microread.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. /*
  2. * HCI based Driver for Inside Secure microread NFC Chip
  3. *
  4. * Copyright (C) 2013 Intel Corporation. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the
  17. * Free Software Foundation, Inc.,
  18. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. */
  20. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21. #include <linux/module.h>
  22. #include <linux/delay.h>
  23. #include <linux/slab.h>
  24. #include <linux/crc-ccitt.h>
  25. #include <linux/nfc.h>
  26. #include <net/nfc/nfc.h>
  27. #include <net/nfc/hci.h>
  28. #include <net/nfc/llc.h>
  29. #include "microread.h"
  30. /* Proprietary gates, events, commands and registers */
  31. /* Admin */
  32. #define MICROREAD_GATE_ID_ADM NFC_HCI_ADMIN_GATE
  33. #define MICROREAD_GATE_ID_MGT 0x01
  34. #define MICROREAD_GATE_ID_OS 0x02
  35. #define MICROREAD_GATE_ID_TESTRF 0x03
  36. #define MICROREAD_GATE_ID_LOOPBACK NFC_HCI_LOOPBACK_GATE
  37. #define MICROREAD_GATE_ID_IDT NFC_HCI_ID_MGMT_GATE
  38. #define MICROREAD_GATE_ID_LMS NFC_HCI_LINK_MGMT_GATE
  39. /* Reader */
  40. #define MICROREAD_GATE_ID_MREAD_GEN 0x10
  41. #define MICROREAD_GATE_ID_MREAD_ISO_B NFC_HCI_RF_READER_B_GATE
  42. #define MICROREAD_GATE_ID_MREAD_NFC_T1 0x12
  43. #define MICROREAD_GATE_ID_MREAD_ISO_A NFC_HCI_RF_READER_A_GATE
  44. #define MICROREAD_GATE_ID_MREAD_NFC_T3 0x14
  45. #define MICROREAD_GATE_ID_MREAD_ISO_15_3 0x15
  46. #define MICROREAD_GATE_ID_MREAD_ISO_15_2 0x16
  47. #define MICROREAD_GATE_ID_MREAD_ISO_B_3 0x17
  48. #define MICROREAD_GATE_ID_MREAD_BPRIME 0x18
  49. #define MICROREAD_GATE_ID_MREAD_ISO_A_3 0x19
  50. /* Card */
  51. #define MICROREAD_GATE_ID_MCARD_GEN 0x20
  52. #define MICROREAD_GATE_ID_MCARD_ISO_B 0x21
  53. #define MICROREAD_GATE_ID_MCARD_BPRIME 0x22
  54. #define MICROREAD_GATE_ID_MCARD_ISO_A 0x23
  55. #define MICROREAD_GATE_ID_MCARD_NFC_T3 0x24
  56. #define MICROREAD_GATE_ID_MCARD_ISO_15_3 0x25
  57. #define MICROREAD_GATE_ID_MCARD_ISO_15_2 0x26
  58. #define MICROREAD_GATE_ID_MCARD_ISO_B_2 0x27
  59. #define MICROREAD_GATE_ID_MCARD_ISO_CUSTOM 0x28
  60. #define MICROREAD_GATE_ID_SECURE_ELEMENT 0x2F
  61. /* P2P */
  62. #define MICROREAD_GATE_ID_P2P_GEN 0x30
  63. #define MICROREAD_GATE_ID_P2P_TARGET 0x31
  64. #define MICROREAD_PAR_P2P_TARGET_MODE 0x01
  65. #define MICROREAD_PAR_P2P_TARGET_GT 0x04
  66. #define MICROREAD_GATE_ID_P2P_INITIATOR 0x32
  67. #define MICROREAD_PAR_P2P_INITIATOR_GI 0x01
  68. #define MICROREAD_PAR_P2P_INITIATOR_GT 0x03
  69. /* Those pipes are created/opened by default in the chip */
  70. #define MICROREAD_PIPE_ID_LMS 0x00
  71. #define MICROREAD_PIPE_ID_ADMIN 0x01
  72. #define MICROREAD_PIPE_ID_MGT 0x02
  73. #define MICROREAD_PIPE_ID_OS 0x03
  74. #define MICROREAD_PIPE_ID_HDS_LOOPBACK 0x04
  75. #define MICROREAD_PIPE_ID_HDS_IDT 0x05
  76. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_B 0x08
  77. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_BPRIME 0x09
  78. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_A 0x0A
  79. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_15_3 0x0B
  80. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_15_2 0x0C
  81. #define MICROREAD_PIPE_ID_HDS_MCARD_NFC_T3 0x0D
