dmaengine.h 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc., 59
  16. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called COPYING.
  20. */
  21. #ifndef LINUX_DMAENGINE_H
  22. #define LINUX_DMAENGINE_H
  23. #include <linux/device.h>
  24. #include <linux/err.h>
  25. #include <linux/uio.h>
  26. #include <linux/bug.h>
  27. #include <linux/scatterlist.h>
  28. #include <linux/bitmap.h>
  29. #include <linux/types.h>
  30. #include <asm/page.h>
  31. /**
  32. * typedef dma_cookie_t - an opaque DMA cookie
  33. *
  34. * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  35. */
  36. typedef s32 dma_cookie_t;
  37. #define DMA_MIN_COOKIE 1
  38. #define DMA_MAX_COOKIE INT_MAX
  39. static inline int dma_submit_error(dma_cookie_t cookie)
  40. {
  41. return cookie < 0 ? cookie : 0;
  42. }
  43. /**
  44. * enum dma_status - DMA transaction status
  45. * @DMA_COMPLETE: transaction completed
  46. * @DMA_IN_PROGRESS: transaction not yet processed
  47. * @DMA_PAUSED: transaction is paused
  48. * @DMA_ERROR: transaction failed
  49. */
  50. enum dma_status {
  51. DMA_COMPLETE,
  52. DMA_IN_PROGRESS,
  53. DMA_PAUSED,
  54. DMA_ERROR,
  55. };
  56. /**
  57. * enum dma_transaction_type - DMA transaction types/indexes
  58. *
  59. * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
  60. * automatically set as dma devices are registered.
  61. */
  62. enum dma_transaction_type {
  63. DMA_MEMCPY,
  64. DMA_XOR,
  65. DMA_PQ,
  66. DMA_XOR_VAL,
  67. DMA_PQ_VAL,
  68. DMA_INTERRUPT,
  69. DMA_SG,
  70. DMA_PRIVATE,
  71. DMA_ASYNC_TX,
  72. DMA_SLAVE,
  73. DMA_CYCLIC,
  74. DMA_INTERLEAVE,
  75. /* last transaction type for creation of the capabilities mask */
  76. DMA_TX_TYPE_END,
  77. };
  78. /**
  79. * enum dma_transfer_direction - dma transfer mode and direction indicator
  80. * @DMA_MEM_TO_MEM: Async/Memcpy mode
  81. * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  82. * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  83. * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  84. */
  85. enum dma_transfer_direction {
  86. DMA_MEM_TO_MEM,
  87. DMA_MEM_TO_DEV,
  88. DMA_DEV_TO_MEM,
  89. DMA_DEV_TO_DEV,
  90. DMA_TRANS_NONE,
  91. };
  92. /**
  93. * Interleaved Transfer Request
  94. * ----------------------------
  95. * A chunk is collection of contiguous bytes to be transfered.
  96. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  97. * ICGs may or maynot change between chunks.
  98. * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  99. * that when repeated an integral number of times, specifies the transfer.
  100. * A transfer template is specification of a Frame, the number of times
  101. * it is to be repeated and other per-transfer attributes.
  102. *
  103. * Practically, a client driver would have ready a template for each
  104. * type of transfer it is going to need during its lifetime and
  105. * set only 'src_start' and 'dst_start' before submitting the requests.
  106. *
  107. *
  108. * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
  109. * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
  110. *
  111. * == Chunk size
  112. * ... ICG
  113. */
  114. /**
  115. * struct data_chunk - Element of scatter-gather list that makes a frame.
  116. * @size: Number of bytes to read from source.
  117. * size_dst := fn(op, size_src), so doesn't mean much for destination.
  118. * @icg: Number of bytes to jump after last src/dst address of this
  119. * chunk and before first src/dst address for next chunk.
  120. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
  121. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
  122. */
  123. struct data_chunk {
  124. size_t size;
  125. size_t icg;
  126. };
  127. /**
  128. * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
  129. * and attributes.
  130. * @src_start: Bus address of source for the first chunk.
  131. * @dst_start: Bus address of destination for the first chunk.
  132. * @dir: Specifies the type of Source and Destination.
  133. * @src_inc: If the source address increments after reading from it.
  134. * @dst_inc: If the destination address increments after writing to it.
  135. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
  136. * Otherwise, source is read contiguously (icg ignored).
  137. * Ignored if src_inc is false.
  138. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
  139. * Otherwise, destination is filled contiguously (icg ignored).
  140. * Ignored if dst_inc is false.
  141. * @numf: Number of frames in this template.
