gmc_v8_0.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include "drmP.h"
  25. #include "amdgpu.h"
  26. #include "gmc_v8_0.h"
  27. #include "amdgpu_ucode.h"
  28. #include "gmc/gmc_8_1_d.h"
  29. #include "gmc/gmc_8_1_sh_mask.h"
  30. #include "bif/bif_5_0_d.h"
  31. #include "bif/bif_5_0_sh_mask.h"
  32. #include "oss/oss_3_0_d.h"
  33. #include "oss/oss_3_0_sh_mask.h"
  34. #include "vid.h"
  35. #include "vi.h"
  36. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
  37. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
  38. static int gmc_v8_0_wait_for_idle(void *handle);
  39. MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
  40. MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
  41. MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
  42. MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
  43. static const u32 golden_settings_tonga_a11[] =
  44. {
  45. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  46. mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
  47. mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
  48. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  49. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  50. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  51. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  52. };
  53. static const u32 tonga_mgcg_cgcg_init[] =
  54. {
  55. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  56. };
  57. static const u32 golden_settings_fiji_a10[] =
  58. {
  59. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  60. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  61. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  62. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  63. };
  64. static const u32 fiji_mgcg_cgcg_init[] =
  65. {
  66. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  67. };
  68. static const u32 golden_settings_polaris11_a11[] =
  69. {
  70. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  71. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  72. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  73. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  74. };
  75. static const u32 golden_settings_polaris10_a11[] =
  76. {
  77. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  78. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  79. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  80. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  81. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  82. };
  83. static const u32 cz_mgcg_cgcg_init[] =
  84. {
  85. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  86. };
  87. static const u32 stoney_mgcg_cgcg_init[] =
  88. {
  89. mmATC_MISC_CG, 0xffffffff, 0x000c0200,
  90. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  91. };
  92. static const u32 golden_settings_stoney_common[] =
  93. {
  94. mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
  95. mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
  96. };
  97. static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
  98. {
  99. switch (adev->asic_type) {
  100. case CHIP_FIJI:
  101. amdgpu_program_register_sequence(adev,
  102. fiji_mgcg_cgcg_init,
  103. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  104. amdgpu_program_register_sequence(adev,
  105. golden_settings_fiji_a10,
  106. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  107. break;
  108. case CHIP_TONGA:
  109. amdgpu_program_register_sequence(adev,
  110. tonga_mgcg_cgcg_init,
  111. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  112. amdgpu_program_register_sequence(adev,
  113. golden_settings_tonga_a11,
  114. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  115. break;
  116. case CHIP_POLARIS11:
  117. case CHIP_POLARIS12:
  118. amdgpu_program_register_sequence(adev,
  119. golden_settings_polaris11_a11,
  120. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  121. break;
  122. case CHIP_POLARIS10:
  123. amdgpu_program_register_sequence(adev,
  124. golden_settings_polaris10_a11,
  125. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  126. break;
  127. case CHIP_CARRIZO:
  128. amdgpu_program_register_sequence(adev,
  129. cz_mgcg_cgcg_init,
  130. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  131. break;
  132. case CHIP_STONEY:
  133. amdgpu_program_register_sequence(adev,
  134. stoney_mgcg_cgcg_init,
  135. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  136. amdgpu_program_register_sequence(adev,
  137. golden_settings_stoney_common,
  138. (const u32)ARRAY_SIZE(golden_settings_stoney_common));
  139. break;
  140. default:
  141. break;
  142. }
  143. }
  144. static void gmc_v8_0_mc_stop(struct amdgpu_device *adev,
  145. struct amdgpu_mode_mc_save *save)
  146. {
  147. u32 blackout;
  148. if (adev->mode_info.num_crtc)
  149. amdgpu_display_stop_mc_access(adev, save);
  150. gmc_v8_0_wait_for_idle(adev);
  151. blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  152. if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
  153. /* Block CPU access */
  154. WREG32(mmBIF_FB_EN, 0);
  155. /* blackout the MC */
  156. blackout = REG_SET_FIELD(blackout,
  157. MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
  158. WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
  159. }
  160. /* wait for the MC to settle */
  161. udelay(100);
  162. }
  163. static void gmc_v8_0_mc_resume(struct amdgpu_device *adev,
  164. struct amdgpu_mode_mc_save *save)
  165. {
  166. u32 tmp;
  167. /* unblackout the MC */
  168. tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  169. tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
  170. WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
  171. /* allow CPU access */
  172. tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
  173. tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
  174. WREG32(mmBIF_FB_EN, tmp);
  175. if (adev->mode_info.num_crtc)
  176. amdgpu_display_resume_mc_access(adev, save);
  177. }
  178. /**
  179. * gmc_v8_0_init_microcode - load ucode images from disk
  180. *
  181. * @adev: amdgpu_device pointer
  182. *
  183. * Use the firmware interface to load the ucode images into
  184. * the driver (not loaded into hw).
  185. * Returns 0 on success, error on failure.