  82. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_B_2 0x0E
  83. #define MICROREAD_PIPE_ID_HDS_MCARD_CUSTOM 0x0F
  84. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_B 0x10
  85. #define MICROREAD_PIPE_ID_HDS_MREAD_NFC_T1 0x11
  86. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_A 0x12
  87. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_15_3 0x13
  88. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_15_2 0x14
  89. #define MICROREAD_PIPE_ID_HDS_MREAD_NFC_T3 0x15
  90. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_B_3 0x16
  91. #define MICROREAD_PIPE_ID_HDS_MREAD_BPRIME 0x17
  92. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_A_3 0x18
  93. #define MICROREAD_PIPE_ID_HDS_MREAD_GEN 0x1B
  94. #define MICROREAD_PIPE_ID_HDS_STACKED_ELEMENT 0x1C
  95. #define MICROREAD_PIPE_ID_HDS_INSTANCES 0x1D
  96. #define MICROREAD_PIPE_ID_HDS_TESTRF 0x1E
  97. #define MICROREAD_PIPE_ID_HDS_P2P_TARGET 0x1F
  98. #define MICROREAD_PIPE_ID_HDS_P2P_INITIATOR 0x20
  99. /* Events */
  100. #define MICROREAD_EVT_MREAD_DISCOVERY_OCCURED NFC_HCI_EVT_TARGET_DISCOVERED
  101. #define MICROREAD_EVT_MREAD_CARD_FOUND 0x3D
  102. #define MICROREAD_EMCF_A_ATQA 0
  103. #define MICROREAD_EMCF_A_SAK 2
  104. #define MICROREAD_EMCF_A_LEN 3
  105. #define MICROREAD_EMCF_A_UID 4
  106. #define MICROREAD_EMCF_A3_ATQA 0
  107. #define MICROREAD_EMCF_A3_SAK 2
  108. #define MICROREAD_EMCF_A3_LEN 3
  109. #define MICROREAD_EMCF_A3_UID 4
  110. #define MICROREAD_EMCF_B_UID 0
  111. #define MICROREAD_EMCF_T1_ATQA 0
  112. #define MICROREAD_EMCF_T1_UID 4
  113. #define MICROREAD_EMCF_T3_UID 0
  114. #define MICROREAD_EVT_MREAD_DISCOVERY_START NFC_HCI_EVT_READER_REQUESTED
  115. #define MICROREAD_EVT_MREAD_DISCOVERY_START_SOME 0x3E
  116. #define MICROREAD_EVT_MREAD_DISCOVERY_STOP NFC_HCI_EVT_END_OPERATION
  117. #define MICROREAD_EVT_MREAD_SIM_REQUESTS 0x3F
  118. #define MICROREAD_EVT_MCARD_EXCHANGE NFC_HCI_EVT_TARGET_DISCOVERED
  119. #define MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_TO_RF 0x20
  120. #define MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_FROM_RF 0x21
  121. #define MICROREAD_EVT_MCARD_FIELD_ON 0x11
  122. #define MICROREAD_EVT_P2P_TARGET_ACTIVATED 0x13
  123. #define MICROREAD_EVT_P2P_TARGET_DEACTIVATED 0x12
  124. #define MICROREAD_EVT_MCARD_FIELD_OFF 0x14
  125. /* Commands */
  126. #define MICROREAD_CMD_MREAD_EXCHANGE 0x10
  127. #define MICROREAD_CMD_MREAD_SUBSCRIBE 0x3F
  128. /* Hosts IDs */
  129. #define MICROREAD_ELT_ID_HDS NFC_HCI_TERMINAL_HOST_ID
  130. #define MICROREAD_ELT_ID_SIM NFC_HCI_UICC_HOST_ID
  131. #define MICROREAD_ELT_ID_SE1 0x03
  132. #define MICROREAD_ELT_ID_SE2 0x04
  133. #define MICROREAD_ELT_ID_SE3 0x05
  134. static struct nfc_hci_gate microread_gates[] = {
  135. {MICROREAD_GATE_ID_ADM, MICROREAD_PIPE_ID_ADMIN},
  136. {MICROREAD_GATE_ID_LOOPBACK, MICROREAD_PIPE_ID_HDS_LOOPBACK},
  137. {MICROREAD_GATE_ID_IDT, MICROREAD_PIPE_ID_HDS_IDT},
  138. {MICROREAD_GATE_ID_LMS, MICROREAD_PIPE_ID_LMS},
  139. {MICROREAD_GATE_ID_MREAD_ISO_B, MICROREAD_PIPE_ID_HDS_MREAD_ISO_B},
  140. {MICROREAD_GATE_ID_MREAD_ISO_A, MICROREAD_PIPE_ID_HDS_MREAD_ISO_A},
  141. {MICROREAD_GATE_ID_MREAD_ISO_A_3, MICROREAD_PIPE_ID_HDS_MREAD_ISO_A_3},