  142. * @frame_size: Number of chunks in a frame i.e, size of sgl[].
  143. * @sgl: Array of {chunk,icg} pairs that make up a frame.
  144. */
  145. struct dma_interleaved_template {
  146. dma_addr_t src_start;
  147. dma_addr_t dst_start;
  148. enum dma_transfer_direction dir;
  149. bool src_inc;
  150. bool dst_inc;
  151. bool src_sgl;
  152. bool dst_sgl;
  153. size_t numf;
  154. size_t frame_size;
  155. struct data_chunk sgl[0];
  156. };
  157. /**
  158. * enum dma_ctrl_flags - DMA flags to augment operation preparation,
  159. * control completion, and communicate status.
  160. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
  161. * this transaction
  162. * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
  163. * acknowledges receipt, i.e. has has a chance to establish any dependency
  164. * chains
  165. * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
  166. * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
  167. * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
  168. * sources that were the result of a previous operation, in the case of a PQ
  169. * operation it continues the calculation with new sources
  170. * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
  171. * on the result of this operation
  172. */
  173. enum dma_ctrl_flags {
  174. DMA_PREP_INTERRUPT = (1 << 0),
  175. DMA_CTRL_ACK = (1 << 1),
  176. DMA_PREP_PQ_DISABLE_P = (1 << 2),
  177. DMA_PREP_PQ_DISABLE_Q = (1 << 3),
  178. DMA_PREP_CONTINUE = (1 << 4),
  179. DMA_PREP_FENCE = (1 << 5),
  180. };
  181. /**
  182. * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
  183. * on a running channel.
  184. * @DMA_TERMINATE_ALL: terminate all ongoing transfers
  185. * @DMA_PAUSE: pause ongoing transfers
  186. * @DMA_RESUME: resume paused transfer
  187. * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
  188. * that need to runtime reconfigure the slave channels (as opposed to passing
  189. * configuration data in statically from the platform). An additional
  190. * argument of struct dma_slave_config must be passed in with this
  191. * command.
  192. * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
  193. * into external start mode.
  194. */
  195. enum dma_ctrl_cmd {
  196. DMA_TERMINATE_ALL,
  197. DMA_PAUSE,
  198. DMA_RESUME,
  199. DMA_SLAVE_CONFIG,
  200. FSLDMA_EXTERNAL_START,
  201. };
  202. /**
  203. * enum sum_check_bits - bit position of pq_check_flags
  204. */
  205. enum sum_check_bits {
  206. SUM_CHECK_P = 0,
  207. SUM_CHECK_Q = 1,
  208. };
  209. /**
  210. * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
  211. * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
  212. * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
  213. */
  214. enum sum_check_flags {
  215. SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
  216. SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
  217. };
  218. /**
  219. * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
  220. * See linux/cpumask.h
  221. */
  222. typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
  223. /**
  224. * struct dma_chan_percpu - the per-CPU part of struct dma_chan
  225. * @memcpy_count: transaction counter
  226. * @bytes_transferred: byte counter
  227. */
  228. struct dma_chan_percpu {
  229. /* stats */
  230. unsigned long memcpy_count;
  231. unsigned long bytes_transferred;
  232. };
  233. /**
  234. * struct dma_chan - devices supply DMA channels, clients use them
  235. * @device: ptr to the dma device who supplies this channel, always !%NULL
  236. * @cookie: last cookie value returned to client
  237. * @completed_cookie: last completed cookie for this channel
  238. * @chan_id: channel ID for sysfs
  239. * @dev: class device for sysfs
  240. * @device_node: used to add this to the device chan list
  241. * @local: per-cpu pointer to a struct dma_chan_percpu
  242. * @client-count: how many clients are using this channel
  243. * @table_count: number of appearances in the mem-to-mem allocation table
  244. * @private: private data for certain client-channel associations
  245. */
  246. struct dma_chan {
  247. struct dma_device *device;
  248. dma_cookie_t cookie;
  249. dma_cookie_t completed_cookie;
  250. /* sysfs */
  251. int chan_id;
  252. struct dma_chan_dev *dev;
  253. struct list_head device_node;
  254. struct dma_chan_percpu __percpu *local;
  255. int client_count;
  256. int table_count;
  257. void *private;
  258. };
  259. /**
  260. * struct dma_chan_dev - relate sysfs device node to backing channel device
  261. * @chan - driver channel device
  262. * @device - sysfs device
  263. * @dev_id - parent dma_device dev_id
  264. * @idr_ref - reference count to gate release of dma_device dev_id
  265. */
  266. struct dma_chan_dev {
  267. struct dma_chan *chan;
  268. struct device device;
  269. int dev_id;
  270. atomic_t *idr_ref;
  271. };
  272. /**
  273. * enum dma_slave_buswidth - defines bus with of the DMA slave
  274. * device, source or target buses
  275. */
  276. enum dma_slave_buswidth {
  277. DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
  278. DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
  279. DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
  280. DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
  281. DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
  282. };
  283. /**
  284. * struct dma_slave_config - dma slave channel runtime config
  285. * @direction: whether the data shall go in or out on this slave
  286. * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
  287. * legal values, DMA_BIDIRECTIONAL is not acceptable since we
  288. * need to differentiate source and target addresses.