  186. */
  187. static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
  188. {
  189. const char *chip_name;
  190. char fw_name[30];
  191. int err;
  192. DRM_DEBUG("\n");
  193. switch (adev->asic_type) {
  194. case CHIP_TONGA:
  195. chip_name = "tonga";
  196. break;
  197. case CHIP_POLARIS11:
  198. chip_name = "polaris11";
  199. break;
  200. case CHIP_POLARIS10:
  201. chip_name = "polaris10";
  202. break;
  203. case CHIP_POLARIS12:
  204. chip_name = "polaris12";
  205. break;
  206. case CHIP_FIJI:
  207. case CHIP_CARRIZO:
  208. case CHIP_STONEY:
  209. return 0;
  210. default: BUG();
  211. }
  212. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
  213. err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
  214. if (err)
  215. goto out;
  216. err = amdgpu_ucode_validate(adev->mc.fw);
  217. out:
  218. if (err) {
  219. pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
  220. release_firmware(adev->mc.fw);
  221. adev->mc.fw = NULL;
  222. }
  223. return err;
  224. }
  225. /**
  226. * gmc_v8_0_mc_load_microcode - load MC ucode into the hw
  227. *
  228. * @adev: amdgpu_device pointer
  229. *
  230. * Load the GDDR MC ucode into the hw (CIK).
  231. * Returns 0 on success, error on failure.
  232. */
  233. static int gmc_v8_0_mc_load_microcode(struct amdgpu_device *adev)
  234. {
  235. const struct mc_firmware_header_v1_0 *hdr;
  236. const __le32 *fw_data = NULL;
  237. const __le32 *io_mc_regs = NULL;
  238. u32 running;
  239. int i, ucode_size, regs_size;
  240. if (!adev->mc.fw)
  241. return -EINVAL;
  242. /* Skip MC ucode loading on SR-IOV capable boards.
  243. * vbios does this for us in asic_init in that case.
  244. * Skip MC ucode loading on VF, because hypervisor will do that
  245. * for this adaptor.
  246. */
  247. if (amdgpu_sriov_bios(adev))
  248. return 0;
  249. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  250. amdgpu_ucode_print_mc_hdr(&hdr->header);
  251. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  252. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  253. io_mc_regs = (const __le32 *)
  254. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  255. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  256. fw_data = (const __le32 *)
  257. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  258. running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
  259. if (running == 0) {
  260. /* reset the engine and set to writable */
  261. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  262. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  263. /* load mc io regs */
  264. for (i = 0; i < regs_size; i++) {
  265. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  266. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  267. }
  268. /* load the MC ucode */
  269. for (i = 0; i < ucode_size; i++)
  270. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  271. /* put the engine back into the active state */
  272. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  273. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  274. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  275. /* wait for training to complete */
  276. for (i = 0; i < adev->usec_timeout; i++) {
  277. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  278. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
  279. break;
  280. udelay(1);
  281. }
  282. for (i = 0; i < adev->usec_timeout; i++) {
  283. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  284. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
  285. break;
  286. udelay(1);
  287. }
  288. }
  289. return 0;
  290. }
  291. static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
  292. struct amdgpu_mc *mc)
  293. {
  294. if (mc->mc_vram_size > 0xFFC0000000ULL) {
  295. /* leave room for at least 1024M GTT */
  296. dev_warn(adev->dev, "limiting VRAM\n");
  297. mc->real_vram_size = 0xFFC0000000ULL;
  298. mc->mc_vram_size = 0xFFC0000000ULL;
  299. }
  300. amdgpu_vram_location(adev, &adev->mc, 0);
  301. adev->mc.gtt_base_align = 0;
  302. amdgpu_gtt_location(adev, mc);
  303. }
  304. /**
  305. * gmc_v8_0_mc_program - program the GPU memory controller
  306. *
  307. * @adev: amdgpu_device pointer
  308. *
  309. * Set the location of vram, gart, and AGP in the GPU's
  310. * physical address space (CIK).
  311. */
  312. static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
  313. {
  314. struct amdgpu_mode_mc_save save;
  315. u32 tmp;
  316. int i, j;
  317. /* Initialize HDP */
  318. for (i = 0, j = 0; i < 32; i++, j += 0x6) {
  319. WREG32((0xb05 + j), 0x00000000);
  320. WREG32((0xb06 + j), 0x00000000);
  321. WREG32((0xb07 + j), 0x00000000);
  322. WREG32((0xb08 + j), 0x00000000);
  323. WREG32((0xb09 + j), 0x00000000);
  324. }
  325. WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
  326. if (adev->mode_info.num_crtc)
  327. amdgpu_display_set_vga_render_state(adev, false);
  328. gmc_v8_0_mc_stop(adev, &save);
  329. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  330. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  331. }
  332. /* Update configuration */
  333. WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
  334. adev->mc.vram_start >> 12);
  335. WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
  336. adev->mc.vram_end >> 12);
  337. WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
  338. adev->vram_scratch.gpu_addr >> 12);
  339. tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16;
  340. tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF);
  341. WREG32(mmMC_VM_FB_LOCATION, tmp);
  342. /* XXX double check these! */
  343. WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8));
  344. WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
  345. WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
  346. WREG32(mmMC_VM_AGP_BASE, 0);
  347. WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
  348. WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
  349. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  350. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  351. }
  352. gmc_v8_0_mc_resume(adev, &save);
  353. WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
  354. tmp = RREG32(mmHDP_MISC_CNTL);
  355. tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
  356. WREG32(mmHDP_MISC_CNTL, tmp);
  357. tmp = RREG32(mmHDP_HOST_PATH_CNTL);
  358. WREG32(mmHDP_HOST_PATH_CNTL, tmp);
  359. }
  360. /**
  361. * gmc_v8_0_mc_init - initialize the memory controller driver params
  362. *
  363. * @adev: amdgpu_device pointer
  364. *
  365. * Look up the amount of vram, vram width, and decide how to place
  366. * vram and gart within the GPU's physical address space (CIK).
