clkc.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576
  1. /*
  2. * Zynq clock controller
  3. *
  4. * Copyright (C) 2012 - 2013 Xilinx
  5. *
  6. * Sören Brinkmann <soren.brinkmann@xilinx.com>
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License v2 as published by
  10. * the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <linux/clk/zynq.h>
  21. #include <linux/clk-provider.h>
  22. #include <linux/of.h>
  23. #include <linux/slab.h>
  24. #include <linux/string.h>
  25. #include <linux/io.h>
  26. static void __iomem *zynq_slcr_base_priv;
  27. #define SLCR_ARMPLL_CTRL (zynq_slcr_base_priv + 0x100)
  28. #define SLCR_DDRPLL_CTRL (zynq_slcr_base_priv + 0x104)
  29. #define SLCR_IOPLL_CTRL (zynq_slcr_base_priv + 0x108)
  30. #define SLCR_PLL_STATUS (zynq_slcr_base_priv + 0x10c)
  31. #define SLCR_ARM_CLK_CTRL (zynq_slcr_base_priv + 0x120)
  32. #define SLCR_DDR_CLK_CTRL (zynq_slcr_base_priv + 0x124)
  33. #define SLCR_DCI_CLK_CTRL (zynq_slcr_base_priv + 0x128)
  34. #define SLCR_APER_CLK_CTRL (zynq_slcr_base_priv + 0x12c)
  35. #define SLCR_GEM0_CLK_CTRL (zynq_slcr_base_priv + 0x140)
  36. #define SLCR_GEM1_CLK_CTRL (zynq_slcr_base_priv + 0x144)
  37. #define SLCR_SMC_CLK_CTRL (zynq_slcr_base_priv + 0x148)
  38. #define SLCR_LQSPI_CLK_CTRL (zynq_slcr_base_priv + 0x14c)
  39. #define SLCR_SDIO_CLK_CTRL (zynq_slcr_base_priv + 0x150)
  40. #define SLCR_UART_CLK_CTRL (zynq_slcr_base_priv + 0x154)
  41. #define SLCR_SPI_CLK_CTRL (zynq_slcr_base_priv + 0x158)
  42. #define SLCR_CAN_CLK_CTRL (zynq_slcr_base_priv + 0x15c)
  43. #define SLCR_CAN_MIOCLK_CTRL (zynq_slcr_base_priv + 0x160)
  44. #define SLCR_DBG_CLK_CTRL (zynq_slcr_base_priv + 0x164)
  45. #define SLCR_PCAP_CLK_CTRL (zynq_slcr_base_priv + 0x168)
  46. #define SLCR_FPGA0_CLK_CTRL (zynq_slcr_base_priv + 0x170)
  47. #define SLCR_621_TRUE (zynq_slcr_base_priv + 0x1c4)
  48. #define SLCR_SWDT_CLK_SEL (zynq_slcr_base_priv + 0x304)
  49. #define NUM_MIO_PINS 54
  50. enum zynq_clk {
  51. armpll, ddrpll, iopll,
  52. cpu_6or4x, cpu_3or2x, cpu_2x, cpu_1x,
  53. ddr2x, ddr3x, dci,
  54. lqspi, smc, pcap, gem0, gem1, fclk0, fclk1, fclk2, fclk3, can0, can1,
  55. sdio0, sdio1, uart0, uart1, spi0, spi1, dma,
  56. usb0_aper, usb1_aper, gem0_aper, gem1_aper,
  57. sdio0_aper, sdio1_aper, spi0_aper, spi1_aper, can0_aper, can1_aper,
  58. i2c0_aper, i2c1_aper, uart0_aper, uart1_aper, gpio_aper, lqspi_aper,
  59. smc_aper, swdt, dbg_trc, dbg_apb, clk_max};
  60. static struct clk *ps_clk;
  61. static struct clk *clks[clk_max];
  62. static struct clk_onecell_data clk_data;
  63. static DEFINE_SPINLOCK(armpll_lock);
  64. static DEFINE_SPINLOCK(ddrpll_lock);
  65. static DEFINE_SPINLOCK(iopll_lock);
  66. static DEFINE_SPINLOCK(armclk_lock);
  67. static DEFINE_SPINLOCK(swdtclk_lock);
  68. static DEFINE_SPINLOCK(ddrclk_lock);
  69. static DEFINE_SPINLOCK(dciclk_lock);
  70. static DEFINE_SPINLOCK(gem0clk_lock);
