = ring->reg_idx;
  3136. u32 srrctl = 0, rxdctl = 0;
  3137. /* disable the queue */
  3138. wr32(E1000_RXDCTL(reg_idx), 0);
  3139. /* Set DMA base address registers */
  3140. wr32(E1000_RDBAL(reg_idx),
  3141. rdba & 0x00000000ffffffffULL);
  3142. wr32(E1000_RDBAH(reg_idx), rdba >> 32);
  3143. wr32(E1000_RDLEN(reg_idx),
  3144. ring->count * sizeof(union e1000_adv_rx_desc));
  3145. /* initialize head and tail */
  3146. ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
  3147. wr32(E1000_RDH(reg_idx), 0);
  3148. writel(0, ring->tail);
  3149. /* set descriptor configuration */
  3150. srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
  3151. srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
  3152. srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
  3153. if (hw->mac.type >= e1000_82580)
  3154. srrctl |= E1000_SRRCTL_TIMESTAMP;
  3155. /* Only set Drop Enable if we are supporting multiple queues */
  3156. if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
  3157. srrctl |= E1000_SRRCTL_DROP_EN;
  3158. wr32(E1000_SRRCTL(reg_idx), srrctl);
  3159. /* set filtering for VMDQ pools */
  3160. igb_set_vmolr(adapter, reg_idx & 0x7, true);
  3161. rxdctl |= IGB_RX_PTHRESH;
  3162. rxdctl |= IGB_RX_HTHRESH << 8;
  3163. rxdctl |= IGB_RX_WTHRESH << 16;
  3164. /* enable receive descriptor fetching */
  3165. rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
  3166. wr32(E1000_RXDCTL(reg_idx), rxdctl);
  3167. }
  3168. /**
  3169. * igb_configure_rx - Configure receive Unit after Reset
  3170. * @adapter: board private structure
  3171. *
  3172. * Configure the Rx unit of the MAC after a reset.
  3173. **/
  3174. static void igb_configure_rx(struct igb_adapter *adapter)
  3175. {
  3176. int i;
  3177. /* set the correct pool for the PF default MAC address in entry 0 */
  3178. igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
  3179. adapter->vfs_allocated_count);
  3180. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  3181. * the Base and Length of the Rx Descriptor Ring
  3182. */
  3183. for (i = 0; i < adapter->num_rx_queues; i++)
  3184. igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
  3185. }
  3186. /**
  3187. * igb_free_tx_resources - Free Tx Resources per Queue
  3188. * @tx_ring: Tx descriptor ring for a specific queue
  3189. *
  3190. * Free all transmit software resources
  3191. **/
  3192. void igb_free_tx_resources(struct igb_ring *tx_ring)
  3193. {
  3194. igb_clean_tx_ring(tx_ring);
  3195. vfree(tx_ring->tx_buffer_info);
  3196. tx_ring->tx_buffer_info = NULL;
  3197. /* if not set, then don't free */
  3198. if (!tx_ring->desc)
  3199. return;
  3200. dma_free_coherent(tx_ring->dev, tx_ring->size,
  3201. tx_ring->desc, tx_ring->dma);
  3202. tx_ring->desc = NULL;
  3203. }
  3204. /**
  3205. * igb_free_all_tx_resources - Free Tx Resources for All Queues
  3206. * @adapter: board private structure
  3207. *
  3208. * Free all transmit software resources
  3209. **/
  3210. static void igb_free_all_tx_resources(struct igb_adapter *adapter)
  3211. {
  3212. int i;
  3213. for (i = 0; i < adapter->num_tx_queues; i++)
  3214. if (adapter->tx_ring[i])
  3215. igb_free_tx_resources(adapter->tx_ring[i]);
  3216. }
  3217. void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
  3218. struct igb_tx_buffer *tx_buffer)
  3219. {
  3220. if (tx_buffer->skb) {
  3221. dev_kfree_skb_any(tx_buffer->skb);
  3222. if (dma_unmap_len(tx_buffer, len))
  3223. dma_unmap_single(ring->dev,
  3224. dma_unmap_addr(tx_buffer, dma),
  3225. dma_unmap_len(tx_buffer, len),
  3226. DMA_TO_DEVICE);
  3227. } else if (dma_unmap_len(tx_buffer, len)) {
  3228. dma_unmap_page(ring->dev,
  3229. dma_unmap_addr(tx_buffer, dma),
  3230. dma_unmap_len(tx_buffer, len),
  3231. DMA_TO_DEVICE);
  3232. }
  3233. tx_buffer->next_to_watch = NULL;
  3234. tx_buffer->skb = NULL;
  3235. dma_unmap_len_set(tx_buffer, len, 0);
  3236. /* buffer_info must be completely set up in the transmit path */
  3237. }
  3238. /**
  3239. * igb_clean_tx_ring - Free Tx Buffers
  3240. * @tx_ring: ring to be cleaned
  3241. **/
  3242. static void igb_clean_tx_ring(struct igb_ring *tx_ring)
  3243. {
  3244. struct igb_tx_buffer *buffer_info;
  3245. unsigned long size;
  3246. u16 i;
  3247. if (!tx_ring->tx_buffer_info)
  3248. return;
  3249. /* Free all the Tx ring sk_buffs */
  3250. for (i = 0; i < tx_ring->count; i++) {
  3251. buffer_info = &tx_ring->tx_buffer_info[i];
  3252. igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
  3253. }
  3254. netdev_tx_reset_queue(txring_txq(tx_ring));
  3255. size = sizeof(struct igb_tx_buffer) * tx_ring->count;
  3256. memset(tx_ring->tx_buffer_info, 0, size);
  3257. /* Zero out the descriptor ring */
  3258. memset(tx_ring->desc, 0, tx_ring->size);
  3259. tx_ring->next_to_use = 0;
  3260. tx_ring->next_to_clean = 0;
  3261. }
  3262. /**
  3263. * igb_clean_all_tx_rings - Free Tx Buffers for all queues
  3264. * @adapter: board private structure
  3265. **/
  3266. static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
  3267. {
  3268. int i;
  3269. for (i = 0; i < adapter->num_tx_queues; i++)
  3270. if (adapter->tx_ring[i])
  3271. igb_clean_tx_ring(adapter->tx_ring[i]);
  3272. }
  3273. /**
  3274. * igb_free_rx_resources - Free Rx Resources
  3275. * @rx_ring: ring to clean the resources from
  3276. *
  3277. * Free all receive software resources
  3278. **/
  3279. void igb_free_rx_resources(struct igb_ring *rx_ring)
  3280. {
  3281. igb_clean_rx_ring(rx_ring);
  3282. vfree(rx_ring->rx_buffer_info);
  3283. rx_ring->rx_buffer_info = NULL;
  3284. /* if not set, then don't free */
  3285. if (!rx_ring->desc)
  3286. return;
  3287. dma_free_coherent(rx_ring->dev, rx_ring->size,
  3288. rx_ring->desc, rx_ring->dma);
  3289. rx_ring->desc = NULL;
  3290. }
  3291. /**
  3292. * igb_free_all_rx_resources - Free Rx Resources for All Queues
  3293. * @adapter: board private structure
  3294. *
  3295. * Free all receive software resources
  3296. **/
  3297. static void igb_free_all_rx_resources(struct igb_adapter *adapter)
  3298. {
  3299. int i;
  3300. for (i = 0; i < adapter->num_rx_queues; i++)
  3301. if (adapter->rx_ring[i])
  3302. igb_free_rx_resources(adapter->rx_ring[i]);
  3303. }
  3304. /**
  3305. * igb_clean_rx_ring - Free Rx Buffers per Queue
  3306. * @rx_ring: ring to free buffers from
  3307. **/
  3308. static void igb_clean_rx_ring(struct igb_ring *rx_ring)
  3309. {
  3310. unsigned long size;
  3311. u16 i;
  3312. if (rx_ring->skb)
  3313. dev_kfree_skb(rx_ring->skb);
  3314. rx_ring->skb = NULL;
  3315. if (!rx_ring->rx_buffer_info)
  3316. return;
  3317. /* Free all the Rx ring sk_buffs */
  3318. for (i = 0; i < rx_ring->count; i++) {
  3319. struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
  3320. if (!buffer_info->page)
  3321. continue;
  3322. dma_unmap_page(rx_ring->dev,
  3323. buffer_info->dma,
  3324. PAGE_SIZE,
  3325. DMA_FROM_DEVICE);
  3326. __free_page(buffer_info->page);
  3327. buffer_info->page = NULL;
  3328. }
  3329. size = sizeof(struct igb_rx_buffer) * rx_ring->count;
  3330. memset(rx_ring->rx_buffer_info, 0, size);
  3331. /* Zero out the descriptor ring */
  3332. memset(rx_ring->desc, 0, rx_ring->size);
  3333. rx_ring->next_to_alloc = 0;
  3334. rx_ring->next_to_clean = 0;
  3335. rx_ring->next_to_use = 0;
  3336. }
  3337. /**
  3338. * igb_clean_all_rx_rings - Free Rx Buffers for all queues
  3339. * @adapter: board private structure
  3340. **/
  3341. static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
  3342. {
  3343. int i;
  3344. for (i = 0; i < adapter->num_rx_queues; i++)
  3345. if (adapter->rx_ring[i])
  3346. igb_clean_rx_ring(adapter->rx_ring[i]);
  3347. }
  3348. /**
  3349. * igb_set_mac - Change the Ethernet Address of the NIC
  3350. * @netdev: network interface device structure
  3351. * @p: pointer to an address structure
  3352. *
  3353. * Returns 0 on success, negative on failure
  3354. **/
  3355. static int igb_set_mac(struct net_device *netdev, void *p)
  3356. {
  3357. struct igb_adapter *adapter = netdev_priv(netdev);
  3358. struct e1000_hw *hw = &adapter->hw;
  3359. struct sockaddr *addr = p;
  3360. if (!is_valid_ether_addr(addr->sa_data))
  3361. return -EADDRNOTAVAIL;
  3362. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  3363. memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
  3364. /* set the correct pool for the new PF MAC address in entry 0 */
  3365. igb_rar_set_qsel(adapter, hw->mac.addr, 0,
  3366. adapter->vfs_allocated_count);
  3367. return 0;
  3368. }
  3369. /**
  3370. * igb_write_mc_addr_list - write multicast addresses to MTA
  3371. * @netdev: network interface device structure
  3372. *
  3373. * Writes multicast address list to the MTA hash table.
  3374. * Returns: -ENOMEM on failure
  3375. * 0 on no addresses written
  3376. * X on writing X addresses to MTA
  3377. **/
  3378. static int igb_write_mc_addr_list(struct net_device *netdev)
  3379. {
  3380. struct igb_adapter *adapter = netdev_priv(netdev);
  3381. struct e1000_hw *hw = &adapter->hw;
  3382. struct netdev_hw_addr *ha;
  3383. u8 *mta_list;
  3384. int i;
  3385. if (netdev_mc_empty(netdev)) {
  3386. /* nothing to program, so clear mc list */
  3387. igb_update_mc_addr_list(hw, NULL, 0);
  3388. igb_restore_vf_multicasts(adapter);
  3389. return 0;
  3390. }
  3391. mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
  3392. if (!mta_list)
  3393. return -ENOMEM;
  3394. /* The shared function expects a packed array of only addresses. */
  3395. i = 0;
  3396. netdev_for_each_mc_addr(ha, netdev)
  3397. memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
  3398. igb_update_mc_addr_list(hw, mta_list, i);
  3399. kfree(mta_list);
  3400. return netdev_mc_count(netdev);
  3401. }
  3402. /**
  3403. * igb_write_uc_addr_list - write unicast addresses to RAR table
  3404. * @netdev: network interface device structure
  3405. *
  3406. * Writes unicast address list to the RAR table.
  3407. * Returns: -ENOMEM on failure/insufficient address space
  3408. * 0 on no addresses written
  3409. * X on writing X addresses to the RAR table
  3410. **/
  3411. static int igb_write_uc_addr_list(struct net_device *netdev)
  3412. {
  3413. struct igb_adapter *adapter = netdev_priv(netdev);
  3414. struct e1000_hw *hw = &adapter->hw;
  3415. unsigned int vfn = adapter->vfs_allocated_count;
  3416. unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
  3417. int count = 0;
  3418. /* return ENOMEM indicating insufficient memory for addresses */
  3419. if (netdev_uc_count(netdev) > rar_entries)
  3420. return -ENOMEM;
  3421. if (!netdev_uc_empty(netdev) && rar_entries) {
  3422. struct netdev_hw_addr *ha;
  3423. netdev_for_each_uc_addr(ha, netdev) {
  3424. if (!rar_entries)
  3425. break;
  3426. igb_rar_set_qsel(adapter, ha->addr,
  3427. rar_entries--,
  3428. vfn);
  3429. count++;
  3430. }
  3431. }
  3432. /* write the addresses in reverse order to avoid write combining */
  3433. for (; rar_entries > 0 ; rar_entries--) {
  3434. wr32(E1000_RAH(rar_entries), 0);
  3435. wr32(E1000_RAL(rar_entries), 0);
  3436. }
  3437. wrfl();
  3438. return count;
  3439. }
  3440. static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
  3441. {
  3442. struct e1000_hw *hw = &adapter->hw;
  3443. u32 i, pf_id;
  3444. switch (hw->mac.type) {
  3445. case e1000_i210:
  3446. case e1000_i211:
  3447. case e1000_i350:
  3448. /* VLAN filtering needed for VLAN prio filter */
  3449. if (adapter->netdev->features & NETIF_F_NTUPLE)
  3450. break;
  3451. /* fall through */
  3452. case e1000_82576:
  3453. case e1000_82580:
  3454. case e1000_i354:
  3455. /* VLAN filtering needed for pool filtering */
  3456. if (adapter->vfs_allocated_count)
  3457. break;
  3458. /* fall through */
  3459. default:
  3460. return 1;
  3461. }
  3462. /* We are already in VLAN promisc, nothing to do */
  3463. if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
  3464. return 0;
  3465. if (!adapter->vfs_allocated_count)
  3466. goto set_vfta;
  3467. /* Add PF to all active pools */
  3468. pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
  3469. for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
  3470. u32 vlvf = rd32(E1000_VLVF(i));
  3471. vlvf |= 1 << pf_id;
  3472. wr32(E1000_VLVF(i), vlvf);
  3473. }
  3474. set_vfta:
  3475. /* Set all bits in the VLAN filter table array */
  3476. for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
  3477. hw->mac.ops.write_vfta(hw, i, ~0U);
  3478. /* Set flag so we don't redo unnecessary work */
  3479. adapter->flags |= IGB_FLAG_VLAN_PROMISC;
  3480. return 0;
  3481. }
  3482. #define VFTA_BLOCK_SIZE 8
  3483. static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
  3484. {
  3485. struct e1000_hw *hw = &adapter->hw;
  3486. u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
  3487. u32 vid_start = vfta_offset * 32;
  3488. u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
  3489. u32 i, vid, word, bits, pf_id;
  3490. /* guarantee that we don't scrub out management VLAN */
  3491. vid = adapter->mng_vlan_id;
  3492. if (vid >= vid_start && vid < vid_end)
  3493. vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
  3494. if (!adapter->vfs_allocated_count)
  3495. goto set_vfta;
  3496. pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
  3497. for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
  3498. u32 vlvf = rd32(E1000_VLVF(i));
  3499. /* pull VLAN ID from VLVF */
  3500. vid = vlvf & VLAN_VID_MASK;
  3501. /* only concern ourselves with a certain range */
  3502. if (vid < vid_start || vid >= vid_end)
  3503. continue;
  3504. if (vlvf & E1000_VLVF_VLANID_ENABLE) {
  3505. /* record VLAN ID in VFTA */
  3506. vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
  3507. /* if PF is part of this then continue */
  3508. if (test_bit(vid, adapter->active_vlans))
  3509. continue;
  3510. }
  3511. /* remove PF from the pool */
  3512. bits = ~(1 << pf_id);
  3513. bits &= rd32(E1000_VLVF(i));
  3514. wr32(E1000_VLVF(i), bits);
  3515. }
  3516. set_vfta:
  3517. /* extract values from active_vlans and write back to VFTA */
  3518. for (i = VFTA_BLOCK_SIZE; i--;) {
  3519. vid = (vfta_offset + i) * 32;
  3520. word = vid / BITS_PER_LONG;
  3521. bits = vid % BITS_PER_LONG;
  3522. vfta[i] |= adapter->active_vlans[word] >> bits;
  3523. hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
  3524. }
  3525. }
  3526. static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
  3527. {
  3528. u32 i;
  3529. /* We are not in VLAN promisc, nothing to do */
  3530. if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
  3531. return;
  3532. /* Set flag so we don't redo unnecessary work */
  3533. adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
  3534. for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
  3535. igb_scrub_vfta(adapter, i);
  3536. }
  3537. /**
  3538. * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
  3539. * @netdev: network interface device structure
  3540. *
  3541. * The set_rx_mode entry point is called whenever the unicast or multicast
  3542. * address lists or the network interface flags are updated. This routine is
  3543. * responsible for configuring the hardware for proper unicast, multicast,
  3544. * promiscuous mode, and all-multi behavior.