  367. * Returns 0 for success.
  368. */
  369. static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
  370. {
  371. u32 tmp;
  372. int chansize, numchan;
  373. /* Get VRAM informations */
  374. tmp = RREG32(mmMC_ARB_RAMCFG);
  375. if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
  376. chansize = 64;
  377. } else {
  378. chansize = 32;
  379. }
  380. tmp = RREG32(mmMC_SHARED_CHMAP);
  381. switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
  382. case 0:
  383. default:
  384. numchan = 1;
  385. break;
  386. case 1:
  387. numchan = 2;
  388. break;
  389. case 2:
  390. numchan = 4;
  391. break;
  392. case 3:
  393. numchan = 8;
  394. break;
  395. case 4:
  396. numchan = 3;
  397. break;
  398. case 5:
  399. numchan = 6;
  400. break;
  401. case 6:
  402. numchan = 10;
  403. break;
  404. case 7:
  405. numchan = 12;
  406. break;
  407. case 8:
  408. numchan = 16;
  409. break;
  410. }
  411. adev->mc.vram_width = numchan * chansize;
  412. /* Could aper size report 0 ? */
  413. adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
  414. adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
  415. /* size in MB on si */
  416. adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  417. adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  418. #ifdef CONFIG_X86_64
  419. if (adev->flags & AMD_IS_APU) {
  420. adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
  421. adev->mc.aper_size = adev->mc.real_vram_size;
  422. }
  423. #endif
  424. /* In case the PCI BAR is larger than the actual amount of vram */
  425. adev->mc.visible_vram_size = adev->mc.aper_size;
  426. if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
  427. adev->mc.visible_vram_size = adev->mc.real_vram_size;
  428. /* unless the user had overridden it, set the gart
  429. * size equal to the 1024 or vram, whichever is larger.
  430. */
  431. if (amdgpu_gart_size == -1)
  432. adev->mc.gtt_size = max((1024ULL << 20), adev->mc.mc_vram_size);
  433. else
  434. adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20;
  435. gmc_v8_0_vram_gtt_location(adev, &adev->mc);
  436. return 0;
  437. }
  438. /*
  439. * GART
  440. * VMID 0 is the physical GPU addresses as used by the kernel.
  441. * VMIDs 1-15 are used for userspace clients and are handled
  442. * by the amdgpu vm/hsa code.
  443. */
  444. /**
  445. * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
  446. *
  447. * @adev: amdgpu_device pointer
  448. * @vmid: vm instance to flush
  449. *
  450. * Flush the TLB for the requested page table (CIK).
  451. */
  452. static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
  453. uint32_t vmid)
  454. {
  455. /* flush hdp cache */
  456. WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
  457. /* bits 0-15 are the VM contexts0-15 */
  458. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  459. }
  460. /**
  461. * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
  462. *
  463. * @adev: amdgpu_device pointer
  464. * @cpu_pt_addr: cpu address of the page table
  465. * @gpu_page_idx: entry in the page table to update
  466. * @addr: dst addr to write into pte/pde
  467. * @flags: access flags
  468. *
  469. * Update the page tables using the CPU.
  470. */
  471. static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
  472. void *cpu_pt_addr,
  473. uint32_t gpu_page_idx,
  474. uint64_t addr,
  475. uint32_t flags)
  476. {
  477. void __iomem *ptr = (void *)cpu_pt_addr;
  478. uint64_t value;
  479. /*
  480. * PTE format on VI:
  481. * 63:40 reserved
  482. * 39:12 4k physical page base address
  483. * 11:7 fragment
  484. * 6 write
  485. * 5 read
  486. * 4 exe
  487. * 3 reserved
  488. * 2 snooped
  489. * 1 system
  490. * 0 valid
  491. *
  492. * PDE format on VI:
  493. * 63:59 block fragment size
  494. * 58:40 reserved
  495. * 39:1 physical base address of PTE
  496. * bits 5:1 must be 0.
  497. * 0 valid
  498. */
  499. value = addr & 0x000000FFFFFFF000ULL;
  500. value |= flags;
  501. writeq(value, ptr + (gpu_page_idx * 8));
  502. return 0;
  503. }
  504. /**
  505. * gmc_v8_0_set_fault_enable_default - update VM fault handling
  506. *
  507. * @adev: amdgpu_device pointer
  508. * @value: true redirects VM faults to the default page
  509. */
  510. static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
  511. bool value)
  512. {
  513. u32 tmp;
  514. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  515. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  516. RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  517. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  518. DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  519. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  520. PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  521. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  522. VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  523. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  524. READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  525. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  526. WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  527. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  528. EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  529. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  530. }
  531. /**
  532. * gmc_v8_0_set_prt - set PRT VM fault
  533. *
  534. * @adev: amdgpu_device pointer
  535. * @enable: enable/disable VM fault handling for PRT
  536. */
  537. static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
  538. {
  539. u32 tmp;
  540. if (enable && !adev->mc.prt_warning) {
  541. dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
  542. adev->mc.prt_warning = true;
  543. }
  544. tmp = RREG32(mmVM_PRT_CNTL);
  545. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  546. CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  547. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  548. CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  549. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  550. TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  551. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  552. TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  553. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  554. L2_CACHE_STORE_INVALID_ENTRIES, enable);
  555. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  556. L1_TLB_STORE_INVALID_ENTRIES, enable);
  557. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  558. MASK_PDE0_FAULT, enable);
  559. WREG32(mmVM_PRT_CNTL, tmp);
  560. if (enable) {
  561. uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
  562. uint32_t high = adev->vm_manager.max_pfn;
  563. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
  564. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
  565. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
  566. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
  567. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
  568. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
  569. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
  570. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
  571. } else {
  572. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
  573. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
  574. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
  575. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
  576. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
  577. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
  578. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
  579. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
  580. }
  581. }
  582. /**
  583. * gmc_v8_0_gart_enable - gart enable
  584. *
  585. * @adev: amdgpu_device pointer
  586. *
  587. * This sets up the TLBs, programs the page tables for VMID0,
  588. * sets up the hw for VMIDs 1-15 which are allocated on
  589. * demand, and sets up the global locations for the LDS, GDS,
  590. * and GPUVM for FSA64 clients (CIK).