  289. * @src_addr: this is the physical address where DMA slave data
  290. * should be read (RX), if the source is memory this argument is
  291. * ignored.
  292. * @dst_addr: this is the physical address where DMA slave data
  293. * should be written (TX), if the source is memory this argument
  294. * is ignored.
  295. * @src_addr_width: this is the width in bytes of the source (RX)
  296. * register where DMA data shall be read. If the source
  297. * is memory this may be ignored depending on architecture.
  298. * Legal values: 1, 2, 4, 8.
  299. * @dst_addr_width: same as src_addr_width but for destination
  300. * target (TX) mutatis mutandis.
  301. * @src_maxburst: the maximum number of words (note: words, as in
  302. * units of the src_addr_width member, not bytes) that can be sent
  303. * in one burst to the device. Typically something like half the
  304. * FIFO depth on I/O peripherals so you don't overflow it. This
  305. * may or may not be applicable on memory sources.
  306. * @dst_maxburst: same as src_maxburst but for destination target
  307. * mutatis mutandis.
  308. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
  309. * with 'true' if peripheral should be flow controller. Direction will be
  310. * selected at Runtime.
  311. * @slave_id: Slave requester id. Only valid for slave channels. The dma
  312. * slave peripheral will have unique id as dma requester which need to be
  313. * pass as slave config.
  314. *
  315. * This struct is passed in as configuration data to a DMA engine
  316. * in order to set up a certain channel for DMA transport at runtime.
  317. * The DMA device/engine has to provide support for an additional
  318. * command in the channel config interface, DMA_SLAVE_CONFIG
  319. * and this struct will then be passed in as an argument to the
  320. * DMA engine device_control() function.
  321. *
  322. * The rationale for adding configuration information to this struct
  323. * is as follows: if it is likely that most DMA slave controllers in
  324. * the world will support the configuration option, then make it
  325. * generic. If not: if it is fixed so that it be sent in static from
  326. * the platform data, then prefer to do that. Else, if it is neither
  327. * fixed at runtime, nor generic enough (such as bus mastership on
  328. * some CPU family and whatnot) then create a custom slave config
  329. * struct and pass that, then make this config a member of that
  330. * struct, if applicable.
  331. */
  332. struct dma_slave_config {
  333. enum dma_transfer_direction direction;
  334. dma_addr_t src_addr;
  335. dma_addr_t dst_addr;
  336. enum dma_slave_buswidth src_addr_width;
  337. enum dma_slave_buswidth dst_addr_width;
  338. u32 src_maxburst;
  339. u32 dst_maxburst;
  340. bool device_fc;
  341. unsigned int slave_id;
  342. };
  343. /**
  344. * enum dma_residue_granularity - Granularity of the reported transfer residue
  345. * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
  346. * DMA channel is only able to tell whether a descriptor has been completed or
  347. * not, which means residue reporting is not supported by this channel. The
  348. * residue field of the dma_tx_state field will always be 0.
  349. * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
  350. * completed segment of the transfer (For cyclic transfers this is after each
  351. * period). This is typically implemented by having the hardware generate an
  352. * interrupt after each transferred segment and then the drivers updates the
  353. * outstanding residue by the size of the segment. Another possibility is if
  354. * the hardware supports scatter-gather and the segment descriptor has a field
  355. * which gets set after the segment has been completed. The driver then counts
  356. * the number of segments without the flag set to compute the residue.
  357. * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
  358. * burst. This is typically only supported if the hardware has a progress
  359. * register of some sort (E.g. a register with the current read/write address
  360. * or a register with the amount of bursts/beats/bytes that have been
  361. * transferred or still need to be transferred).