  3545. **/
  3546. static void igb_set_rx_mode(struct net_device *netdev)
  3547. {
  3548. struct igb_adapter *adapter = netdev_priv(netdev);
  3549. struct e1000_hw *hw = &adapter->hw;
  3550. unsigned int vfn = adapter->vfs_allocated_count;
  3551. u32 rctl = 0, vmolr = 0;
  3552. int count;
  3553. /* Check for Promiscuous and All Multicast modes */
  3554. if (netdev->flags & IFF_PROMISC) {
  3555. rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
  3556. vmolr |= E1000_VMOLR_MPME;
  3557. /* enable use of UTA filter to force packets to default pool */
  3558. if (hw->mac.type == e1000_82576)
  3559. vmolr |= E1000_VMOLR_ROPE;
  3560. } else {
  3561. if (netdev->flags & IFF_ALLMULTI) {
  3562. rctl |= E1000_RCTL_MPE;
  3563. vmolr |= E1000_VMOLR_MPME;
  3564. } else {
  3565. /* Write addresses to the MTA, if the attempt fails
  3566. * then we should just turn on promiscuous mode so
  3567. * that we can at least receive multicast traffic
  3568. */
  3569. count = igb_write_mc_addr_list(netdev);
  3570. if (count < 0) {
  3571. rctl |= E1000_RCTL_MPE;
  3572. vmolr |= E1000_VMOLR_MPME;
  3573. } else if (count) {
  3574. vmolr |= E1000_VMOLR_ROMPE;
  3575. }
  3576. }
  3577. }
  3578. /* Write addresses to available RAR registers, if there is not
  3579. * sufficient space to store all the addresses then enable
  3580. * unicast promiscuous mode
  3581. */
  3582. count = igb_write_uc_addr_list(netdev);
  3583. if (count < 0) {
  3584. rctl |= E1000_RCTL_UPE;
  3585. vmolr |= E1000_VMOLR_ROPE;
  3586. }
  3587. /* enable VLAN filtering by default */
  3588. rctl |= E1000_RCTL_VFE;
  3589. /* disable VLAN filtering for modes that require it */
  3590. if ((netdev->flags & IFF_PROMISC) ||
  3591. (netdev->features & NETIF_F_RXALL)) {
  3592. /* if we fail to set all rules then just clear VFE */
  3593. if (igb_vlan_promisc_enable(adapter))
  3594. rctl &= ~E1000_RCTL_VFE;
  3595. } else {
  3596. igb_vlan_promisc_disable(adapter);
  3597. }
  3598. /* update state of unicast, multicast, and VLAN filtering modes */
  3599. rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
  3600. E1000_RCTL_VFE);
  3601. wr32(E1000_RCTL, rctl);
  3602. /* In order to support SR-IOV and eventually VMDq it is necessary to set
  3603. * the VMOLR to enable the appropriate modes. Without this workaround
  3604. * we will have issues with VLAN tag stripping not being done for frames
  3605. * that are only arriving because we are the default pool
  3606. */
  3607. if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
  3608. return;
  3609. /* set UTA to appropriate mode */
  3610. igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
  3611. vmolr |= rd32(E1000_VMOLR(vfn)) &
  3612. ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
  3613. /* enable Rx jumbo frames, no need for restriction */
  3614. vmolr &= ~E1000_VMOLR_RLPML_MASK;
  3615. vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
  3616. wr32(E1000_VMOLR(vfn), vmolr);
  3617. wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
  3618. igb_restore_vf_multicasts(adapter);
  3619. }
  3620. static void igb_check_wvbr(struct igb_adapter *adapter)
  3621. {
  3622. struct e1000_hw *hw = &adapter->hw;
  3623. u32 wvbr = 0;
  3624. switch (hw->mac.type) {
  3625. case e1000_82576:
  3626. case e1000_i350:
  3627. wvbr = rd32(E1000_WVBR);
  3628. if (!wvbr)
  3629. return;
  3630. break;
  3631. default:
  3632. break;
  3633. }
  3634. adapter->wvbr |= wvbr;
  3635. }
  3636. #define IGB_STAGGERED_QUEUE_OFFSET 8
  3637. static void igb_spoof_check(struct igb_adapter *adapter)
  3638. {
  3639. int j;
  3640. if (!adapter->wvbr)
  3641. return;
  3642. for (j = 0; j < adapter->vfs_allocated_count; j++) {
  3643. if (adapter->wvbr & (1 << j) ||
  3644. adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
  3645. dev_warn(&adapter->pdev->dev,
  3646. "Spoof event(s) detected on VF %d\n", j);
  3647. adapter->wvbr &=
  3648. ~((1 << j) |
  3649. (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
  3650. }
  3651. }
  3652. }
  3653. /* Need to wait a few seconds after link up to get diagnostic information from
  3654. * the phy
  3655. */
  3656. static void igb_update_phy_info(unsigned long data)
  3657. {
  3658. struct igb_adapter *adapter = (struct igb_adapter *) data;
  3659. igb_get_phy_info(&adapter->hw);
  3660. }
  3661. /**
  3662. * igb_has_link - check shared code for link and determine up/down
  3663. * @adapter: pointer to driver private info
  3664. **/
  3665. bool igb_has_link(struct igb_adapter *adapter)
  3666. {
  3667. struct e1000_hw *hw = &adapter->hw;
  3668. bool link_active = false;
  3669. /* get_link_status is set on LSC (link status) interrupt or
  3670. * rx sequence error interrupt. get_link_status will stay
  3671. * false until the e1000_check_for_link establishes link
  3672. * for copper adapters ONLY
  3673. */
  3674. switch (hw->phy.media_type) {
  3675. case e1000_media_type_copper:
  3676. if (!hw->mac.get_link_status)
  3677. return true;
  3678. case e1000_media_type_internal_serdes:
  3679. hw->mac.ops.check_for_link(hw);
  3680. link_active = !hw->mac.get_link_status;
  3681. break;
  3682. default:
  3683. case e1000_media_type_unknown:
  3684. break;
  3685. }
  3686. if (((hw->mac.type == e1000_i210) ||
  3687. (hw->mac.type == e1000_i211)) &&
  3688. (hw->phy.id == I210_I_PHY_ID)) {
  3689. if (!netif_carrier_ok(adapter->netdev)) {
  3690. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  3691. } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
  3692. adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
  3693. adapter->link_check_timeout = jiffies;
  3694. }
  3695. }
  3696. return link_active;
  3697. }
  3698. static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
  3699. {
  3700. bool ret = false;
  3701. u32 ctrl_ext, thstat;
  3702. /* check for thermal sensor event on i350 copper only */
  3703. if (hw->mac.type == e1000_i350) {
  3704. thstat = rd32(E1000_THSTAT);
  3705. ctrl_ext = rd32(E1000_CTRL_EXT);
  3706. if ((hw->phy.media_type == e1000_media_type_copper) &&
  3707. !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
  3708. ret = !!(thstat & event);
  3709. }
  3710. return ret;
  3711. }
  3712. /**
  3713. * igb_check_lvmmc - check for malformed packets received
  3714. * and indicated in LVMMC register
  3715. * @adapter: pointer to adapter
  3716. **/
  3717. static void igb_check_lvmmc(struct igb_adapter *adapter)
  3718. {
  3719. struct e1000_hw *hw = &adapter->hw;
  3720. u32 lvmmc;
  3721. lvmmc = rd32(E1000_LVMMC);
  3722. if (lvmmc) {
  3723. if (unlikely(net_ratelimit())) {
  3724. netdev_warn(adapter->netdev,
  3725. "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
  3726. lvmmc);
  3727. }
  3728. }
  3729. }
  3730. /**
  3731. * igb_watchdog - Timer Call-back
  3732. * @data: pointer to adapter cast into an unsigned long
  3733. **/
  3734. static void igb_watchdog(unsigned long data)
  3735. {
  3736. struct igb_adapter *adapter = (struct igb_adapter *)data;
  3737. /* Do the rest outside of interrupt context */
  3738. schedule_work(&adapter->watchdog_task);
  3739. }
  3740. static void igb_watchdog_task(struct work_struct *work)
  3741. {
  3742. struct igb_adapter *adapter = container_of(work,
  3743. struct igb_adapter,
  3744. watchdog_task);
  3745. struct e1000_hw *hw = &adapter->hw;
  3746. struct e1000_phy_info *phy = &hw->phy;
  3747. struct net_device *netdev = adapter->netdev;
  3748. u32 link;
  3749. int i;
  3750. u32 connsw;
  3751. u16 phy_data, retry_count = 20;
  3752. link = igb_has_link(adapter);
  3753. if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
  3754. if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
  3755. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  3756. else
  3757. link = false;
  3758. }
  3759. /* Force link down if we have fiber to swap to */
  3760. if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
  3761. if (hw->phy.media_type == e1000_media_type_copper) {
  3762. connsw = rd32(E1000_CONNSW);
  3763. if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
  3764. link = 0;
  3765. }
  3766. }
  3767. if (link) {
  3768. /* Perform a reset if the media type changed. */
  3769. if (hw->dev_spec._82575.media_changed) {
  3770. hw->dev_spec._82575.media_changed = false;
  3771. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  3772. igb_reset(adapter);
  3773. }
  3774. /* Cancel scheduled suspend requests. */
  3775. pm_runtime_resume(netdev->dev.parent);
  3776. if (!netif_carrier_ok(netdev)) {
  3777. u32 ctrl;
  3778. hw->mac.ops.get_speed_and_duplex(hw,
  3779. &adapter->link_speed,
  3780. &adapter->link_duplex);
  3781. ctrl = rd32(E1000_CTRL);
  3782. /* Links status message must follow this format */
  3783. netdev_info(netdev,
  3784. "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
  3785. netdev->name,
  3786. adapter->link_speed,
  3787. adapter->link_duplex == FULL_DUPLEX ?
  3788. "Full" : "Half",
  3789. (ctrl & E1000_CTRL_TFCE) &&
  3790. (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
  3791. (ctrl & E1000_CTRL_RFCE) ? "RX" :
  3792. (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
  3793. /* disable EEE if enabled */
  3794. if ((adapter->flags & IGB_FLAG_EEE) &&
  3795. (adapter->link_duplex == HALF_DUPLEX)) {
  3796. dev_info(&adapter->pdev->dev,
  3797. "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
  3798. adapter->hw.dev_spec._82575.eee_disable = true;
  3799. adapter->flags &= ~IGB_FLAG_EEE;
  3800. }
  3801. /* check if SmartSpeed worked */
  3802. igb_check_downshift(hw);
  3803. if (phy->speed_downgraded)
  3804. netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
  3805. /* check for thermal sensor event */
  3806. if (igb_thermal_sensor_event(hw,
  3807. E1000_THSTAT_LINK_THROTTLE))
  3808. netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
  3809. /* adjust timeout factor according to speed/duplex */
  3810. adapter->tx_timeout_factor = 1;
  3811. switch (adapter->link_speed) {
  3812. case SPEED_10:
  3813. adapter->tx_timeout_factor = 14;
  3814. break;
  3815. case SPEED_100:
  3816. /* maybe add some timeout factor ? */
  3817. break;
  3818. }
  3819. if (adapter->link_speed != SPEED_1000)
  3820. goto no_wait;
  3821. /* wait for Remote receiver status OK */
  3822. retry_read_status:
  3823. if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
  3824. &phy_data)) {
  3825. if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
  3826. retry_count) {
  3827. msleep(100);
  3828. retry_count--;
  3829. goto retry_read_status;
  3830. } else if (!retry_count) {
  3831. dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
  3832. }
  3833. } else {
  3834. dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
  3835. }
  3836. no_wait:
  3837. netif_carrier_on(netdev);
  3838. igb_ping_all_vfs(adapter);
  3839. igb_check_vf_rate_limit(adapter);
  3840. /* link state has changed, schedule phy info update */
  3841. if (!test_bit(__IGB_DOWN, &adapter->state))
  3842. mod_timer(&adapter->phy_info_timer,
  3843. round_jiffies(jiffies + 2 * HZ));
  3844. }
  3845. } else {
  3846. if (netif_carrier_ok(netdev)) {
  3847. adapter->link_speed = 0;
  3848. adapter->link_duplex = 0;
  3849. /* check for thermal sensor event */
  3850. if (igb_thermal_sensor_event(hw,
  3851. E1000_THSTAT_PWR_DOWN)) {
  3852. netdev_err(netdev, "The network adapter was stopped because it overheated\n");
  3853. }
  3854. /* Links status message must follow this format */
  3855. netdev_info(netdev, "igb: %s NIC Link is Down\n",
  3856. netdev->name);
  3857. netif_carrier_off(netdev);
  3858. igb_ping_all_vfs(adapter);
  3859. /* link state has changed, schedule phy info update */
  3860. if (!test_bit(__IGB_DOWN, &adapter->state))
  3861. mod_timer(&adapter->phy_info_timer,
  3862. round_jiffies(jiffies + 2 * HZ));
  3863. /* link is down, time to check for alternate media */
  3864. if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
  3865. igb_check_swap_media(adapter);
  3866. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  3867. schedule_work(&adapter->reset_task);
  3868. /* return immediately */
  3869. return;
  3870. }
  3871. }
  3872. pm_schedule_suspend(netdev->dev.parent,
  3873. MSEC_PER_SEC * 5);
  3874. /* also check for alternate media here */
  3875. } else if (!netif_carrier_ok(netdev) &&
  3876. (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
  3877. igb_check_swap_media(adapter);
  3878. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  3879. schedule_work(&adapter->reset_task);
  3880. /* return immediately */
  3881. return;
  3882. }
  3883. }
  3884. }
  3885. spin_lock(&adapter->stats64_lock);
  3886. igb_update_stats(adapter, &adapter->stats64);
  3887. spin_unlock(&adapter->stats64_lock);
  3888. for (i = 0; i < adapter->num_tx_queues; i++) {
  3889. struct igb_ring *tx_ring = adapter->tx_ring[i];
  3890. if (!netif_carrier_ok(netdev)) {
  3891. /* We've lost link, so the controller stops DMA,
  3892. * but we've got queued Tx work that's never going
  3893. * to get done, so reset controller to flush Tx.
  3894. * (Do the reset outside of interrupt context).
  3895. */
  3896. if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
  3897. adapter->tx_timeout_count++;
  3898. schedule_work(&adapter->reset_task);
  3899. /* return immediately since reset is imminent */
  3900. return;
  3901. }
  3902. }
  3903. /* Force detection of hung controller every watchdog period */
  3904. set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
  3905. }
  3906. /* Cause software interrupt to ensure Rx ring is cleaned */
  3907. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  3908. u32 eics = 0;
  3909. for (i = 0; i < adapter->num_q_vectors; i++)
  3910. eics |= adapter->q_vector[i]->eims_value;
  3911. wr32(E1000_EICS, eics);
  3912. } else {
  3913. wr32(E1000_ICS, E1000_ICS_RXDMT0);
  3914. }
  3915. igb_spoof_check(adapter);
  3916. igb_ptp_rx_hang(adapter);
  3917. /* Check LVMMC register on i350/i354 only */
  3918. if ((adapter->hw.mac.type == e1000_i350) ||
  3919. (adapter->hw.mac.type == e1000_i354))
  3920. igb_check_lvmmc(adapter);
  3921. /* Reset the timer */
  3922. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  3923. if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
  3924. mod_timer(&adapter->watchdog_timer,
  3925. round_jiffies(jiffies + HZ));
  3926. else
  3927. mod_timer(&adapter->watchdog_timer,
  3928. round_jiffies(jiffies + 2 * HZ));
  3929. }
  3930. }
  3931. enum latency_range {
  3932. lowest_latency = 0,
  3933. low_latency = 1,
  3934. bulk_latency = 2,
  3935. latency_invalid = 255
  3936. };
  3937. /**
  3938. * igb_update_ring_itr - update the dynamic ITR value based on packet size
  3939. * @q_vector: pointer to q_vector
  3940. *
  3941. * Stores a new ITR value based on strictly on packet size. This
  3942. * algorithm is less sophisticated than that used in igb_update_itr,
  3943. * due to the difficulty of synchronizing statistics across multiple
  3944. * receive rings. The divisors and thresholds used by this function
  3945. * were determined based on theoretical maximum wire speed and testing
  3946. * data, in order to minimize response time while increasing bulk
  3947. * throughput.
  3948. * This functionality is controlled by ethtool's coalescing settings.
  3949. * NOTE: This function is called only when operating in a multiqueue
  3950. * receive environment.
  3951. **/
  3952. static void igb_update_ring_itr(struct igb_q_vector *q_vector)
  3953. {
  3954. int new_val = q_vector->itr_val;
  3955. int avg_wire_size = 0;
  3956. struct igb_adapter *adapter = q_vector->adapter;
  3957. unsigned int packets;
  3958. /* For non-gigabit speeds, just fix the interrupt rate at 4000
  3959. * ints/sec - ITR timer value of 120 ticks.
  3960. */
  3961. if (adapter->link_speed != SPEED_1000) {
  3962. new_val = IGB_4K_ITR;
  3963. goto set_itr_val;
  3964. }
  3965. packets = q_vector->rx.total_packets;
  3966. if (packets)
  3967. avg_wire_size = q_vector->rx.total_bytes / packets;
  3968. packets = q_vector->tx.total_packets;
  3969. if (packets)
  3970. avg_wire_size = max_t(u32, avg_wire_size,
  3971. q_vector->tx.total_bytes / packets);
  3972. /* if avg_wire_size isn't set no work was done */
  3973. if (!avg_wire_size)
  3974. goto clear_counts;
  3975. /* Add 24 bytes to size to account for CRC, preamble, and gap */
  3976. avg_wire_size += 24;
  3977. /* Don't starve jumbo frames */
  3978. avg_wire_size = min(avg_wire_size, 3000);
  3979. /* Give a little boost to mid-size frames */
  3980. if ((avg_wire_size > 300) && (avg_wire_size < 1200))
  3981. new_val = avg_wire_size / 3;
  3982. else
  3983. new_val = avg_wire_size / 2;
  3984. /* conservative mode (itr 3) eliminates the lowest_latency setting */
  3985. if (new_val < IGB_20K_ITR &&
  3986. ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
  3987. (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
  3988. new_val = IGB_20K_ITR;
  3989. set_itr_val:
  3990. if (new_val != q_vector->itr_val) {
  3991. q_vector->itr_val = new_val;
  3992. q_vector->set_itr = 1;
  3993. }
  3994. clear_counts:
  3995. q_vector->rx.total_bytes = 0;
  3996. q_vector->rx.total_packets = 0;
  3997. q_vector->tx.total_bytes = 0;
  3998. q_vector->tx.total_packets = 0;
  3999. }
  4000. /**
  4001. * igb_update_itr - update the dynamic ITR value based on statistics
  4002. * @q_vector: pointer to q_vector
  4003. * @ring_container: ring info to update the itr for
  4004. *
  4005. * Stores a new ITR value based on packets and byte
  4006. * counts during the last interrupt. The advantage of per interrupt
  4007. * computation is faster updates and more accurate ITR for the current
  4008. * traffic pattern. Constants in this function were computed
  4009. * based on theoretical maximum wire speed and thresholds were set based
  4010. * on testing data as well as attempting to minimize response time
  4011. * while increasing bulk throughput.
  4012. * This functionality is controlled by ethtool's coalescing settings.
  4013. * NOTE: These calculations are only valid when operating in a single-
  4014. * queue environment.
  4015. **/
  4016. static void igb_update_itr(struct igb_q_vector *q_vector,
  4017. struct igb_ring_container *ring_container)
  4018. {
  4019. unsigned int packets = ring_container->total_packets;
  4020. unsigned int bytes = ring_container->total_bytes;
  4021. u8 itrval = ring_container->itr;
  4022. /* no packets, exit with status unchanged */
  4023. if (packets == 0)
  4024. return;
  4025. switch (itrval) {
  4026. case lowest_latency:
  4027. /* handle TSO and jumbo frames */
  4028. if (bytes/packets > 8000)
  4029. itrval = bulk_latency;
  4030. else if ((packets < 5) && (bytes > 512))
  4031. itrval = low_latency;
  4032. break;
  4033. case low_latency: /* 50 usec aka 20000 ints/s */
  4034. if (bytes > 10000) {
  4035. /* this if handles the TSO accounting */
  4036. if (bytes/packets > 8000)
  4037. itrval = bulk_latency;
  4038. else if ((packets < 10) || ((bytes/packets) > 1200))
  4039. itrval = bulk_latency;
  4040. else if ((packets > 35))
  4041. itrval = lowest_latency;
  4042. } else if (bytes/packets > 2000) {
  4043. itrval = bulk_latency;
  4044. } else if (packets <= 2 && bytes < 512) {
  4045. itrval = lowest_latency;
  4046. }
  4047. break;
  4048. case bulk_latency: /* 250 usec aka 4000 ints/s */
  4049. if (bytes > 25000) {
  4050. if (packets > 35)
  4051. itrval = low_latency;
  4052. } else if (bytes < 1500) {
  4053. itrval = low_latency;
  4054. }
  4055. break;
  4056. }
  4057. /* clear work counters since we have the values we need */
  4058. ring_container->total_bytes = 0;
  4059. ring_container->total_packets = 0;
  4060. /* write updated itr to ring container */
  4061. ring_container->itr = itrval;
  4062. }
  4063. static void igb_set_itr(struct igb_q_vector *q_vector)
  4064. {
  4065. struct igb_adapter *adapter = q_vector->adapter;
  4066. u32 new_itr = q_vector->itr_val;
  4067. u8 current_itr = 0;
  4068. /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
  4069. if (adapter->link_speed != SPEED_1000) {
  4070. current_itr = 0;
  4071. new_itr = IGB_4K_ITR;
  4072. goto set_itr_now;
  4073. }
  4074. igb_update_itr(q_vector, &q_vector->tx);
  4075. igb_update_itr(q_vector, &q_vector->rx);
  4076. current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
  4077. /* conservative mode (itr 3) eliminates the lowest_latency setting */
  4078. if (current_itr == lowest_latency &&
  4079. ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
  4080. (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
  4081. current_itr = low_latency;
  4082. switch (current_itr) {
  4083. /* counts and packets in update_itr are dependent on these numbers */
  4084. case lowest_latency:
  4085. new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
  4086. break;
  4087. case low_latency:
  4088. new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
  4089. break;
  4090. case bulk_latency:
  4091. new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
  4092. break;
  4093. default:
  4094. break;
  4095. }
  4096. set_itr_now:
  4097. if (new_itr != q_vector->itr_val) {
  4098. /* this attempts to bias the interrupt rate towards Bulk
  4099. * by adding intermediate steps when interrupt rate is
  4100. * increasing
  4101. */
  4102. new_itr = new_itr > q_vector->itr_val ?