  591. * Returns 0 for success, errors for failure.
  592. */
  593. static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
  594. {
  595. int r, i;
  596. u32 tmp;
  597. if (adev->gart.robj == NULL) {
  598. dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
  599. return -EINVAL;
  600. }
  601. r = amdgpu_gart_table_vram_pin(adev);
  602. if (r)
  603. return r;
  604. /* Setup TLB control */
  605. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  606. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
  607. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
  608. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
  609. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
  610. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
  611. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  612. /* Setup L2 cache */
  613. tmp = RREG32(mmVM_L2_CNTL);
  614. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
  615. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
  616. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
  617. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
  618. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
  619. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
  620. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
  621. WREG32(mmVM_L2_CNTL, tmp);
  622. tmp = RREG32(mmVM_L2_CNTL2);
  623. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
  624. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
  625. WREG32(mmVM_L2_CNTL2, tmp);
  626. tmp = RREG32(mmVM_L2_CNTL3);
  627. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
  628. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
  629. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
  630. WREG32(mmVM_L2_CNTL3, tmp);
  631. /* XXX: set to enable PTE/PDE in system memory */
  632. tmp = RREG32(mmVM_L2_CNTL4);
  633. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
  634. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
  635. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
  636. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
  637. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
  638. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
  639. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
  640. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
  641. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
  642. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
  643. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
  644. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
  645. WREG32(mmVM_L2_CNTL4, tmp);
  646. /* setup context0 */
  647. WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12);
  648. WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12);
  649. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
  650. WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
  651. (u32)(adev->dummy_page.addr >> 12));
  652. WREG32(mmVM_CONTEXT0_CNTL2, 0);
  653. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  654. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
  655. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
  656. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  657. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  658. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
  659. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
  660. WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
  661. /* empty context1-15 */
  662. /* FIXME start with 4G, once using 2 level pt switch to full
  663. * vm size space
  664. */
  665. /* set vm size, must be a multiple of 4 */
  666. WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
  667. WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
  668. for (i = 1; i < 16; i++) {
  669. if (i < 8)
  670. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
  671. adev->gart.table_addr >> 12);
  672. else
  673. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
  674. adev->gart.table_addr >> 12);
  675. }
  676. /* enable context1-15 */
  677. WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
  678. (u32)(adev->dummy_page.addr >> 12));
  679. WREG32(mmVM_CONTEXT1_CNTL2, 4);
  680. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  681. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
  682. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
  683. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  684. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  685. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  686. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  687. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  688. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  689. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  690. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
  691. amdgpu_vm_block_size - 9);
  692. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  693. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
  694. gmc_v8_0_set_fault_enable_default(adev, false);
  695. else
  696. gmc_v8_0_set_fault_enable_default(adev, true);
  697. gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
  698. DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
  699. (unsigned)(adev->mc.gtt_size >> 20),
  700. (unsigned long long)adev->gart.table_addr);
  701. adev->gart.ready = true;
  702. return 0;
  703. }
  704. static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
  705. {
  706. int r;
  707. if (adev->gart.robj) {
  708. WARN(1, "R600 PCIE GART already initialized\n");
  709. return 0;
  710. }
  711. /* Initialize common gart structure */
  712. r = amdgpu_gart_init(adev);
  713. if (r)
  714. return r;
  715. adev->gart.table_size = adev->gart.num_gpu_pages * 8;
  716. return amdgpu_gart_table_vram_alloc(adev);
  717. }
  718. /**
  719. * gmc_v8_0_gart_disable - gart disable
  720. *
  721. * @adev: amdgpu_device pointer
  722. *
  723. * This disables all VM page table (CIK).
  724. */
  725. static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
  726. {
  727. u32 tmp;
  728. /* Disable all tables */
  729. WREG32(mmVM_CONTEXT0_CNTL, 0);
  730. WREG32(mmVM_CONTEXT1_CNTL, 0);
  731. /* Setup TLB control */
  732. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  733. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
  734. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
  735. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
  736. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  737. /* Setup L2 cache */
  738. tmp = RREG32(mmVM_L2_CNTL);
  739. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
  740. WREG32(mmVM_L2_CNTL, tmp);
  741. WREG32(mmVM_L2_CNTL2, 0);
  742. amdgpu_gart_table_vram_unpin(adev);
  743. }
  744. /**
  745. * gmc_v8_0_gart_fini - vm fini callback
  746. *
  747. * @adev: amdgpu_device pointer
  748. *
  749. * Tears down the driver GART/VM setup (CIK).