  362. */
  363. enum dma_residue_granularity {
  364. DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
  365. DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
  366. DMA_RESIDUE_GRANULARITY_BURST = 2,
  367. };
  368. /* struct dma_slave_caps - expose capabilities of a slave channel only
  369. *
  370. * @src_addr_widths: bit mask of src addr widths the channel supports
  371. * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
  372. * @directions: bit mask of slave direction the channel supported
  373. * since the enum dma_transfer_direction is not defined as bits for each
  374. * type of direction, the dma controller should fill (1 << <TYPE>) and same
  375. * should be checked by controller as well
  376. * @cmd_pause: true, if pause and thereby resume is supported
  377. * @cmd_terminate: true, if terminate cmd is supported
  378. * @residue_granularity: granularity of the reported transfer residue
  379. */
  380. struct dma_slave_caps {
  381. u32 src_addr_widths;
  382. u32 dstn_addr_widths;
  383. u32 directions;
  384. bool cmd_pause;
  385. bool cmd_terminate;
  386. enum dma_residue_granularity residue_granularity;
  387. };
  388. static inline const char *dma_chan_name(struct dma_chan *chan)
  389. {
  390. return dev_name(&chan->dev->device);
  391. }
  392. void dma_chan_cleanup(struct kref *kref);
  393. /**
  394. * typedef dma_filter_fn - callback filter for dma_request_channel
  395. * @chan: channel to be reviewed
  396. * @filter_param: opaque parameter passed through dma_request_channel
  397. *
  398. * When this optional parameter is specified in a call to dma_request_channel a
  399. * suitable channel is passed to this routine for further dispositioning before
  400. * being returned. Where 'suitable' indicates a non-busy channel that
  401. * satisfies the given capability mask. It returns 'true' to indicate that the
  402. * channel is suitable.
  403. */
  404. typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
  405. typedef void (*dma_async_tx_callback)(void *dma_async_param);
  406. struct dmaengine_unmap_data {
  407. u8 to_cnt;
  408. u8 from_cnt;
  409. u8 bidi_cnt;
  410. struct device *dev;
  411. struct kref kref;
  412. size_t len;
  413. dma_addr_t addr[0];
  414. };
  415. /**
  416. * struct dma_async_tx_descriptor - async transaction descriptor
  417. * ---dma generic offload fields---
  418. * @cookie: tracking cookie for this transaction, set to -EBUSY if
  419. * this tx is sitting on a dependency list
  420. * @flags: flags to augment operation preparation, control completion, and
  421. * communicate status
  422. * @phys: physical address of the descriptor
  423. * @chan: target channel for this operation
  424. * @tx_submit: set the prepared descriptor(s) to be executed by the engine
  425. * @callback: routine to call after this operation is complete
  426. * @callback_param: general parameter to pass to the callback routine
  427. * ---async_tx api specific fields---
  428. * @next: at completion submit this descriptor
  429. * @parent: pointer to the next level up in the dependency chain
  430. * @lock: protect the parent and next pointers
  431. */
  432. struct dma_async_tx_descriptor {
  433. dma_cookie_t cookie;
  434. enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
  435. dma_addr_t phys;
  436. struct dma_chan *chan;
  437. dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
  438. dma_async_tx_callback callback;
  439. void *callback_param;
  440. struct dmaengine_unmap_data *unmap;
  441. #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  442. struct dma_async_tx_descriptor *next;
  443. struct dma_async_tx_descriptor *parent;
  444. spinlock_t lock;
  445. #endif
  446. };
  447. #ifdef CONFIG_DMA_ENGINE
  448. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  449. struct dmaengine_unmap_data *unmap)
  450. {
  451. kref_get(&unmap->kref);
  452. tx->unmap = unmap;
  453. }
  454. struct dmaengine_unmap_data *
  455. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
  456. void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
  457. #else
  458. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  459. struct dmaengine_unmap_data *unmap)
  460. {
  461. }
  462. static inline struct dmaengine_unmap_data *
  463. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
  464. {
  465. return NULL;
  466. }
  467. static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
  468. {
  469. }
  470. #endif
  471. static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
  472. {
  473. if (tx->unmap) {
  474. dmaengine_unmap_put(tx->unmap);
  475. tx->unmap = NULL;
  476. }
  477. }
  478. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  479. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  480. {
  481. }
  482. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  483. {
  484. }
  485. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  486. {
  487. BUG();
  488. }
  489. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  490. {
  491. }
  492. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  493. {
  494. }
  495. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  496. {
  497. return NULL;
  498. }
  499. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  500. {
  501. return NULL;
  502. }
  503. #else
  504. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  505. {
  506. spin_lock_bh(&txd->lock);
  507. }
  508. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  509. {
  510. spin_unlock_bh(&txd->lock);
  511. }
  512. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  513. {
  514. txd->next = next;
  515. next->parent = txd;
  516. }
  517. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  518. {
  519. txd->parent = NULL;
  520. }
  521. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  522. {
  523. txd->next = NULL;
  524. }
  525. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  526. {
  527. return txd->parent;
  528. }
  529. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  530. {
  531. return txd->next;
  532. }
  533. #endif
  534. /**
  535. * struct dma_tx_state - filled in to report the status of
  536. * a transfer.