  4103. max((new_itr * q_vector->itr_val) /
  4104. (new_itr + (q_vector->itr_val >> 2)),
  4105. new_itr) : new_itr;
  4106. /* Don't write the value here; it resets the adapter's
  4107. * internal timer, and causes us to delay far longer than
  4108. * we should between interrupts. Instead, we write the ITR
  4109. * value at the beginning of the next interrupt so the timing
  4110. * ends up being correct.
  4111. */
  4112. q_vector->itr_val = new_itr;
  4113. q_vector->set_itr = 1;
  4114. }
  4115. }
  4116. static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
  4117. u32 type_tucmd, u32 mss_l4len_idx)
  4118. {
  4119. struct e1000_adv_tx_context_desc *context_desc;
  4120. u16 i = tx_ring->next_to_use;
  4121. context_desc = IGB_TX_CTXTDESC(tx_ring, i);
  4122. i++;
  4123. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  4124. /* set bits to identify this as an advanced context descriptor */
  4125. type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
  4126. /* For 82575, context index must be unique per ring. */
  4127. if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
  4128. mss_l4len_idx |= tx_ring->reg_idx << 4;
  4129. context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
  4130. context_desc->seqnum_seed = 0;
  4131. context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
  4132. context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
  4133. }
  4134. static int igb_tso(struct igb_ring *tx_ring,
  4135. struct igb_tx_buffer *first,
  4136. u8 *hdr_len)
  4137. {
  4138. struct sk_buff *skb = first->skb;
  4139. u32 vlan_macip_lens, type_tucmd;
  4140. u32 mss_l4len_idx, l4len;
  4141. int err;
  4142. if (skb->ip_summed != CHECKSUM_PARTIAL)
  4143. return 0;
  4144. if (!skb_is_gso(skb))
  4145. return 0;
  4146. err = skb_cow_head(skb, 0);
  4147. if (err < 0)
  4148. return err;
  4149. /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
  4150. type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
  4151. if (first->protocol == htons(ETH_P_IP)) {
  4152. struct iphdr *iph = ip_hdr(skb);
  4153. iph->tot_len = 0;
  4154. iph->check = 0;
  4155. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  4156. iph->daddr, 0,
  4157. IPPROTO_TCP,
  4158. 0);
  4159. type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
  4160. first->tx_flags |= IGB_TX_FLAGS_TSO |
  4161. IGB_TX_FLAGS_CSUM |
  4162. IGB_TX_FLAGS_IPV4;
  4163. } else if (skb_is_gso_v6(skb)) {
  4164. ipv6_hdr(skb)->payload_len = 0;
  4165. tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  4166. &ipv6_hdr(skb)->daddr,
  4167. 0, IPPROTO_TCP, 0);
  4168. first->tx_flags |= IGB_TX_FLAGS_TSO |
  4169. IGB_TX_FLAGS_CSUM;
  4170. }
  4171. /* compute header lengths */
  4172. l4len = tcp_hdrlen(skb);
  4173. *hdr_len = skb_transport_offset(skb) + l4len;
  4174. /* update gso size and bytecount with header size */
  4175. first->gso_segs = skb_shinfo(skb)->gso_segs;
  4176. first->bytecount += (first->gso_segs - 1) * *hdr_len;
  4177. /* MSS L4LEN IDX */
  4178. mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
  4179. mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
  4180. /* VLAN MACLEN IPLEN */
  4181. vlan_macip_lens = skb_network_header_len(skb);
  4182. vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
  4183. vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
  4184. igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
  4185. return 1;
  4186. }
  4187. static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
  4188. {
  4189. unsigned int offset = 0;
  4190. ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
  4191. return offset == skb_checksum_start_offset(skb);
  4192. }
  4193. static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
  4194. {
  4195. struct sk_buff *skb = first->skb;
  4196. u32 vlan_macip_lens = 0;
  4197. u32 type_tucmd = 0;
  4198. if (skb->ip_summed != CHECKSUM_PARTIAL) {
  4199. csum_failed:
  4200. if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
  4201. return;
  4202. goto no_csum;
  4203. }
  4204. switch (skb->csum_offset) {
  4205. case offsetof(struct tcphdr, check):
  4206. type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
  4207. /* fall through */
  4208. case offsetof(struct udphdr, check):
  4209. break;
  4210. case offsetof(struct sctphdr, checksum):
  4211. /* validate that this is actually an SCTP request */
  4212. if (((first->protocol == htons(ETH_P_IP)) &&
  4213. (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
  4214. ((first->protocol == htons(ETH_P_IPV6)) &&
  4215. igb_ipv6_csum_is_sctp(skb))) {
  4216. type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
  4217. break;
  4218. }
  4219. default:
  4220. skb_checksum_help(skb);
  4221. goto csum_failed;
  4222. }
  4223. /* update TX checksum flag */
  4224. first->tx_flags |= IGB_TX_FLAGS_CSUM;
  4225. vlan_macip_lens = skb_checksum_start_offset(skb) -
  4226. skb_network_offset(skb);
  4227. no_csum:
  4228. vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
  4229. vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
  4230. igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
  4231. }
  4232. #define IGB_SET_FLAG(_input, _flag, _result) \
  4233. ((_flag <= _result) ? \
  4234. ((u32)(_input & _flag) * (_result / _flag)) : \
  4235. ((u32)(_input & _flag) / (_flag / _result)))
  4236. static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
  4237. {
  4238. /* set type for advanced descriptor with frame checksum insertion */
  4239. u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
  4240. E1000_ADVTXD_DCMD_DEXT |
  4241. E1000_ADVTXD_DCMD_IFCS;
  4242. /* set HW vlan bit if vlan is present */
  4243. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
  4244. (E1000_ADVTXD_DCMD_VLE));
  4245. /* set segmentation bits for TSO */
  4246. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
  4247. (E1000_ADVTXD_DCMD_TSE));
  4248. /* set timestamp bit if present */
  4249. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
  4250. (E1000_ADVTXD_MAC_TSTAMP));
  4251. /* insert frame checksum */
  4252. cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
  4253. return cmd_type;
  4254. }
  4255. static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
  4256. union e1000_adv_tx_desc *tx_desc,
  4257. u32 tx_flags, unsigned int paylen)
  4258. {
  4259. u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
  4260. /* 82575 requires a unique index per ring */
  4261. if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
  4262. olinfo_status |= tx_ring->reg_idx << 4;
  4263. /* insert L4 checksum */
  4264. olinfo_status |= IGB_SET_FLAG(tx_flags,
  4265. IGB_TX_FLAGS_CSUM,
  4266. (E1000_TXD_POPTS_TXSM << 8));
  4267. /* insert IPv4 checksum */
  4268. olinfo_status |= IGB_SET_FLAG(tx_flags,
  4269. IGB_TX_FLAGS_IPV4,
  4270. (E1000_TXD_POPTS_IXSM << 8));
  4271. tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
  4272. }
  4273. static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
  4274. {
  4275. struct net_device *netdev = tx_ring->netdev;
  4276. netif_stop_subqueue(netdev, tx_ring->queue_index);
  4277. /* Herbert's original patch had:
  4278. * smp_mb__after_netif_stop_queue();
  4279. * but since that doesn't exist yet, just open code it.
  4280. */
  4281. smp_mb();
  4282. /* We need to check again in a case another CPU has just
  4283. * made room available.
  4284. */
  4285. if (igb_desc_unused(tx_ring) < size)
  4286. return -EBUSY;
  4287. /* A reprieve! */
  4288. netif_wake_subqueue(netdev, tx_ring->queue_index);
  4289. u64_stats_update_begin(&tx_ring->tx_syncp2);
  4290. tx_ring->tx_stats.restart_queue2++;
  4291. u64_stats_update_end(&tx_ring->tx_syncp2);
  4292. return 0;
  4293. }
  4294. static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
  4295. {
  4296. if (igb_desc_unused(tx_ring) >= size)
  4297. return 0;
  4298. return __igb_maybe_stop_tx(tx_ring, size);
  4299. }
  4300. static void igb_tx_map(struct igb_ring *tx_ring,
  4301. struct igb_tx_buffer *first,
  4302. const u8 hdr_len)
  4303. {
  4304. struct sk_buff *skb = first->skb;
  4305. struct igb_tx_buffer *tx_buffer;
  4306. union e1000_adv_tx_desc *tx_desc;
  4307. struct skb_frag_struct *frag;
  4308. dma_addr_t dma;
  4309. unsigned int data_len, size;
  4310. u32 tx_flags = first->tx_flags;
  4311. u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
  4312. u16 i = tx_ring->next_to_use;
  4313. tx_desc = IGB_TX_DESC(tx_ring, i);
  4314. igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
  4315. size = skb_headlen(skb);
  4316. data_len = skb->data_len;
  4317. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  4318. tx_buffer = first;
  4319. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  4320. if (dma_mapping_error(tx_ring->dev, dma))
  4321. goto dma_error;
  4322. /* record length, and DMA address */
  4323. dma_unmap_len_set(tx_buffer, len, size);
  4324. dma_unmap_addr_set(tx_buffer, dma, dma);
  4325. tx_desc->read.buffer_addr = cpu_to_le64(dma);
  4326. while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
  4327. tx_desc->read.cmd_type_len =
  4328. cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
  4329. i++;
  4330. tx_desc++;
  4331. if (i == tx_ring->count) {
  4332. tx_desc = IGB_TX_DESC(tx_ring, 0);
  4333. i = 0;
  4334. }
  4335. tx_desc->read.olinfo_status = 0;
  4336. dma += IGB_MAX_DATA_PER_TXD;
  4337. size -= IGB_MAX_DATA_PER_TXD;
  4338. tx_desc->read.buffer_addr = cpu_to_le64(dma);
  4339. }
  4340. if (likely(!data_len))
  4341. break;
  4342. tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
  4343. i++;
  4344. tx_desc++;
  4345. if (i == tx_ring->count) {
  4346. tx_desc = IGB_TX_DESC(tx_ring, 0);
  4347. i = 0;
  4348. }
  4349. tx_desc->read.olinfo_status = 0;
  4350. size = skb_frag_size(frag);
  4351. data_len -= size;
  4352. dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
  4353. size, DMA_TO_DEVICE);
  4354. tx_buffer = &tx_ring->tx_buffer_info[i];
  4355. }
  4356. /* write last descriptor with RS and EOP bits */
  4357. cmd_type |= size | IGB_TXD_DCMD;
  4358. tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
  4359. netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
  4360. /* set the timestamp */
  4361. first->time_stamp = jiffies;
  4362. /* Force memory writes to complete before letting h/w know there
  4363. * are new descriptors to fetch. (Only applicable for weak-ordered
  4364. * memory model archs, such as IA-64).
  4365. *
  4366. * We also need this memory barrier to make certain all of the
  4367. * status bits have been updated before next_to_watch is written.
  4368. */
  4369. wmb();
  4370. /* set next_to_watch value indicating a packet is present */
  4371. first->next_to_watch = tx_desc;
  4372. i++;
  4373. if (i == tx_ring->count)
  4374. i = 0;
  4375. tx_ring->next_to_use = i;
  4376. /* Make sure there is space in the ring for the next send. */
  4377. igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
  4378. if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
  4379. writel(i, tx_ring->tail);
  4380. /* we need this if more than one processor can write to our tail
  4381. * at a time, it synchronizes IO on IA64/Altix systems
  4382. */
  4383. mmiowb();
  4384. }
  4385. return;
  4386. dma_error:
  4387. dev_err(tx_ring->dev, "TX DMA map failed\n");
  4388. /* clear dma mappings for failed tx_buffer_info map */
  4389. for (;;) {
  4390. tx_buffer = &tx_ring->tx_buffer_info[i];
  4391. igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
  4392. if (tx_buffer == first)
  4393. break;
  4394. if (i == 0)
  4395. i = tx_ring->count;
  4396. i--;
  4397. }
  4398. tx_ring->next_to_use = i;
  4399. }
  4400. netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
  4401. struct igb_ring *tx_ring)
  4402. {
  4403. struct igb_tx_buffer *first;
  4404. int tso;
  4405. u32 tx_flags = 0;
  4406. unsigned short f;
  4407. u16 count = TXD_USE_COUNT(skb_headlen(skb));
  4408. __be16 protocol = vlan_get_protocol(skb);
  4409. u8 hdr_len = 0;
  4410. /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
  4411. * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
  4412. * + 2 desc gap to keep tail from touching head,
  4413. * + 1 desc for context descriptor,
  4414. * otherwise try next time
  4415. */
  4416. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  4417. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  4418. if (igb_maybe_stop_tx(tx_ring, count + 3)) {
  4419. /* this is a hard error */
  4420. return NETDEV_TX_BUSY;
  4421. }
  4422. /* record the location of the first descriptor for this packet */
  4423. first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
  4424. first->skb = skb;
  4425. first->bytecount = skb->len;
  4426. first->gso_segs = 1;
  4427. if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
  4428. struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
  4429. if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
  4430. &adapter->state)) {
  4431. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  4432. tx_flags |= IGB_TX_FLAGS_TSTAMP;
  4433. adapter->ptp_tx_skb = skb_get(skb);
  4434. adapter->ptp_tx_start = jiffies;
  4435. if (adapter->hw.mac.type == e1000_82576)
  4436. schedule_work(&adapter->ptp_tx_work);
  4437. }
  4438. }
  4439. skb_tx_timestamp(skb);
  4440. if (skb_vlan_tag_present(skb)) {
  4441. tx_flags |= IGB_TX_FLAGS_VLAN;
  4442. tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
  4443. }
  4444. /* record initial flags and protocol */
  4445. first->tx_flags = tx_flags;
  4446. first->protocol = protocol;
  4447. tso = igb_tso(tx_ring, first, &hdr_len);
  4448. if (tso < 0)
  4449. goto out_drop;
  4450. else if (!tso)
  4451. igb_tx_csum(tx_ring, first);
  4452. igb_tx_map(tx_ring, first, hdr_len);
  4453. return NETDEV_TX_OK;
  4454. out_drop:
  4455. igb_unmap_and_free_tx_resource(tx_ring, first);
  4456. return NETDEV_TX_OK;
  4457. }
  4458. static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
  4459. struct sk_buff *skb)
  4460. {
  4461. unsigned int r_idx = skb->queue_mapping;
  4462. if (r_idx >= adapter->num_tx_queues)
  4463. r_idx = r_idx % adapter->num_tx_queues;
  4464. return adapter->tx_ring[r_idx];
  4465. }
  4466. static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
  4467. struct net_device *netdev)
  4468. {
  4469. struct igb_adapter *adapter = netdev_priv(netdev);
  4470. /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
  4471. * in order to meet this minimum size requirement.
  4472. */
  4473. if (skb_put_padto(skb, 17))
  4474. return NETDEV_TX_OK;
  4475. return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
  4476. }
  4477. /**
  4478. * igb_tx_timeout - Respond to a Tx Hang
  4479. * @netdev: network interface device structure
  4480. **/
  4481. static void igb_tx_timeout(struct net_device *netdev)
  4482. {
  4483. struct igb_adapter *adapter = netdev_priv(netdev);
  4484. struct e1000_hw *hw = &adapter->hw;
  4485. /* Do the reset outside of interrupt context */
  4486. adapter->tx_timeout_count++;
  4487. if (hw->mac.type >= e1000_82580)
  4488. hw->dev_spec._82575.global_device_reset = true;
  4489. schedule_work(&adapter->reset_task);
  4490. wr32(E1000_EICS,
  4491. (adapter->eims_enable_mask & ~adapter->eims_other));
  4492. }
  4493. static void igb_reset_task(struct work_struct *work)
  4494. {
  4495. struct igb_adapter *adapter;
  4496. adapter = container_of(work, struct igb_adapter, reset_task);
  4497. igb_dump(adapter);
  4498. netdev_err(adapter->netdev, "Reset adapter\n");
  4499. igb_reinit_locked(adapter);
  4500. }
  4501. /**
  4502. * igb_get_stats64 - Get System Network Statistics
  4503. * @netdev: network interface device structure
  4504. * @stats: rtnl_link_stats64 pointer
  4505. **/
  4506. static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
  4507. struct rtnl_link_stats64 *stats)
  4508. {
  4509. struct igb_adapter *adapter = netdev_priv(netdev);
  4510. spin_lock(&adapter->stats64_lock);
  4511. igb_update_stats(adapter, &adapter->stats64);
  4512. memcpy(stats, &adapter->stats64, sizeof(*stats));
  4513. spin_unlock(&adapter->stats64_lock);
  4514. return stats;
  4515. }
  4516. /**
  4517. * igb_change_mtu - Change the Maximum Transfer Unit
  4518. * @netdev: network interface device structure
  4519. * @new_mtu: new value for maximum frame size
  4520. *
  4521. * Returns 0 on success, negative on failure
  4522. **/
  4523. static int igb_change_mtu(struct net_device *netdev, int new_mtu)
  4524. {
  4525. struct igb_adapter *adapter = netdev_priv(netdev);
  4526. struct pci_dev *pdev = adapter->pdev;
  4527. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  4528. if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  4529. dev_err(&pdev->dev, "Invalid MTU setting\n");
  4530. return -EINVAL;
  4531. }
  4532. #define MAX_STD_JUMBO_FRAME_SIZE 9238
  4533. if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
  4534. dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
  4535. return -EINVAL;
  4536. }
  4537. /* adjust max frame to be at least the size of a standard frame */
  4538. if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
  4539. max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
  4540. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  4541. usleep_range(1000, 2000);
  4542. /* igb_down has a dependency on max_frame_size */
  4543. adapter->max_frame_size = max_frame;
  4544. if (netif_running(netdev))
  4545. igb_down(adapter);
  4546. dev_info(&pdev->dev, "changing MTU from %d to %d\n",
  4547. netdev->mtu, new_mtu);
  4548. netdev->mtu = new_mtu;
  4549. if (netif_running(netdev))
  4550. igb_up(adapter);
  4551. else
  4552. igb_reset(adapter);
  4553. clear_bit(__IGB_RESETTING, &adapter->state);
  4554. return 0;
  4555. }
  4556. /**
  4557. * igb_update_stats - Update the board statistics counters
  4558. * @adapter: board private structure
  4559. **/
  4560. void igb_update_stats(struct igb_adapter *adapter,
  4561. struct rtnl_link_stats64 *net_stats)
  4562. {
  4563. struct e1000_hw *hw = &adapter->hw;
  4564. struct pci_dev *pdev = adapter->pdev;
  4565. u32 reg, mpc;
  4566. int i;
  4567. u64 bytes, packets;
  4568. unsigned int start;
  4569. u64 _bytes, _packets;
  4570. /* Prevent stats update while adapter is being reset, or if the pci
  4571. * connection is down.
