intel_ringbuffer.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - (tail + I915_RING_FREE_SPACE);
  50. if (space < 0)
  51. space += size;
  52. return space;
  53. }
  54. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. return __intel_ring_space(ringbuf->head & HEAD_ADDR,
  57. ringbuf->tail, ringbuf->size);
  58. }
  59. bool intel_ring_stopped(struct intel_engine_cs *ring)
  60. {
  61. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  62. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  63. }
  64. void __intel_ring_advance(struct intel_engine_cs *ring)
  65. {
  66. struct intel_ringbuffer *ringbuf = ring->buffer;
  67. ringbuf->tail &= ringbuf->size - 1;
  68. if (intel_ring_stopped(ring))
  69. return;
  70. ring->write_tail(ring, ringbuf->tail);
  71. }
  72. static int
  73. gen2_render_ring_flush(struct intel_engine_cs *ring,
  74. u32 invalidate_domains,
  75. u32 flush_domains)
  76. {
  77. u32 cmd;
  78. int ret;
  79. cmd = MI_FLUSH;
  80. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  81. cmd |= MI_NO_WRITE_FLUSH;
  82. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  83. cmd |= MI_READ_FLUSH;
  84. ret = intel_ring_begin(ring, 2);
  85. if (ret)
  86. return ret;
  87. intel_ring_emit(ring, cmd);
  88. intel_ring_emit(ring, MI_NOOP);
  89. intel_ring_advance(ring);
  90. return 0;
  91. }
  92. static int
  93. gen4_render_ring_flush(struct intel_engine_cs *ring,
  94. u32 invalidate_domains,
  95. u32 flush_domains)
  96. {
  97. struct drm_device *dev = ring->dev;
  98. u32 cmd;
  99. int ret;
  100. /*
  101. * read/write caches:
  102. *
  103. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  104. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  105. * also flushed at 2d versus 3d pipeline switches.
  106. *
  107. * read-only caches:
  108. *
  109. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  110. * MI_READ_FLUSH is set, and is always flushed on 965.
  111. *
  112. * I915_GEM_DOMAIN_COMMAND may not exist?
  113. *
  114. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  115. * invalidated when MI_EXE_FLUSH is set.
  116. *
  117. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  118. * invalidated with every MI_FLUSH.
  119. *
  120. * TLBs:
  121. *
  122. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  123. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  124. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  125. * are flushed at any MI_FLUSH.
  126. */
  127. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  128. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  129. cmd &= ~MI_NO_WRITE_FLUSH;
  130. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  131. cmd |= MI_EXE_FLUSH;
  132. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  133. (IS_G4X(dev) || IS_GEN5(dev)))
  134. cmd |= MI_INVALIDATE_ISP;
  135. ret = intel_ring_begin(ring, 2);
  136. if (ret)
  137. return ret;
  138. intel_ring_emit(ring, cmd);
  139. intel_ring_emit(ring, MI_NOOP);
  140. intel_ring_advance(ring);
  141. return 0;
  142. }
  143. /**
  144. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  145. * implementing two workarounds on gen6. From section 1.4.7.1
  146. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  147. *
  148. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  149. * produced by non-pipelined state commands), software needs to first
  150. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  151. * 0.
  152. *
  153. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  154. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  155. *
  156. * And the workaround for these two requires this workaround first:
  157. *
  158. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  159. * BEFORE the pipe-control with a post-sync op and no write-cache
  160. * flushes.
  161. *
  162. * And this last workaround is tricky because of the requirements on
  163. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  164. * volume 2 part 1:
  165. *
  166. * "1 of the following must also be set:
  167. * - Render Target Cache Flush Enable ([12] of DW1)
  168. * - Depth Cache Flush Enable ([0] of DW1)
  169. * - Stall at Pixel Scoreboard ([1] of DW1)
  170. * - Depth Stall ([13] of DW1)
  171. * - Post-Sync Operation ([13] of DW1)
  172. * - Notify Enable ([8] of DW1)"
  173. *
  174. * The cache flushes require the workaround flush that triggered this
  175. * one, so we can't use it. Depth stall would trigger the same.
  176. * Post-sync nonzero is what triggered this second workaround, so we
  177. * can't use that one either. Notify enable is IRQs, which aren't
  178. * really our business. That leaves only stall at scoreboard.
  179. */
  180. static int
  181. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  182. {
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(ring, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(ring, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct intel_engine_cs *ring,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. u32 flags = 0;
  213. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  214. int ret;
  215. /* Force SNB workarounds for PIPE_CONTROL flushes */
  216. ret = intel_emit_post_sync_nonzero_flush(ring);
  217. if (ret)
  218. return ret;
  219. /* Just flush everything. Experiments have shown that reducing the
  220. * number of bits based on the write domains has little performance
  221. * impact.
  222. */
  223. if (flush_domains) {
  224. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  225. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  226. /*
  227. * Ensure that any following seqno writes only happen
  228. * when the render cache is indeed flushed.
  229. */
  230. flags |= PIPE_CONTROL_CS_STALL;
  231. }
  232. if (invalidate_domains) {
  233. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  234. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  239. /*
  240. * TLB invalidate requires a post-sync write.
  241. */
  242. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  243. }
  244. ret = intel_ring_begin(ring, 4);
  245. if (ret)
  246. return ret;
  247. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  248. intel_ring_emit(ring, flags);
  249. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  250. intel_ring_emit(ring, 0);
  251. intel_ring_advance(ring);
  252. return 0;
  253. }
  254. static int
  255. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  256. {
  257. int ret;
  258. ret = intel_ring_begin(ring, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(ring, 0);
  265. intel_ring_emit(ring, 0);
  266. intel_ring_advance(ring);
  267. return 0;
  268. }
  269. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  270. {
  271. int ret;
  272. if (!ring->fbc_dirty)
  273. return 0;
  274. ret = intel_ring_begin(ring, 6);
  275. if (ret)
  276. return ret;
  277. /* WaFbcNukeOn3DBlt:ivb/hsw */
  278. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  279. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  280. intel_ring_emit(ring, value);
  281. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  282. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  283. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  284. intel_ring_advance(ring);
  285. ring->fbc_dirty = false;
  286. return 0;
  287. }
  288. static int
  289. gen7_render_ring_flush(struct intel_engine_cs *ring,
  290. u32 invalidate_domains, u32 flush_domains)
  291. {
  292. u32 flags = 0;
  293. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  294. int ret;
  295. /*
  296. * Ensure that any following seqno writes only happen when the render
  297. * cache is indeed flushed.
  298. *
  299. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  300. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  301. * don't try to be clever and just set it unconditionally.
  302. */
  303. flags |= PIPE_CONTROL_CS_STALL;
  304. /* Just flush everything. Experiments have shown that reducing the
  305. * number of bits based on the write domains has little performance
  306. * impact.
  307. */
  308. if (flush_domains) {
  309. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  310. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  311. }
  312. if (invalidate_domains) {
  313. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  314. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  316. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  317. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  318. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  319. /*
  320. * TLB invalidate requires a post-sync write.
  321. */
  322. flags |= PIPE_CONTROL_QW_WRITE;
  323. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  324. /* Workaround: we must issue a pipe_control with CS-stall bit
  325. * set before a pipe_control command that has the state cache
  326. * invalidate bit set. */
  327. gen7_render_ring_cs_stall_wa(ring);
  328. }
  329. ret = intel_ring_begin(ring, 4);
  330. if (ret)
  331. return ret;
  332. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  333. intel_ring_emit(ring, flags);
  334. intel_ring_emit(ring, scratch_addr);
  335. intel_ring_emit(ring, 0);
  336. intel_ring_advance(ring);
  337. if (!invalidate_domains && flush_domains)
  338. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  339. return 0;
  340. }
  341. static int
  342. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  343. u32 flags, u32 scratch_addr)
  344. {
  345. int ret;
  346. ret = intel_ring_begin(ring, 6);
  347. if (ret)
  348. return ret;
  349. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  350. intel_ring_emit(ring, flags);
  351. intel_ring_emit(ring, scratch_addr);
  352. intel_ring_emit(ring, 0);
  353. intel_ring_emit(ring, 0);
  354. intel_ring_emit(ring, 0);
  355. intel_ring_advance(ring);
  356. return 0;
  357. }
  358. static int
  359. gen8_render_ring_flush(struct intel_engine_cs *ring,
  360. u32 invalidate_domains, u32 flush_domains)
  361. {
  362. u32 flags = 0;
  363. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  364. int ret;
  365. flags |= PIPE_CONTROL_CS_STALL;
  366. if (flush_domains) {
  367. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  368. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  369. }
  370. if (invalidate_domains) {
  371. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  372. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  375. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  376. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  377. flags |= PIPE_CONTROL_QW_WRITE;
  378. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  379. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  380. ret = gen8_emit_pipe_control(ring,
  381. PIPE_CONTROL_CS_STALL |
  382. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  383. 0);
  384. if (ret)
  385. return ret;
  386. }
  387. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  388. if (ret)
  389. return ret;
  390. if (!invalidate_domains && flush_domains)
  391. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  392. return 0;
  393. }
  394. static void ring_write_tail(struct intel_engine_cs *ring,
  395. u32 value)
  396. {
  397. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  398. I915_WRITE_TAIL(ring, value);
  399. }
  400. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  401. {
  402. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  403. u64 acthd;
  404. if (INTEL_INFO(ring->dev)->gen >= 8)
  405. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  406. RING_ACTHD_UDW(ring->mmio_base));
  407. else if (INTEL_INFO(ring->dev)->gen >= 4)
  408. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  409. else
  410. acthd = I915_READ(ACTHD);
  411. return acthd;
  412. }
  413. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  414. {
  415. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  416. u32 addr;
  417. addr = dev_priv->status_page_dmah->busaddr;
  418. if (INTEL_INFO(ring->dev)->gen >= 4)
  419. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  420. I915_WRITE(HWS_PGA, addr);
  421. }
  422. static bool stop_ring(struct intel_engine_cs *ring)
  423. {
  424. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  425. if (!IS_GEN2(ring->dev)) {
  426. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  427. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  428. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  429. /* Sometimes we observe that the idle flag is not
  430. * set even though the ring is empty. So double
  431. * check before giving up.