  537. * @last: last completed DMA cookie
  538. * @used: last issued DMA cookie (i.e. the one in progress)
  539. * @residue: the remaining number of bytes left to transmit
  540. * on the selected transfer for states DMA_IN_PROGRESS and
  541. * DMA_PAUSED if this is implemented in the driver, else 0
  542. */
  543. struct dma_tx_state {
  544. dma_cookie_t last;
  545. dma_cookie_t used;
  546. u32 residue;
  547. };
  548. /**
  549. * struct dma_device - info on the entity supplying DMA services
  550. * @chancnt: how many DMA channels are supported
  551. * @privatecnt: how many DMA channels are requested by dma_request_channel
  552. * @channels: the list of struct dma_chan
  553. * @global_node: list_head for global dma_device_list
  554. * @cap_mask: one or more dma_capability flags
  555. * @max_xor: maximum number of xor sources, 0 if no capability
  556. * @max_pq: maximum number of PQ sources and PQ-continue capability
  557. * @copy_align: alignment shift for memcpy operations
  558. * @xor_align: alignment shift for xor operations
  559. * @pq_align: alignment shift for pq operations
  560. * @fill_align: alignment shift for memset operations
  561. * @dev_id: unique device ID
  562. * @dev: struct device reference for dma mapping api
  563. * @device_alloc_chan_resources: allocate resources and return the
  564. * number of allocated descriptors
  565. * @device_free_chan_resources: release DMA channel's resources
  566. * @device_prep_dma_memcpy: prepares a memcpy operation
  567. * @device_prep_dma_xor: prepares a xor operation
  568. * @device_prep_dma_xor_val: prepares a xor validation operation
  569. * @device_prep_dma_pq: prepares a pq operation
  570. * @device_prep_dma_pq_val: prepares a pqzero_sum operation
  571. * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
  572. * @device_prep_slave_sg: prepares a slave dma operation
  573. * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
  574. * The function takes a buffer of size buf_len. The callback function will
  575. * be called after period_len bytes have been transferred.
  576. * @device_prep_interleaved_dma: Transfer expression in a generic way.
  577. * @device_control: manipulate all pending operations on a channel, returns
  578. * zero or error code
  579. * @device_tx_status: poll for transaction completion, the optional
  580. * txstate parameter can be supplied with a pointer to get a
  581. * struct with auxiliary transfer status information, otherwise the call
  582. * will just return a simple status code
  583. * @device_issue_pending: push pending transactions to hardware
  584. * @device_slave_caps: return the slave channel capabilities
  585. */
  586. struct dma_device {
  587. unsigned int chancnt;
  588. unsigned int privatecnt;
  589. struct list_head channels;
  590. struct list_head global_node;
  591. dma_cap_mask_t cap_mask;
  592. unsigned short max_xor;
  593. unsigned short max_pq;
  594. u8 copy_align;
  595. u8 xor_align;
  596. u8 pq_align;
  597. u8 fill_align;
  598. #define DMA_HAS_PQ_CONTINUE (1 << 15)
  599. int dev_id;
  600. struct device *dev;
  601. int (*device_alloc_chan_resources)(struct dma_chan *chan);
  602. void (*device_free_chan_resources)(struct dma_chan *chan);
  603. struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
  604. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  605. size_t len, unsigned long flags);
  606. struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
  607. struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  608. unsigned int src_cnt, size_t len, unsigned long flags);
  609. struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
  610. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  611. size_t len, enum sum_check_flags *result, unsigned long flags);
  612. struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
  613. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  614. unsigned int src_cnt, const unsigned char *scf,
  615. size_t len, unsigned long flags);
  616. struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
  617. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  618. unsigned int src_cnt, const unsigned char *scf, size_t len,
  619. enum sum_check_flags *pqres, unsigned long flags);
  620. struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
  621. struct dma_chan *chan, unsigned long flags);
  622. struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
  623. struct dma_chan *chan,
  624. struct scatterlist *dst_sg, unsigned int dst_nents,
  625. struct scatterlist *src_sg, unsigned int src_nents,
  626. unsigned long flags);
  627. struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
  628. struct dma_chan *chan, struct scatterlist *sgl,
  629. unsigned int sg_len, enum dma_transfer_direction direction,
  630. unsigned long flags, void *context);
  631. struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
  632. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  633. size_t period_len, enum dma_transfer_direction direction,
  634. unsigned long flags, void *context);
  635. struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