  4572. */
  4573. if (adapter->link_speed == 0)
  4574. return;
  4575. if (pci_channel_offline(pdev))
  4576. return;
  4577. bytes = 0;
  4578. packets = 0;
  4579. rcu_read_lock();
  4580. for (i = 0; i < adapter->num_rx_queues; i++) {
  4581. struct igb_ring *ring = adapter->rx_ring[i];
  4582. u32 rqdpc = rd32(E1000_RQDPC(i));
  4583. if (hw->mac.type >= e1000_i210)
  4584. wr32(E1000_RQDPC(i), 0);
  4585. if (rqdpc) {
  4586. ring->rx_stats.drops += rqdpc;
  4587. net_stats->rx_fifo_errors += rqdpc;
  4588. }
  4589. do {
  4590. start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
  4591. _bytes = ring->rx_stats.bytes;
  4592. _packets = ring->rx_stats.packets;
  4593. } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
  4594. bytes += _bytes;
  4595. packets += _packets;
  4596. }
  4597. net_stats->rx_bytes = bytes;
  4598. net_stats->rx_packets = packets;
  4599. bytes = 0;
  4600. packets = 0;
  4601. for (i = 0; i < adapter->num_tx_queues; i++) {
  4602. struct igb_ring *ring = adapter->tx_ring[i];
  4603. do {
  4604. start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
  4605. _bytes = ring->tx_stats.bytes;
  4606. _packets = ring->tx_stats.packets;
  4607. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
  4608. bytes += _bytes;
  4609. packets += _packets;
  4610. }
  4611. net_stats->tx_bytes = bytes;
  4612. net_stats->tx_packets = packets;
  4613. rcu_read_unlock();
  4614. /* read stats registers */
  4615. adapter->stats.crcerrs += rd32(E1000_CRCERRS);
  4616. adapter->stats.gprc += rd32(E1000_GPRC);
  4617. adapter->stats.gorc += rd32(E1000_GORCL);
  4618. rd32(E1000_GORCH); /* clear GORCL */
  4619. adapter->stats.bprc += rd32(E1000_BPRC);
  4620. adapter->stats.mprc += rd32(E1000_MPRC);
  4621. adapter->stats.roc += rd32(E1000_ROC);
  4622. adapter->stats.prc64 += rd32(E1000_PRC64);
  4623. adapter->stats.prc127 += rd32(E1000_PRC127);
  4624. adapter->stats.prc255 += rd32(E1000_PRC255);
  4625. adapter->stats.prc511 += rd32(E1000_PRC511);
  4626. adapter->stats.prc1023 += rd32(E1000_PRC1023);
  4627. adapter->stats.prc1522 += rd32(E1000_PRC1522);
  4628. adapter->stats.symerrs += rd32(E1000_SYMERRS);
  4629. adapter->stats.sec += rd32(E1000_SEC);
  4630. mpc = rd32(E1000_MPC);
  4631. adapter->stats.mpc += mpc;
  4632. net_stats->rx_fifo_errors += mpc;
  4633. adapter->stats.scc += rd32(E1000_SCC);
  4634. adapter->stats.ecol += rd32(E1000_ECOL);
  4635. adapter->stats.mcc += rd32(E1000_MCC);
  4636. adapter->stats.latecol += rd32(E1000_LATECOL);
  4637. adapter->stats.dc += rd32(E1000_DC);
  4638. adapter->stats.rlec += rd32(E1000_RLEC);
  4639. adapter->stats.xonrxc += rd32(E1000_XONRXC);
  4640. adapter->stats.xontxc += rd32(E1000_XONTXC);
  4641. adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
  4642. adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
  4643. adapter->stats.fcruc += rd32(E1000_FCRUC);
  4644. adapter->stats.gptc += rd32(E1000_GPTC);
  4645. adapter->stats.gotc += rd32(E1000_GOTCL);
  4646. rd32(E1000_GOTCH); /* clear GOTCL */
  4647. adapter->stats.rnbc += rd32(E1000_RNBC);
  4648. adapter->stats.ruc += rd32(E1000_RUC);
  4649. adapter->stats.rfc += rd32(E1000_RFC);
  4650. adapter->stats.rjc += rd32(E1000_RJC);
  4651. adapter->stats.tor += rd32(E1000_TORH);
  4652. adapter->stats.tot += rd32(E1000_TOTH);
  4653. adapter->stats.tpr += rd32(E1000_TPR);
  4654. adapter->stats.ptc64 += rd32(E1000_PTC64);
  4655. adapter->stats.ptc127 += rd32(E1000_PTC127);
  4656. adapter->stats.ptc255 += rd32(E1000_PTC255);
  4657. adapter->stats.ptc511 += rd32(E1000_PTC511);
  4658. adapter->stats.ptc1023 += rd32(E1000_PTC1023);
  4659. adapter->stats.ptc1522 += rd32(E1000_PTC1522);
  4660. adapter->stats.mptc += rd32(E1000_MPTC);
  4661. adapter->stats.bptc += rd32(E1000_BPTC);
  4662. adapter->stats.tpt += rd32(E1000_TPT);
  4663. adapter->stats.colc += rd32(E1000_COLC);
  4664. adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
  4665. /* read internal phy specific stats */
  4666. reg = rd32(E1000_CTRL_EXT);
  4667. if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
  4668. adapter->stats.rxerrc += rd32(E1000_RXERRC);
  4669. /* this stat has invalid values on i210/i211 */
  4670. if ((hw->mac.type != e1000_i210) &&
  4671. (hw->mac.type != e1000_i211))
  4672. adapter->stats.tncrs += rd32(E1000_TNCRS);
  4673. }
  4674. adapter->stats.tsctc += rd32(E1000_TSCTC);
  4675. adapter->stats.tsctfc += rd32(E1000_TSCTFC);
  4676. adapter->stats.iac += rd32(E1000_IAC);
  4677. adapter->stats.icrxoc += rd32(E1000_ICRXOC);
  4678. adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
  4679. adapter->stats.icrxatc += rd32(E1000_ICRXATC);
  4680. adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
  4681. adapter->stats.ictxatc += rd32(E1000_ICTXATC);
  4682. adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
  4683. adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
  4684. adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
  4685. /* Fill out the OS statistics structure */
  4686. net_stats->multicast = adapter->stats.mprc;
  4687. net_stats->collisions = adapter->stats.colc;
  4688. /* Rx Errors */
  4689. /* RLEC on some newer hardware can be incorrect so build
  4690. * our own version based on RUC and ROC
  4691. */
  4692. net_stats->rx_errors = adapter->stats.rxerrc +
  4693. adapter->stats.crcerrs + adapter->stats.algnerrc +
  4694. adapter->stats.ruc + adapter->stats.roc +
  4695. adapter->stats.cexterr;
  4696. net_stats->rx_length_errors = adapter->stats.ruc +
  4697. adapter->stats.roc;
  4698. net_stats->rx_crc_errors = adapter->stats.crcerrs;
  4699. net_stats->rx_frame_errors = adapter->stats.algnerrc;
  4700. net_stats->rx_missed_errors = adapter->stats.mpc;
  4701. /* Tx Errors */
  4702. net_stats->tx_errors = adapter->stats.ecol +
  4703. adapter->stats.latecol;
  4704. net_stats->tx_aborted_errors = adapter->stats.ecol;
  4705. net_stats->tx_window_errors = adapter->stats.latecol;
  4706. net_stats->tx_carrier_errors = adapter->stats.tncrs;
  4707. /* Tx Dropped needs to be maintained elsewhere */
  4708. /* Management Stats */
  4709. adapter->stats.mgptc += rd32(E1000_MGTPTC);
  4710. adapter->stats.mgprc += rd32(E1000_MGTPRC);
  4711. adapter->stats.mgpdc += rd32(E1000_MGTPDC);
  4712. /* OS2BMC Stats */
  4713. reg = rd32(E1000_MANC);
  4714. if (reg & E1000_MANC_EN_BMC2OS) {
  4715. adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
  4716. adapter->stats.o2bspc += rd32(E1000_O2BSPC);
  4717. adapter->stats.b2ospc += rd32(E1000_B2OSPC);
  4718. adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
  4719. }
  4720. }
  4721. static void igb_tsync_interrupt(struct igb_adapter *adapter)
  4722. {
  4723. struct e1000_hw *hw = &adapter->hw;
  4724. struct ptp_clock_event event;
  4725. struct timespec64 ts;
  4726. u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
  4727. if (tsicr & TSINTR_SYS_WRAP) {
  4728. event.type = PTP_CLOCK_PPS;
  4729. if (adapter->ptp_caps.pps)
  4730. ptp_clock_event(adapter->ptp_clock, &event);
  4731. else
  4732. dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
  4733. ack |= TSINTR_SYS_WRAP;
  4734. }
  4735. if (tsicr & E1000_TSICR_TXTS) {
  4736. /* retrieve hardware timestamp */
  4737. schedule_work(&adapter->ptp_tx_work);
  4738. ack |= E1000_TSICR_TXTS;
  4739. }
  4740. if (tsicr & TSINTR_TT0) {
  4741. spin_lock(&adapter->tmreg_lock);
  4742. ts = timespec64_add(adapter->perout[0].start,
  4743. adapter->perout[0].period);
  4744. /* u32 conversion of tv_sec is safe until y2106 */
  4745. wr32(E1000_TRGTTIML0, ts.tv_nsec);
  4746. wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
  4747. tsauxc = rd32(E1000_TSAUXC);
  4748. tsauxc |= TSAUXC_EN_TT0;
  4749. wr32(E1000_TSAUXC, tsauxc);
  4750. adapter->perout[0].start = ts;
  4751. spin_unlock(&adapter->tmreg_lock);
  4752. ack |= TSINTR_TT0;
  4753. }
  4754. if (tsicr & TSINTR_TT1) {
  4755. spin_lock(&adapter->tmreg_lock);
  4756. ts = timespec64_add(adapter->perout[1].start,
  4757. adapter->perout[1].period);
  4758. wr32(E1000_TRGTTIML1, ts.tv_nsec);
  4759. wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
  4760. tsauxc = rd32(E1000_TSAUXC);
  4761. tsauxc |= TSAUXC_EN_TT1;
  4762. wr32(E1000_TSAUXC, tsauxc);
  4763. adapter->perout[1].start = ts;
  4764. spin_unlock(&adapter->tmreg_lock);
  4765. ack |= TSINTR_TT1;
  4766. }
  4767. if (tsicr & TSINTR_AUTT0) {
  4768. nsec = rd32(E1000_AUXSTMPL0);
  4769. sec = rd32(E1000_AUXSTMPH0);
  4770. event.type = PTP_CLOCK_EXTTS;
  4771. event.index = 0;
  4772. event.timestamp = sec * 1000000000ULL + nsec;
  4773. ptp_clock_event(adapter->ptp_clock, &event);
  4774. ack |= TSINTR_AUTT0;
  4775. }
  4776. if (tsicr & TSINTR_AUTT1) {
  4777. nsec = rd32(E1000_AUXSTMPL1);
  4778. sec = rd32(E1000_AUXSTMPH1);
  4779. event.type = PTP_CLOCK_EXTTS;
  4780. event.index = 1;
  4781. event.timestamp = sec * 1000000000ULL + nsec;
  4782. ptp_clock_event(adapter->ptp_clock, &event);
  4783. ack |= TSINTR_AUTT1;
  4784. }
  4785. /* acknowledge the interrupts */
  4786. wr32(E1000_TSICR, ack);
  4787. }
  4788. static irqreturn_t igb_msix_other(int irq, void *data)
  4789. {
  4790. struct igb_adapter *adapter = data;
  4791. struct e1000_hw *hw = &adapter->hw;
  4792. u32 icr = rd32(E1000_ICR);
  4793. /* reading ICR causes bit 31 of EICR to be cleared */
  4794. if (icr & E1000_ICR_DRSTA)
  4795. schedule_work(&adapter->reset_task);
  4796. if (icr & E1000_ICR_DOUTSYNC) {
  4797. /* HW is reporting DMA is out of sync */
  4798. adapter->stats.doosync++;
  4799. /* The DMA Out of Sync is also indication of a spoof event
  4800. * in IOV mode. Check the Wrong VM Behavior register to
  4801. * see if it is really a spoof event.
  4802. */
  4803. igb_check_wvbr(adapter);
  4804. }
  4805. /* Check for a mailbox event */
  4806. if (icr & E1000_ICR_VMMB)
  4807. igb_msg_task(adapter);
  4808. if (icr & E1000_ICR_LSC) {
  4809. hw->mac.get_link_status = 1;
  4810. /* guard against interrupt when we're going down */
  4811. if (!test_bit(__IGB_DOWN, &adapter->state))
  4812. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  4813. }
  4814. if (icr & E1000_ICR_TS)
  4815. igb_tsync_interrupt(adapter);
  4816. wr32(E1000_EIMS, adapter->eims_other);
  4817. return IRQ_HANDLED;
  4818. }
  4819. static void igb_write_itr(struct igb_q_vector *q_vector)
  4820. {
  4821. struct igb_adapter *adapter = q_vector->adapter;
  4822. u32 itr_val = q_vector->itr_val & 0x7FFC;
  4823. if (!q_vector->set_itr)
  4824. return;
  4825. if (!itr_val)
  4826. itr_val = 0x4;
  4827. if (adapter->hw.mac.type == e1000_82575)
  4828. itr_val |= itr_val << 16;
  4829. else
  4830. itr_val |= E1000_EITR_CNT_IGNR;
  4831. writel(itr_val, q_vector->itr_register);
  4832. q_vector->set_itr = 0;
  4833. }
  4834. static irqreturn_t igb_msix_ring(int irq, void *data)
  4835. {
  4836. struct igb_q_vector *q_vector = data;
  4837. /* Write the ITR value calculated from the previous interrupt. */
  4838. igb_write_itr(q_vector);
  4839. napi_schedule(&q_vector->napi);
  4840. return IRQ_HANDLED;
  4841. }
  4842. #ifdef CONFIG_IGB_DCA
  4843. static void igb_update_tx_dca(struct igb_adapter *adapter,
  4844. struct igb_ring *tx_ring,
  4845. int cpu)
  4846. {
  4847. struct e1000_hw *hw = &adapter->hw;
  4848. u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
  4849. if (hw->mac.type != e1000_82575)
  4850. txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
  4851. /* We can enable relaxed ordering for reads, but not writes when
  4852. * DCA is enabled. This is due to a known issue in some chipsets
  4853. * which will cause the DCA tag to be cleared.
  4854. */
  4855. txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
  4856. E1000_DCA_TXCTRL_DATA_RRO_EN |
  4857. E1000_DCA_TXCTRL_DESC_DCA_EN;
  4858. wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
  4859. }
  4860. static void igb_update_rx_dca(struct igb_adapter *adapter,
  4861. struct igb_ring *rx_ring,
  4862. int cpu)
  4863. {
  4864. struct e1000_hw *hw = &adapter->hw;
  4865. u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
  4866. if (hw->mac.type != e1000_82575)
  4867. rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
  4868. /* We can enable relaxed ordering for reads, but not writes when
  4869. * DCA is enabled. This is due to a known issue in some chipsets
  4870. * which will cause the DCA tag to be cleared.