  432. */
  433. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  434. return false;
  435. }
  436. }
  437. I915_WRITE_CTL(ring, 0);
  438. I915_WRITE_HEAD(ring, 0);
  439. ring->write_tail(ring, 0);
  440. if (!IS_GEN2(ring->dev)) {
  441. (void)I915_READ_CTL(ring);
  442. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  443. }
  444. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  445. }
  446. static int init_ring_common(struct intel_engine_cs *ring)
  447. {
  448. struct drm_device *dev = ring->dev;
  449. struct drm_i915_private *dev_priv = dev->dev_private;
  450. struct intel_ringbuffer *ringbuf = ring->buffer;
  451. struct drm_i915_gem_object *obj = ringbuf->obj;
  452. int ret = 0;
  453. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  454. if (!stop_ring(ring)) {
  455. /* G45 ring initialization often fails to reset head to zero */
  456. DRM_DEBUG_KMS("%s head not reset to zero "
  457. "ctl %08x head %08x tail %08x start %08x\n",
  458. ring->name,
  459. I915_READ_CTL(ring),
  460. I915_READ_HEAD(ring),
  461. I915_READ_TAIL(ring),
  462. I915_READ_START(ring));
  463. if (!stop_ring(ring)) {
  464. DRM_ERROR("failed to set %s head to zero "
  465. "ctl %08x head %08x tail %08x start %08x\n",
  466. ring->name,
  467. I915_READ_CTL(ring),
  468. I915_READ_HEAD(ring),
  469. I915_READ_TAIL(ring),
  470. I915_READ_START(ring));
  471. ret = -EIO;
  472. goto out;
  473. }
  474. }
  475. if (I915_NEED_GFX_HWS(dev))
  476. intel_ring_setup_status_page(ring);
  477. else
  478. ring_setup_phys_status_page(ring);
  479. /* Enforce ordering by reading HEAD register back */
  480. I915_READ_HEAD(ring);
  481. /* Initialize the ring. This must happen _after_ we've cleared the ring
  482. * registers with the above sequence (the readback of the HEAD registers
  483. * also enforces ordering), otherwise the hw might lose the new ring
  484. * register values. */
  485. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  486. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  487. if (I915_READ_HEAD(ring))
  488. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  489. ring->name, I915_READ_HEAD(ring));
  490. I915_WRITE_HEAD(ring, 0);
  491. (void)I915_READ_HEAD(ring);
  492. I915_WRITE_CTL(ring,
  493. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  494. | RING_VALID);
  495. /* If the head is still not zero, the ring is dead */
  496. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  497. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  498. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  499. DRM_ERROR("%s initialization failed "
  500. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  501. ring->name,
  502. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  503. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  504. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  505. ret = -EIO;
  506. goto out;
  507. }
  508. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  509. i915_kernel_lost_context(ring->dev);
  510. else {
  511. ringbuf->head = I915_READ_HEAD(ring);
  512. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  513. ringbuf->space = intel_ring_space(ringbuf);
  514. ringbuf->last_retired_head = -1;
  515. }
  516. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  517. out:
  518. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  519. return ret;
  520. }
  521. void
  522. intel_fini_pipe_control(struct intel_engine_cs *ring)
  523. {
  524. struct drm_device *dev = ring->dev;
  525. if (ring->scratch.obj == NULL)
  526. return;
  527. if (INTEL_INFO(dev)->gen >= 5) {
  528. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  529. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  530. }
  531. drm_gem_object_unreference(&ring->scratch.obj->base);
  532. ring->scratch.obj = NULL;
  533. }
  534. int
  535. intel_init_pipe_control(struct intel_engine_cs *ring)
  536. {
  537. int ret;
  538. if (ring->scratch.obj)
  539. return 0;
  540. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  541. if (ring->scratch.obj == NULL) {
  542. DRM_ERROR("Failed to allocate seqno page\n");
  543. ret = -ENOMEM;
  544. goto err;
  545. }
  546. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  547. if (ret)
  548. goto err_unref;
  549. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  550. if (ret)
  551. goto err_unref;
  552. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  553. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  554. if (ring->scratch.cpu_page == NULL) {
  555. ret = -ENOMEM;
  556. goto err_unpin;
  557. }
  558. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  559. ring->name, ring->scratch.gtt_offset);
  560. return 0;
  561. err_unpin:
  562. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  563. err_unref:
  564. drm_gem_object_unreference(&ring->scratch.obj->base);
  565. err:
  566. return ret;
  567. }
  568. static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
  569. u32 addr, u32 value)
  570. {
  571. struct drm_device *dev = ring->dev;
  572. struct drm_i915_private *dev_priv = dev->dev_private;
  573. if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
  574. return;
  575. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  576. intel_ring_emit(ring, addr);
  577. intel_ring_emit(ring, value);
  578. dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
  579. dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
  580. /* value is updated with the status of remaining bits of this
  581. * register when it is read from debugfs file
  582. */
  583. dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
  584. dev_priv->num_wa_regs++;
  585. return;
  586. }
  587. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  588. {
  589. int ret;
  590. struct drm_device *dev = ring->dev;
  591. struct drm_i915_private *dev_priv = dev->dev_private;
  592. /*
  593. * workarounds applied in this fn are part of register state context,
  594. * they need to be re-initialized followed by gpu reset, suspend/resume,
  595. * module reload.
  596. */
  597. dev_priv->num_wa_regs = 0;
  598. memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
  599. /*
  600. * update the number of dwords required based on the
  601. * actual number of workarounds applied
  602. */
  603. ret = intel_ring_begin(ring, 24);
  604. if (ret)
  605. return ret;
  606. /* WaDisablePartialInstShootdown:bdw */
  607. /* WaDisableThreadStallDopClockGating:bdw */
  608. /* FIXME: Unclear whether we really need this on production bdw. */
  609. intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
  610. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
  611. | STALL_DOP_GATING_DISABLE));
  612. /* WaDisableDopClockGating:bdw May not be needed for production */
  613. intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
  614. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  615. /*
  616. * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
  617. * pre-production hardware
  618. */
  619. intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
  620. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS
  621. | GEN8_SAMPLER_POWER_BYPASS_DIS));
  622. intel_ring_emit_wa(ring, GEN7_HALF_SLICE_CHICKEN1,
  623. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  624. intel_ring_emit_wa(ring, COMMON_SLICE_CHICKEN2,
  625. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  626. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  627. * workaround for for a possible hang in the unlikely event a TLB
  628. * invalidation occurs during a PSD flush.
  629. */
  630. intel_ring_emit_wa(ring, HDC_CHICKEN0,
  631. _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
  632. /* Wa4x4STCOptimizationDisable:bdw */
  633. intel_ring_emit_wa(ring, CACHE_MODE_1,
  634. _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
  635. /*
  636. * BSpec recommends 8x4 when MSAA is used,
  637. * however in practice 16x4 seems fastest.
  638. *
  639. * Note that PS/WM thread counts depend on the WIZ hashing
  640. * disable bit, which we don't touch here, but it's good
  641. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  642. */
  643. intel_ring_emit_wa(ring, GEN7_GT_MODE,
  644. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  645. intel_ring_advance(ring);
  646. DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
  647. dev_priv->num_wa_regs);
  648. return 0;
  649. }
  650. static int chv_init_workarounds(struct intel_engine_cs *ring)
  651. {
  652. int ret;
  653. struct drm_device *dev = ring->dev;
  654. struct drm_i915_private *dev_priv = dev->dev_private;
  655. /*
  656. * workarounds applied in this fn are part of register state context,
  657. * they need to be re-initialized followed by gpu reset, suspend/resume,
  658. * module reload.
  659. */
  660. dev_priv->num_wa_regs = 0;
  661. memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
  662. ret = intel_ring_begin(ring, 12);
  663. if (ret)
  664. return ret;
  665. /* WaDisablePartialInstShootdown:chv */
  666. intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
  667. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  668. /* WaDisableThreadStallDopClockGating:chv */
  669. intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
  670. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  671. /* WaDisableDopClockGating:chv (pre-production hw) */
  672. intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
  673. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  674. /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
  675. intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
  676. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  677. intel_ring_advance(ring);
  678. return 0;
  679. }
  680. static int init_render_ring(struct intel_engine_cs *ring)
  681. {
  682. struct drm_device *dev = ring->dev;
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. int ret = init_ring_common(ring);
  685. if (ret)
  686. return ret;
  687. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  688. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  689. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  690. /* We need to disable the AsyncFlip performance optimisations in order
  691. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  692. * programmed to '1' on all products.