  750. */
  751. static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
  752. {
  753. amdgpu_gart_table_vram_free(adev);
  754. amdgpu_gart_fini(adev);
  755. }
  756. /*
  757. * vm
  758. * VMID 0 is the physical GPU addresses as used by the kernel.
  759. * VMIDs 1-15 are used for userspace clients and are handled
  760. * by the amdgpu vm/hsa code.
  761. */
  762. /**
  763. * gmc_v8_0_vm_init - cik vm init callback
  764. *
  765. * @adev: amdgpu_device pointer
  766. *
  767. * Inits cik specific vm parameters (number of VMs, base of vram for
  768. * VMIDs 1-15) (CIK).
  769. * Returns 0 for success.
  770. */
  771. static int gmc_v8_0_vm_init(struct amdgpu_device *adev)
  772. {
  773. /*
  774. * number of VMs
  775. * VMID 0 is reserved for System
  776. * amdgpu graphics/compute will use VMIDs 1-7
  777. * amdkfd will use VMIDs 8-15
  778. */
  779. adev->vm_manager.num_ids = AMDGPU_NUM_OF_VMIDS;
  780. amdgpu_vm_manager_init(adev);
  781. /* base offset of vram pages */
  782. if (adev->flags & AMD_IS_APU) {
  783. u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
  784. tmp <<= 22;
  785. adev->vm_manager.vram_base_offset = tmp;
  786. } else
  787. adev->vm_manager.vram_base_offset = 0;
  788. return 0;
  789. }
  790. /**
  791. * gmc_v8_0_vm_fini - cik vm fini callback
  792. *
  793. * @adev: amdgpu_device pointer
  794. *
  795. * Tear down any asic specific VM setup (CIK).
  796. */
  797. static void gmc_v8_0_vm_fini(struct amdgpu_device *adev)
  798. {
  799. }
  800. /**
  801. * gmc_v8_0_vm_decode_fault - print human readable fault info
  802. *
  803. * @adev: amdgpu_device pointer
  804. * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
  805. * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
  806. *
  807. * Print human readable fault information (CIK).
  808. */
  809. static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
  810. u32 status, u32 addr, u32 mc_client)
  811. {
  812. u32 mc_id;
  813. u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  814. u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  815. PROTECTIONS);
  816. char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
  817. (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
  818. mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  819. MEMORY_CLIENT_ID);
  820. dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
  821. protections, vmid, addr,
  822. REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  823. MEMORY_CLIENT_RW) ?
  824. "write" : "read", block, mc_client, mc_id);
  825. }
  826. static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
  827. {
  828. switch (mc_seq_vram_type) {
  829. case MC_SEQ_MISC0__MT__GDDR1:
  830. return AMDGPU_VRAM_TYPE_GDDR1;
  831. case MC_SEQ_MISC0__MT__DDR2:
  832. return AMDGPU_VRAM_TYPE_DDR2;
  833. case MC_SEQ_MISC0__MT__GDDR3:
  834. return AMDGPU_VRAM_TYPE_GDDR3;
  835. case MC_SEQ_MISC0__MT__GDDR4:
  836. return AMDGPU_VRAM_TYPE_GDDR4;
  837. case MC_SEQ_MISC0__MT__GDDR5:
  838. return AMDGPU_VRAM_TYPE_GDDR5;
  839. case MC_SEQ_MISC0__MT__HBM:
  840. return AMDGPU_VRAM_TYPE_HBM;
  841. case MC_SEQ_MISC0__MT__DDR3:
  842. return AMDGPU_VRAM_TYPE_DDR3;
  843. default:
  844. return AMDGPU_VRAM_TYPE_UNKNOWN;
  845. }
  846. }
  847. static int gmc_v8_0_early_init(void *handle)
  848. {
  849. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  850. gmc_v8_0_set_gart_funcs(adev);
  851. gmc_v8_0_set_irq_funcs(adev);
  852. adev->mc.shared_aperture_start = 0x2000000000000000ULL;
  853. adev->mc.shared_aperture_end =
  854. adev->mc.shared_aperture_start + (4ULL << 30) - 1;
  855. adev->mc.private_aperture_start =
  856. adev->mc.shared_aperture_end + 1;
  857. adev->mc.private_aperture_end =
  858. adev->mc.private_aperture_start + (4ULL << 30) - 1;
  859. return 0;
  860. }
  861. static int gmc_v8_0_late_init(void *handle)
  862. {
  863. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  864. if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
  865. return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
  866. else
  867. return 0;
  868. }
  869. #define mmMC_SEQ_MISC0_FIJI 0xA71
  870. static int gmc_v8_0_sw_init(void *handle)
  871. {
  872. int r;
  873. int dma_bits;
  874. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  875. if (adev->flags & AMD_IS_APU) {
  876. adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
  877. } else {
  878. u32 tmp;
  879. if (adev->asic_type == CHIP_FIJI)
  880. tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
  881. else
  882. tmp = RREG32(mmMC_SEQ_MISC0);
  883. tmp &= MC_SEQ_MISC0__MT__MASK;
  884. adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
  885. }
  886. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault);
  887. if (r)
  888. return r;
  889. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault);
  890. if (r)
  891. return r;
  892. /* Adjust VM size here.