  4871. */
  4872. rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
  4873. E1000_DCA_RXCTRL_DESC_DCA_EN;
  4874. wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
  4875. }
  4876. static void igb_update_dca(struct igb_q_vector *q_vector)
  4877. {
  4878. struct igb_adapter *adapter = q_vector->adapter;
  4879. int cpu = get_cpu();
  4880. if (q_vector->cpu == cpu)
  4881. goto out_no_update;
  4882. if (q_vector->tx.ring)
  4883. igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
  4884. if (q_vector->rx.ring)
  4885. igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
  4886. q_vector->cpu = cpu;
  4887. out_no_update:
  4888. put_cpu();
  4889. }
  4890. static void igb_setup_dca(struct igb_adapter *adapter)
  4891. {
  4892. struct e1000_hw *hw = &adapter->hw;
  4893. int i;
  4894. if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
  4895. return;
  4896. /* Always use CB2 mode, difference is masked in the CB driver. */
  4897. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
  4898. for (i = 0; i < adapter->num_q_vectors; i++) {
  4899. adapter->q_vector[i]->cpu = -1;
  4900. igb_update_dca(adapter->q_vector[i]);
  4901. }
  4902. }
  4903. static int __igb_notify_dca(struct device *dev, void *data)
  4904. {
  4905. struct net_device *netdev = dev_get_drvdata(dev);
  4906. struct igb_adapter *adapter = netdev_priv(netdev);
  4907. struct pci_dev *pdev = adapter->pdev;
  4908. struct e1000_hw *hw = &adapter->hw;
  4909. unsigned long event = *(unsigned long *)data;
  4910. switch (event) {
  4911. case DCA_PROVIDER_ADD:
  4912. /* if already enabled, don't do it again */
  4913. if (adapter->flags & IGB_FLAG_DCA_ENABLED)
  4914. break;
  4915. if (dca_add_requester(dev) == 0) {
  4916. adapter->flags |= IGB_FLAG_DCA_ENABLED;
  4917. dev_info(&pdev->dev, "DCA enabled\n");
  4918. igb_setup_dca(adapter);
  4919. break;
  4920. }
  4921. /* Fall Through since DCA is disabled. */
  4922. case DCA_PROVIDER_REMOVE:
  4923. if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
  4924. /* without this a class_device is left
  4925. * hanging around in the sysfs model
  4926. */
  4927. dca_remove_requester(dev);
  4928. dev_info(&pdev->dev, "DCA disabled\n");
  4929. adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
  4930. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
  4931. }
  4932. break;
  4933. }
  4934. return 0;
  4935. }
  4936. static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
  4937. void *p)
  4938. {
  4939. int ret_val;
  4940. ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
  4941. __igb_notify_dca);
  4942. return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
  4943. }
  4944. #endif /* CONFIG_IGB_DCA */
  4945. #ifdef CONFIG_PCI_IOV
  4946. static int igb_vf_configure(struct igb_adapter *adapter, int vf)
  4947. {
  4948. unsigned char mac_addr[ETH_ALEN];
  4949. eth_zero_addr(mac_addr);
  4950. igb_set_vf_mac(adapter, vf, mac_addr);
  4951. /* By default spoof check is enabled for all VFs */
  4952. adapter->vf_data[vf].spoofchk_enabled = true;
  4953. return 0;
  4954. }
  4955. #endif
  4956. static void igb_ping_all_vfs(struct igb_adapter *adapter)
  4957. {
  4958. struct e1000_hw *hw = &adapter->hw;
  4959. u32 ping;
  4960. int i;
  4961. for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
  4962. ping = E1000_PF_CONTROL_MSG;
  4963. if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
  4964. ping |= E1000_VT_MSGTYPE_CTS;
  4965. igb_write_mbx(hw, &ping, 1, i);
  4966. }
  4967. }
  4968. static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
  4969. {
  4970. struct e1000_hw *hw = &adapter->hw;
  4971. u32 vmolr = rd32(E1000_VMOLR(vf));
  4972. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  4973. vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
  4974. IGB_VF_FLAG_MULTI_PROMISC);
  4975. vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
  4976. if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
  4977. vmolr |= E1000_VMOLR_MPME;
  4978. vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
  4979. *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
  4980. } else {
  4981. /* if we have hashes and we are clearing a multicast promisc
  4982. * flag we need to write the hashes to the MTA as this step
  4983. * was previously skipped
  4984. */
  4985. if (vf_data->num_vf_mc_hashes > 30) {
  4986. vmolr |= E1000_VMOLR_MPME;
  4987. } else if (vf_data->num_vf_mc_hashes) {
  4988. int j;
  4989. vmolr |= E1000_VMOLR_ROMPE;
  4990. for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
  4991. igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
  4992. }
  4993. }
  4994. wr32(E1000_VMOLR(vf), vmolr);
  4995. /* there are flags left unprocessed, likely not supported */
  4996. if (*msgbuf & E1000_VT_MSGINFO_MASK)
  4997. return -EINVAL;
  4998. return 0;
  4999. }
  5000. static int igb_set_vf_multicasts(struct igb_adapter *adapter,
  5001. u32 *msgbuf, u32 vf)
  5002. {
  5003. int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
  5004. u16 *hash_list = (u16 *)&msgbuf[1];
  5005. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5006. int i;
  5007. /* salt away the number of multicast addresses assigned
  5008. * to this VF for later use to restore when the PF multi cast
  5009. * list changes
  5010. */
  5011. vf_data->num_vf_mc_hashes = n;
  5012. /* only up to 30 hash values supported */
  5013. if (n > 30)
  5014. n = 30;
  5015. /* store the hashes for later use */
  5016. for (i = 0; i < n; i++)
  5017. vf_data->vf_mc_hashes[i] = hash_list[i];
  5018. /* Flush and reset the mta with the new values */
  5019. igb_set_rx_mode(adapter->netdev);
  5020. return 0;
  5021. }
  5022. static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
  5023. {
  5024. struct e1000_hw *hw = &adapter->hw;
  5025. struct vf_data_storage *vf_data;
  5026. int i, j;
  5027. for (i = 0; i < adapter->vfs_allocated_count; i++) {
  5028. u32 vmolr = rd32(E1000_VMOLR(i));
  5029. vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
  5030. vf_data = &adapter->vf_data[i];
  5031. if ((vf_data->num_vf_mc_hashes > 30) ||
  5032. (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
  5033. vmolr |= E1000_VMOLR_MPME;
  5034. } else if (vf_data->num_vf_mc_hashes) {
  5035. vmolr |= E1000_VMOLR_ROMPE;
  5036. for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
  5037. igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
  5038. }
  5039. wr32(E1000_VMOLR(i), vmolr);
  5040. }
  5041. }
  5042. static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
  5043. {
  5044. struct e1000_hw *hw = &adapter->hw;
  5045. u32 pool_mask, vlvf_mask, i;
  5046. /* create mask for VF and other pools */
  5047. pool_mask = E1000_VLVF_POOLSEL_MASK;
  5048. vlvf_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
  5049. /* drop PF from pool bits */
  5050. pool_mask &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT +
  5051. adapter->vfs_allocated_count));
  5052. /* Find the vlan filter for this id */
  5053. for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
  5054. u32 vlvf = rd32(E1000_VLVF(i));
  5055. u32 vfta_mask, vid, vfta;
  5056. /* remove the vf from the pool */
  5057. if (!(vlvf & vlvf_mask))
  5058. continue;
  5059. /* clear out bit from VLVF */
  5060. vlvf ^= vlvf_mask;
  5061. /* if other pools are present, just remove ourselves */
  5062. if (vlvf & pool_mask)
  5063. goto update_vlvfb;
  5064. /* if PF is present, leave VFTA */
  5065. if (vlvf & E1000_VLVF_POOLSEL_MASK)
  5066. goto update_vlvf;
  5067. vid = vlvf & E1000_VLVF_VLANID_MASK;
  5068. vfta_mask = 1 << (vid % 32);
  5069. /* clear bit from VFTA */
  5070. vfta = adapter->shadow_vfta[vid / 32];
  5071. if (vfta & vfta_mask)
  5072. hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
  5073. update_vlvf:
  5074. /* clear pool selection enable */
  5075. if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
  5076. vlvf &= E1000_VLVF_POOLSEL_MASK;
  5077. else
  5078. vlvf = 0;
  5079. update_vlvfb:
  5080. /* clear pool bits */
  5081. wr32(E1000_VLVF(i), vlvf);
  5082. }
  5083. }
  5084. static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
  5085. {
  5086. u32 vlvf;
  5087. int idx;
  5088. /* short cut the special case */
  5089. if (vlan == 0)
  5090. return 0;
  5091. /* Search for the VLAN id in the VLVF entries */
  5092. for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
  5093. vlvf = rd32(E1000_VLVF(idx));
  5094. if ((vlvf & VLAN_VID_MASK) == vlan)
  5095. break;
  5096. }
  5097. return idx;
  5098. }
  5099. void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
  5100. {
  5101. struct e1000_hw *hw = &adapter->hw;
  5102. u32 bits, pf_id;
  5103. int idx;
  5104. idx = igb_find_vlvf_entry(hw, vid);
  5105. if (!idx)
  5106. return;
  5107. /* See if any other pools are set for this VLAN filter
  5108. * entry other than the PF.
  5109. */
  5110. pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
  5111. bits = ~(1 << pf_id) & E1000_VLVF_POOLSEL_MASK;
  5112. bits &= rd32(E1000_VLVF(idx));
  5113. /* Disable the filter so this falls into the default pool. */
  5114. if (!bits) {
  5115. if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
  5116. wr32(E1000_VLVF(idx), 1 << pf_id);
  5117. else
  5118. wr32(E1000_VLVF(idx), 0);
  5119. }
  5120. }
  5121. static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
  5122. bool add, u32 vf)
  5123. {
  5124. int pf_id = adapter->vfs_allocated_count;
  5125. struct e1000_hw *hw = &adapter->hw;
  5126. int err;
  5127. /* If VLAN overlaps with one the PF is currently monitoring make
  5128. * sure that we are able to allocate a VLVF entry. This may be
  5129. * redundant but it guarantees PF will maintain visibility to
  5130. * the VLAN.
  5131. */
  5132. if (add && test_bit(vid, adapter->active_vlans)) {
  5133. err = igb_vfta_set(hw, vid, pf_id, true, false);
  5134. if (err)
  5135. return err;
  5136. }
  5137. err = igb_vfta_set(hw, vid, vf, add, false);
  5138. if (add && !err)
  5139. return err;
  5140. /* If we failed to add the VF VLAN or we are removing the VF VLAN
  5141. * we may need to drop the PF pool bit in order to allow us to free
  5142. * up the VLVF resources.
  5143. */
  5144. if (test_bit(vid, adapter->active_vlans) ||
  5145. (adapter->flags & IGB_FLAG_VLAN_PROMISC))
  5146. igb_update_pf_vlvf(adapter, vid);
  5147. return err;
  5148. }
  5149. static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
  5150. {
  5151. struct e1000_hw *hw = &adapter->hw;
  5152. if (vid)
  5153. wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
  5154. else
  5155. wr32(E1000_VMVIR(vf), 0);
  5156. }
  5157. static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
  5158. u16 vlan, u8 qos)
  5159. {
  5160. int err;
  5161. err = igb_set_vf_vlan(adapter, vlan, true, vf);
  5162. if (err)
  5163. return err;
  5164. igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
  5165. igb_set_vmolr(adapter, vf, !vlan);
  5166. /* revoke access to previous VLAN */
  5167. if (vlan != adapter->vf_data[vf].pf_vlan)
  5168. igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
  5169. false, vf);
  5170. adapter->vf_data[vf].pf_vlan = vlan;
  5171. adapter->vf_data[vf].pf_qos = qos;
  5172. igb_set_vf_vlan_strip(adapter, vf, true);
  5173. dev_info(&adapter->pdev->dev,
  5174. "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
  5175. if (test_bit(__IGB_DOWN, &adapter->state)) {
  5176. dev_warn(&adapter->pdev->dev,
  5177. "The VF VLAN has been set, but the PF device is not up.\n");
  5178. dev_warn(&adapter->pdev->dev,
  5179. "Bring the PF device up before attempting to use the VF device.\n");
  5180. }
  5181. return err;
  5182. }
  5183. static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
  5184. {
  5185. /* Restore tagless access via VLAN 0 */
  5186. igb_set_vf_vlan(adapter, 0, true, vf);
  5187. igb_set_vmvir(adapter, 0, vf);
  5188. igb_set_vmolr(adapter, vf, true);
  5189. /* Remove any PF assigned VLAN */
  5190. if (adapter->vf_data[vf].pf_vlan)
  5191. igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
  5192. false, vf);
  5193. adapter->vf_data[vf].pf_vlan = 0;
  5194. adapter->vf_data[vf].pf_qos = 0;
  5195. igb_set_vf_vlan_strip(adapter, vf, false);
  5196. return 0;
  5197. }
  5198. static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  5199. int vf, u16 vlan, u8 qos)
  5200. {
  5201. struct igb_adapter *adapter = netdev_priv(netdev);
  5202. if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
  5203. return -EINVAL;
  5204. return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
  5205. igb_disable_port_vlan(adapter, vf);
  5206. }
  5207. static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
  5208. {
  5209. int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
  5210. int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
  5211. int ret;
  5212. if (adapter->vf_data[vf].pf_vlan)
  5213. return -1;
  5214. /* VLAN 0 is a special case, don't allow it to be removed */
  5215. if (!vid && !add)
  5216. return 0;
  5217. ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
  5218. if (!ret)
  5219. igb_set_vf_vlan_strip(adapter, vf, !!vid);
  5220. return ret;
  5221. }
  5222. static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
  5223. {
  5224. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5225. /* clear flags - except flag that indicates PF has set the MAC */
  5226. vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
  5227. vf_data->last_nack = jiffies;
  5228. /* reset vlans for device */
  5229. igb_clear_vf_vfta(adapter, vf);
  5230. igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
  5231. igb_set_vmvir(adapter, vf_data->pf_vlan |
  5232. (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
  5233. igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
  5234. igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
  5235. /* reset multicast table array for vf */
  5236. adapter->vf_data[vf].num_vf_mc_hashes = 0;
  5237. /* Flush and reset the mta with the new values */
  5238. igb_set_rx_mode(adapter->netdev);
  5239. }
  5240. static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
  5241. {
  5242. unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
  5243. /* clear mac address as we were hotplug removed/added */
  5244. if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
  5245. eth_zero_addr(vf_mac);
  5246. /* process remaining reset events */
  5247. igb_vf_reset(adapter, vf);
  5248. }
  5249. static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
  5250. {
  5251. struct e1000_hw *hw = &adapter->hw;
  5252. unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
  5253. int rar_entry = hw->mac.rar_entry_count - (vf + 1);
  5254. u32 reg, msgbuf[3];
  5255. u8 *addr = (u8 *)(&msgbuf[1]);
  5256. /* process all the same items cleared in a function level reset */
  5257. igb_vf_reset(adapter, vf);
  5258. /* set vf mac address */
  5259. igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
  5260. /* enable transmit and receive for vf */
  5261. reg = rd32(E1000_VFTE);
  5262. wr32(E1000_VFTE, reg | (1 << vf));
  5263. reg = rd32(E1000_VFRE);
  5264. wr32(E1000_VFRE, reg | (1 << vf));
  5265. adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
  5266. /* reply to reset with ack and vf mac address */
  5267. if (!is_zero_ether_addr(vf_mac)) {
  5268. msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
  5269. memcpy(addr, vf_mac, ETH_ALEN);
  5270. } else {
  5271. msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
  5272. }
  5273. igb_write_mbx(hw, msgbuf, 3, vf);
  5274. }
  5275. static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
  5276. {
  5277. /* The VF MAC Address is stored in a packed array of bytes
  5278. * starting at the second 32 bit word of the msg array
  5279. */
  5280. unsigned char *addr = (char *)&msg[1];
  5281. int err = -1;
  5282. if (is_valid_ether_addr(addr))
  5283. err = igb_set_vf_mac(adapter, vf, addr);
  5284. return err;
  5285. }
  5286. static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
  5287. {
  5288. struct e1000_hw *hw = &adapter->hw;
  5289. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5290. u32 msg = E1000_VT_MSGTYPE_NACK;
  5291. /* if device isn't clear to send it shouldn't be reading either */
  5292. if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
  5293. time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
  5294. igb_write_mbx(hw, &msg, 1, vf);
  5295. vf_data->last_nack = jiffies;
  5296. }
  5297. }
  5298. static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
  5299. {
  5300. struct pci_dev *pdev = adapter->pdev;
  5301. u32 msgbuf[E1000_VFMAILBOX_SIZE];
  5302. struct e1000_hw *hw = &adapter->hw;
  5303. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5304. s32 retval;
  5305. retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
  5306. if (retval) {
  5307. /* if receive failed revoke VF CTS stats and restart init */
  5308. dev_err(&pdev->dev, "Error receiving message from VF\n");
  5309. vf_data->flags &= ~IGB_VF_FLAG_CTS;
  5310. if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
  5311. return;
  5312. goto out;
  5313. }
  5314. /* this is a message we already processed, do nothing */
  5315. if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
  5316. return;
  5317. /* until the vf completes a reset it should not be
  5318. * allowed to start any configuration.
  5319. */
  5320. if (msgbuf[0] == E1000_VF_RESET) {
  5321. igb_vf_reset_msg(adapter, vf);
  5322. return;
  5323. }
  5324. if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
  5325. if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
  5326. return;
  5327. retval = -1;
  5328. goto out;
  5329. }
  5330. switch ((msgbuf[0] & 0xFFFF)) {
  5331. case E1000_VF_SET_MAC_ADDR:
  5332. retval = -EINVAL;
  5333. if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
  5334. retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
  5335. else
  5336. dev_warn(&pdev->dev,
  5337. "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
  5338. vf);
  5339. break;
  5340. case E1000_VF_SET_PROMISC:
  5341. retval = igb_set_vf_promisc(adapter, msgbuf, vf);
  5342. break;
  5343. case E1000_VF_SET_MULTICAST:
  5344. retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
  5345. break;
  5346. case E1000_VF_SET_LPE:
  5347. retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
  5348. break;
  5349. case E1000_VF_SET_VLAN:
  5350. retval = -1;
  5351. if (vf_data->pf_vlan)
  5352. dev_warn(&pdev->dev,
  5353. "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
  5354. vf);
  5355. else
  5356. retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
  5357. break;
  5358. default:
  5359. dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
  5360. retval = -1;
  5361. break;
  5362. }
  5363. msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
  5364. out:
  5365. /* notify the VF of the results of what it sent us */
  5366. if (retval)
  5367. msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
  5368. else
  5369. msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
  5370. igb_write_mbx(hw, msgbuf, 1, vf);
  5371. }
  5372. static void igb_msg_task(struct igb_adapter *adapter)
  5373. {
  5374. struct e1000_hw *hw = &adapter->hw;
  5375. u32 vf;
  5376. for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
  5377. /* process any reset requests */
  5378. if (!igb_check_for_rst(hw, vf))
  5379. igb_vf_reset_event(adapter, vf);
  5380. /* process any messages pending */
  5381. if (!igb_check_for_msg(hw, vf))
  5382. igb_rcv_msg_from_vf(adapter, vf);
  5383. /* process any acks */
  5384. if (!igb_check_for_ack(hw, vf))
  5385. igb_rcv_ack_from_vf(adapter, vf);
  5386. }
  5387. }
  5388. /**
  5389. * igb_set_uta - Set unicast filter table address
  5390. * @adapter: board private structure
  5391. * @set: boolean indicating if we are setting or clearing bits
  5392. *
  5393. * The unicast table address is a register array of 32-bit registers.