  693. *
  694. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  695. */
  696. if (INTEL_INFO(dev)->gen >= 6)
  697. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  698. /* Required for the hardware to program scanline values for waiting */
  699. /* WaEnableFlushTlbInvalidationMode:snb */
  700. if (INTEL_INFO(dev)->gen == 6)
  701. I915_WRITE(GFX_MODE,
  702. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  703. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  704. if (IS_GEN7(dev))
  705. I915_WRITE(GFX_MODE_GEN7,
  706. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  707. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  708. if (INTEL_INFO(dev)->gen >= 5) {
  709. ret = intel_init_pipe_control(ring);
  710. if (ret)
  711. return ret;
  712. }
  713. if (IS_GEN6(dev)) {
  714. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  715. * "If this bit is set, STCunit will have LRA as replacement
  716. * policy. [...] This bit must be reset. LRA replacement
  717. * policy is not supported."
  718. */
  719. I915_WRITE(CACHE_MODE_0,
  720. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  721. }
  722. if (INTEL_INFO(dev)->gen >= 6)
  723. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  724. if (HAS_L3_DPF(dev))
  725. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  726. return ret;
  727. }
  728. static void render_ring_cleanup(struct intel_engine_cs *ring)
  729. {
  730. struct drm_device *dev = ring->dev;
  731. struct drm_i915_private *dev_priv = dev->dev_private;
  732. if (dev_priv->semaphore_obj) {
  733. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  734. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  735. dev_priv->semaphore_obj = NULL;
  736. }
  737. intel_fini_pipe_control(ring);
  738. }
  739. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  740. unsigned int num_dwords)
  741. {
  742. #define MBOX_UPDATE_DWORDS 8
  743. struct drm_device *dev = signaller->dev;
  744. struct drm_i915_private *dev_priv = dev->dev_private;
  745. struct intel_engine_cs *waiter;
  746. int i, ret, num_rings;
  747. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  748. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  749. #undef MBOX_UPDATE_DWORDS
  750. ret = intel_ring_begin(signaller, num_dwords);
  751. if (ret)
  752. return ret;
  753. for_each_ring(waiter, dev_priv, i) {
  754. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  755. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  756. continue;
  757. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  758. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  759. PIPE_CONTROL_QW_WRITE |
  760. PIPE_CONTROL_FLUSH_ENABLE);
  761. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  762. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  763. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  764. intel_ring_emit(signaller, 0);
  765. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  766. MI_SEMAPHORE_TARGET(waiter->id));
  767. intel_ring_emit(signaller, 0);
  768. }
  769. return 0;
  770. }
  771. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  772. unsigned int num_dwords)
  773. {
  774. #define MBOX_UPDATE_DWORDS 6
  775. struct drm_device *dev = signaller->dev;
  776. struct drm_i915_private *dev_priv = dev->dev_private;
  777. struct intel_engine_cs *waiter;
  778. int i, ret, num_rings;
  779. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  780. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  781. #undef MBOX_UPDATE_DWORDS
  782. ret = intel_ring_begin(signaller, num_dwords);
  783. if (ret)
  784. return ret;
  785. for_each_ring(waiter, dev_priv, i) {
  786. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  787. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  788. continue;
  789. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  790. MI_FLUSH_DW_OP_STOREDW);
  791. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  792. MI_FLUSH_DW_USE_GTT);
  793. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  794. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  795. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  796. MI_SEMAPHORE_TARGET(waiter->id));
  797. intel_ring_emit(signaller, 0);
  798. }
  799. return 0;
  800. }
  801. static int gen6_signal(struct intel_engine_cs *signaller,
  802. unsigned int num_dwords)
  803. {
  804. struct drm_device *dev = signaller->dev;
  805. struct drm_i915_private *dev_priv = dev->dev_private;
  806. struct intel_engine_cs *useless;
  807. int i, ret, num_rings;
  808. #define MBOX_UPDATE_DWORDS 3
  809. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  810. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  811. #undef MBOX_UPDATE_DWORDS
  812. ret = intel_ring_begin(signaller, num_dwords);
  813. if (ret)
  814. return ret;
  815. for_each_ring(useless, dev_priv, i) {
  816. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  817. if (mbox_reg != GEN6_NOSYNC) {
  818. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  819. intel_ring_emit(signaller, mbox_reg);
  820. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  821. }
  822. }
  823. /* If num_dwords was rounded, make sure the tail pointer is correct */
  824. if (num_rings % 2 == 0)
  825. intel_ring_emit(signaller, MI_NOOP);
  826. return 0;
  827. }
  828. /**
  829. * gen6_add_request - Update the semaphore mailbox registers
  830. *
  831. * @ring - ring that is adding a request
  832. * @seqno - return seqno stuck into the ring
  833. *
  834. * Update the mailbox registers in the *other* rings with the current seqno.
  835. * This acts like a signal in the canonical semaphore.
  836. */
  837. static int
  838. gen6_add_request(struct intel_engine_cs *ring)
  839. {
  840. int ret;
  841. if (ring->semaphore.signal)
  842. ret = ring->semaphore.signal(ring, 4);
  843. else
  844. ret = intel_ring_begin(ring, 4);
  845. if (ret)
  846. return ret;
  847. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  848. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  849. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  850. intel_ring_emit(ring, MI_USER_INTERRUPT);
  851. __intel_ring_advance(ring);
  852. return 0;
  853. }
  854. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  855. u32 seqno)
  856. {
  857. struct drm_i915_private *dev_priv = dev->dev_private;
  858. return dev_priv->last_seqno < seqno;
  859. }
  860. /**
  861. * intel_ring_sync - sync the waiter to the signaller on seqno
  862. *
  863. * @waiter - ring that is waiting
  864. * @signaller - ring which has, or will signal
  865. * @seqno - seqno which the waiter will block on
  866. */
  867. static int
  868. gen8_ring_sync(struct intel_engine_cs *waiter,
  869. struct intel_engine_cs *signaller,
  870. u32 seqno)
  871. {
  872. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  873. int ret;
  874. ret = intel_ring_begin(waiter, 4);
  875. if (ret)
  876. return ret;
  877. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  878. MI_SEMAPHORE_GLOBAL_GTT |
  879. MI_SEMAPHORE_POLL |
  880. MI_SEMAPHORE_SAD_GTE_SDD);
  881. intel_ring_emit(waiter, seqno);
  882. intel_ring_emit(waiter,
  883. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  884. intel_ring_emit(waiter,
  885. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  886. intel_ring_advance(waiter);
  887. return 0;
  888. }
  889. static int
  890. gen6_ring_sync(struct intel_engine_cs *waiter,
  891. struct intel_engine_cs *signaller,
  892. u32 seqno)
  893. {
  894. u32 dw1 = MI_SEMAPHORE_MBOX |
  895. MI_SEMAPHORE_COMPARE |
  896. MI_SEMAPHORE_REGISTER;
  897. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  898. int ret;
  899. /* Throughout all of the GEM code, seqno passed implies our current
  900. * seqno is >= the last seqno executed. However for hardware the
  901. * comparison is strictly greater than.
  902. */
  903. seqno -= 1;
  904. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  905. ret = intel_ring_begin(waiter, 4);
  906. if (ret)
  907. return ret;
  908. /* If seqno wrap happened, omit the wait with no-ops */
  909. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  910. intel_ring_emit(waiter, dw1 | wait_mbox);
  911. intel_ring_emit(waiter, seqno);
  912. intel_ring_emit(waiter, 0);
  913. intel_ring_emit(waiter, MI_NOOP);
  914. } else {
  915. intel_ring_emit(waiter, MI_NOOP);
  916. intel_ring_emit(waiter, MI_NOOP);
  917. intel_ring_emit(waiter, MI_NOOP);
  918. intel_ring_emit(waiter, MI_NOOP);
  919. }
  920. intel_ring_advance(waiter);
  921. return 0;
  922. }
  923. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  924. do { \
  925. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  926. PIPE_CONTROL_DEPTH_STALL); \
  927. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  928. intel_ring_emit(ring__, 0); \
  929. intel_ring_emit(ring__, 0); \
  930. } while (0)
  931. static int
  932. pc_render_add_request(struct intel_engine_cs *ring)
  933. {
  934. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  935. int ret;
  936. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  937. * incoherent with writes to memory, i.e. completely fubar,
  938. * so we need to use PIPE_NOTIFY instead.
  939. *
  940. * However, we also need to workaround the qword write
  941. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  942. * memory before requesting an interrupt.