  71. static DEFINE_SPINLOCK(gem1clk_lock);
  72. static DEFINE_SPINLOCK(canclk_lock);
  73. static DEFINE_SPINLOCK(canmioclk_lock);
  74. static DEFINE_SPINLOCK(dbgclk_lock);
  75. static DEFINE_SPINLOCK(aperclk_lock);
  76. static const char dummy_nm[] __initconst = "dummy_name";
  77. static const char *armpll_parents[] __initdata = {"armpll_int", "ps_clk"};
  78. static const char *ddrpll_parents[] __initdata = {"ddrpll_int", "ps_clk"};
  79. static const char *iopll_parents[] __initdata = {"iopll_int", "ps_clk"};
  80. static const char *gem0_mux_parents[] __initdata = {"gem0_div1", dummy_nm};
  81. static const char *gem1_mux_parents[] __initdata = {"gem1_div1", dummy_nm};
  82. static const char *can0_mio_mux2_parents[] __initdata = {"can0_gate",
  83. "can0_mio_mux"};
  84. static const char *can1_mio_mux2_parents[] __initdata = {"can1_gate",
  85. "can1_mio_mux"};
  86. static const char *dbg_emio_mux_parents[] __initdata = {"dbg_div",
  87. dummy_nm};
  88. static const char *dbgtrc_emio_input_names[] __initdata = {"trace_emio_clk"};
  89. static const char *gem0_emio_input_names[] __initdata = {"gem0_emio_clk"};
  90. static const char *gem1_emio_input_names[] __initdata = {"gem1_emio_clk"};
  91. static const char *swdt_ext_clk_input_names[] __initdata = {"swdt_ext_clk"};
  92. static void __init zynq_clk_register_fclk(enum zynq_clk fclk,
  93. const char *clk_name, void __iomem *fclk_ctrl_reg,
  94. const char **parents, int enable)
  95. {
  96. struct clk *clk;
  97. u32 enable_reg;
  98. char *mux_name;
  99. char *div0_name;
  100. char *div1_name;
  101. spinlock_t *fclk_lock;
  102. spinlock_t *fclk_gate_lock;
  103. void __iomem *fclk_gate_reg = fclk_ctrl_reg + 8;
  104. fclk_lock = kmalloc(sizeof(*fclk_lock), GFP_KERNEL);
  105. if (!fclk_lock)
  106. goto err;
  107. fclk_gate_lock = kmalloc(sizeof(*fclk_gate_lock), GFP_KERNEL);
  108. if (!fclk_gate_lock)
  109. goto err_fclk_gate_lock;
  110. spin_lock_init(fclk_lock);
  111. spin_lock_init(fclk_gate_lock);
  112. mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name);
  113. if (!mux_name)
  114. goto err_mux_name;
  115. div0_name = kasprintf(GFP_KERNEL, "%s_div0", clk_name);
  116. if (!div0_name)
  117. goto err_div0_name;
  118. div1_name = kasprintf(GFP_KERNEL, "%s_div1", clk_name);
  119. if (!div1_name)
  120. goto err_div1_name;
  121. clk = clk_register_mux(NULL, mux_name, parents, 4,
  122. CLK_SET_RATE_NO_REPARENT, fclk_ctrl_reg, 4, 2, 0,
  123. fclk_lock);
  124. clk = clk_register_divider(NULL, div0_name, mux_name,
  125. 0, fclk_ctrl_reg, 8, 6, CLK_DIVIDER_ONE_BASED |
  126. CLK_DIVIDER_ALLOW_ZERO, fclk_lock);
  127. clk = clk_register_divider(NULL, div1_name, div0_name,
  128. CLK_SET_RATE_PARENT, fclk_ctrl_reg, 20, 6,
  129. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  130. fclk_lock);
  131. clks[fclk] = clk_register_gate(NULL, clk_name,