  5394. * The table is meant to be used in a way similar to how the MTA is used
  5395. * however due to certain limitations in the hardware it is necessary to
  5396. * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
  5397. * enable bit to allow vlan tag stripping when promiscuous mode is enabled
  5398. **/
  5399. static void igb_set_uta(struct igb_adapter *adapter, bool set)
  5400. {
  5401. struct e1000_hw *hw = &adapter->hw;
  5402. u32 uta = set ? ~0 : 0;
  5403. int i;
  5404. /* we only need to do this if VMDq is enabled */
  5405. if (!adapter->vfs_allocated_count)
  5406. return;
  5407. for (i = hw->mac.uta_reg_count; i--;)
  5408. array_wr32(E1000_UTA, i, uta);
  5409. }
  5410. /**
  5411. * igb_intr_msi - Interrupt Handler
  5412. * @irq: interrupt number
  5413. * @data: pointer to a network interface device structure
  5414. **/
  5415. static irqreturn_t igb_intr_msi(int irq, void *data)
  5416. {
  5417. struct igb_adapter *adapter = data;
  5418. struct igb_q_vector *q_vector = adapter->q_vector[0];
  5419. struct e1000_hw *hw = &adapter->hw;
  5420. /* read ICR disables interrupts using IAM */
  5421. u32 icr = rd32(E1000_ICR);
  5422. igb_write_itr(q_vector);
  5423. if (icr & E1000_ICR_DRSTA)
  5424. schedule_work(&adapter->reset_task);
  5425. if (icr & E1000_ICR_DOUTSYNC) {
  5426. /* HW is reporting DMA is out of sync */
  5427. adapter->stats.doosync++;
  5428. }
  5429. if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
  5430. hw->mac.get_link_status = 1;
  5431. if (!test_bit(__IGB_DOWN, &adapter->state))
  5432. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  5433. }
  5434. if (icr & E1000_ICR_TS)
  5435. igb_tsync_interrupt(adapter);
  5436. napi_schedule(&q_vector->napi);
  5437. return IRQ_HANDLED;
  5438. }
  5439. /**
  5440. * igb_intr - Legacy Interrupt Handler
  5441. * @irq: interrupt number
  5442. * @data: pointer to a network interface device structure
  5443. **/
  5444. static irqreturn_t igb_intr(int irq, void *data)
  5445. {
  5446. struct igb_adapter *adapter = data;
  5447. struct igb_q_vector *q_vector = adapter->q_vector[0];
  5448. struct e1000_hw *hw = &adapter->hw;
  5449. /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
  5450. * need for the IMC write
  5451. */
  5452. u32 icr = rd32(E1000_ICR);
  5453. /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
  5454. * not set, then the adapter didn't send an interrupt
  5455. */
  5456. if (!(icr & E1000_ICR_INT_ASSERTED))
  5457. return IRQ_NONE;
  5458. igb_write_itr(q_vector);
  5459. if (icr & E1000_ICR_DRSTA)
  5460. schedule_work(&adapter->reset_task);
  5461. if (icr & E1000_ICR_DOUTSYNC) {
  5462. /* HW is reporting DMA is out of sync */
  5463. adapter->stats.doosync++;
  5464. }
  5465. if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
  5466. hw->mac.get_link_status = 1;
  5467. /* guard against interrupt when we're going down */
  5468. if (!test_bit(__IGB_DOWN, &adapter->state))
  5469. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  5470. }
  5471. if (icr & E1000_ICR_TS)
  5472. igb_tsync_interrupt(adapter);
  5473. napi_schedule(&q_vector->napi);
  5474. return IRQ_HANDLED;
  5475. }
  5476. static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
  5477. {
  5478. struct igb_adapter *adapter = q_vector->adapter;
  5479. struct e1000_hw *hw = &adapter->hw;
  5480. if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
  5481. (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
  5482. if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
  5483. igb_set_itr(q_vector);
  5484. else
  5485. igb_update_ring_itr(q_vector);
  5486. }
  5487. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  5488. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  5489. wr32(E1000_EIMS, q_vector->eims_value);
  5490. else
  5491. igb_irq_enable(adapter);
  5492. }
  5493. }
  5494. /**
  5495. * igb_poll - NAPI Rx polling callback
  5496. * @napi: napi polling structure
  5497. * @budget: count of how many packets we should handle
  5498. **/
  5499. static int igb_poll(struct napi_struct *napi, int budget)
  5500. {
  5501. struct igb_q_vector *q_vector = container_of(napi,
  5502. struct igb_q_vector,
  5503. napi);
  5504. bool clean_complete = true;
  5505. int work_done = 0;
  5506. #ifdef CONFIG_IGB_DCA
  5507. if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
  5508. igb_update_dca(q_vector);
  5509. #endif
  5510. if (q_vector->tx.ring)
  5511. clean_complete = igb_clean_tx_irq(q_vector);
  5512. if (q_vector->rx.ring) {
  5513. int cleaned = igb_clean_rx_irq(q_vector, budget);
  5514. work_done += cleaned;
  5515. clean_complete &= (cleaned < budget);
  5516. }
  5517. /* If all work not completed, return budget and keep polling */
  5518. if (!clean_complete)
  5519. return budget;
  5520. /* If not enough Rx work done, exit the polling mode */
  5521. napi_complete_done(napi, work_done);
  5522. igb_ring_irq_enable(q_vector);
  5523. return 0;
  5524. }
  5525. /**
  5526. * igb_clean_tx_irq - Reclaim resources after transmit completes
  5527. * @q_vector: pointer to q_vector containing needed info
  5528. *
  5529. * returns true if ring is completely cleaned
  5530. **/
  5531. static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
  5532. {
  5533. struct igb_adapter *adapter = q_vector->adapter;
  5534. struct igb_ring *tx_ring = q_vector->tx.ring;
  5535. struct igb_tx_buffer *tx_buffer;
  5536. union e1000_adv_tx_desc *tx_desc;
  5537. unsigned int total_bytes = 0, total_packets = 0;
  5538. unsigned int budget = q_vector->tx.work_limit;
  5539. unsigned int i = tx_ring->next_to_clean;
  5540. if (test_bit(__IGB_DOWN, &adapter->state))
  5541. return true;
  5542. tx_buffer = &tx_ring->tx_buffer_info[i];
  5543. tx_desc = IGB_TX_DESC(tx_ring, i);
  5544. i -= tx_ring->count;
  5545. do {
  5546. union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
  5547. /* if next_to_watch is not set then there is no work pending */
  5548. if (!eop_desc)
  5549. break;
  5550. /* prevent any other reads prior to eop_desc */
  5551. read_barrier_depends();
  5552. /* if DD is not set pending work has not been completed */
  5553. if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
  5554. break;
  5555. /* clear next_to_watch to prevent false hangs */
  5556. tx_buffer->next_to_watch = NULL;
  5557. /* update the statistics for this packet */
  5558. total_bytes += tx_buffer->bytecount;
  5559. total_packets += tx_buffer->gso_segs;
  5560. /* free the skb */
  5561. dev_consume_skb_any(tx_buffer->skb);
  5562. /* unmap skb header data */
  5563. dma_unmap_single(tx_ring->dev,
  5564. dma_unmap_addr(tx_buffer, dma),
  5565. dma_unmap_len(tx_buffer, len),
  5566. DMA_TO_DEVICE);
  5567. /* clear tx_buffer data */
  5568. tx_buffer->skb = NULL;
  5569. dma_unmap_len_set(tx_buffer, len, 0);
  5570. /* clear last DMA location and unmap remaining buffers */
  5571. while (tx_desc != eop_desc) {
  5572. tx_buffer++;
  5573. tx_desc++;
  5574. i++;
  5575. if (unlikely(!i)) {
  5576. i -= tx_ring->count;
  5577. tx_buffer = tx_ring->tx_buffer_info;
  5578. tx_desc = IGB_TX_DESC(tx_ring, 0);
  5579. }
  5580. /* unmap any remaining paged data */
  5581. if (dma_unmap_len(tx_buffer, len)) {
  5582. dma_unmap_page(tx_ring->dev,
  5583. dma_unmap_addr(tx_buffer, dma),
  5584. dma_unmap_len(tx_buffer, len),
  5585. DMA_TO_DEVICE);
  5586. dma_unmap_len_set(tx_buffer, len, 0);
  5587. }
  5588. }
  5589. /* move us one more past the eop_desc for start of next pkt */
  5590. tx_buffer++;
  5591. tx_desc++;
  5592. i++;
  5593. if (unlikely(!i)) {
  5594. i -= tx_ring->count;
  5595. tx_buffer = tx_ring->tx_buffer_info;
  5596. tx_desc = IGB_TX_DESC(tx_ring, 0);
  5597. }
  5598. /* issue prefetch for next Tx descriptor */
  5599. prefetch(tx_desc);
  5600. /* update budget accounting */
  5601. budget--;
  5602. } while (likely(budget));
  5603. netdev_tx_completed_queue(txring_txq(tx_ring),
  5604. total_packets, total_bytes);
  5605. i += tx_ring->count;
  5606. tx_ring->next_to_clean = i;
  5607. u64_stats_update_begin(&tx_ring->tx_syncp);
  5608. tx_ring->tx_stats.bytes += total_bytes;
  5609. tx_ring->tx_stats.packets += total_packets;
  5610. u64_stats_update_end(&tx_ring->tx_syncp);
  5611. q_vector->tx.total_bytes += total_bytes;
  5612. q_vector->tx.total_packets += total_packets;
  5613. if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
  5614. struct e1000_hw *hw = &adapter->hw;
  5615. /* Detect a transmit hang in hardware, this serializes the
  5616. * check with the clearing of time_stamp and movement of i
  5617. */
  5618. clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
  5619. if (tx_buffer->next_to_watch &&
  5620. time_after(jiffies, tx_buffer->time_stamp +
  5621. (adapter->tx_timeout_factor * HZ)) &&
  5622. !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
  5623. /* detected Tx unit hang */
  5624. dev_err(tx_ring->dev,
  5625. "Detected Tx Unit Hang\n"
  5626. " Tx Queue <%d>\n"
  5627. " TDH <%x>\n"
  5628. " TDT <%x>\n"
  5629. " next_to_use <%x>\n"
  5630. " next_to_clean <%x>\n"
  5631. "buffer_info[next_to_clean]\n"
  5632. " time_stamp <%lx>\n"
  5633. " next_to_watch <%p>\n"
  5634. " jiffies <%lx>\n"
  5635. " desc.status <%x>\n",
  5636. tx_ring->queue_index,
  5637. rd32(E1000_TDH(tx_ring->reg_idx)),
  5638. readl(tx_ring->tail),
  5639. tx_ring->next_to_use,
  5640. tx_ring->next_to_clean,
  5641. tx_buffer->time_stamp,
  5642. tx_buffer->next_to_watch,
  5643. jiffies,
  5644. tx_buffer->next_to_watch->wb.status);
  5645. netif_stop_subqueue(tx_ring->netdev,
  5646. tx_ring->queue_index);
  5647. /* we are about to reset, no point in enabling stuff */
  5648. return true;
  5649. }
  5650. }
  5651. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  5652. if (unlikely(total_packets &&
  5653. netif_carrier_ok(tx_ring->netdev) &&
  5654. igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
  5655. /* Make sure that anybody stopping the queue after this
  5656. * sees the new next_to_clean.
  5657. */
  5658. smp_mb();
  5659. if (__netif_subqueue_stopped(tx_ring->netdev,
  5660. tx_ring->queue_index) &&
  5661. !(test_bit(__IGB_DOWN, &adapter->state))) {
  5662. netif_wake_subqueue(tx_ring->netdev,
  5663. tx_ring->queue_index);
  5664. u64_stats_update_begin(&tx_ring->tx_syncp);
  5665. tx_ring->tx_stats.restart_queue++;
  5666. u64_stats_update_end(&tx_ring->tx_syncp);
  5667. }
  5668. }
  5669. return !!budget;
  5670. }
  5671. /**
  5672. * igb_reuse_rx_page - page flip buffer and store it back on the ring
  5673. * @rx_ring: rx descriptor ring to store buffers on
  5674. * @old_buff: donor buffer to have page reused
  5675. *
  5676. * Synchronizes page for reuse by the adapter
  5677. **/
  5678. static void igb_reuse_rx_page(struct igb_ring *rx_ring,
  5679. struct igb_rx_buffer *old_buff)
  5680. {
  5681. struct igb_rx_buffer *new_buff;
  5682. u16 nta = rx_ring->next_to_alloc;
  5683. new_buff = &rx_ring->rx_buffer_info[nta];
  5684. /* update, and store next to alloc */
  5685. nta++;
  5686. rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
  5687. /* transfer page from old buffer to new buffer */
  5688. *new_buff = *old_buff;
  5689. /* sync the buffer for use by the device */
  5690. dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
  5691. old_buff->page_offset,
  5692. IGB_RX_BUFSZ,
  5693. DMA_FROM_DEVICE);
  5694. }
  5695. static inline bool igb_page_is_reserved(struct page *page)
  5696. {
  5697. return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
  5698. }
  5699. static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
  5700. struct page *page,
  5701. unsigned int truesize)
  5702. {
  5703. /* avoid re-using remote pages */
  5704. if (unlikely(igb_page_is_reserved(page)))
  5705. return false;
  5706. #if (PAGE_SIZE < 8192)
  5707. /* if we are only owner of page we can reuse it */
  5708. if (unlikely(page_count(page) != 1))
  5709. return false;
  5710. /* flip page offset to other buffer */
  5711. rx_buffer->page_offset ^= IGB_RX_BUFSZ;
  5712. #else
  5713. /* move offset up to the next cache line */
  5714. rx_buffer->page_offset += truesize;
  5715. if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
  5716. return false;
  5717. #endif
  5718. /* Even if we own the page, we are not allowed to use atomic_set()
  5719. * This would break get_page_unless_zero() users.
  5720. */
  5721. page_ref_inc(page);
  5722. return true;
  5723. }
  5724. /**
  5725. * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
  5726. * @rx_ring: rx descriptor ring to transact packets on
  5727. * @rx_buffer: buffer containing page to add
  5728. * @rx_desc: descriptor containing length of buffer written by hardware
  5729. * @skb: sk_buff to place the data into
  5730. *
  5731. * This function will add the data contained in rx_buffer->page to the skb.
  5732. * This is done either through a direct copy if the data in the buffer is
  5733. * less than the skb header size, otherwise it will just attach the page as
  5734. * a frag to the skb.
  5735. *
  5736. * The function will then update the page offset if necessary and return
  5737. * true if the buffer can be reused by the adapter.
  5738. **/
  5739. static bool igb_add_rx_frag(struct igb_ring *rx_ring,
  5740. struct igb_rx_buffer *rx_buffer,
  5741. union e1000_adv_rx_desc *rx_desc,
  5742. struct sk_buff *skb)
  5743. {
  5744. struct page *page = rx_buffer->page;
  5745. unsigned char *va = page_address(page) + rx_buffer->page_offset;
  5746. unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
  5747. #if (PAGE_SIZE < 8192)
  5748. unsigned int truesize = IGB_RX_BUFSZ;
  5749. #else
  5750. unsigned int truesize = SKB_DATA_ALIGN(size);
  5751. #endif
  5752. unsigned int pull_len;
  5753. if (unlikely(skb_is_nonlinear(skb)))
  5754. goto add_tail_frag;
  5755. if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
  5756. igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
  5757. va += IGB_TS_HDR_LEN;
  5758. size -= IGB_TS_HDR_LEN;
  5759. }
  5760. if (likely(size <= IGB_RX_HDR_LEN)) {
  5761. memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
  5762. /* page is not reserved, we can reuse buffer as-is */
  5763. if (likely(!igb_page_is_reserved(page)))
  5764. return true;
  5765. /* this page cannot be reused so discard it */
  5766. __free_page(page);
  5767. return false;
  5768. }
  5769. /* we need the header to contain the greater of either ETH_HLEN or
  5770. * 60 bytes if the skb->len is less than 60 for skb_pad.
  5771. */
  5772. pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
  5773. /* align pull length to size of long to optimize memcpy performance */
  5774. memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
  5775. /* update all of the pointers */
  5776. va += pull_len;
  5777. size -= pull_len;
  5778. add_tail_frag:
  5779. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
  5780. (unsigned long)va & ~PAGE_MASK, size, truesize);
  5781. return igb_can_reuse_rx_page(rx_buffer, page, truesize);
  5782. }
  5783. static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
  5784. union e1000_adv_rx_desc *rx_desc,
  5785. struct sk_buff *skb)
  5786. {
  5787. struct igb_rx_buffer *rx_buffer;
  5788. struct page *page;
  5789. rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
  5790. page = rx_buffer->page;
  5791. prefetchw(page);
  5792. if (likely(!skb)) {
  5793. void *page_addr = page_address(page) +
  5794. rx_buffer->page_offset;
  5795. /* prefetch first cache line of first page */
  5796. prefetch(page_addr);
  5797. #if L1_CACHE_BYTES < 128
  5798. prefetch(page_addr + L1_CACHE_BYTES);
  5799. #endif
  5800. /* allocate a skb to store the frags */
  5801. skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
  5802. if (unlikely(!skb)) {
  5803. rx_ring->rx_stats.alloc_failed++;
  5804. return NULL;
  5805. }
  5806. /* we will be copying header into skb->data in
  5807. * pskb_may_pull so it is in our interest to prefetch
  5808. * it now to avoid a possible cache miss
  5809. */
  5810. prefetchw(skb->data);
  5811. }
  5812. /* we are reusing so sync this buffer for CPU use */
  5813. dma_sync_single_range_for_cpu(rx_ring->dev,
  5814. rx_buffer->dma,
  5815. rx_buffer->page_offset,
  5816. IGB_RX_BUFSZ,
  5817. DMA_FROM_DEVICE);
  5818. /* pull page into skb */
  5819. if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
  5820. /* hand second half of page back to the ring */
  5821. igb_reuse_rx_page(rx_ring, rx_buffer);
  5822. } else {
  5823. /* we are not reusing the buffer so unmap it */
  5824. dma_unmap_page(rx_ring->dev, rx_buffer->dma,
  5825. PAGE_SIZE, DMA_FROM_DEVICE);
  5826. }
  5827. /* clear contents of rx_buffer */
  5828. rx_buffer->page = NULL;
  5829. return skb;
  5830. }
  5831. static inline void igb_rx_checksum(struct igb_ring *ring,
  5832. union e1000_adv_rx_desc *rx_desc,
  5833. struct sk_buff *skb)
  5834. {
  5835. skb_checksum_none_assert(skb);
  5836. /* Ignore Checksum bit is set */
  5837. if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
  5838. return;
  5839. /* Rx checksum disabled via ethtool */
  5840. if (!(ring->netdev->features & NETIF_F_RXCSUM))
  5841. return;
  5842. /* TCP/UDP checksum error bit is set */
  5843. if (igb_test_staterr(rx_desc,
  5844. E1000_RXDEXT_STATERR_TCPE |
  5845. E1000_RXDEXT_STATERR_IPE)) {
  5846. /* work around errata with sctp packets where the TCPE aka
  5847. * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
  5848. * packets, (aka let the stack check the crc32c)
  5849. */
  5850. if (!((skb->len == 60) &&
  5851. test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
  5852. u64_stats_update_begin(&ring->rx_syncp);
  5853. ring->rx_stats.csum_err++;
  5854. u64_stats_update_end(&ring->rx_syncp);
  5855. }
  5856. /* let the stack verify checksum errors */
  5857. return;
  5858. }
  5859. /* It must be a TCP or UDP packet with a valid checksum */
  5860. if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
  5861. E1000_RXD_STAT_UDPCS))
  5862. skb->ip_summed = CHECKSUM_UNNECESSARY;
  5863. dev_dbg(ring->dev, "cksum success: bits %08X\n",
  5864. le32_to_cpu(rx_desc->wb.upper.status_error));
  5865. }
  5866. static inline void igb_rx_hash(struct igb_ring *ring,
  5867. union e1000_adv_rx_desc *rx_desc,
  5868. struct sk_buff *skb)
  5869. {
  5870. if (ring->netdev->features & NETIF_F_RXHASH)
  5871. skb_set_hash(skb,
  5872. le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
  5873. PKT_HASH_TYPE_L3);
  5874. }
  5875. /**
  5876. * igb_is_non_eop - process handling of non-EOP buffers
  5877. * @rx_ring: Rx ring being processed
  5878. * @rx_desc: Rx descriptor for current buffer
  5879. * @skb: current socket buffer containing buffer in progress
  5880. *
  5881. * This function updates next to clean. If the buffer is an EOP buffer
  5882. * this function exits returning false, otherwise it will place the
  5883. * sk_buff in the next buffer to be chained and return true indicating
  5884. * that this is in fact a non-EOP buffer.
  5885. **/
  5886. static bool igb_is_non_eop(struct igb_ring *rx_ring,
  5887. union e1000_adv_rx_desc *rx_desc)
  5888. {
  5889. u32 ntc = rx_ring->next_to_clean + 1;
  5890. /* fetch, update, and store next to clean */
  5891. ntc = (ntc < rx_ring->count) ? ntc : 0;
  5892. rx_ring->next_to_clean = ntc;
  5893. prefetch(IGB_RX_DESC(rx_ring, ntc));
  5894. if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
  5895. return false;
  5896. return true;
  5897. }
  5898. /**
  5899. * igb_cleanup_headers - Correct corrupted or empty headers
  5900. * @rx_ring: rx descriptor ring packet is being transacted on
  5901. * @rx_desc: pointer to the EOP Rx descriptor
  5902. * @skb: pointer to current skb being fixed
  5903. *
  5904. * Address the case where we are pulling data in on pages only
  5905. * and as such no data is present in the skb header.
  5906. *
  5907. * In addition if skb is not at least 60 bytes we need to pad it so that
  5908. * it is large enough to qualify as a valid Ethernet frame.
  5909. *
  5910. * Returns true if an error was encountered and skb was freed.
  5911. **/
  5912. static bool igb_cleanup_headers(struct igb_ring *rx_ring,
  5913. union e1000_adv_rx_desc *rx_desc,
  5914. struct sk_buff *skb)
  5915. {
  5916. if (unlikely((igb_test_staterr(rx_desc,
  5917. E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
  5918. struct net_device *netdev = rx_ring->netdev;
  5919. if (!(netdev->features & NETIF_F_RXALL)) {
  5920. dev_kfree_skb_any(skb);
  5921. return true;
  5922. }
  5923. }
  5924. /* if eth_skb_pad returns an error the skb was freed */
  5925. if (eth_skb_pad(skb))
  5926. return true;
  5927. return false;
  5928. }
  5929. /**
  5930. * igb_process_skb_fields - Populate skb header fields from Rx descriptor
  5931. * @rx_ring: rx descriptor ring packet is being transacted on
  5932. * @rx_desc: pointer to the EOP Rx descriptor
  5933. * @skb: pointer to current skb being populated
  5934. *
  5935. * This function checks the ring, descriptor, and packet information in
  5936. * order to populate the hash, checksum, VLAN, timestamp, protocol, and
  5937. * other fields within the skb.