  142. {MICROREAD_GATE_ID_MGT, MICROREAD_PIPE_ID_MGT},
  143. {MICROREAD_GATE_ID_OS, MICROREAD_PIPE_ID_OS},
  144. {MICROREAD_GATE_ID_MREAD_NFC_T1, MICROREAD_PIPE_ID_HDS_MREAD_NFC_T1},
  145. {MICROREAD_GATE_ID_MREAD_NFC_T3, MICROREAD_PIPE_ID_HDS_MREAD_NFC_T3},
  146. {MICROREAD_GATE_ID_P2P_TARGET, MICROREAD_PIPE_ID_HDS_P2P_TARGET},
  147. {MICROREAD_GATE_ID_P2P_INITIATOR, MICROREAD_PIPE_ID_HDS_P2P_INITIATOR}
  148. };
  149. /* Largest headroom needed for outgoing custom commands */
  150. #define MICROREAD_CMDS_HEADROOM 2
  151. #define MICROREAD_CMD_TAILROOM 2
  152. struct microread_info {
  153. struct nfc_phy_ops *phy_ops;
  154. void *phy_id;
  155. struct nfc_hci_dev *hdev;
  156. int async_cb_type;
  157. data_exchange_cb_t async_cb;
  158. void *async_cb_context;
  159. };
  160. static int microread_open(struct nfc_hci_dev *hdev)
  161. {
  162. struct microread_info *info = nfc_hci_get_clientdata(hdev);
  163. return info->phy_ops->enable(info->phy_id);
  164. }
  165. static void microread_close(struct nfc_hci_dev *hdev)
  166. {
  167. struct microread_info *info = nfc_hci_get_clientdata(hdev);
  168. info->phy_ops->disable(info->phy_id);
  169. }
  170. static int microread_hci_ready(struct nfc_hci_dev *hdev)
  171. {
  172. int r;
  173. u8 param[4];
  174. param[0] = 0x03;
  175. r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
  176. MICROREAD_CMD_MREAD_SUBSCRIBE, param, 1, NULL);
  177. if (r)
  178. return r;
  179. r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_A_3,
  180. MICROREAD_CMD_MREAD_SUBSCRIBE, NULL, 0, NULL);
  181. if (r)
  182. return r;
  183. param[0] = 0x00;
  184. param[1] = 0x03;
  185. param[2] = 0x00;
  186. r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_B,
  187. MICROREAD_CMD_MREAD_SUBSCRIBE, param, 3, NULL);
  188. if (r)
  189. return r;
  190. r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_NFC_T1,
  191. MICROREAD_CMD_MREAD_SUBSCRIBE, NULL, 0, NULL);
  192. if (r)
  193. return r;
  194. param[0] = 0xFF;
  195. param[1] = 0xFF;
  196. param[2] = 0x00;
  197. param[3] = 0x00;
  198. r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_NFC_T3,
  199. MICROREAD_CMD_MREAD_SUBSCRIBE, param, 4, NULL);
  200. return r;
  201. }
  202. static int microread_xmit(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  203. {
  204. struct microread_info *info = nfc_hci_get_clientdata(hdev);
  205. return info->phy_ops->write(info->phy_id, skb);
  206. }
  207. static int microread_start_poll(struct nfc_hci_dev *hdev,
  208. u32 im_protocols, u32 tm_protocols)
  209. {
  210. int r;
  211. u8 param[2];
  212. u8 mode;
  213. param[0] = 0x00;
  214. param[1] = 0x00;
  215. if (im_protocols & NFC_PROTO_ISO14443_MASK)
  216. param[0] |= (1 << 2);
  217. if (im_protocols & NFC_PROTO_ISO14443_B_MASK)
  218. param[0] |= 1;
  219. if (im_protocols & NFC_PROTO_MIFARE_MASK)
  220. param[1] |= 1;
  221. if (im_protocols & NFC_PROTO_JEWEL_MASK)
  222. param[0] |= (1 << 1);
  223. if (im_protocols & NFC_PROTO_FELICA_MASK)
  224. param[0] |= (1 << 5);
  225. if (im_protocols & NFC_PROTO_NFC_DEP_MASK)
  226. param[1] |= (1 << 1);
  227. if ((im_protocols | tm_protocols) & NFC_PROTO_NFC_DEP_MASK) {
