imx6q-cpufreq.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. /*
  2. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/cpu.h>
  10. #include <linux/cpufreq.h>
  11. #include <linux/delay.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/of.h>
  15. #include <linux/pm_opp.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/regulator/consumer.h>
  18. #define PU_SOC_VOLTAGE_NORMAL 1250000
  19. #define PU_SOC_VOLTAGE_HIGH 1275000
  20. #define FREQ_1P2_GHZ 1200000000
  21. static struct regulator *arm_reg;
  22. static struct regulator *pu_reg;
  23. static struct regulator *soc_reg;
  24. static struct clk *arm_clk;
  25. static struct clk *pll1_sys_clk;
  26. static struct clk *pll1_sw_clk;
  27. static struct clk *step_clk;
  28. static struct clk *pll2_pfd2_396m_clk;
  29. static struct device *cpu_dev;
  30. static struct cpufreq_frequency_table *freq_table;
  31. static unsigned int transition_latency;
  32. static unsigned int imx6q_get_speed(unsigned int cpu)
  33. {
  34. return clk_get_rate(arm_clk) / 1000;
  35. }
  36. static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
  37. {
  38. struct dev_pm_opp *opp;
  39. unsigned long freq_hz, volt, volt_old;
  40. unsigned int old_freq, new_freq;
  41. int ret;
  42. new_freq = freq_table[index].frequency;
  43. freq_hz = new_freq * 1000;
  44. old_freq = clk_get_rate(arm_clk) / 1000;
  45. rcu_read_lock();
  46. opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
  47. if (IS_ERR(opp)) {
  48. rcu_read_unlock();
  49. dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
  50. return PTR_ERR(opp);
  51. }
  52. volt = dev_pm_opp_get_voltage(opp);
  53. rcu_read_unlock();
  54. volt_old = regulator_get_voltage(arm_reg);
  55. dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
  56. old_freq / 1000, volt_old / 1000,
  57. new_freq / 1000, volt / 1000);
  58. /* scaling up? scale voltage before frequency */
  59. if (new_freq > old_freq) {
  60. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  61. if (ret) {
  62. dev_err(cpu_dev,
  63. "failed to scale vddarm up: %d\n", ret);
  64. return ret;
  65. }
  66. /*
  67. * Need to increase vddpu and vddsoc for safety
  68. * if we are about to run at 1.2 GHz.
  69. */
  70. if (new_freq == FREQ_1P2_GHZ / 1000) {
  71. regulator_set_voltage_tol(pu_reg,
  72. PU_SOC_VOLTAGE_HIGH, 0);
  73. regulator_set_voltage_tol(soc_reg,
  74. PU_SOC_VOLTAGE_HIGH, 0);
  75. }
  76. }
  77. /*
  78. * The setpoints are selected per PLL/PDF frequencies, so we need to
  79. * reprogram PLL for frequency scaling. The procedure of reprogramming
  80. * PLL1 is as below.
  81. *
  82. * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
  83. * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
  84. * - Disable pll2_pfd2_396m_clk
  85. */
  86. clk_set_parent(step_clk, pll2_pfd2_396m_clk);
  87. clk_set_parent(pll1_sw_clk, step_clk);
  88. if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
  89. clk_set_rate(pll1_sys_clk, new_freq * 1000);
  90. clk_set_parent(pll1_sw_clk, pll1_sys_clk);
  91. }
  92. /* Ensure the arm clock divider is what we expect */
  93. ret = clk_set_rate(arm_clk, new_freq * 1000);
  94. if (ret) {
  95. dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
  96. regulator_set_voltage_tol(arm_reg, volt_old, 0);
  97. return ret;
  98. }
  99. /* scaling down? scale voltage after frequency */
  100. if (new_freq < old_freq) {
  101. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  102. if (ret) {
  103. dev_warn(cpu_dev,
  104. "failed to scale vddarm down: %d\n", ret);
  105. ret = 0;
  106. }
  107. if (old_freq == FREQ_1P2_GHZ / 1000) {
  108. regulator_set_voltage_tol(pu_reg,
  109. PU_SOC_VOLTAGE_NORMAL, 0);
  110. regulator_set_voltage_tol(soc_reg,
  111. PU_SOC_VOLTAGE_NORMAL, 0);
  112. }
  113. }
  114. return 0;
  115. }
  116. static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
  117. {
  118. return cpufreq_generic_init(policy, freq_table, transition_latency);
  119. }
  120. static struct cpufreq_driver imx6q_cpufreq_driver = {
  121. .verify = cpufreq_generic_frequency_table_verify,
  122. .target_index = imx6q_set_target,