  132. div1_name, CLK_SET_RATE_PARENT, fclk_gate_reg,
  133. 0, CLK_GATE_SET_TO_DISABLE, fclk_gate_lock);
  134. enable_reg = readl(fclk_gate_reg) & 1;
  135. if (enable && !enable_reg) {
  136. if (clk_prepare_enable(clks[fclk]))
  137. pr_warn("%s: FCLK%u enable failed\n", __func__,
  138. fclk - fclk0);
  139. }
  140. kfree(mux_name);
  141. kfree(div0_name);
  142. kfree(div1_name);
  143. return;
  144. err_div1_name:
  145. kfree(div0_name);
  146. err_div0_name:
  147. kfree(mux_name);
  148. err_mux_name:
  149. kfree(fclk_gate_lock);
  150. err_fclk_gate_lock:
  151. kfree(fclk_lock);
  152. err:
  153. clks[fclk] = ERR_PTR(-ENOMEM);
  154. }
  155. static void __init zynq_clk_register_periph_clk(enum zynq_clk clk0,
  156. enum zynq_clk clk1, const char *clk_name0,
  157. const char *clk_name1, void __iomem *clk_ctrl,
  158. const char **parents, unsigned int two_gates)
  159. {
  160. struct clk *clk;
  161. char *mux_name;
  162. char *div_name;
  163. spinlock_t *lock;
  164. lock = kmalloc(sizeof(*lock), GFP_KERNEL);
  165. if (!lock)
  166. goto err;
  167. spin_lock_init(lock);
  168. mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name0);
  169. div_name = kasprintf(GFP_KERNEL, "%s_div", clk_name0);
  170. clk = clk_register_mux(NULL, mux_name, parents, 4,
  171. CLK_SET_RATE_NO_REPARENT, clk_ctrl, 4, 2, 0, lock);
  172. clk = clk_register_divider(NULL, div_name, mux_name, 0, clk_ctrl, 8, 6,
  173. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, lock);
  174. clks[clk0] = clk_register_gate(NULL, clk_name0, div_name,
  175. CLK_SET_RATE_PARENT, clk_ctrl, 0, 0, lock);
  176. if (two_gates)
  177. clks[clk1] = clk_register_gate(NULL, clk_name1, div_name,
  178. CLK_SET_RATE_PARENT, clk_ctrl, 1, 0, lock);
  179. kfree(mux_name);
  180. kfree(div_name);
  181. return;
  182. err:
  183. clks[clk0] = ERR_PTR(-ENOMEM);
  184. if (two_gates)
  185. clks[clk1] = ERR_PTR(-ENOMEM);
  186. }
  187. static void __init zynq_clk_setup(struct device_node *np)
  188. {
  189. int i;
  190. u32 tmp;
  191. int ret;
  192. struct clk *clk;
  193. char *clk_name;
  194. unsigned int fclk_enable = 0;
  195. const char *clk_output_name[clk_max];
  196. const char *cpu_parents[4];
  197. const char *periph_parents[4];
  198. const char *swdt_ext_clk_mux_parents[2];
  199. const char *can_mio_mux_parents[NUM_MIO_PINS];
  200. pr_info("Zynq clock init\n");
  201. /* get clock output names from DT */
  202. for (i = 0; i < clk_max; i++) {
  203. if (of_property_read_string_index(np, "clock-output-names",
  204. i, &clk_output_name[i])) {
  205. pr_err("%s: clock output name not in DT\n", __func__);
  206. BUG();
  207. }
  208. }
  209. cpu_parents[0] = clk_output_name[armpll];
  210. cpu_parents[1] = clk_output_name[armpll];
  211. cpu_parents[2] = clk_output_name[ddrpll];
  212. cpu_parents[3] = clk_output_name[iopll];
  213. periph_parents[0] = clk_output_name[iopll];