  5938. **/
  5939. static void igb_process_skb_fields(struct igb_ring *rx_ring,
  5940. union e1000_adv_rx_desc *rx_desc,
  5941. struct sk_buff *skb)
  5942. {
  5943. struct net_device *dev = rx_ring->netdev;
  5944. igb_rx_hash(rx_ring, rx_desc, skb);
  5945. igb_rx_checksum(rx_ring, rx_desc, skb);
  5946. if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
  5947. !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
  5948. igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
  5949. if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  5950. igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
  5951. u16 vid;
  5952. if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
  5953. test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
  5954. vid = be16_to_cpu(rx_desc->wb.upper.vlan);
  5955. else
  5956. vid = le16_to_cpu(rx_desc->wb.upper.vlan);
  5957. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
  5958. }
  5959. skb_record_rx_queue(skb, rx_ring->queue_index);
  5960. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  5961. }
  5962. static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
  5963. {
  5964. struct igb_ring *rx_ring = q_vector->rx.ring;
  5965. struct sk_buff *skb = rx_ring->skb;
  5966. unsigned int total_bytes = 0, total_packets = 0;
  5967. u16 cleaned_count = igb_desc_unused(rx_ring);
  5968. while (likely(total_packets < budget)) {
  5969. union e1000_adv_rx_desc *rx_desc;
  5970. /* return some buffers to hardware, one at a time is too slow */
  5971. if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
  5972. igb_alloc_rx_buffers(rx_ring, cleaned_count);
  5973. cleaned_count = 0;
  5974. }
  5975. rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
  5976. if (!rx_desc->wb.upper.status_error)
  5977. break;
  5978. /* This memory barrier is needed to keep us from reading
  5979. * any other fields out of the rx_desc until we know the
  5980. * descriptor has been written back
  5981. */
  5982. dma_rmb();
  5983. /* retrieve a buffer from the ring */
  5984. skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
  5985. /* exit if we failed to retrieve a buffer */
  5986. if (!skb)
  5987. break;
  5988. cleaned_count++;
  5989. /* fetch next buffer in frame if non-eop */
  5990. if (igb_is_non_eop(rx_ring, rx_desc))
  5991. continue;
  5992. /* verify the packet layout is correct */
  5993. if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
  5994. skb = NULL;
  5995. continue;
  5996. }
  5997. /* probably a little skewed due to removing CRC */
  5998. total_bytes += skb->len;
  5999. /* populate checksum, timestamp, VLAN, and protocol */
  6000. igb_process_skb_fields(rx_ring, rx_desc, skb);
  6001. napi_gro_receive(&q_vector->napi, skb);
  6002. /* reset skb pointer */
  6003. skb = NULL;
  6004. /* update budget accounting */
  6005. total_packets++;
  6006. }
  6007. /* place incomplete frames back on ring for completion */
  6008. rx_ring->skb = skb;
  6009. u64_stats_update_begin(&rx_ring->rx_syncp);
  6010. rx_ring->rx_stats.packets += total_packets;
  6011. rx_ring->rx_stats.bytes += total_bytes;
  6012. u64_stats_update_end(&rx_ring->rx_syncp);
  6013. q_vector->rx.total_packets += total_packets;
  6014. q_vector->rx.total_bytes += total_bytes;
  6015. if (cleaned_count)
  6016. igb_alloc_rx_buffers(rx_ring, cleaned_count);
  6017. return total_packets;
  6018. }
  6019. static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
  6020. struct igb_rx_buffer *bi)
  6021. {
  6022. struct page *page = bi->page;
  6023. dma_addr_t dma;
  6024. /* since we are recycling buffers we should seldom need to alloc */
  6025. if (likely(page))
  6026. return true;
  6027. /* alloc new page for storage */
  6028. page = dev_alloc_page();
  6029. if (unlikely(!page)) {
  6030. rx_ring->rx_stats.alloc_failed++;
  6031. return false;
  6032. }
  6033. /* map page for use */
  6034. dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  6035. /* if mapping failed free memory back to system since
  6036. * there isn't much point in holding memory we can't use
  6037. */
  6038. if (dma_mapping_error(rx_ring->dev, dma)) {
  6039. __free_page(page);
  6040. rx_ring->rx_stats.alloc_failed++;
  6041. return false;
  6042. }
  6043. bi->dma = dma;
  6044. bi->page = page;
  6045. bi->page_offset = 0;
  6046. return true;
  6047. }
  6048. /**
  6049. * igb_alloc_rx_buffers - Replace used receive buffers; packet split
  6050. * @adapter: address of board private structure
  6051. **/
  6052. void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
  6053. {
  6054. union e1000_adv_rx_desc *rx_desc;
  6055. struct igb_rx_buffer *bi;
  6056. u16 i = rx_ring->next_to_use;
  6057. /* nothing to do */
  6058. if (!cleaned_count)
  6059. return;
  6060. rx_desc = IGB_RX_DESC(rx_ring, i);
  6061. bi = &rx_ring->rx_buffer_info[i];
  6062. i -= rx_ring->count;
  6063. do {
  6064. if (!igb_alloc_mapped_page(rx_ring, bi))
  6065. break;
  6066. /* Refresh the desc even if buffer_addrs didn't change
  6067. * because each write-back erases this info.
  6068. */
  6069. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
  6070. rx_desc++;
  6071. bi++;
  6072. i++;
  6073. if (unlikely(!i)) {
  6074. rx_desc = IGB_RX_DESC(rx_ring, 0);
  6075. bi = rx_ring->rx_buffer_info;
  6076. i -= rx_ring->count;
  6077. }
  6078. /* clear the status bits for the next_to_use descriptor */
  6079. rx_desc->wb.upper.status_error = 0;
  6080. cleaned_count--;
  6081. } while (cleaned_count);
  6082. i += rx_ring->count;
  6083. if (rx_ring->next_to_use != i) {
  6084. /* record the next descriptor to use */
  6085. rx_ring->next_to_use = i;
  6086. /* update next to alloc since we have filled the ring */
  6087. rx_ring->next_to_alloc = i;
  6088. /* Force memory writes to complete before letting h/w
  6089. * know there are new descriptors to fetch. (Only
  6090. * applicable for weak-ordered memory model archs,
  6091. * such as IA-64).
  6092. */
  6093. wmb();
  6094. writel(i, rx_ring->tail);
  6095. }
  6096. }
  6097. /**
  6098. * igb_mii_ioctl -
  6099. * @netdev:
  6100. * @ifreq:
  6101. * @cmd:
  6102. **/
  6103. static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  6104. {
  6105. struct igb_adapter *adapter = netdev_priv(netdev);
  6106. struct mii_ioctl_data *data = if_mii(ifr);
  6107. if (adapter->hw.phy.media_type != e1000_media_type_copper)
  6108. return -EOPNOTSUPP;
  6109. switch (cmd) {
  6110. case SIOCGMIIPHY:
  6111. data->phy_id = adapter->hw.phy.addr;
  6112. break;
  6113. case SIOCGMIIREG:
  6114. if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  6115. &data->val_out))
  6116. return -EIO;
  6117. break;
  6118. case SIOCSMIIREG:
  6119. default:
  6120. return -EOPNOTSUPP;
  6121. }
  6122. return 0;
  6123. }
  6124. /**
  6125. * igb_ioctl -
  6126. * @netdev:
  6127. * @ifreq:
  6128. * @cmd:
  6129. **/
  6130. static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  6131. {
  6132. switch (cmd) {
  6133. case SIOCGMIIPHY:
  6134. case SIOCGMIIREG:
  6135. case SIOCSMIIREG:
  6136. return igb_mii_ioctl(netdev, ifr, cmd);
  6137. case SIOCGHWTSTAMP:
  6138. return igb_ptp_get_ts_config(netdev, ifr);
  6139. case SIOCSHWTSTAMP:
  6140. return igb_ptp_set_ts_config(netdev, ifr);
  6141. default:
  6142. return -EOPNOTSUPP;
  6143. }
  6144. }
  6145. void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
  6146. {
  6147. struct igb_adapter *adapter = hw->back;
  6148. pci_read_config_word(adapter->pdev, reg, value);
  6149. }
  6150. void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
  6151. {
  6152. struct igb_adapter *adapter = hw->back;
  6153. pci_write_config_word(adapter->pdev, reg, *value);
  6154. }
  6155. s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
  6156. {
  6157. struct igb_adapter *adapter = hw->back;
  6158. if (pcie_capability_read_word(adapter->pdev, reg, value))
  6159. return -E1000_ERR_CONFIG;
  6160. return 0;
  6161. }
  6162. s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
  6163. {
  6164. struct igb_adapter *adapter = hw->back;
  6165. if (pcie_capability_write_word(adapter->pdev, reg, *value))
  6166. return -E1000_ERR_CONFIG;
  6167. return 0;
  6168. }
  6169. static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
  6170. {
  6171. struct igb_adapter *adapter = netdev_priv(netdev);
  6172. struct e1000_hw *hw = &adapter->hw;
  6173. u32 ctrl, rctl;
  6174. bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
  6175. if (enable) {
  6176. /* enable VLAN tag insert/strip */
  6177. ctrl = rd32(E1000_CTRL);
  6178. ctrl |= E1000_CTRL_VME;
  6179. wr32(E1000_CTRL, ctrl);
  6180. /* Disable CFI check */
  6181. rctl = rd32(E1000_RCTL);
  6182. rctl &= ~E1000_RCTL_CFIEN;
  6183. wr32(E1000_RCTL, rctl);
  6184. } else {
  6185. /* disable VLAN tag insert/strip */
  6186. ctrl = rd32(E1000_CTRL);
  6187. ctrl &= ~E1000_CTRL_VME;
  6188. wr32(E1000_CTRL, ctrl);
  6189. }
  6190. igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
  6191. }
  6192. static int igb_vlan_rx_add_vid(struct net_device *netdev,
  6193. __be16 proto, u16 vid)
  6194. {
  6195. struct igb_adapter *adapter = netdev_priv(netdev);
  6196. struct e1000_hw *hw = &adapter->hw;
  6197. int pf_id = adapter->vfs_allocated_count;
  6198. /* add the filter since PF can receive vlans w/o entry in vlvf */
  6199. if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
  6200. igb_vfta_set(hw, vid, pf_id, true, !!vid);
  6201. set_bit(vid, adapter->active_vlans);
  6202. return 0;
  6203. }
  6204. static int igb_vlan_rx_kill_vid(struct net_device *netdev,
  6205. __be16 proto, u16 vid)
  6206. {
  6207. struct igb_adapter *adapter = netdev_priv(netdev);
  6208. int pf_id = adapter->vfs_allocated_count;
  6209. struct e1000_hw *hw = &adapter->hw;
  6210. /* remove VID from filter table */
  6211. if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
  6212. igb_vfta_set(hw, vid, pf_id, false, true);
  6213. clear_bit(vid, adapter->active_vlans);
  6214. return 0;
  6215. }
  6216. static void igb_restore_vlan(struct igb_adapter *adapter)
  6217. {
  6218. u16 vid = 1;
  6219. igb_vlan_mode(adapter->netdev, adapter->netdev->features);
  6220. igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
  6221. for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
  6222. igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
  6223. }
  6224. int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
  6225. {
  6226. struct pci_dev *pdev = adapter->pdev;
  6227. struct e1000_mac_info *mac = &adapter->hw.mac;
  6228. mac->autoneg = 0;
  6229. /* Make sure dplx is at most 1 bit and lsb of speed is not set
  6230. * for the switch() below to work
  6231. */
  6232. if ((spd & 1) || (dplx & ~1))
  6233. goto err_inval;
  6234. /* Fiber NIC's only allow 1000 gbps Full duplex
  6235. * and 100Mbps Full duplex for 100baseFx sfp
  6236. */
  6237. if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
  6238. switch (spd + dplx) {
  6239. case SPEED_10 + DUPLEX_HALF:
  6240. case SPEED_10 + DUPLEX_FULL:
  6241. case SPEED_100 + DUPLEX_HALF:
  6242. goto err_inval;
  6243. default:
  6244. break;
  6245. }
  6246. }
  6247. switch (spd + dplx) {
  6248. case SPEED_10 + DUPLEX_HALF:
  6249. mac->forced_speed_duplex = ADVERTISE_10_HALF;
  6250. break;
  6251. case SPEED_10 + DUPLEX_FULL:
  6252. mac->forced_speed_duplex = ADVERTISE_10_FULL;
  6253. break;
  6254. case SPEED_100 + DUPLEX_HALF:
  6255. mac->forced_speed_duplex = ADVERTISE_100_HALF;
  6256. break;
  6257. case SPEED_100 + DUPLEX_FULL:
  6258. mac->forced_speed_duplex = ADVERTISE_100_FULL;
  6259. break;
  6260. case SPEED_1000 + DUPLEX_FULL:
  6261. mac->autoneg = 1;
  6262. adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
  6263. break;
  6264. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  6265. default:
  6266. goto err_inval;
  6267. }
  6268. /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
  6269. adapter->hw.phy.mdix = AUTO_ALL_MODES;
  6270. return 0;
  6271. err_inval:
  6272. dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
  6273. return -EINVAL;
  6274. }
  6275. static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
  6276. bool runtime)
  6277. {
  6278. struct net_device *netdev = pci_get_drvdata(pdev);
  6279. struct igb_adapter *adapter = netdev_priv(netdev);
  6280. struct e1000_hw *hw = &adapter->hw;
  6281. u32 ctrl, rctl, status;
  6282. u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
  6283. #ifdef CONFIG_PM
  6284. int retval = 0;
  6285. #endif
  6286. netif_device_detach(netdev);
  6287. if (netif_running(netdev))
  6288. __igb_close(netdev, true);
  6289. igb_clear_interrupt_scheme(adapter);
  6290. #ifdef CONFIG_PM
  6291. retval = pci_save_state(pdev);
  6292. if (retval)
  6293. return retval;
  6294. #endif
  6295. status = rd32(E1000_STATUS);
  6296. if (status & E1000_STATUS_LU)
  6297. wufc &= ~E1000_WUFC_LNKC;
  6298. if (wufc) {
  6299. igb_setup_rctl(adapter);
  6300. igb_set_rx_mode(netdev);
  6301. /* turn on all-multi mode if wake on multicast is enabled */
  6302. if (wufc & E1000_WUFC_MC) {
  6303. rctl = rd32(E1000_RCTL);
  6304. rctl |= E1000_RCTL_MPE;
  6305. wr32(E1000_RCTL, rctl);
  6306. }
  6307. ctrl = rd32(E1000_CTRL);
  6308. /* advertise wake from D3Cold */
  6309. #define E1000_CTRL_ADVD3WUC 0x00100000
  6310. /* phy power management enable */
  6311. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  6312. ctrl |= E1000_CTRL_ADVD3WUC;
  6313. wr32(E1000_CTRL, ctrl);
  6314. /* Allow time for pending master requests to run */
  6315. igb_disable_pcie_master(hw);
  6316. wr32(E1000_WUC, E1000_WUC_PME_EN);
  6317. wr32(E1000_WUFC, wufc);
  6318. } else {
  6319. wr32(E1000_WUC, 0);
  6320. wr32(E1000_WUFC, 0);
  6321. }
  6322. *enable_wake = wufc || adapter->en_mng_pt;
  6323. if (!*enable_wake)
  6324. igb_power_down_link(adapter);
  6325. else
  6326. igb_power_up_link(adapter);
  6327. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  6328. * would have already happened in close and is redundant.
  6329. */
  6330. igb_release_hw_control(adapter);
  6331. pci_disable_device(pdev);
  6332. return 0;
  6333. }
  6334. #ifdef CONFIG_PM
  6335. #ifdef CONFIG_PM_SLEEP
  6336. static int igb_suspend(struct device *dev)
  6337. {
  6338. int retval;
  6339. bool wake;
  6340. struct pci_dev *pdev = to_pci_dev(dev);
  6341. retval = __igb_shutdown(pdev, &wake, 0);
  6342. if (retval)
  6343. return retval;
  6344. if (wake) {
  6345. pci_prepare_to_sleep(pdev);
  6346. } else {
  6347. pci_wake_from_d3(pdev, false);
  6348. pci_set_power_state(pdev, PCI_D3hot);
  6349. }
  6350. return 0;
  6351. }
  6352. #endif /* CONFIG_PM_SLEEP */
  6353. static int igb_resume(struct device *dev)
  6354. {
  6355. struct pci_dev *pdev = to_pci_dev(dev);
  6356. struct net_device *netdev = pci_get_drvdata(pdev);
  6357. struct igb_adapter *adapter = netdev_priv(netdev);
  6358. struct e1000_hw *hw = &adapter->hw;
  6359. u32 err;
  6360. pci_set_power_state(pdev, PCI_D0);
  6361. pci_restore_state(pdev);
  6362. pci_save_state(pdev);
  6363. if (!pci_device_is_present(pdev))
  6364. return -ENODEV;
  6365. err = pci_enable_device_mem(pdev);
  6366. if (err) {
  6367. dev_err(&pdev->dev,
  6368. "igb: Cannot enable PCI device from suspend\n");
  6369. return err;
  6370. }
  6371. pci_set_master(pdev);
  6372. pci_enable_wake(pdev, PCI_D3hot, 0);
  6373. pci_enable_wake(pdev, PCI_D3cold, 0);
  6374. if (igb_init_interrupt_scheme(adapter, true)) {
  6375. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6376. rtnl_unlock();
  6377. return -ENOMEM;
  6378. }
  6379. igb_reset(adapter);
  6380. /* let the f/w know that the h/w is now under the control of the
  6381. * driver.
  6382. */
  6383. igb_get_hw_control(adapter);
  6384. wr32(E1000_WUS, ~0);
  6385. if (netdev->flags & IFF_UP) {
  6386. rtnl_lock();
  6387. err = __igb_open(netdev, true);
  6388. rtnl_unlock();
  6389. if (err)
  6390. return err;
  6391. }
  6392. netif_device_attach(netdev);
  6393. return 0;
  6394. }
  6395. static int igb_runtime_idle(struct device *dev)
  6396. {
  6397. struct pci_dev *pdev = to_pci_dev(dev);
  6398. struct net_device *netdev = pci_get_drvdata(pdev);
  6399. struct igb_adapter *adapter = netdev_priv(netdev);
  6400. if (!igb_has_link(adapter))
  6401. pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
  6402. return -EBUSY;
  6403. }
  6404. static int igb_runtime_suspend(struct device *dev)
  6405. {
  6406. struct pci_dev *pdev = to_pci_dev(dev);
  6407. int retval;
  6408. bool wake;
  6409. retval = __igb_shutdown(pdev, &wake, 1);
  6410. if (retval)
  6411. return retval;
  6412. if (wake) {
  6413. pci_prepare_to_sleep(pdev);
  6414. } else {
  6415. pci_wake_from_d3(pdev, false);
  6416. pci_set_power_state(pdev, PCI_D3hot);
  6417. }
  6418. return 0;
  6419. }
  6420. static int igb_runtime_resume(struct device *dev)
  6421. {
  6422. return igb_resume(dev);
  6423. }
  6424. #endif /* CONFIG_PM */
  6425. static void igb_shutdown(struct pci_dev *pdev)
  6426. {
  6427. bool wake;
  6428. __igb_shutdown(pdev, &wake, 0);
  6429. if (system_state == SYSTEM_POWER_OFF) {
  6430. pci_wake_from_d3(pdev, wake);
  6431. pci_set_power_state(pdev, PCI_D3hot);
  6432. }
  6433. }
  6434. #ifdef CONFIG_PCI_IOV
  6435. static int igb_sriov_reinit(struct pci_dev *dev)
  6436. {
  6437. struct net_device *netdev = pci_get_drvdata(dev);
  6438. struct igb_adapter *adapter = netdev_priv(netdev);
  6439. struct pci_dev *pdev = adapter->pdev;
  6440. rtnl_lock();
  6441. if (netif_running(netdev))
  6442. igb_close(netdev);
  6443. else
  6444. igb_reset(adapter);
  6445. igb_clear_interrupt_scheme(adapter);
  6446. igb_init_queue_configuration(adapter);
  6447. if (igb_init_interrupt_scheme(adapter, true)) {
  6448. rtnl_unlock();
  6449. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6450. return -ENOMEM;
  6451. }
  6452. if (netif_running(netdev))
  6453. igb_open(netdev);
  6454. rtnl_unlock();
  6455. return 0;
  6456. }
  6457. static int igb_pci_disable_sriov(struct pci_dev *dev)
  6458. {
  6459. int err = igb_disable_sriov(dev);
  6460. if (!err)
  6461. err = igb_sriov_reinit(dev);
  6462. return err;
  6463. }
  6464. static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
  6465. {
  6466. int err = igb_enable_sriov(dev, num_vfs);
  6467. if (err)
  6468. goto out;
  6469. err = igb_sriov_reinit(dev);
  6470. if (!err)
  6471. return num_vfs;
  6472. out:
  6473. return err;
  6474. }
  6475. #endif
  6476. static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
  6477. {
  6478. #ifdef CONFIG_PCI_IOV
  6479. if (num_vfs == 0)
  6480. return igb_pci_disable_sriov(dev);
  6481. else
  6482. return igb_pci_enable_sriov(dev, num_vfs);
  6483. #endif
  6484. return 0;
  6485. }
  6486. #ifdef CONFIG_NET_POLL_CONTROLLER
  6487. /* Polling 'interrupt' - used by things like netconsole to send skbs
  6488. * without having to re-enable interrupts. It's not called while
  6489. * the interrupt routine is executing.