  943. */
  944. ret = intel_ring_begin(ring, 32);
  945. if (ret)
  946. return ret;
  947. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  948. PIPE_CONTROL_WRITE_FLUSH |
  949. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  950. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  951. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  952. intel_ring_emit(ring, 0);
  953. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  954. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  955. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  956. scratch_addr += 2 * CACHELINE_BYTES;
  957. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  958. scratch_addr += 2 * CACHELINE_BYTES;
  959. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  960. scratch_addr += 2 * CACHELINE_BYTES;
  961. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  962. scratch_addr += 2 * CACHELINE_BYTES;
  963. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  964. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  965. PIPE_CONTROL_WRITE_FLUSH |
  966. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  967. PIPE_CONTROL_NOTIFY);
  968. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  969. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  970. intel_ring_emit(ring, 0);
  971. __intel_ring_advance(ring);
  972. return 0;
  973. }
  974. static u32
  975. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  976. {
  977. /* Workaround to force correct ordering between irq and seqno writes on
  978. * ivb (and maybe also on snb) by reading from a CS register (like
  979. * ACTHD) before reading the status page. */
  980. if (!lazy_coherency) {
  981. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  982. POSTING_READ(RING_ACTHD(ring->mmio_base));
  983. }
  984. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  985. }
  986. static u32
  987. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  988. {
  989. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  990. }
  991. static void
  992. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  993. {
  994. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  995. }
  996. static u32
  997. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  998. {
  999. return ring->scratch.cpu_page[0];
  1000. }
  1001. static void
  1002. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1003. {
  1004. ring->scratch.cpu_page[0] = seqno;
  1005. }
  1006. static bool
  1007. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1008. {
  1009. struct drm_device *dev = ring->dev;
  1010. struct drm_i915_private *dev_priv = dev->dev_private;
  1011. unsigned long flags;
  1012. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1013. return false;
  1014. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1015. if (ring->irq_refcount++ == 0)
  1016. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1017. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1018. return true;
  1019. }
  1020. static void
  1021. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1022. {
  1023. struct drm_device *dev = ring->dev;
  1024. struct drm_i915_private *dev_priv = dev->dev_private;
  1025. unsigned long flags;
  1026. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1027. if (--ring->irq_refcount == 0)
  1028. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1029. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1030. }
  1031. static bool
  1032. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1033. {
  1034. struct drm_device *dev = ring->dev;
  1035. struct drm_i915_private *dev_priv = dev->dev_private;
  1036. unsigned long flags;
  1037. if (!intel_irqs_enabled(dev_priv))
  1038. return false;
  1039. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1040. if (ring->irq_refcount++ == 0) {
  1041. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1042. I915_WRITE(IMR, dev_priv->irq_mask);
  1043. POSTING_READ(IMR);
  1044. }
  1045. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1046. return true;
  1047. }
  1048. static void
  1049. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1050. {
  1051. struct drm_device *dev = ring->dev;
  1052. struct drm_i915_private *dev_priv = dev->dev_private;
  1053. unsigned long flags;
  1054. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1055. if (--ring->irq_refcount == 0) {
  1056. dev_priv->irq_mask |= ring->irq_enable_mask;
  1057. I915_WRITE(IMR, dev_priv->irq_mask);
  1058. POSTING_READ(IMR);
  1059. }
  1060. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1061. }
  1062. static bool
  1063. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1064. {
  1065. struct drm_device *dev = ring->dev;
  1066. struct drm_i915_private *dev_priv = dev->dev_private;
  1067. unsigned long flags;
  1068. if (!intel_irqs_enabled(dev_priv))
  1069. return false;
  1070. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1071. if (ring->irq_refcount++ == 0) {
  1072. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1073. I915_WRITE16(IMR, dev_priv->irq_mask);
  1074. POSTING_READ16(IMR);
  1075. }
  1076. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1077. return true;
  1078. }
  1079. static void
  1080. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1081. {
  1082. struct drm_device *dev = ring->dev;
  1083. struct drm_i915_private *dev_priv = dev->dev_private;
  1084. unsigned long flags;
  1085. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1086. if (--ring->irq_refcount == 0) {
  1087. dev_priv->irq_mask |= ring->irq_enable_mask;
  1088. I915_WRITE16(IMR, dev_priv->irq_mask);
  1089. POSTING_READ16(IMR);
  1090. }
  1091. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1092. }
  1093. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1094. {
  1095. struct drm_device *dev = ring->dev;
  1096. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1097. u32 mmio = 0;
  1098. /* The ring status page addresses are no longer next to the rest of
  1099. * the ring registers as of gen7.
  1100. */
  1101. if (IS_GEN7(dev)) {
  1102. switch (ring->id) {
  1103. case RCS:
  1104. mmio = RENDER_HWS_PGA_GEN7;
  1105. break;
  1106. case BCS:
  1107. mmio = BLT_HWS_PGA_GEN7;
  1108. break;
  1109. /*
  1110. * VCS2 actually doesn't exist on Gen7. Only shut up
  1111. * gcc switch check warning
  1112. */
  1113. case VCS2:
  1114. case VCS:
  1115. mmio = BSD_HWS_PGA_GEN7;
  1116. break;
  1117. case VECS:
  1118. mmio = VEBOX_HWS_PGA_GEN7;
  1119. break;
  1120. }
  1121. } else if (IS_GEN6(ring->dev)) {
  1122. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1123. } else {
  1124. /* XXX: gen8 returns to sanity */
  1125. mmio = RING_HWS_PGA(ring->mmio_base);
  1126. }
  1127. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1128. POSTING_READ(mmio);
  1129. /*
  1130. * Flush the TLB for this page
  1131. *
  1132. * FIXME: These two bits have disappeared on gen8, so a question
  1133. * arises: do we still need this and if so how should we go about
  1134. * invalidating the TLB?
  1135. */
  1136. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1137. u32 reg = RING_INSTPM(ring->mmio_base);
  1138. /* ring should be idle before issuing a sync flush*/
  1139. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1140. I915_WRITE(reg,
  1141. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1142. INSTPM_SYNC_FLUSH));
  1143. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1144. 1000))
  1145. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1146. ring->name);
  1147. }
  1148. }
  1149. static int
  1150. bsd_ring_flush(struct intel_engine_cs *ring,
  1151. u32 invalidate_domains,
  1152. u32 flush_domains)
  1153. {
  1154. int ret;
  1155. ret = intel_ring_begin(ring, 2);
  1156. if (ret)
  1157. return ret;
  1158. intel_ring_emit(ring, MI_FLUSH);
  1159. intel_ring_emit(ring, MI_NOOP);
  1160. intel_ring_advance(ring);
  1161. return 0;
  1162. }
  1163. static int
  1164. i9xx_add_request(struct intel_engine_cs *ring)
  1165. {
  1166. int ret;
  1167. ret = intel_ring_begin(ring, 4);
  1168. if (ret)
  1169. return ret;
  1170. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1171. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1172. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  1173. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1174. __intel_ring_advance(ring);
  1175. return 0;
  1176. }
  1177. static bool
  1178. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1179. {
  1180. struct drm_device *dev = ring->dev;
  1181. struct drm_i915_private *dev_priv = dev->dev_private;
  1182. unsigned long flags;
  1183. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1184. return false;
  1185. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1186. if (ring->irq_refcount++ == 0) {
  1187. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1188. I915_WRITE_IMR(ring,
  1189. ~(ring->irq_enable_mask |
  1190. GT_PARITY_ERROR(dev)));
  1191. else
  1192. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1193. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1194. }
  1195. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1196. return true;
  1197. }
  1198. static void
  1199. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1200. {
  1201. struct drm_device *dev = ring->dev;
  1202. struct drm_i915_private *dev_priv = dev->dev_private;
  1203. unsigned long flags;
  1204. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1205. if (--ring->irq_refcount == 0) {
  1206. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1207. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1208. else
  1209. I915_WRITE_IMR(ring, ~0);
  1210. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1211. }
  1212. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1213. }
  1214. static bool
  1215. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1216. {
  1217. struct drm_device *dev = ring->dev;
  1218. struct drm_i915_private *dev_priv = dev->dev_private;
  1219. unsigned long flags;
  1220. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1221. return false;
  1222. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1223. if (ring->irq_refcount++ == 0) {
  1224. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1225. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1226. }
  1227. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1228. return true;
  1229. }
  1230. static void
  1231. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1232. {
  1233. struct drm_device *dev = ring->dev;
  1234. struct drm_i915_private *dev_priv = dev->dev_private;
  1235. unsigned long flags;
  1236. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1237. if (--ring->irq_refcount == 0) {
  1238. I915_WRITE_IMR(ring, ~0);
  1239. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1240. }
  1241. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1242. }
  1243. static bool
  1244. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1245. {
  1246. struct drm_device *dev = ring->dev;
  1247. struct drm_i915_private *dev_priv = dev->dev_private;
  1248. unsigned long flags;
  1249. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1250. return false;
  1251. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1252. if (ring->irq_refcount++ == 0) {
  1253. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1254. I915_WRITE_IMR(ring,
  1255. ~(ring->irq_enable_mask |
  1256. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1257. } else {
  1258. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1259. }
  1260. POSTING_READ(RING_IMR(ring->mmio_base));
  1261. }
  1262. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1263. return true;
  1264. }
  1265. static void
  1266. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1267. {
  1268. struct drm_device *dev = ring->dev;
  1269. struct drm_i915_private *dev_priv = dev->dev_private;
  1270. unsigned long flags;
  1271. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1272. if (--ring->irq_refcount == 0) {
  1273. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1274. I915_WRITE_IMR(ring,
  1275. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1276. } else {
  1277. I915_WRITE_IMR(ring, ~0);
  1278. }
  1279. POSTING_READ(RING_IMR(ring->mmio_base));
  1280. }
  1281. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1282. }
  1283. static int
  1284. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1285. u64 offset, u32 length,
  1286. unsigned flags)
  1287. {
  1288. int ret;
  1289. ret = intel_ring_begin(ring, 2);
  1290. if (ret)
  1291. return ret;
  1292. intel_ring_emit(ring,
  1293. MI_BATCH_BUFFER_START |
  1294. MI_BATCH_GTT |
  1295. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1296. intel_ring_emit(ring, offset);
  1297. intel_ring_advance(ring);
  1298. return 0;
  1299. }
  1300. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1301. #define I830_BATCH_LIMIT (256*1024)
  1302. #define I830_TLB_ENTRIES (2)
  1303. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1304. static int
  1305. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1306. u64 offset, u32 len,
  1307. unsigned flags)
  1308. {
  1309. u32 cs_offset = ring->scratch.gtt_offset;
  1310. int ret;
  1311. ret = intel_ring_begin(ring, 6);
  1312. if (ret)
  1313. return ret;
  1314. /* Evict the invalid PTE TLBs */
  1315. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1316. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1317. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1318. intel_ring_emit(ring, cs_offset);
  1319. intel_ring_emit(ring, 0xdeadbeef);
  1320. intel_ring_emit(ring, MI_NOOP);
  1321. intel_ring_advance(ring);
  1322. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1323. if (len > I830_BATCH_LIMIT)
  1324. return -ENOSPC;
  1325. ret = intel_ring_begin(ring, 6 + 2);
  1326. if (ret)
  1327. return ret;
  1328. /* Blit the batch (which has now all relocs applied) to the
  1329. * stable batch scratch bo area (so that the CS never
  1330. * stumbles over its tlb invalidation bug) ...