  228. hdev->gb = nfc_get_local_general_bytes(hdev->ndev,
  229. &hdev->gb_len);
  230. if (hdev->gb == NULL || hdev->gb_len == 0) {
  231. im_protocols &= ~NFC_PROTO_NFC_DEP_MASK;
  232. tm_protocols &= ~NFC_PROTO_NFC_DEP_MASK;
  233. }
  234. }
  235. r = nfc_hci_send_event(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
  236. MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0);
  237. if (r)
  238. return r;
  239. mode = 0xff;
  240. r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
  241. MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
  242. if (r)
  243. return r;
  244. if (im_protocols & NFC_PROTO_NFC_DEP_MASK) {
  245. r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_INITIATOR,
  246. MICROREAD_PAR_P2P_INITIATOR_GI,
  247. hdev->gb, hdev->gb_len);
  248. if (r)
  249. return r;
  250. }
  251. if (tm_protocols & NFC_PROTO_NFC_DEP_MASK) {
  252. r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
  253. MICROREAD_PAR_P2P_TARGET_GT,
  254. hdev->gb, hdev->gb_len);
  255. if (r)
  256. return r;
  257. mode = 0x02;
  258. r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
  259. MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
  260. if (r)
  261. return r;
  262. }
  263. return nfc_hci_send_event(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
  264. MICROREAD_EVT_MREAD_DISCOVERY_START_SOME,
  265. param, 2);
  266. }
  267. static int microread_dep_link_up(struct nfc_hci_dev *hdev,
  268. struct nfc_target *target, u8 comm_mode,
  269. u8 *gb, size_t gb_len)
  270. {
  271. struct sk_buff *rgb_skb = NULL;
  272. int r;
  273. r = nfc_hci_get_param(hdev, target->hci_reader_gate,
  274. MICROREAD_PAR_P2P_INITIATOR_GT, &rgb_skb);
  275. if (r < 0)
  276. return r;
  277. if (rgb_skb->len == 0 || rgb_skb->len > NFC_GB_MAXSIZE) {
  278. r = -EPROTO;
  279. goto exit;
  280. }
  281. r = nfc_set_remote_general_bytes(hdev->ndev, rgb_skb->data,
  282. rgb_skb->len);
  283. if (r == 0)
  284. r = nfc_dep_link_is_up(hdev->ndev, target->idx, comm_mode,
  285. NFC_RF_INITIATOR);
  286. exit:
  287. kfree_skb(rgb_skb);
  288. return r;
  289. }
  290. static int microread_dep_link_down(struct nfc_hci_dev *hdev)
  291. {
  292. return nfc_hci_send_event(hdev, MICROREAD_GATE_ID_P2P_INITIATOR,
  293. MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0);
  294. }
  295. static int microread_target_from_gate(struct nfc_hci_dev *hdev, u8 gate,
  296. struct nfc_target *target)
  297. {
  298. switch (gate) {
  299. case MICROREAD_GATE_ID_P2P_INITIATOR:
  300. target->supported_protocols = NFC_PROTO_NFC_DEP_MASK;
  301. break;
  302. default:
  303. return -EPROTO;
  304. }
  305. return 0;
  306. }
  307. static int microread_complete_target_discovered(struct nfc_hci_dev *hdev,
  308. u8 gate,
  309. struct nfc_target *target)
  310. {
  311. return 0;
  312. }
  313. #define MICROREAD_CB_TYPE_READER_ALL 1
  314. static void microread_im_transceive_cb(void *context, struct sk_buff *skb,
  315. int err)
  316. {
  317. struct microread_info *info = context;
  318. switch (info->async_cb_type) {
  319. case MICROREAD_CB_TYPE_READER_ALL:
  320. if (err == 0) {
  321. if (skb->len == 0) {
  322. err = -EPROTO;
  323. kfree_skb(skb);
  324. info->async_cb(info->async_cb_context, NULL,