  636. struct dma_chan *chan, struct dma_interleaved_template *xt,
  637. unsigned long flags);
  638. int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  639. unsigned long arg);
  640. enum dma_status (*device_tx_status)(struct dma_chan *chan,
  641. dma_cookie_t cookie,
  642. struct dma_tx_state *txstate);
  643. void (*device_issue_pending)(struct dma_chan *chan);
  644. int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
  645. };
  646. static inline int dmaengine_device_control(struct dma_chan *chan,
  647. enum dma_ctrl_cmd cmd,
  648. unsigned long arg)
  649. {
  650. if (chan->device->device_control)
  651. return chan->device->device_control(chan, cmd, arg);
  652. return -ENOSYS;
  653. }
  654. static inline int dmaengine_slave_config(struct dma_chan *chan,
  655. struct dma_slave_config *config)
  656. {
  657. return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
  658. (unsigned long)config);
  659. }
  660. static inline bool is_slave_direction(enum dma_transfer_direction direction)
  661. {
  662. return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
  663. }
  664. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
  665. struct dma_chan *chan, dma_addr_t buf, size_t len,
  666. enum dma_transfer_direction dir, unsigned long flags)
  667. {
  668. struct scatterlist sg;
  669. sg_init_table(&sg, 1);
  670. sg_dma_address(&sg) = buf;
  671. sg_dma_len(&sg) = len;
  672. return chan->device->device_prep_slave_sg(chan, &sg, 1,
  673. dir, flags, NULL);
  674. }
  675. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
  676. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  677. enum dma_transfer_direction dir, unsigned long flags)
  678. {
  679. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  680. dir, flags, NULL);
  681. }
  682. #ifdef CONFIG_RAPIDIO_DMA_ENGINE
  683. struct rio_dma_ext;
  684. static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
  685. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  686. enum dma_transfer_direction dir, unsigned long flags,
  687. struct rio_dma_ext *rio_ext)
  688. {
  689. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  690. dir, flags, rio_ext);
  691. }
  692. #endif
  693. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
  694. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  695. size_t period_len, enum dma_transfer_direction dir,
  696. unsigned long flags)
  697. {
  698. return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
  699. period_len, dir, flags, NULL);
  700. }
  701. static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
  702. struct dma_chan *chan, struct dma_interleaved_template *xt,
  703. unsigned long flags)
  704. {
  705. return chan->device->device_prep_interleaved_dma(chan, xt, flags);
  706. }
  707. static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
  708. {
  709. if (!chan || !caps)
  710. return -EINVAL;
  711. /* check if the channel supports slave transactions */
  712. if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
  713. return -ENXIO;
  714. if (chan->device->device_slave_caps)
  715. return chan->device->device_slave_caps(chan, caps);
  716. return -ENXIO;
  717. }
  718. static inline int dmaengine_terminate_all(struct dma_chan *chan)
  719. {
  720. return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
  721. }
  722. static inline int dmaengine_pause(struct dma_chan *chan)
  723. {
  724. return dmaengine_device_control(chan, DMA_PAUSE, 0);
  725. }
  726. static inline int dmaengine_resume(struct dma_chan *chan)
  727. {
  728. return dmaengine_device_control(chan, DMA_RESUME, 0);
  729. }
  730. static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
  731. dma_cookie_t cookie, struct dma_tx_state *state)
  732. {
  733. return chan->device->device_tx_status(chan, cookie, state);
  734. }
  735. static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
  736. {
  737. return desc->tx_submit(desc);
  738. }
  739. static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
  740. {
  741. size_t mask;
  742. if (!align)
  743. return true;
  744. mask = (1 << align) - 1;
  745. if (mask & (off1 | off2 | len))
  746. return false;
  747. return true;
  748. }
  749. static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
  750. size_t off2, size_t len)
  751. {
  752. return dmaengine_check_align(dev->copy_align, off1, off2, len);
  753. }
  754. static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
  755. size_t off2, size_t len)
  756. {
  757. return dmaengine_check_align(dev->xor_align, off1, off2, len);
  758. }
  759. static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
  760. size_t off2, size_t len)
  761. {
  762. return dmaengine_check_align(dev->pq_align, off1, off2, len);
  763. }
  764. static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
  765. size_t off2, size_t len)
  766. {
  767. return dmaengine_check_align(dev->fill_align, off1, off2, len);
  768. }
  769. static inline void
  770. dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
  771. {
  772. dma->max_pq = maxpq;