  1331. */
  1332. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1333. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1334. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 1024);
  1335. intel_ring_emit(ring, cs_offset);
  1336. intel_ring_emit(ring, 4096);
  1337. intel_ring_emit(ring, offset);
  1338. intel_ring_emit(ring, MI_FLUSH);
  1339. intel_ring_emit(ring, MI_NOOP);
  1340. intel_ring_advance(ring);
  1341. /* ... and execute it. */
  1342. offset = cs_offset;
  1343. }
  1344. ret = intel_ring_begin(ring, 4);
  1345. if (ret)
  1346. return ret;
  1347. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1348. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1349. intel_ring_emit(ring, offset + len - 8);
  1350. intel_ring_emit(ring, MI_NOOP);
  1351. intel_ring_advance(ring);
  1352. return 0;
  1353. }
  1354. static int
  1355. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1356. u64 offset, u32 len,
  1357. unsigned flags)
  1358. {
  1359. int ret;
  1360. ret = intel_ring_begin(ring, 2);
  1361. if (ret)
  1362. return ret;
  1363. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1364. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1365. intel_ring_advance(ring);
  1366. return 0;
  1367. }
  1368. static void cleanup_status_page(struct intel_engine_cs *ring)
  1369. {
  1370. struct drm_i915_gem_object *obj;
  1371. obj = ring->status_page.obj;
  1372. if (obj == NULL)
  1373. return;
  1374. kunmap(sg_page(obj->pages->sgl));
  1375. i915_gem_object_ggtt_unpin(obj);
  1376. drm_gem_object_unreference(&obj->base);
  1377. ring->status_page.obj = NULL;
  1378. }
  1379. static int init_status_page(struct intel_engine_cs *ring)
  1380. {
  1381. struct drm_i915_gem_object *obj;
  1382. if ((obj = ring->status_page.obj) == NULL) {
  1383. unsigned flags;
  1384. int ret;
  1385. obj = i915_gem_alloc_object(ring->dev, 4096);
  1386. if (obj == NULL) {
  1387. DRM_ERROR("Failed to allocate status page\n");
  1388. return -ENOMEM;
  1389. }
  1390. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1391. if (ret)
  1392. goto err_unref;
  1393. flags = 0;
  1394. if (!HAS_LLC(ring->dev))
  1395. /* On g33, we cannot place HWS above 256MiB, so
  1396. * restrict its pinning to the low mappable arena.
  1397. * Though this restriction is not documented for
  1398. * gen4, gen5, or byt, they also behave similarly
  1399. * and hang if the HWS is placed at the top of the
  1400. * GTT. To generalise, it appears that all !llc
  1401. * platforms have issues with us placing the HWS
  1402. * above the mappable region (even though we never
  1403. * actualy map it).
  1404. */
  1405. flags |= PIN_MAPPABLE;
  1406. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1407. if (ret) {
  1408. err_unref:
  1409. drm_gem_object_unreference(&obj->base);
  1410. return ret;
  1411. }
  1412. ring->status_page.obj = obj;
  1413. }
  1414. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1415. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1416. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1417. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1418. ring->name, ring->status_page.gfx_addr);
  1419. return 0;
  1420. }
  1421. static int init_phys_status_page(struct intel_engine_cs *ring)
  1422. {
  1423. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1424. if (!dev_priv->status_page_dmah) {
  1425. dev_priv->status_page_dmah =
  1426. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1427. if (!dev_priv->status_page_dmah)
  1428. return -ENOMEM;
  1429. }
  1430. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1431. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1432. return 0;
  1433. }
  1434. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1435. {
  1436. if (!ringbuf->obj)
  1437. return;
  1438. iounmap(ringbuf->virtual_start);
  1439. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1440. drm_gem_object_unreference(&ringbuf->obj->base);
  1441. ringbuf->obj = NULL;
  1442. }
  1443. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1444. struct intel_ringbuffer *ringbuf)
  1445. {
  1446. struct drm_i915_private *dev_priv = to_i915(dev);
  1447. struct drm_i915_gem_object *obj;
  1448. int ret;
  1449. if (ringbuf->obj)
  1450. return 0;
  1451. obj = NULL;
  1452. if (!HAS_LLC(dev))
  1453. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1454. if (obj == NULL)
  1455. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1456. if (obj == NULL)
  1457. return -ENOMEM;
  1458. /* mark ring buffers as read-only from GPU side by default */
  1459. obj->gt_ro = 1;
  1460. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1461. if (ret)
  1462. goto err_unref;
  1463. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1464. if (ret)
  1465. goto err_unpin;
  1466. ringbuf->virtual_start =
  1467. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1468. ringbuf->size);
  1469. if (ringbuf->virtual_start == NULL) {
  1470. ret = -EINVAL;
  1471. goto err_unpin;
  1472. }
  1473. ringbuf->obj = obj;
  1474. return 0;
  1475. err_unpin:
  1476. i915_gem_object_ggtt_unpin(obj);
  1477. err_unref:
  1478. drm_gem_object_unreference(&obj->base);
  1479. return ret;
  1480. }
  1481. static int intel_init_ring_buffer(struct drm_device *dev,
  1482. struct intel_engine_cs *ring)
  1483. {
  1484. struct intel_ringbuffer *ringbuf = ring->buffer;
  1485. int ret;
  1486. if (ringbuf == NULL) {
  1487. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1488. if (!ringbuf)
  1489. return -ENOMEM;
  1490. ring->buffer = ringbuf;
  1491. }
  1492. ring->dev = dev;
  1493. INIT_LIST_HEAD(&ring->active_list);
  1494. INIT_LIST_HEAD(&ring->request_list);
  1495. INIT_LIST_HEAD(&ring->execlist_queue);
  1496. ringbuf->size = 32 * PAGE_SIZE;
  1497. ringbuf->ring = ring;
  1498. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1499. init_waitqueue_head(&ring->irq_queue);
  1500. if (I915_NEED_GFX_HWS(dev)) {
  1501. ret = init_status_page(ring);
  1502. if (ret)
  1503. goto error;
  1504. } else {
  1505. BUG_ON(ring->id != RCS);
  1506. ret = init_phys_status_page(ring);
  1507. if (ret)
  1508. goto error;
  1509. }
  1510. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1511. if (ret) {
  1512. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1513. goto error;
  1514. }
  1515. /* Workaround an erratum on the i830 which causes a hang if
  1516. * the TAIL pointer points to within the last 2 cachelines
  1517. * of the buffer.