  325. -EPROTO);
  326. return;
  327. }
  328. if (skb->data[skb->len - 1] != 0) {
  329. err = nfc_hci_result_to_errno(
  330. skb->data[skb->len - 1]);
  331. kfree_skb(skb);
  332. info->async_cb(info->async_cb_context, NULL,
  333. err);
  334. return;
  335. }
  336. skb_trim(skb, skb->len - 1); /* RF Error ind. */
  337. }
  338. info->async_cb(info->async_cb_context, skb, err);
  339. break;
  340. default:
  341. if (err == 0)
  342. kfree_skb(skb);
  343. break;
  344. }
  345. }
  346. /*
  347. * Returns:
  348. * <= 0: driver handled the data exchange
  349. * 1: driver doesn't especially handle, please do standard processing
  350. */
  351. static int microread_im_transceive(struct nfc_hci_dev *hdev,
  352. struct nfc_target *target,
  353. struct sk_buff *skb, data_exchange_cb_t cb,
  354. void *cb_context)
  355. {
  356. struct microread_info *info = nfc_hci_get_clientdata(hdev);
  357. u8 control_bits;
  358. u16 crc;
  359. pr_info("data exchange to gate 0x%x\n", target->hci_reader_gate);
  360. if (target->hci_reader_gate == MICROREAD_GATE_ID_P2P_INITIATOR) {
  361. *skb_push(skb, 1) = 0;
  362. return nfc_hci_send_event(hdev, target->hci_reader_gate,
  363. MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_TO_RF,
  364. skb->data, skb->len);
  365. }
  366. switch (target->hci_reader_gate) {
  367. case MICROREAD_GATE_ID_MREAD_ISO_A:
  368. control_bits = 0xCB;
  369. break;
  370. case MICROREAD_GATE_ID_MREAD_ISO_A_3:
  371. control_bits = 0xCB;
  372. break;
  373. case MICROREAD_GATE_ID_MREAD_ISO_B:
  374. control_bits = 0xCB;
  375. break;
  376. case MICROREAD_GATE_ID_MREAD_NFC_T1:
  377. control_bits = 0x1B;
  378. crc = crc_ccitt(0xffff, skb->data, skb->len);
  379. crc = ~crc;
  380. *skb_put(skb, 1) = crc & 0xff;
  381. *skb_put(skb, 1) = crc >> 8;
  382. break;
  383. case MICROREAD_GATE_ID_MREAD_NFC_T3:
  384. control_bits = 0xDB;
  385. break;
  386. default:
  387. pr_info("Abort im_transceive to invalid gate 0x%x\n",
  388. target->hci_reader_gate);
  389. return 1;
  390. }
  391. *skb_push(skb, 1) = control_bits;
  392. info->async_cb_type = MICROREAD_CB_TYPE_READER_ALL;
  393. info->async_cb = cb;
  394. info->async_cb_context = cb_context;
  395. return nfc_hci_send_cmd_async(hdev, target->hci_reader_gate,
  396. MICROREAD_CMD_MREAD_EXCHANGE,
  397. skb->data, skb->len,
  398. microread_im_transceive_cb, info);
  399. }
  400. static int microread_tm_send(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  401. {
  402. int r;
  403. r = nfc_hci_send_event(hdev, MICROREAD_GATE_ID_P2P_TARGET,
  404. MICROREAD_EVT_MCARD_EXCHANGE,
  405. skb->data, skb->len);
  406. kfree_skb(skb);
  407. return r;
  408. }
  409. static void microread_target_discovered(struct nfc_hci_dev *hdev, u8 gate,
  410. struct sk_buff *skb)
  411. {
  412. struct nfc_target *targets;
  413. int r = 0;
  414. pr_info("target discovered to gate 0x%x\n", gate);
  415. targets = kzalloc(sizeof(struct nfc_target), GFP_KERNEL);
  416. if (targets == NULL) {
  417. r = -ENOMEM;
  418. goto exit;
  419. }
  420. targets->hci_reader_gate = gate;
  421. switch (gate) {
  422. case MICROREAD_GATE_ID_MREAD_ISO_A:
  423. targets->supported_protocols =