  773. if (has_pq_continue)
  774. dma->max_pq |= DMA_HAS_PQ_CONTINUE;
  775. }
  776. static inline bool dmaf_continue(enum dma_ctrl_flags flags)
  777. {
  778. return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
  779. }
  780. static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
  781. {
  782. enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
  783. return (flags & mask) == mask;
  784. }
  785. static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
  786. {
  787. return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
  788. }
  789. static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
  790. {
  791. return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
  792. }
  793. /* dma_maxpq - reduce maxpq in the face of continued operations
  794. * @dma - dma device with PQ capability
  795. * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
  796. *
  797. * When an engine does not support native continuation we need 3 extra
  798. * source slots to reuse P and Q with the following coefficients:
  799. * 1/ {00} * P : remove P from Q', but use it as a source for P'
  800. * 2/ {01} * Q : use Q to continue Q' calculation
  801. * 3/ {00} * Q : subtract Q from P' to cancel (2)
  802. *
  803. * In the case where P is disabled we only need 1 extra source:
  804. * 1/ {01} * Q : use Q to continue Q' calculation
  805. */
  806. static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
  807. {
  808. if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
  809. return dma_dev_to_maxpq(dma);
  810. else if (dmaf_p_disabled_continue(flags))
  811. return dma_dev_to_maxpq(dma) - 1;
  812. else if (dmaf_continue(flags))
  813. return dma_dev_to_maxpq(dma) - 3;
  814. BUG();
  815. }
  816. /* --- public DMA engine API --- */
  817. #ifdef CONFIG_DMA_ENGINE
  818. void dmaengine_get(void);
  819. void dmaengine_put(void);
  820. #else
  821. static inline void dmaengine_get(void)
  822. {
  823. }
  824. static inline void dmaengine_put(void)
  825. {
  826. }
  827. #endif
  828. #ifdef CONFIG_NET_DMA
  829. #define net_dmaengine_get() dmaengine_get()
  830. #define net_dmaengine_put() dmaengine_put()
  831. #else
  832. static inline void net_dmaengine_get(void)
  833. {
  834. }
  835. static inline void net_dmaengine_put(void)
  836. {
  837. }
  838. #endif
  839. #ifdef CONFIG_ASYNC_TX_DMA
  840. #define async_dmaengine_get() dmaengine_get()
  841. #define async_dmaengine_put() dmaengine_put()
  842. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  843. #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
  844. #else
  845. #define async_dma_find_channel(type) dma_find_channel(type)
  846. #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
  847. #else
  848. static inline void async_dmaengine_get(void)
  849. {
  850. }
  851. static inline void async_dmaengine_put(void)
  852. {
  853. }
  854. static inline struct dma_chan *
  855. async_dma_find_channel(enum dma_transaction_type type)
  856. {
  857. return NULL;
  858. }
  859. #endif /* CONFIG_ASYNC_TX_DMA */
  860. dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
  861. void *dest, void *src, size_t len);
  862. dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
  863. struct page *page, unsigned int offset, void *kdata, size_t len);
  864. dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
  865. struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
  866. unsigned int src_off, size_t len);
  867. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  868. struct dma_chan *chan);
  869. static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
  870. {
  871. tx->flags |= DMA_CTRL_ACK;
  872. }
  873. static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
  874. {
  875. tx->flags &= ~DMA_CTRL_ACK;
  876. }
  877. static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
  878. {
  879. return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
  880. }
  881. #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
  882. static inline void
  883. __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  884. {
  885. set_bit(tx_type, dstp->bits);
  886. }
  887. #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
  888. static inline void
  889. __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  890. {
  891. clear_bit(tx_type, dstp->bits);
  892. }
  893. #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
  894. static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
  895. {
  896. bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
  897. }
  898. #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
  899. static inline int
  900. __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
  901. {
  902. return test_bit(tx_type, srcp->bits);
  903. }
  904. #define for_each_dma_cap_mask(cap, mask) \
  905. for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
  906. /**
  907. * dma_async_issue_pending - flush pending transactions to HW
  908. * @chan: target DMA channel
  909. *
  910. * This allows drivers to push copies to HW in batches,
  911. * reducing MMIO writes where possible.