  893. * Currently set to 4GB ((1 << 20) 4k pages).
  894. * Max GPUVM size for cayman and SI is 40 bits.
  895. */
  896. adev->vm_manager.max_pfn = amdgpu_vm_size << 18;
  897. /* Set the internal MC address mask
  898. * This is the max address of the GPU's
  899. * internal address space.
  900. */
  901. adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
  902. /* set DMA mask + need_dma32 flags.
  903. * PCIE - can handle 40-bits.
  904. * IGP - can handle 40-bits
  905. * PCI - dma32 for legacy pci gart, 40 bits on newer asics
  906. */
  907. adev->need_dma32 = false;
  908. dma_bits = adev->need_dma32 ? 32 : 40;
  909. r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  910. if (r) {
  911. adev->need_dma32 = true;
  912. dma_bits = 32;
  913. pr_warn("amdgpu: No suitable DMA available\n");
  914. }
  915. r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  916. if (r) {
  917. pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
  918. pr_warn("amdgpu: No coherent DMA available\n");
  919. }
  920. r = gmc_v8_0_init_microcode(adev);
  921. if (r) {
  922. DRM_ERROR("Failed to load mc firmware!\n");
  923. return r;
  924. }
  925. r = gmc_v8_0_mc_init(adev);
  926. if (r)
  927. return r;
  928. /* Memory manager */
  929. r = amdgpu_bo_init(adev);
  930. if (r)
  931. return r;
  932. r = gmc_v8_0_gart_init(adev);
  933. if (r)
  934. return r;
  935. if (!adev->vm_manager.enabled) {
  936. r = gmc_v8_0_vm_init(adev);
  937. if (r) {
  938. dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
  939. return r;
  940. }
  941. adev->vm_manager.enabled = true;
  942. }
  943. return r;
  944. }
  945. static int gmc_v8_0_sw_fini(void *handle)
  946. {
  947. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  948. if (adev->vm_manager.enabled) {
  949. amdgpu_vm_manager_fini(adev);
  950. gmc_v8_0_vm_fini(adev);
  951. adev->vm_manager.enabled = false;
  952. }
  953. gmc_v8_0_gart_fini(adev);
  954. amdgpu_gem_force_release(adev);
  955. amdgpu_bo_fini(adev);
  956. return 0;
  957. }
  958. static int gmc_v8_0_hw_init(void *handle)
  959. {
  960. int r;
  961. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  962. gmc_v8_0_init_golden_registers(adev);
  963. gmc_v8_0_mc_program(adev);
  964. if (adev->asic_type == CHIP_TONGA) {
  965. r = gmc_v8_0_mc_load_microcode(adev);
  966. if (r) {
  967. DRM_ERROR("Failed to load MC firmware!\n");
  968. return r;
  969. }
  970. }
  971. r = gmc_v8_0_gart_enable(adev);
  972. if (r)
  973. return r;
  974. return r;
  975. }
  976. static int gmc_v8_0_hw_fini(void *handle)
  977. {
  978. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  979. amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
  980. gmc_v8_0_gart_disable(adev);
  981. return 0;
  982. }
  983. static int gmc_v8_0_suspend(void *handle)
  984. {
  985. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  986. if (adev->vm_manager.enabled) {
  987. gmc_v8_0_vm_fini(adev);
  988. adev->vm_manager.enabled = false;
  989. }
  990. gmc_v8_0_hw_fini(adev);
  991. return 0;
  992. }
  993. static int gmc_v8_0_resume(void *handle)
  994. {
  995. int r;
  996. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  997. r = gmc_v8_0_hw_init(adev);
  998. if (r)
  999. return r;
  1000. if (!adev->vm_manager.enabled) {
  1001. r = gmc_v8_0_vm_init(adev);
  1002. if (r) {
  1003. dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
  1004. return r;
  1005. }
  1006. adev->vm_manager.enabled = true;
  1007. }
  1008. return r;
  1009. }
  1010. static bool gmc_v8_0_is_idle(void *handle)
  1011. {
  1012. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1013. u32 tmp = RREG32(mmSRBM_STATUS);
  1014. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1015. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
  1016. return false;
  1017. return true;
  1018. }
  1019. static int gmc_v8_0_wait_for_idle(void *handle)
  1020. {
  1021. unsigned i;
  1022. u32 tmp;
  1023. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1024. for (i = 0; i < adev->usec_timeout; i++) {
  1025. /* read MC_STATUS */
  1026. tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
  1027. SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1028. SRBM_STATUS__MCC_BUSY_MASK |
  1029. SRBM_STATUS__MCD_BUSY_MASK |
  1030. SRBM_STATUS__VMC_BUSY_MASK |
  1031. SRBM_STATUS__VMC1_BUSY_MASK);
  1032. if (!tmp)
  1033. return 0;
  1034. udelay(1);
  1035. }
  1036. return -ETIMEDOUT;
  1037. }
  1038. static bool gmc_v8_0_check_soft_reset(void *handle)
  1039. {
  1040. u32 srbm_soft_reset = 0;
  1041. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1042. u32 tmp = RREG32(mmSRBM_STATUS);
  1043. if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
  1044. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1045. SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
  1046. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1047. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
  1048. if (!(adev->flags & AMD_IS_APU))
  1049. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1050. SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
  1051. }
  1052. if (srbm_soft_reset) {
  1053. adev->mc.srbm_soft_reset = srbm_soft_reset;
  1054. return true;
  1055. } else {
  1056. adev->mc.srbm_soft_reset = 0;
  1057. return false;
  1058. }
  1059. }
  1060. static int gmc_v8_0_pre_soft_reset(void *handle)
  1061. {
  1062. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1063. if (!adev->mc.srbm_soft_reset)
  1064. return 0;
  1065. gmc_v8_0_mc_stop(adev, &adev->mc.save);
  1066. if (gmc_v8_0_wait_for_idle(adev)) {
  1067. dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
  1068. }
  1069. return 0;
  1070. }
  1071. static int gmc_v8_0_soft_reset(void *handle)
  1072. {
  1073. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1074. u32 srbm_soft_reset;
  1075. if (!adev->mc.srbm_soft_reset)
  1076. return 0;
  1077. srbm_soft_reset = adev->mc.srbm_soft_reset;
  1078. if (srbm_soft_reset) {
  1079. u32 tmp;
  1080. tmp = RREG32(mmSRBM_SOFT_RESET);
  1081. tmp |= srbm_soft_reset;
  1082. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1083. WREG32(mmSRBM_SOFT_RESET, tmp);
  1084. tmp = RREG32(mmSRBM_SOFT_RESET);
  1085. udelay(50);
  1086. tmp &= ~srbm_soft_reset;
  1087. WREG32(mmSRBM_SOFT_RESET, tmp);
  1088. tmp = RREG32(mmSRBM_SOFT_RESET);
  1089. /* Wait a little for things to settle down */
  1090. udelay(50);