  1518. */
  1519. ringbuf->effective_size = ringbuf->size;
  1520. if (IS_I830(dev) || IS_845G(dev))
  1521. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1522. ret = i915_cmd_parser_init_ring(ring);
  1523. if (ret)
  1524. goto error;
  1525. ret = ring->init(ring);
  1526. if (ret)
  1527. goto error;
  1528. return 0;
  1529. error:
  1530. kfree(ringbuf);
  1531. ring->buffer = NULL;
  1532. return ret;
  1533. }
  1534. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1535. {
  1536. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1537. struct intel_ringbuffer *ringbuf = ring->buffer;
  1538. if (!intel_ring_initialized(ring))
  1539. return;
  1540. intel_stop_ring_buffer(ring);
  1541. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1542. intel_destroy_ringbuffer_obj(ringbuf);
  1543. ring->preallocated_lazy_request = NULL;
  1544. ring->outstanding_lazy_seqno = 0;
  1545. if (ring->cleanup)
  1546. ring->cleanup(ring);
  1547. cleanup_status_page(ring);
  1548. i915_cmd_parser_fini_ring(ring);
  1549. kfree(ringbuf);
  1550. ring->buffer = NULL;
  1551. }
  1552. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1553. {
  1554. struct intel_ringbuffer *ringbuf = ring->buffer;
  1555. struct drm_i915_gem_request *request;
  1556. u32 seqno = 0;
  1557. int ret;
  1558. if (ringbuf->last_retired_head != -1) {
  1559. ringbuf->head = ringbuf->last_retired_head;
  1560. ringbuf->last_retired_head = -1;
  1561. ringbuf->space = intel_ring_space(ringbuf);
  1562. if (ringbuf->space >= n)
  1563. return 0;
  1564. }
  1565. list_for_each_entry(request, &ring->request_list, list) {
  1566. if (__intel_ring_space(request->tail, ringbuf->tail,
  1567. ringbuf->size) >= n) {
  1568. seqno = request->seqno;
  1569. break;
  1570. }
  1571. }
  1572. if (seqno == 0)
  1573. return -ENOSPC;
  1574. ret = i915_wait_seqno(ring, seqno);
  1575. if (ret)
  1576. return ret;
  1577. i915_gem_retire_requests_ring(ring);
  1578. ringbuf->head = ringbuf->last_retired_head;
  1579. ringbuf->last_retired_head = -1;
  1580. ringbuf->space = intel_ring_space(ringbuf);
  1581. return 0;
  1582. }
  1583. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1584. {
  1585. struct drm_device *dev = ring->dev;
  1586. struct drm_i915_private *dev_priv = dev->dev_private;
  1587. struct intel_ringbuffer *ringbuf = ring->buffer;
  1588. unsigned long end;
  1589. int ret;
  1590. ret = intel_ring_wait_request(ring, n);
  1591. if (ret != -ENOSPC)
  1592. return ret;
  1593. /* force the tail write in case we have been skipping them */
  1594. __intel_ring_advance(ring);
  1595. /* With GEM the hangcheck timer should kick us out of the loop,
  1596. * leaving it early runs the risk of corrupting GEM state (due
  1597. * to running on almost untested codepaths). But on resume
  1598. * timers don't work yet, so prevent a complete hang in that
  1599. * case by choosing an insanely large timeout. */
  1600. end = jiffies + 60 * HZ;
  1601. trace_i915_ring_wait_begin(ring);
  1602. do {
  1603. ringbuf->head = I915_READ_HEAD(ring);
  1604. ringbuf->space = intel_ring_space(ringbuf);
  1605. if (ringbuf->space >= n) {
  1606. ret = 0;
  1607. break;
  1608. }
  1609. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1610. dev->primary->master) {
  1611. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1612. if (master_priv->sarea_priv)
  1613. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1614. }
  1615. msleep(1);
  1616. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1617. ret = -ERESTARTSYS;
  1618. break;
  1619. }
  1620. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1621. dev_priv->mm.interruptible);
  1622. if (ret)
  1623. break;
  1624. if (time_after(jiffies, end)) {
  1625. ret = -EBUSY;
  1626. break;
  1627. }
  1628. } while (1);
  1629. trace_i915_ring_wait_end(ring);
  1630. return ret;
  1631. }
  1632. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1633. {
  1634. uint32_t __iomem *virt;
  1635. struct intel_ringbuffer *ringbuf = ring->buffer;
  1636. int rem = ringbuf->size - ringbuf->tail;
  1637. if (ringbuf->space < rem) {
  1638. int ret = ring_wait_for_space(ring, rem);
  1639. if (ret)
  1640. return ret;
  1641. }
  1642. virt = ringbuf->virtual_start + ringbuf->tail;
  1643. rem /= 4;
  1644. while (rem--)
  1645. iowrite32(MI_NOOP, virt++);
  1646. ringbuf->tail = 0;
  1647. ringbuf->space = intel_ring_space(ringbuf);
  1648. return 0;
  1649. }
  1650. int intel_ring_idle(struct intel_engine_cs *ring)
  1651. {
  1652. u32 seqno;
  1653. int ret;
  1654. /* We need to add any requests required to flush the objects and ring */
  1655. if (ring->outstanding_lazy_seqno) {
  1656. ret = i915_add_request(ring, NULL);
  1657. if (ret)
  1658. return ret;
  1659. }
  1660. /* Wait upon the last request to be completed */
  1661. if (list_empty(&ring->request_list))
  1662. return 0;
  1663. seqno = list_entry(ring->request_list.prev,
  1664. struct drm_i915_gem_request,
  1665. list)->seqno;
  1666. return i915_wait_seqno(ring, seqno);
  1667. }
  1668. static int
  1669. intel_ring_alloc_seqno(struct intel_engine_cs *ring)
  1670. {
  1671. if (ring->outstanding_lazy_seqno)
  1672. return 0;
  1673. if (ring->preallocated_lazy_request == NULL) {
  1674. struct drm_i915_gem_request *request;
  1675. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1676. if (request == NULL)
  1677. return -ENOMEM;
  1678. ring->preallocated_lazy_request = request;
  1679. }
  1680. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1681. }
  1682. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1683. int bytes)
  1684. {
  1685. struct intel_ringbuffer *ringbuf = ring->buffer;
  1686. int ret;
  1687. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1688. ret = intel_wrap_ring_buffer(ring);
  1689. if (unlikely(ret))
  1690. return ret;
  1691. }
  1692. if (unlikely(ringbuf->space < bytes)) {
  1693. ret = ring_wait_for_space(ring, bytes);
  1694. if (unlikely(ret))
  1695. return ret;
  1696. }
  1697. return 0;
  1698. }
  1699. int intel_ring_begin(struct intel_engine_cs *ring,
  1700. int num_dwords)
  1701. {
  1702. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1703. int ret;
  1704. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1705. dev_priv->mm.interruptible);
  1706. if (ret)
  1707. return ret;
  1708. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1709. if (ret)
  1710. return ret;
  1711. /* Preallocate the olr before touching the ring */
  1712. ret = intel_ring_alloc_seqno(ring);
  1713. if (ret)
  1714. return ret;
  1715. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1716. return 0;
  1717. }
  1718. /* Align the ring tail to a cacheline boundary */
  1719. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1720. {
  1721. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1722. int ret;
  1723. if (num_dwords == 0)
  1724. return 0;
  1725. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1726. ret = intel_ring_begin(ring, num_dwords);
  1727. if (ret)
  1728. return ret;
  1729. while (num_dwords--)
  1730. intel_ring_emit(ring, MI_NOOP);
  1731. intel_ring_advance(ring);
  1732. return 0;
  1733. }
  1734. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1735. {
  1736. struct drm_device *dev = ring->dev;
  1737. struct drm_i915_private *dev_priv = dev->dev_private;
  1738. BUG_ON(ring->outstanding_lazy_seqno);
  1739. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1740. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1741. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1742. if (HAS_VEBOX(dev))
  1743. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1744. }
  1745. ring->set_seqno(ring, seqno);
  1746. ring->hangcheck.seqno = seqno;
  1747. }
  1748. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1749. u32 value)
  1750. {
  1751. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1752. /* Every tail move must follow the sequence below */
  1753. /* Disable notification that the ring is IDLE. The GT
  1754. * will then assume that it is busy and bring it out of rc6.
  1755. */
  1756. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1757. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1758. /* Clear the context id. Here be magic! */
  1759. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1760. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1761. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1762. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1763. 50))
  1764. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1765. /* Now that the ring is fully powered up, update the tail */
  1766. I915_WRITE_TAIL(ring, value);
  1767. POSTING_READ(RING_TAIL(ring->mmio_base));
  1768. /* Let the ring send IDLE messages to the GT again,
  1769. * and so let it sleep to conserve power when idle.
  1770. */
  1771. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1772. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1773. }
  1774. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1775. u32 invalidate, u32 flush)
  1776. {
  1777. uint32_t cmd;
  1778. int ret;
  1779. ret = intel_ring_begin(ring, 4);
  1780. if (ret)
  1781. return ret;
  1782. cmd = MI_FLUSH_DW;
  1783. if (INTEL_INFO(ring->dev)->gen >= 8)
  1784. cmd += 1;
  1785. /*
  1786. * Bspec vol 1c.5 - video engine command streamer:
  1787. * "If ENABLED, all TLBs will be invalidated once the flush
  1788. * operation is complete. This bit is only valid when the
  1789. * Post-Sync Operation field is a value of 1h or 3h."
  1790. */
  1791. if (invalidate & I915_GEM_GPU_DOMAINS)
  1792. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1793. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1794. intel_ring_emit(ring, cmd);
  1795. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1796. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1797. intel_ring_emit(ring, 0); /* upper addr */
  1798. intel_ring_emit(ring, 0); /* value */
  1799. } else {
  1800. intel_ring_emit(ring, 0);
  1801. intel_ring_emit(ring, MI_NOOP);
  1802. }
  1803. intel_ring_advance(ring);
  1804. return 0;
  1805. }
  1806. static int
  1807. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1808. u64 offset, u32 len,
  1809. unsigned flags)
  1810. {
  1811. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1812. int ret;
  1813. ret = intel_ring_begin(ring, 4);
  1814. if (ret)
  1815. return ret;
  1816. /* FIXME(BDW): Address space and security selectors. */
  1817. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1818. intel_ring_emit(ring, lower_32_bits(offset));
  1819. intel_ring_emit(ring, upper_32_bits(offset));
  1820. intel_ring_emit(ring, MI_NOOP);
  1821. intel_ring_advance(ring);
  1822. return 0;
  1823. }
  1824. static int
  1825. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1826. u64 offset, u32 len,
  1827. unsigned flags)
  1828. {
  1829. int ret;
  1830. ret = intel_ring_begin(ring, 2);
  1831. if (ret)
  1832. return ret;
  1833. intel_ring_emit(ring,
  1834. MI_BATCH_BUFFER_START |
  1835. (flags & I915_DISPATCH_SECURE ?