  424. nfc_hci_sak_to_protocol(skb->data[MICROREAD_EMCF_A_SAK]);
  425. targets->sens_res =
  426. be16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_A_ATQA]);
  427. targets->sel_res = skb->data[MICROREAD_EMCF_A_SAK];
  428. memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_A_UID],
  429. skb->data[MICROREAD_EMCF_A_LEN]);
  430. targets->nfcid1_len = skb->data[MICROREAD_EMCF_A_LEN];
  431. break;
  432. case MICROREAD_GATE_ID_MREAD_ISO_A_3:
  433. targets->supported_protocols =
  434. nfc_hci_sak_to_protocol(skb->data[MICROREAD_EMCF_A3_SAK]);
  435. targets->sens_res =
  436. be16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_A3_ATQA]);
  437. targets->sel_res = skb->data[MICROREAD_EMCF_A3_SAK];
  438. memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_A3_UID],
  439. skb->data[MICROREAD_EMCF_A3_LEN]);
  440. targets->nfcid1_len = skb->data[MICROREAD_EMCF_A3_LEN];
  441. break;
  442. case MICROREAD_GATE_ID_MREAD_ISO_B:
  443. targets->supported_protocols = NFC_PROTO_ISO14443_B_MASK;
  444. memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_B_UID], 4);
  445. targets->nfcid1_len = 4;
  446. break;
  447. case MICROREAD_GATE_ID_MREAD_NFC_T1:
  448. targets->supported_protocols = NFC_PROTO_JEWEL_MASK;
  449. targets->sens_res =
  450. le16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_T1_ATQA]);
  451. memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_T1_UID], 4);
  452. targets->nfcid1_len = 4;
  453. break;
  454. case MICROREAD_GATE_ID_MREAD_NFC_T3:
  455. targets->supported_protocols = NFC_PROTO_FELICA_MASK;
  456. memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_T3_UID], 8);
  457. targets->nfcid1_len = 8;
  458. break;
  459. default:
  460. pr_info("discard target discovered to gate 0x%x\n", gate);
  461. goto exit_free;
  462. }
  463. r = nfc_targets_found(hdev->ndev, targets, 1);
  464. exit_free:
  465. kfree(targets);
  466. exit:
  467. kfree_skb(skb);
  468. if (r)
  469. pr_err("Failed to handle discovered target err=%d\n", r);
  470. }
  471. static int microread_event_received(struct nfc_hci_dev *hdev, u8 gate,
  472. u8 event, struct sk_buff *skb)
  473. {
  474. int r;
  475. u8 mode;
  476. pr_info("Microread received event 0x%x to gate 0x%x\n", event, gate);
  477. switch (event) {
  478. case MICROREAD_EVT_MREAD_CARD_FOUND:
  479. microread_target_discovered(hdev, gate, skb);
  480. return 0;
  481. case MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_FROM_RF:
  482. if (skb->len < 1) {
  483. kfree_skb(skb);
  484. return -EPROTO;
  485. }
  486. if (skb->data[skb->len - 1]) {
  487. kfree_skb(skb);
  488. return -EIO;
  489. }
  490. skb_trim(skb, skb->len - 1);
  491. r = nfc_tm_data_received(hdev->ndev, skb);
  492. break;
  493. case MICROREAD_EVT_MCARD_FIELD_ON:
  494. case MICROREAD_EVT_MCARD_FIELD_OFF:
  495. kfree_skb(skb);
  496. return 0;
  497. case MICROREAD_EVT_P2P_TARGET_ACTIVATED:
  498. r = nfc_tm_activated(hdev->ndev, NFC_PROTO_NFC_DEP_MASK,
  499. NFC_COMM_PASSIVE, skb->data,
  500. skb->len);
  501. kfree_skb(skb);
  502. break;
  503. case MICROREAD_EVT_MCARD_EXCHANGE:
  504. if (skb->len < 1) {
  505. kfree_skb(skb);
  506. return -EPROTO;
  507. }
  508. if (skb->data[skb->len-1]) {
  509. kfree_skb(skb);
  510. return -EIO;