  6490. */
  6491. static void igb_netpoll(struct net_device *netdev)
  6492. {
  6493. struct igb_adapter *adapter = netdev_priv(netdev);
  6494. struct e1000_hw *hw = &adapter->hw;
  6495. struct igb_q_vector *q_vector;
  6496. int i;
  6497. for (i = 0; i < adapter->num_q_vectors; i++) {
  6498. q_vector = adapter->q_vector[i];
  6499. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  6500. wr32(E1000_EIMC, q_vector->eims_value);
  6501. else
  6502. igb_irq_disable(adapter);
  6503. napi_schedule(&q_vector->napi);
  6504. }
  6505. }
  6506. #endif /* CONFIG_NET_POLL_CONTROLLER */
  6507. /**
  6508. * igb_io_error_detected - called when PCI error is detected
  6509. * @pdev: Pointer to PCI device
  6510. * @state: The current pci connection state
  6511. *
  6512. * This function is called after a PCI bus error affecting
  6513. * this device has been detected.
  6514. **/
  6515. static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
  6516. pci_channel_state_t state)
  6517. {
  6518. struct net_device *netdev = pci_get_drvdata(pdev);
  6519. struct igb_adapter *adapter = netdev_priv(netdev);
  6520. netif_device_detach(netdev);
  6521. if (state == pci_channel_io_perm_failure)
  6522. return PCI_ERS_RESULT_DISCONNECT;
  6523. if (netif_running(netdev))
  6524. igb_down(adapter);
  6525. pci_disable_device(pdev);
  6526. /* Request a slot slot reset. */
  6527. return PCI_ERS_RESULT_NEED_RESET;
  6528. }
  6529. /**
  6530. * igb_io_slot_reset - called after the pci bus has been reset.
  6531. * @pdev: Pointer to PCI device
  6532. *
  6533. * Restart the card from scratch, as if from a cold-boot. Implementation
  6534. * resembles the first-half of the igb_resume routine.
  6535. **/
  6536. static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
  6537. {
  6538. struct net_device *netdev = pci_get_drvdata(pdev);
  6539. struct igb_adapter *adapter = netdev_priv(netdev);
  6540. struct e1000_hw *hw = &adapter->hw;
  6541. pci_ers_result_t result;
  6542. int err;
  6543. if (pci_enable_device_mem(pdev)) {
  6544. dev_err(&pdev->dev,
  6545. "Cannot re-enable PCI device after reset.\n");
  6546. result = PCI_ERS_RESULT_DISCONNECT;
  6547. } else {
  6548. pci_set_master(pdev);
  6549. pci_restore_state(pdev);
  6550. pci_save_state(pdev);
  6551. pci_enable_wake(pdev, PCI_D3hot, 0);
  6552. pci_enable_wake(pdev, PCI_D3cold, 0);
  6553. igb_reset(adapter);
  6554. wr32(E1000_WUS, ~0);
  6555. result = PCI_ERS_RESULT_RECOVERED;
  6556. }
  6557. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  6558. if (err) {
  6559. dev_err(&pdev->dev,
  6560. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  6561. err);
  6562. /* non-fatal, continue */
  6563. }
  6564. return result;
  6565. }
  6566. /**
  6567. * igb_io_resume - called when traffic can start flowing again.
  6568. * @pdev: Pointer to PCI device
  6569. *
  6570. * This callback is called when the error recovery driver tells us that
  6571. * its OK to resume normal operation. Implementation resembles the
  6572. * second-half of the igb_resume routine.
  6573. */
  6574. static void igb_io_resume(struct pci_dev *pdev)
  6575. {
  6576. struct net_device *netdev = pci_get_drvdata(pdev);
  6577. struct igb_adapter *adapter = netdev_priv(netdev);
  6578. if (netif_running(netdev)) {
  6579. if (igb_up(adapter)) {
  6580. dev_err(&pdev->dev, "igb_up failed after reset\n");
  6581. return;
  6582. }
  6583. }
  6584. netif_device_attach(netdev);
  6585. /* let the f/w know that the h/w is now under the control of the
  6586. * driver.
  6587. */
  6588. igb_get_hw_control(adapter);
  6589. }
  6590. static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
  6591. u8 qsel)
  6592. {
  6593. struct e1000_hw *hw = &adapter->hw;
  6594. u32 rar_low, rar_high;
  6595. /* HW expects these in little endian so we reverse the byte order
  6596. * from network order (big endian) to CPU endian
  6597. */
  6598. rar_low = le32_to_cpup((__be32 *)(addr));
  6599. rar_high = le16_to_cpup((__be16 *)(addr + 4));
  6600. /* Indicate to hardware the Address is Valid. */
  6601. rar_high |= E1000_RAH_AV;
  6602. if (hw->mac.type == e1000_82575)
  6603. rar_high |= E1000_RAH_POOL_1 * qsel;
  6604. else
  6605. rar_high |= E1000_RAH_POOL_1 << qsel;
  6606. wr32(E1000_RAL(index), rar_low);
  6607. wrfl();
  6608. wr32(E1000_RAH(index), rar_high);
  6609. wrfl();
  6610. }
  6611. static int igb_set_vf_mac(struct igb_adapter *adapter,
  6612. int vf, unsigned char *mac_addr)
  6613. {
  6614. struct e1000_hw *hw = &adapter->hw;
  6615. /* VF MAC addresses start at end of receive addresses and moves
  6616. * towards the first, as a result a collision should not be possible
  6617. */
  6618. int rar_entry = hw->mac.rar_entry_count - (vf + 1);
  6619. memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
  6620. igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
  6621. return 0;
  6622. }
  6623. static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
  6624. {
  6625. struct igb_adapter *adapter = netdev_priv(netdev);
  6626. if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
  6627. return -EINVAL;
  6628. adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
  6629. dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
  6630. dev_info(&adapter->pdev->dev,
  6631. "Reload the VF driver to make this change effective.");
  6632. if (test_bit(__IGB_DOWN, &adapter->state)) {
  6633. dev_warn(&adapter->pdev->dev,
  6634. "The VF MAC address has been set, but the PF device is not up.\n");
  6635. dev_warn(&adapter->pdev->dev,
  6636. "Bring the PF device up before attempting to use the VF device.\n");
  6637. }
  6638. return igb_set_vf_mac(adapter, vf, mac);
  6639. }
  6640. static int igb_link_mbps(int internal_link_speed)
  6641. {
  6642. switch (internal_link_speed) {
  6643. case SPEED_100:
  6644. return 100;
  6645. case SPEED_1000:
  6646. return 1000;
  6647. default:
  6648. return 0;
  6649. }
  6650. }
  6651. static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
  6652. int link_speed)
  6653. {
  6654. int rf_dec, rf_int;
  6655. u32 bcnrc_val;
  6656. if (tx_rate != 0) {
  6657. /* Calculate the rate factor values to set */
  6658. rf_int = link_speed / tx_rate;
  6659. rf_dec = (link_speed - (rf_int * tx_rate));
  6660. rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
  6661. tx_rate;
  6662. bcnrc_val = E1000_RTTBCNRC_RS_ENA;
  6663. bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
  6664. E1000_RTTBCNRC_RF_INT_MASK);
  6665. bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
  6666. } else {
  6667. bcnrc_val = 0;
  6668. }
  6669. wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
  6670. /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
  6671. * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
  6672. */
  6673. wr32(E1000_RTTBCNRM, 0x14);
  6674. wr32(E1000_RTTBCNRC, bcnrc_val);
  6675. }
  6676. static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
  6677. {
  6678. int actual_link_speed, i;
  6679. bool reset_rate = false;
  6680. /* VF TX rate limit was not set or not supported */
  6681. if ((adapter->vf_rate_link_speed == 0) ||
  6682. (adapter->hw.mac.type != e1000_82576))
  6683. return;
  6684. actual_link_speed = igb_link_mbps(adapter->link_speed);
  6685. if (actual_link_speed != adapter->vf_rate_link_speed) {
  6686. reset_rate = true;
  6687. adapter->vf_rate_link_speed = 0;
  6688. dev_info(&adapter->pdev->dev,
  6689. "Link speed has been changed. VF Transmit rate is disabled\n");
  6690. }
  6691. for (i = 0; i < adapter->vfs_allocated_count; i++) {
  6692. if (reset_rate)
  6693. adapter->vf_data[i].tx_rate = 0;
  6694. igb_set_vf_rate_limit(&adapter->hw, i,
  6695. adapter->vf_data[i].tx_rate,
  6696. actual_link_speed);
  6697. }
  6698. }
  6699. static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
  6700. int min_tx_rate, int max_tx_rate)
  6701. {
  6702. struct igb_adapter *adapter = netdev_priv(netdev);
  6703. struct e1000_hw *hw = &adapter->hw;
  6704. int actual_link_speed;
  6705. if (hw->mac.type != e1000_82576)
  6706. return -EOPNOTSUPP;
  6707. if (min_tx_rate)
  6708. return -EINVAL;
  6709. actual_link_speed = igb_link_mbps(adapter->link_speed);
  6710. if ((vf >= adapter->vfs_allocated_count) ||
  6711. (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
  6712. (max_tx_rate < 0) ||
  6713. (max_tx_rate > actual_link_speed))
  6714. return -EINVAL;
  6715. adapter->vf_rate_link_speed = actual_link_speed;
  6716. adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
  6717. igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
  6718. return 0;
  6719. }
  6720. static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  6721. bool setting)
  6722. {
  6723. struct igb_adapter *adapter = netdev_priv(netdev);
  6724. struct e1000_hw *hw = &adapter->hw;
  6725. u32 reg_val, reg_offset;
  6726. if (!adapter->vfs_allocated_count)
  6727. return -EOPNOTSUPP;
  6728. if (vf >= adapter->vfs_allocated_count)
  6729. return -EINVAL;
  6730. reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
  6731. reg_val = rd32(reg_offset);
  6732. if (setting)
  6733. reg_val |= ((1 << vf) |
  6734. (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
  6735. else
  6736. reg_val &= ~((1 << vf) |
  6737. (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
  6738. wr32(reg_offset, reg_val);
  6739. adapter->vf_data[vf].spoofchk_enabled = setting;
  6740. return 0;
  6741. }
  6742. static int igb_ndo_get_vf_config(struct net_device *netdev,
  6743. int vf, struct ifla_vf_info *ivi)
  6744. {
  6745. struct igb_adapter *adapter = netdev_priv(netdev);
  6746. if (vf >= adapter->vfs_allocated_count)
  6747. return -EINVAL;
  6748. ivi->vf = vf;
  6749. memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
  6750. ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
  6751. ivi->min_tx_rate = 0;
  6752. ivi->vlan = adapter->vf_data[vf].pf_vlan;
  6753. ivi->qos = adapter->vf_data[vf].pf_qos;
  6754. ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
  6755. return 0;
  6756. }
  6757. static void igb_vmm_control(struct igb_adapter *adapter)
  6758. {
  6759. struct e1000_hw *hw = &adapter->hw;
  6760. u32 reg;
  6761. switch (hw->mac.type) {
  6762. case e1000_82575:
  6763. case e1000_i210:
  6764. case e1000_i211:
  6765. case e1000_i354:
  6766. default:
  6767. /* replication is not supported for 82575 */
  6768. return;
  6769. case e1000_82576:
  6770. /* notify HW that the MAC is adding vlan tags */
  6771. reg = rd32(E1000_DTXCTL);
  6772. reg |= E1000_DTXCTL_VLAN_ADDED;
  6773. wr32(E1000_DTXCTL, reg);
  6774. /* Fall through */
  6775. case e1000_82580:
  6776. /* enable replication vlan tag stripping */
  6777. reg = rd32(E1000_RPLOLR);
  6778. reg |= E1000_RPLOLR_STRVLAN;
  6779. wr32(E1000_RPLOLR, reg);
  6780. /* Fall through */
  6781. case e1000_i350:
  6782. /* none of the above registers are supported by i350 */
  6783. break;
  6784. }
  6785. if (adapter->vfs_allocated_count) {
  6786. igb_vmdq_set_loopback_pf(hw, true);
  6787. igb_vmdq_set_replication_pf(hw, true);
  6788. igb_vmdq_set_anti_spoofing_pf(hw, true,
  6789. adapter->vfs_allocated_count);
  6790. } else {
  6791. igb_vmdq_set_loopback_pf(hw, false);
  6792. igb_vmdq_set_replication_pf(hw, false);
  6793. }
  6794. }
  6795. static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
  6796. {
  6797. struct e1000_hw *hw = &adapter->hw;
  6798. u32 dmac_thr;
  6799. u16 hwm;
  6800. if (hw->mac.type > e1000_82580) {
  6801. if (adapter->flags & IGB_FLAG_DMAC) {
  6802. u32 reg;
  6803. /* force threshold to 0. */
  6804. wr32(E1000_DMCTXTH, 0);
  6805. /* DMA Coalescing high water mark needs to be greater
  6806. * than the Rx threshold. Set hwm to PBA - max frame
  6807. * size in 16B units, capping it at PBA - 6KB.
  6808. */
  6809. hwm = 64 * (pba - 6);
  6810. reg = rd32(E1000_FCRTC);
  6811. reg &= ~E1000_FCRTC_RTH_COAL_MASK;
  6812. reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
  6813. & E1000_FCRTC_RTH_COAL_MASK);
  6814. wr32(E1000_FCRTC, reg);
  6815. /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
  6816. * frame size, capping it at PBA - 10KB.
  6817. */
  6818. dmac_thr = pba - 10;
  6819. reg = rd32(E1000_DMACR);
  6820. reg &= ~E1000_DMACR_DMACTHR_MASK;
  6821. reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
  6822. & E1000_DMACR_DMACTHR_MASK);
  6823. /* transition to L0x or L1 if available..*/
  6824. reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
  6825. /* watchdog timer= +-1000 usec in 32usec intervals */
  6826. reg |= (1000 >> 5);
  6827. /* Disable BMC-to-OS Watchdog Enable */
  6828. if (hw->mac.type != e1000_i354)
  6829. reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
  6830. wr32(E1000_DMACR, reg);
  6831. /* no lower threshold to disable
  6832. * coalescing(smart fifb)-UTRESH=0
  6833. */
  6834. wr32(E1000_DMCRTRH, 0);
  6835. reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
  6836. wr32(E1000_DMCTLX, reg);
  6837. /* free space in tx packet buffer to wake from
  6838. * DMA coal
  6839. */
  6840. wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
  6841. (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
  6842. /* make low power state decision controlled
  6843. * by DMA coal
  6844. */
  6845. reg = rd32(E1000_PCIEMISC);
  6846. reg &= ~E1000_PCIEMISC_LX_DECISION;
  6847. wr32(E1000_PCIEMISC, reg);
  6848. } /* endif adapter->dmac is not disabled */
  6849. } else if (hw->mac.type == e1000_82580) {
  6850. u32 reg = rd32(E1000_PCIEMISC);
  6851. wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
  6852. wr32(E1000_DMACR, 0);
  6853. }
  6854. }
  6855. /**
  6856. * igb_read_i2c_byte - Reads 8 bit word over I2C
  6857. * @hw: pointer to hardware structure
  6858. * @byte_offset: byte offset to read
  6859. * @dev_addr: device address
  6860. * @data: value read
  6861. *
  6862. * Performs byte read operation over I2C interface at
  6863. * a specified device address.
  6864. **/
  6865. s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
  6866. u8 dev_addr, u8 *data)
  6867. {
  6868. struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
  6869. struct i2c_client *this_client = adapter->i2c_client;
  6870. s32 status;
  6871. u16 swfw_mask = 0;
  6872. if (!this_client)
  6873. return E1000_ERR_I2C;
  6874. swfw_mask = E1000_SWFW_PHY0_SM;
  6875. if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
  6876. return E1000_ERR_SWFW_SYNC;
  6877. status = i2c_smbus_read_byte_data(this_client, byte_offset);
  6878. hw->mac.ops.release_swfw_sync(hw, swfw_mask);
  6879. if (status < 0)
  6880. return E1000_ERR_I2C;
  6881. else {
  6882. *data = status;
  6883. return 0;
  6884. }
  6885. }
  6886. /**
  6887. * igb_write_i2c_byte - Writes 8 bit word over I2C
  6888. * @hw: pointer to hardware structure
  6889. * @byte_offset: byte offset to write
  6890. * @dev_addr: device address
  6891. * @data: value to write
  6892. *
  6893. * Performs byte write operation over I2C interface at
  6894. * a specified device address.
  6895. **/
  6896. s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
  6897. u8 dev_addr, u8 data)
  6898. {
  6899. struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
  6900. struct i2c_client *this_client = adapter->i2c_client;
  6901. s32 status;
  6902. u16 swfw_mask = E1000_SWFW_PHY0_SM;
  6903. if (!this_client)
  6904. return E1000_ERR_I2C;
  6905. if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
  6906. return E1000_ERR_SWFW_SYNC;
  6907. status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
  6908. hw->mac.ops.release_swfw_sync(hw, swfw_mask);
  6909. if (status)
  6910. return E1000_ERR_I2C;
  6911. else
  6912. return 0;
  6913. }
  6914. int igb_reinit_queues(struct igb_adapter *adapter)
  6915. {
  6916. struct net_device *netdev = adapter->netdev;
  6917. struct pci_dev *pdev = adapter->pdev;
  6918. int err = 0;
  6919. if (netif_running(netdev))
  6920. igb_close(netdev);
  6921. igb_reset_interrupt_capability(adapter);
  6922. if (igb_init_interrupt_scheme(adapter, true)) {
  6923. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6924. return -ENOMEM;
  6925. }
  6926. if (netif_running(netdev))
  6927. err = igb_open(netdev);
  6928. return err;
  6929. }
  6930. /* igb_main.c */