  1836. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1837. /* bit0-7 is the length on GEN6+ */
  1838. intel_ring_emit(ring, offset);
  1839. intel_ring_advance(ring);
  1840. return 0;
  1841. }
  1842. static int
  1843. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1844. u64 offset, u32 len,
  1845. unsigned flags)
  1846. {
  1847. int ret;
  1848. ret = intel_ring_begin(ring, 2);
  1849. if (ret)
  1850. return ret;
  1851. intel_ring_emit(ring,
  1852. MI_BATCH_BUFFER_START |
  1853. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1854. /* bit0-7 is the length on GEN6+ */
  1855. intel_ring_emit(ring, offset);
  1856. intel_ring_advance(ring);
  1857. return 0;
  1858. }
  1859. /* Blitter support (SandyBridge+) */
  1860. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1861. u32 invalidate, u32 flush)
  1862. {
  1863. struct drm_device *dev = ring->dev;
  1864. uint32_t cmd;
  1865. int ret;
  1866. ret = intel_ring_begin(ring, 4);
  1867. if (ret)
  1868. return ret;
  1869. cmd = MI_FLUSH_DW;
  1870. if (INTEL_INFO(ring->dev)->gen >= 8)
  1871. cmd += 1;
  1872. /*
  1873. * Bspec vol 1c.3 - blitter engine command streamer:
  1874. * "If ENABLED, all TLBs will be invalidated once the flush
  1875. * operation is complete. This bit is only valid when the
  1876. * Post-Sync Operation field is a value of 1h or 3h."
  1877. */
  1878. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1879. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1880. MI_FLUSH_DW_OP_STOREDW;
  1881. intel_ring_emit(ring, cmd);
  1882. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1883. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1884. intel_ring_emit(ring, 0); /* upper addr */
  1885. intel_ring_emit(ring, 0); /* value */
  1886. } else {
  1887. intel_ring_emit(ring, 0);
  1888. intel_ring_emit(ring, MI_NOOP);
  1889. }
  1890. intel_ring_advance(ring);
  1891. if (IS_GEN7(dev) && !invalidate && flush)
  1892. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1893. return 0;
  1894. }
  1895. int intel_init_render_ring_buffer(struct drm_device *dev)
  1896. {
  1897. struct drm_i915_private *dev_priv = dev->dev_private;
  1898. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1899. struct drm_i915_gem_object *obj;
  1900. int ret;
  1901. ring->name = "render ring";
  1902. ring->id = RCS;
  1903. ring->mmio_base = RENDER_RING_BASE;
  1904. if (INTEL_INFO(dev)->gen >= 8) {
  1905. if (i915_semaphore_is_enabled(dev)) {
  1906. obj = i915_gem_alloc_object(dev, 4096);
  1907. if (obj == NULL) {
  1908. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1909. i915.semaphores = 0;
  1910. } else {
  1911. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1912. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1913. if (ret != 0) {
  1914. drm_gem_object_unreference(&obj->base);
  1915. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1916. i915.semaphores = 0;
  1917. } else
  1918. dev_priv->semaphore_obj = obj;
  1919. }
  1920. }
  1921. if (IS_CHERRYVIEW(dev))
  1922. ring->init_context = chv_init_workarounds;
  1923. else
  1924. ring->init_context = bdw_init_workarounds;
  1925. ring->add_request = gen6_add_request;
  1926. ring->flush = gen8_render_ring_flush;
  1927. ring->irq_get = gen8_ring_get_irq;
  1928. ring->irq_put = gen8_ring_put_irq;
  1929. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1930. ring->get_seqno = gen6_ring_get_seqno;
  1931. ring->set_seqno = ring_set_seqno;
  1932. if (i915_semaphore_is_enabled(dev)) {
  1933. WARN_ON(!dev_priv->semaphore_obj);
  1934. ring->semaphore.sync_to = gen8_ring_sync;
  1935. ring->semaphore.signal = gen8_rcs_signal;
  1936. GEN8_RING_SEMAPHORE_INIT;
  1937. }
  1938. } else if (INTEL_INFO(dev)->gen >= 6) {
  1939. ring->add_request = gen6_add_request;
  1940. ring->flush = gen7_render_ring_flush;
  1941. if (INTEL_INFO(dev)->gen == 6)
  1942. ring->flush = gen6_render_ring_flush;
  1943. ring->irq_get = gen6_ring_get_irq;
  1944. ring->irq_put = gen6_ring_put_irq;
  1945. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1946. ring->get_seqno = gen6_ring_get_seqno;
  1947. ring->set_seqno = ring_set_seqno;
  1948. if (i915_semaphore_is_enabled(dev)) {
  1949. ring->semaphore.sync_to = gen6_ring_sync;
  1950. ring->semaphore.signal = gen6_signal;
  1951. /*
  1952. * The current semaphore is only applied on pre-gen8
  1953. * platform. And there is no VCS2 ring on the pre-gen8
  1954. * platform. So the semaphore between RCS and VCS2 is
  1955. * initialized as INVALID. Gen8 will initialize the
  1956. * sema between VCS2 and RCS later.
  1957. */
  1958. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1959. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1960. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1961. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1962. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1963. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1964. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1965. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1966. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1967. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1968. }
  1969. } else if (IS_GEN5(dev)) {
  1970. ring->add_request = pc_render_add_request;
  1971. ring->flush = gen4_render_ring_flush;
  1972. ring->get_seqno = pc_render_get_seqno;
  1973. ring->set_seqno = pc_render_set_seqno;
  1974. ring->irq_get = gen5_ring_get_irq;
  1975. ring->irq_put = gen5_ring_put_irq;
  1976. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1977. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1978. } else {
  1979. ring->add_request = i9xx_add_request;
  1980. if (INTEL_INFO(dev)->gen < 4)
  1981. ring->flush = gen2_render_ring_flush;
  1982. else
  1983. ring->flush = gen4_render_ring_flush;
  1984. ring->get_seqno = ring_get_seqno;
  1985. ring->set_seqno = ring_set_seqno;
  1986. if (IS_GEN2(dev)) {
  1987. ring->irq_get = i8xx_ring_get_irq;
  1988. ring->irq_put = i8xx_ring_put_irq;
  1989. } else {
  1990. ring->irq_get = i9xx_ring_get_irq;
  1991. ring->irq_put = i9xx_ring_put_irq;
  1992. }
  1993. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1994. }
  1995. ring->write_tail = ring_write_tail;
  1996. if (IS_HASWELL(dev))
  1997. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1998. else if (IS_GEN8(dev))
  1999. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2000. else if (INTEL_INFO(dev)->gen >= 6)
  2001. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2002. else if (INTEL_INFO(dev)->gen >= 4)
  2003. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2004. else if (IS_I830(dev) || IS_845G(dev))
  2005. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2006. else
  2007. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2008. ring->init = init_render_ring;
  2009. ring->cleanup = render_ring_cleanup;
  2010. /* Workaround batchbuffer to combat CS tlb bug. */
  2011. if (HAS_BROKEN_CS_TLB(dev)) {
  2012. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2013. if (obj == NULL) {
  2014. DRM_ERROR("Failed to allocate batch bo\n");
  2015. return -ENOMEM;
  2016. }
  2017. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2018. if (ret != 0) {
  2019. drm_gem_object_unreference(&obj->base);
  2020. DRM_ERROR("Failed to ping batch bo\n");
  2021. return ret;
  2022. }
  2023. ring->scratch.obj = obj;
  2024. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2025. }
  2026. return intel_init_ring_buffer(dev, ring);
  2027. }
  2028. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  2029. {
  2030. struct drm_i915_private *dev_priv = dev->dev_private;
  2031. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2032. struct intel_ringbuffer *ringbuf = ring->buffer;
  2033. int ret;
  2034. if (ringbuf == NULL) {
  2035. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  2036. if (!ringbuf)
  2037. return -ENOMEM;
  2038. ring->buffer = ringbuf;
  2039. }
  2040. ring->name = "render ring";
  2041. ring->id = RCS;
  2042. ring->mmio_base = RENDER_RING_BASE;
  2043. if (INTEL_INFO(dev)->gen >= 6) {
  2044. /* non-kms not supported on gen6+ */
  2045. ret = -ENODEV;
  2046. goto err_ringbuf;
  2047. }
  2048. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  2049. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  2050. * the special gen5 functions. */
  2051. ring->add_request = i9xx_add_request;
  2052. if (INTEL_INFO(dev)->gen < 4)
  2053. ring->flush = gen2_render_ring_flush;
  2054. else
  2055. ring->flush = gen4_render_ring_flush;
  2056. ring->get_seqno = ring_get_seqno;
  2057. ring->set_seqno = ring_set_seqno;
  2058. if (IS_GEN2(dev)) {
  2059. ring->irq_get = i8xx_ring_get_irq;
  2060. ring->irq_put = i8xx_ring_put_irq;
  2061. } else {
  2062. ring->irq_get = i9xx_ring_get_irq;
  2063. ring->irq_put = i9xx_ring_put_irq;
  2064. }
  2065. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2066. ring->write_tail = ring_write_tail;
  2067. if (INTEL_INFO(dev)->gen >= 4)
  2068. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2069. else if (IS_I830(dev) || IS_845G(dev))
  2070. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2071. else
  2072. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2073. ring->init = init_render_ring;
  2074. ring->cleanup = render_ring_cleanup;
  2075. ring->dev = dev;
  2076. INIT_LIST_HEAD(&ring->active_list);
  2077. INIT_LIST_HEAD(&ring->request_list);
  2078. ringbuf->size = size;
  2079. ringbuf->effective_size = ringbuf->size;
  2080. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  2081. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  2082. ringbuf->virtual_start = ioremap_wc(start, size);
  2083. if (ringbuf->virtual_start == NULL) {
  2084. DRM_ERROR("can not ioremap virtual address for"
  2085. " ring buffer\n");
  2086. ret = -ENOMEM;
  2087. goto err_ringbuf;
  2088. }
  2089. if (!I915_NEED_GFX_HWS(dev)) {
  2090. ret = init_phys_status_page(ring);
  2091. if (ret)