  123. .get = imx6q_get_speed,
  124. .init = imx6q_cpufreq_init,
  125. .exit = cpufreq_generic_exit,
  126. .name = "imx6q-cpufreq",
  127. .attr = cpufreq_generic_attr,
  128. };
  129. static int imx6q_cpufreq_probe(struct platform_device *pdev)
  130. {
  131. struct device_node *np;
  132. struct dev_pm_opp *opp;
  133. unsigned long min_volt, max_volt;
  134. int num, ret;
  135. cpu_dev = get_cpu_device(0);
  136. if (!cpu_dev) {
  137. pr_err("failed to get cpu0 device\n");
  138. return -ENODEV;
  139. }
  140. np = of_node_get(cpu_dev->of_node);
  141. if (!np) {
  142. dev_err(cpu_dev, "failed to find cpu0 node\n");
  143. return -ENOENT;
  144. }
  145. arm_clk = devm_clk_get(cpu_dev, "arm");
  146. pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
  147. pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
  148. step_clk = devm_clk_get(cpu_dev, "step");
  149. pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
  150. if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
  151. IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
  152. dev_err(cpu_dev, "failed to get clocks\n");
  153. ret = -ENOENT;
  154. goto put_node;
  155. }
  156. arm_reg = devm_regulator_get(cpu_dev, "arm");
  157. pu_reg = devm_regulator_get(cpu_dev, "pu");
  158. soc_reg = devm_regulator_get(cpu_dev, "soc");
  159. if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
  160. dev_err(cpu_dev, "failed to get regulators\n");
  161. ret = -ENOENT;
  162. goto put_node;
  163. }
  164. /* We expect an OPP table supplied by platform */
  165. num = dev_pm_opp_get_opp_count(cpu_dev);
  166. if (num < 0) {
  167. ret = num;
  168. dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
  169. goto put_node;
  170. }
  171. ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
  172. if (ret) {
  173. dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
  174. goto put_node;
  175. }
  176. if (of_property_read_u32(np, "clock-latency", &transition_latency))
  177. transition_latency = CPUFREQ_ETERNAL;
  178. /*
  179. * OPP is maintained in order of increasing frequency, and
  180. * freq_table initialised from OPP is therefore sorted in the
  181. * same order.
  182. */
  183. rcu_read_lock();
  184. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  185. freq_table[0].frequency * 1000, true);
  186. min_volt = dev_pm_opp_get_voltage(opp);
  187. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  188. freq_table[--num].frequency * 1000, true);
  189. max_volt = dev_pm_opp_get_voltage(opp);
  190. rcu_read_unlock();
  191. ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
  192. if (ret > 0)
  193. transition_latency += ret * 1000;
  194. /* Count vddpu and vddsoc latency in for 1.2 GHz support */
  195. if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
  196. ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
  197. PU_SOC_VOLTAGE_HIGH);
  198. if (ret > 0)
  199. transition_latency += ret * 1000;
  200. ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
  201. PU_SOC_VOLTAGE_HIGH);
  202. if (ret > 0)
  203. transition_latency += ret * 1000;
  204. }
  205. ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
  206. if (ret) {
  207. dev_err(cpu_dev, "failed register driver: %d\n", ret);
  208. goto free_freq_table;
  209. }
  210. of_node_put(np);
  211. return 0;
  212. free_freq_table:
  213. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  214. put_node:
  215. of_node_put(np);
  216. return ret;
  217. }
  218. static int imx6q_cpufreq_remove(struct platform_device *pdev)
  219. {
  220. cpufreq_unregister_driver(&imx6q_cpufreq_driver);
  221. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  222. return 0;
  223. }
  224. static struct platform_driver imx6q_cpufreq_platdrv = {
  225. .driver = {
  226. .name = "imx6q-cpufreq",
  227. .owner = THIS_MODULE,
  228. },
  229. .probe = imx6q_cpufreq_probe,
  230. .remove = imx6q_cpufreq_remove,
  231. };
  232. module_platform_driver(imx6q_cpufreq_platdrv);
  233. MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
  234. MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
  235. MODULE_LICENSE("GPL");