  1091. }
  1092. return 0;
  1093. }
  1094. static int gmc_v8_0_post_soft_reset(void *handle)
  1095. {
  1096. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1097. if (!adev->mc.srbm_soft_reset)
  1098. return 0;
  1099. gmc_v8_0_mc_resume(adev, &adev->mc.save);
  1100. return 0;
  1101. }
  1102. static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
  1103. struct amdgpu_irq_src *src,
  1104. unsigned type,
  1105. enum amdgpu_interrupt_state state)
  1106. {
  1107. u32 tmp;
  1108. u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1109. VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1110. VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1111. VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1112. VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1113. VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1114. VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
  1115. switch (state) {
  1116. case AMDGPU_IRQ_STATE_DISABLE:
  1117. /* system context */
  1118. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1119. tmp &= ~bits;
  1120. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1121. /* VMs */
  1122. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1123. tmp &= ~bits;
  1124. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1125. break;
  1126. case AMDGPU_IRQ_STATE_ENABLE:
  1127. /* system context */
  1128. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1129. tmp |= bits;
  1130. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1131. /* VMs */
  1132. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1133. tmp |= bits;
  1134. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1135. break;
  1136. default:
  1137. break;
  1138. }
  1139. return 0;
  1140. }
  1141. static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
  1142. struct amdgpu_irq_src *source,
  1143. struct amdgpu_iv_entry *entry)
  1144. {
  1145. u32 addr, status, mc_client;
  1146. if (amdgpu_sriov_vf(adev)) {
  1147. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1148. entry->src_id, entry->src_data[0]);
  1149. dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
  1150. return 0;
  1151. }
  1152. addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
  1153. status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  1154. mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
  1155. /* reset addr and status */
  1156. WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
  1157. if (!addr && !status)
  1158. return 0;
  1159. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
  1160. gmc_v8_0_set_fault_enable_default(adev, false);
  1161. if (printk_ratelimit()) {
  1162. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1163. entry->src_id, entry->src_data[0]);
  1164. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
  1165. addr);
  1166. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
  1167. status);
  1168. gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
  1169. }
  1170. return 0;
  1171. }
  1172. static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
  1173. bool enable)
  1174. {
  1175. uint32_t data;
  1176. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
  1177. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1178. data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1179. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1180. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1181. data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1182. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1183. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1184. data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1185. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1186. data = RREG32(mmMC_XPB_CLK_GAT);
  1187. data |= MC_XPB_CLK_GAT__ENABLE_MASK;
  1188. WREG32(mmMC_XPB_CLK_GAT, data);
  1189. data = RREG32(mmATC_MISC_CG);
  1190. data |= ATC_MISC_CG__ENABLE_MASK;
  1191. WREG32(mmATC_MISC_CG, data);
  1192. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1193. data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1194. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1195. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1196. data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1197. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1198. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1199. data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1200. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1201. data = RREG32(mmVM_L2_CG);
  1202. data |= VM_L2_CG__ENABLE_MASK;
  1203. WREG32(mmVM_L2_CG, data);
  1204. } else {
  1205. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1206. data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1207. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1208. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1209. data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1210. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1211. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1212. data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1213. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1214. data = RREG32(mmMC_XPB_CLK_GAT);
  1215. data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
  1216. WREG32(mmMC_XPB_CLK_GAT, data);
  1217. data = RREG32(mmATC_MISC_CG);
  1218. data &= ~ATC_MISC_CG__ENABLE_MASK;
  1219. WREG32(mmATC_MISC_CG, data);
  1220. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1221. data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1222. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1223. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1224. data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1225. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1226. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1227. data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1228. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1229. data = RREG32(mmVM_L2_CG);
  1230. data &= ~VM_L2_CG__ENABLE_MASK;
  1231. WREG32(mmVM_L2_CG, data);
  1232. }
  1233. }
  1234. static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
  1235. bool enable)
  1236. {
  1237. uint32_t data;
  1238. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