  511. }
  512. skb_trim(skb, skb->len - 1);
  513. r = nfc_tm_data_received(hdev->ndev, skb);
  514. break;
  515. case MICROREAD_EVT_P2P_TARGET_DEACTIVATED:
  516. kfree_skb(skb);
  517. mode = 0xff;
  518. r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
  519. MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
  520. if (r)
  521. break;
  522. r = nfc_hci_send_event(hdev, gate,
  523. MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL,
  524. 0);
  525. break;
  526. default:
  527. return 1;
  528. }
  529. return r;
  530. }
  531. static struct nfc_hci_ops microread_hci_ops = {
  532. .open = microread_open,
  533. .close = microread_close,
  534. .hci_ready = microread_hci_ready,
  535. .xmit = microread_xmit,
  536. .start_poll = microread_start_poll,
  537. .dep_link_up = microread_dep_link_up,
  538. .dep_link_down = microread_dep_link_down,
  539. .target_from_gate = microread_target_from_gate,
  540. .complete_target_discovered = microread_complete_target_discovered,
  541. .im_transceive = microread_im_transceive,
  542. .tm_send = microread_tm_send,
  543. .check_presence = NULL,
  544. .event_received = microread_event_received,
  545. };
  546. int microread_probe(void *phy_id, struct nfc_phy_ops *phy_ops, char *llc_name,
  547. int phy_headroom, int phy_tailroom, int phy_payload,
  548. struct nfc_hci_dev **hdev)
  549. {
  550. struct microread_info *info;
  551. unsigned long quirks = 0;
  552. u32 protocols;
  553. struct nfc_hci_init_data init_data;
  554. int r;
  555. info = kzalloc(sizeof(struct microread_info), GFP_KERNEL);
  556. if (!info) {
  557. r = -ENOMEM;
  558. goto err_info_alloc;
  559. }
  560. info->phy_ops = phy_ops;
  561. info->phy_id = phy_id;
  562. init_data.gate_count = ARRAY_SIZE(microread_gates);
  563. memcpy(init_data.gates, microread_gates, sizeof(microread_gates));
  564. strcpy(init_data.session_id, "MICROREA");
  565. set_bit(NFC_HCI_QUIRK_SHORT_CLEAR, &quirks);
  566. protocols = NFC_PROTO_JEWEL_MASK |
  567. NFC_PROTO_MIFARE_MASK |
  568. NFC_PROTO_FELICA_MASK |
  569. NFC_PROTO_ISO14443_MASK |
  570. NFC_PROTO_ISO14443_B_MASK |
  571. NFC_PROTO_NFC_DEP_MASK;
  572. info->hdev = nfc_hci_allocate_device(&microread_hci_ops, &init_data,
  573. quirks, protocols, llc_name,
  574. phy_headroom +
  575. MICROREAD_CMDS_HEADROOM,
  576. phy_tailroom +
  577. MICROREAD_CMD_TAILROOM,
  578. phy_payload);
  579. if (!info->hdev) {
  580. pr_err("Cannot allocate nfc hdev\n");
  581. r = -ENOMEM;
  582. goto err_alloc_hdev;
  583. }
  584. nfc_hci_set_clientdata(info->hdev, info);
  585. r = nfc_hci_register_device(info->hdev);
  586. if (r)
  587. goto err_regdev;
  588. *hdev = info->hdev;
  589. return 0;
  590. err_regdev:
  591. nfc_hci_free_device(info->hdev);
  592. err_alloc_hdev:
  593. kfree(info);
  594. err_info_alloc:
  595. return r;
  596. }
  597. EXPORT_SYMBOL(microread_probe);
  598. void microread_remove(struct nfc_hci_dev *hdev)
  599. {
  600. struct microread_info *info = nfc_hci_get_clientdata(hdev);
  601. nfc_hci_unregister_device(hdev);
  602. nfc_hci_free_device(hdev);
  603. kfree(info);
  604. }
  605. EXPORT_SYMBOL(microread_remove);
  606. MODULE_LICENSE("GPL");
  607. MODULE_DESCRIPTION(DRIVER_DESC);