  912. */
  913. static inline void dma_async_issue_pending(struct dma_chan *chan)
  914. {
  915. chan->device->device_issue_pending(chan);
  916. }
  917. /**
  918. * dma_async_is_tx_complete - poll for transaction completion
  919. * @chan: DMA channel
  920. * @cookie: transaction identifier to check status of
  921. * @last: returns last completed cookie, can be NULL
  922. * @used: returns last issued cookie, can be NULL
  923. *
  924. * If @last and @used are passed in, upon return they reflect the driver
  925. * internal state and can be used with dma_async_is_complete() to check
  926. * the status of multiple cookies without re-checking hardware state.
  927. */
  928. static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
  929. dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
  930. {
  931. struct dma_tx_state state;
  932. enum dma_status status;
  933. status = chan->device->device_tx_status(chan, cookie, &state);
  934. if (last)
  935. *last = state.last;
  936. if (used)
  937. *used = state.used;
  938. return status;
  939. }
  940. /**
  941. * dma_async_is_complete - test a cookie against chan state
  942. * @cookie: transaction identifier to test status of
  943. * @last_complete: last know completed transaction
  944. * @last_used: last cookie value handed out
  945. *
  946. * dma_async_is_complete() is used in dma_async_is_tx_complete()
  947. * the test logic is separated for lightweight testing of multiple cookies
  948. */
  949. static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
  950. dma_cookie_t last_complete, dma_cookie_t last_used)
  951. {
  952. if (last_complete <= last_used) {
  953. if ((cookie <= last_complete) || (cookie > last_used))
  954. return DMA_COMPLETE;
  955. } else {
  956. if ((cookie <= last_complete) && (cookie > last_used))
  957. return DMA_COMPLETE;
  958. }
  959. return DMA_IN_PROGRESS;
  960. }
  961. static inline void
  962. dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
  963. {
  964. if (st) {
  965. st->last = last;
  966. st->used = used;
  967. st->residue = residue;
  968. }
  969. }
  970. #ifdef CONFIG_DMA_ENGINE
  971. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
  972. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
  973. enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
  974. void dma_issue_pending_all(void);
  975. struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  976. dma_filter_fn fn, void *fn_param);
  977. struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
  978. const char *name);
  979. struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
  980. void dma_release_channel(struct dma_chan *chan);
  981. #else
  982. static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
  983. {
  984. return NULL;
  985. }
  986. static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
  987. {
  988. return DMA_COMPLETE;
  989. }
  990. static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  991. {
  992. return DMA_COMPLETE;
  993. }
  994. static inline void dma_issue_pending_all(void)
  995. {
  996. }
  997. static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  998. dma_filter_fn fn, void *fn_param)
  999. {
  1000. return NULL;
  1001. }
  1002. static inline struct dma_chan *dma_request_slave_channel_reason(
  1003. struct device *dev, const char *name)
  1004. {
  1005. return ERR_PTR(-ENODEV);
  1006. }
  1007. static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
  1008. const char *name)
  1009. {
  1010. return NULL;
  1011. }
  1012. static inline void dma_release_channel(struct dma_chan *chan)
  1013. {
  1014. }
  1015. #endif
  1016. /* --- DMA device --- */
  1017. int dma_async_device_register(struct dma_device *device);
  1018. void dma_async_device_unregister(struct dma_device *device);
  1019. void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
  1020. struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
  1021. struct dma_chan *net_dma_find_channel(void);
  1022. #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
  1023. #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
  1024. __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
  1025. static inline struct dma_chan
  1026. *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
  1027. dma_filter_fn fn, void *fn_param,
  1028. struct device *dev, char *name)
  1029. {
  1030. struct dma_chan *chan;
  1031. chan = dma_request_slave_channel(dev, name);
  1032. if (chan)
  1033. return chan;
  1034. return __dma_request_channel(mask, fn, fn_param);
  1035. }
  1036. /* --- Helper iov-locking functions --- */
  1037. struct dma_page_list {
  1038. char __user *base_address;
  1039. int nr_pages;
  1040. struct page **pages;
  1041. };
  1042. struct dma_pinned_list {
  1043. int nr_iovecs;
  1044. struct dma_page_list page_list[0];
  1045. };
  1046. struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
  1047. void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
  1048. dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
  1049. struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
  1050. dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
  1051. struct dma_pinned_list *pinned_list, struct page *page,
  1052. unsigned int offset, size_t len);
  1053. #endif /* DMAENGINE_H */