  2092. goto err_vstart;
  2093. }
  2094. return 0;
  2095. err_vstart:
  2096. iounmap(ringbuf->virtual_start);
  2097. err_ringbuf:
  2098. kfree(ringbuf);
  2099. ring->buffer = NULL;
  2100. return ret;
  2101. }
  2102. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2103. {
  2104. struct drm_i915_private *dev_priv = dev->dev_private;
  2105. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2106. ring->name = "bsd ring";
  2107. ring->id = VCS;
  2108. ring->write_tail = ring_write_tail;
  2109. if (INTEL_INFO(dev)->gen >= 6) {
  2110. ring->mmio_base = GEN6_BSD_RING_BASE;
  2111. /* gen6 bsd needs a special wa for tail updates */
  2112. if (IS_GEN6(dev))
  2113. ring->write_tail = gen6_bsd_ring_write_tail;
  2114. ring->flush = gen6_bsd_ring_flush;
  2115. ring->add_request = gen6_add_request;
  2116. ring->get_seqno = gen6_ring_get_seqno;
  2117. ring->set_seqno = ring_set_seqno;
  2118. if (INTEL_INFO(dev)->gen >= 8) {
  2119. ring->irq_enable_mask =
  2120. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2121. ring->irq_get = gen8_ring_get_irq;
  2122. ring->irq_put = gen8_ring_put_irq;
  2123. ring->dispatch_execbuffer =
  2124. gen8_ring_dispatch_execbuffer;
  2125. if (i915_semaphore_is_enabled(dev)) {
  2126. ring->semaphore.sync_to = gen8_ring_sync;
  2127. ring->semaphore.signal = gen8_xcs_signal;
  2128. GEN8_RING_SEMAPHORE_INIT;
  2129. }
  2130. } else {
  2131. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2132. ring->irq_get = gen6_ring_get_irq;
  2133. ring->irq_put = gen6_ring_put_irq;
  2134. ring->dispatch_execbuffer =
  2135. gen6_ring_dispatch_execbuffer;
  2136. if (i915_semaphore_is_enabled(dev)) {
  2137. ring->semaphore.sync_to = gen6_ring_sync;
  2138. ring->semaphore.signal = gen6_signal;
  2139. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2140. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2141. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2142. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2143. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2144. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2145. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2146. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2147. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2148. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2149. }
  2150. }
  2151. } else {
  2152. ring->mmio_base = BSD_RING_BASE;
  2153. ring->flush = bsd_ring_flush;
  2154. ring->add_request = i9xx_add_request;
  2155. ring->get_seqno = ring_get_seqno;
  2156. ring->set_seqno = ring_set_seqno;
  2157. if (IS_GEN5(dev)) {
  2158. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2159. ring->irq_get = gen5_ring_get_irq;
  2160. ring->irq_put = gen5_ring_put_irq;
  2161. } else {
  2162. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2163. ring->irq_get = i9xx_ring_get_irq;
  2164. ring->irq_put = i9xx_ring_put_irq;
  2165. }
  2166. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2167. }
  2168. ring->init = init_ring_common;
  2169. return intel_init_ring_buffer(dev, ring);
  2170. }
  2171. /**
  2172. * Initialize the second BSD ring for Broadwell GT3.
  2173. * It is noted that this only exists on Broadwell GT3.
  2174. */
  2175. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2176. {
  2177. struct drm_i915_private *dev_priv = dev->dev_private;
  2178. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2179. if ((INTEL_INFO(dev)->gen != 8)) {
  2180. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2181. return -EINVAL;
  2182. }
  2183. ring->name = "bsd2 ring";
  2184. ring->id = VCS2;
  2185. ring->write_tail = ring_write_tail;
  2186. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2187. ring->flush = gen6_bsd_ring_flush;
  2188. ring->add_request = gen6_add_request;
  2189. ring->get_seqno = gen6_ring_get_seqno;
  2190. ring->set_seqno = ring_set_seqno;
  2191. ring->irq_enable_mask =
  2192. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2193. ring->irq_get = gen8_ring_get_irq;
  2194. ring->irq_put = gen8_ring_put_irq;
  2195. ring->dispatch_execbuffer =
  2196. gen8_ring_dispatch_execbuffer;
  2197. if (i915_semaphore_is_enabled(dev)) {
  2198. ring->semaphore.sync_to = gen8_ring_sync;
  2199. ring->semaphore.signal = gen8_xcs_signal;
  2200. GEN8_RING_SEMAPHORE_INIT;
  2201. }
  2202. ring->init = init_ring_common;
  2203. return intel_init_ring_buffer(dev, ring);
  2204. }
  2205. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2206. {
  2207. struct drm_i915_private *dev_priv = dev->dev_private;
  2208. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2209. ring->name = "blitter ring";
  2210. ring->id = BCS;
  2211. ring->mmio_base = BLT_RING_BASE;
  2212. ring->write_tail = ring_write_tail;
  2213. ring->flush = gen6_ring_flush;
  2214. ring->add_request = gen6_add_request;
  2215. ring->get_seqno = gen6_ring_get_seqno;
  2216. ring->set_seqno = ring_set_seqno;
  2217. if (INTEL_INFO(dev)->gen >= 8) {
  2218. ring->irq_enable_mask =
  2219. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2220. ring->irq_get = gen8_ring_get_irq;
  2221. ring->irq_put = gen8_ring_put_irq;
  2222. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2223. if (i915_semaphore_is_enabled(dev)) {
  2224. ring->semaphore.sync_to = gen8_ring_sync;
  2225. ring->semaphore.signal = gen8_xcs_signal;
  2226. GEN8_RING_SEMAPHORE_INIT;
  2227. }
  2228. } else {
  2229. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2230. ring->irq_get = gen6_ring_get_irq;
  2231. ring->irq_put = gen6_ring_put_irq;
  2232. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2233. if (i915_semaphore_is_enabled(dev)) {
  2234. ring->semaphore.signal = gen6_signal;
  2235. ring->semaphore.sync_to = gen6_ring_sync;
  2236. /*
  2237. * The current semaphore is only applied on pre-gen8
  2238. * platform. And there is no VCS2 ring on the pre-gen8
  2239. * platform. So the semaphore between BCS and VCS2 is
  2240. * initialized as INVALID. Gen8 will initialize the
  2241. * sema between BCS and VCS2 later.
  2242. */
  2243. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2244. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2245. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2246. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2247. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2248. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2249. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2250. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2251. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2252. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2253. }
  2254. }
  2255. ring->init = init_ring_common;
  2256. return intel_init_ring_buffer(dev, ring);
  2257. }
  2258. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2259. {
  2260. struct drm_i915_private *dev_priv = dev->dev_private;
  2261. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2262. ring->name = "video enhancement ring";
  2263. ring->id = VECS;
  2264. ring->mmio_base = VEBOX_RING_BASE;
  2265. ring->write_tail = ring_write_tail;
  2266. ring->flush = gen6_ring_flush;
  2267. ring->add_request = gen6_add_request;
  2268. ring->get_seqno = gen6_ring_get_seqno;
  2269. ring->set_seqno = ring_set_seqno;
  2270. if (INTEL_INFO(dev)->gen >= 8) {
  2271. ring->irq_enable_mask =
  2272. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2273. ring->irq_get = gen8_ring_get_irq;
  2274. ring->irq_put = gen8_ring_put_irq;
  2275. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2276. if (i915_semaphore_is_enabled(dev)) {
  2277. ring->semaphore.sync_to = gen8_ring_sync;
  2278. ring->semaphore.signal = gen8_xcs_signal;
  2279. GEN8_RING_SEMAPHORE_INIT;
  2280. }
  2281. } else {
  2282. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2283. ring->irq_get = hsw_vebox_get_irq;
  2284. ring->irq_put = hsw_vebox_put_irq;
  2285. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2286. if (i915_semaphore_is_enabled(dev)) {
  2287. ring->semaphore.sync_to = gen6_ring_sync;
  2288. ring->semaphore.signal = gen6_signal;
  2289. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2290. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2291. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2292. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2293. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2294. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2295. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2296. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2297. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2298. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2299. }
  2300. }
  2301. ring->init = init_ring_common;
  2302. return intel_init_ring_buffer(dev, ring);
  2303. }
  2304. int
  2305. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2306. {
  2307. int ret;
  2308. if (!ring->gpu_caches_dirty)
  2309. return 0;
  2310. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2311. if (ret)
  2312. return ret;
  2313. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2314. ring->gpu_caches_dirty = false;
  2315. return 0;
  2316. }
  2317. int
  2318. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2319. {
  2320. uint32_t flush_domains;
  2321. int ret;
  2322. flush_domains = 0;
  2323. if (ring->gpu_caches_dirty)
  2324. flush_domains = I915_GEM_GPU_DOMAINS;
  2325. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2326. if (ret)
  2327. return ret;
  2328. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2329. ring->gpu_caches_dirty = false;
  2330. return 0;
  2331. }
  2332. void
  2333. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2334. {
  2335. int ret;
  2336. if (!intel_ring_initialized(ring))
  2337. return;
  2338. ret = intel_ring_idle(ring);
  2339. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2340. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2341. ring->name, ret);
  2342. stop_ring(ring);
  2343. }