  1239. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1240. data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1241. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1242. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1243. data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1244. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1245. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1246. data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1247. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1248. data = RREG32(mmMC_XPB_CLK_GAT);
  1249. data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1250. WREG32(mmMC_XPB_CLK_GAT, data);
  1251. data = RREG32(mmATC_MISC_CG);
  1252. data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1253. WREG32(mmATC_MISC_CG, data);
  1254. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1255. data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1256. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1257. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1258. data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1259. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1260. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1261. data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1262. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1263. data = RREG32(mmVM_L2_CG);
  1264. data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
  1265. WREG32(mmVM_L2_CG, data);
  1266. } else {
  1267. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1268. data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1269. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1270. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1271. data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1272. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1273. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1274. data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1275. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1276. data = RREG32(mmMC_XPB_CLK_GAT);
  1277. data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1278. WREG32(mmMC_XPB_CLK_GAT, data);
  1279. data = RREG32(mmATC_MISC_CG);
  1280. data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1281. WREG32(mmATC_MISC_CG, data);
  1282. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1283. data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1284. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1285. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1286. data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1287. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1288. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1289. data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1290. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1291. data = RREG32(mmVM_L2_CG);
  1292. data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
  1293. WREG32(mmVM_L2_CG, data);
  1294. }
  1295. }
  1296. static int gmc_v8_0_set_clockgating_state(void *handle,
  1297. enum amd_clockgating_state state)
  1298. {
  1299. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1300. if (amdgpu_sriov_vf(adev))
  1301. return 0;
  1302. switch (adev->asic_type) {
  1303. case CHIP_FIJI:
  1304. fiji_update_mc_medium_grain_clock_gating(adev,
  1305. state == AMD_CG_STATE_GATE ? true : false);
  1306. fiji_update_mc_light_sleep(adev,
  1307. state == AMD_CG_STATE_GATE ? true : false);
  1308. break;
  1309. default:
  1310. break;
  1311. }
  1312. return 0;
  1313. }
  1314. static int gmc_v8_0_set_powergating_state(void *handle,
  1315. enum amd_powergating_state state)
  1316. {
  1317. return 0;
  1318. }
  1319. static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
  1320. {
  1321. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1322. int data;
  1323. if (amdgpu_sriov_vf(adev))
  1324. *flags = 0;
  1325. /* AMD_CG_SUPPORT_MC_MGCG */
  1326. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1327. if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
  1328. *flags |= AMD_CG_SUPPORT_MC_MGCG;
  1329. /* AMD_CG_SUPPORT_MC_LS */
  1330. if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
  1331. *flags |= AMD_CG_SUPPORT_MC_LS;
  1332. }
  1333. static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
  1334. .name = "gmc_v8_0",
  1335. .early_init = gmc_v8_0_early_init,
  1336. .late_init = gmc_v8_0_late_init,
  1337. .sw_init = gmc_v8_0_sw_init,
  1338. .sw_fini = gmc_v8_0_sw_fini,
  1339. .hw_init = gmc_v8_0_hw_init,
  1340. .hw_fini = gmc_v8_0_hw_fini,
  1341. .suspend = gmc_v8_0_suspend,
  1342. .resume = gmc_v8_0_resume,
  1343. .is_idle = gmc_v8_0_is_idle,
  1344. .wait_for_idle = gmc_v8_0_wait_for_idle,
  1345. .check_soft_reset = gmc_v8_0_check_soft_reset,
  1346. .pre_soft_reset = gmc_v8_0_pre_soft_reset,
  1347. .soft_reset = gmc_v8_0_soft_reset,
  1348. .post_soft_reset = gmc_v8_0_post_soft_reset,
  1349. .set_clockgating_state = gmc_v8_0_set_clockgating_state,
  1350. .set_powergating_state = gmc_v8_0_set_powergating_state,
  1351. .get_clockgating_state = gmc_v8_0_get_clockgating_state,
  1352. };
  1353. static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
  1354. .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
  1355. .set_pte_pde = gmc_v8_0_gart_set_pte_pde,
  1356. .set_prt = gmc_v8_0_set_prt,
  1357. };
  1358. static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
  1359. .set = gmc_v8_0_vm_fault_interrupt_state,
  1360. .process = gmc_v8_0_process_interrupt,
  1361. };
  1362. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
  1363. {
  1364. if (adev->gart.gart_funcs == NULL)
  1365. adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
  1366. }
  1367. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
  1368. {
  1369. adev->mc.vm_fault.num_types = 1;
  1370. adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
  1371. }
  1372. const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
  1373. {
  1374. .type = AMD_IP_BLOCK_TYPE_GMC,
  1375. .major = 8,
  1376. .minor = 0,
  1377. .rev = 0,
  1378. .funcs = &gmc_v8_0_ip_funcs,
  1379. };
  1380. const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
  1381. {
  1382. .type = AMD_IP_BLOCK_TYPE_GMC,
  1383. .major = 8,
  1384. .minor = 1,
  1385. .rev = 0,
  1386. .funcs = &gmc_v8_0_ip_funcs,
  1387. };
  1388. const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
  1389. {
  1390. .type = AMD_IP_BLOCK_TYPE_GMC,
  1391. .major = 8,
  1392. .minor = 5,
  1393. .rev = 0,
  1394. .funcs = &gmc_v8_0_ip_funcs,
  1395. };