  214. periph_parents[1] = clk_output_name[iopll];
  215. periph_parents[2] = clk_output_name[armpll];
  216. periph_parents[3] = clk_output_name[ddrpll];
  217. of_property_read_u32(np, "fclk-enable", &fclk_enable);
  218. /* ps_clk */
  219. ret = of_property_read_u32(np, "ps-clk-frequency", &tmp);
  220. if (ret) {
  221. pr_warn("ps_clk frequency not specified, using 33 MHz.\n");
  222. tmp = 33333333;
  223. }
  224. ps_clk = clk_register_fixed_rate(NULL, "ps_clk", NULL, CLK_IS_ROOT,
  225. tmp);
  226. /* PLLs */
  227. clk = clk_register_zynq_pll("armpll_int", "ps_clk", SLCR_ARMPLL_CTRL,
  228. SLCR_PLL_STATUS, 0, &armpll_lock);
  229. clks[armpll] = clk_register_mux(NULL, clk_output_name[armpll],
  230. armpll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  231. SLCR_ARMPLL_CTRL, 4, 1, 0, &armpll_lock);
  232. clk = clk_register_zynq_pll("ddrpll_int", "ps_clk", SLCR_DDRPLL_CTRL,
  233. SLCR_PLL_STATUS, 1, &ddrpll_lock);
  234. clks[ddrpll] = clk_register_mux(NULL, clk_output_name[ddrpll],
  235. ddrpll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  236. SLCR_DDRPLL_CTRL, 4, 1, 0, &ddrpll_lock);
  237. clk = clk_register_zynq_pll("iopll_int", "ps_clk", SLCR_IOPLL_CTRL,
  238. SLCR_PLL_STATUS, 2, &iopll_lock);
  239. clks[iopll] = clk_register_mux(NULL, clk_output_name[iopll],
  240. iopll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  241. SLCR_IOPLL_CTRL, 4, 1, 0, &iopll_lock);
  242. /* CPU clocks */
  243. tmp = readl(SLCR_621_TRUE) & 1;
  244. clk = clk_register_mux(NULL, "cpu_mux", cpu_parents, 4,
  245. CLK_SET_RATE_NO_REPARENT, SLCR_ARM_CLK_CTRL, 4, 2, 0,
  246. &armclk_lock);
  247. clk = clk_register_divider(NULL, "cpu_div", "cpu_mux", 0,
  248. SLCR_ARM_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  249. CLK_DIVIDER_ALLOW_ZERO, &armclk_lock);
  250. clks[cpu_6or4x] = clk_register_gate(NULL, clk_output_name[cpu_6or4x],
  251. "cpu_div", CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED,
  252. SLCR_ARM_CLK_CTRL, 24, 0, &armclk_lock);
  253. clk = clk_register_fixed_factor(NULL, "cpu_3or2x_div", "cpu_div", 0,
  254. 1, 2);
  255. clks[cpu_3or2x] = clk_register_gate(NULL, clk_output_name[cpu_3or2x],
  256. "cpu_3or2x_div", CLK_IGNORE_UNUSED,
  257. SLCR_ARM_CLK_CTRL, 25, 0, &armclk_lock);
  258. clk = clk_register_fixed_factor(NULL, "cpu_2x_div", "cpu_div", 0, 1,
  259. 2 + tmp);
  260. clks[cpu_2x] = clk_register_gate(NULL, clk_output_name[cpu_2x],
  261. "cpu_2x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL,
  262. 26, 0, &armclk_lock);
  263. clk = clk_register_fixed_factor(NULL, "cpu_1x_div", "cpu_div", 0, 1,
  264. 4 + 2 * tmp);
  265. clks[cpu_1x] = clk_register_gate(NULL, clk_output_name[cpu_1x],
  266. "cpu_1x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL, 27,
  267. 0, &armclk_lock);
  268. /* Timers */
  269. swdt_ext_clk_mux_parents[0] = clk_output_name[cpu_1x];
  270. for (i = 0; i < ARRAY_SIZE(swdt_ext_clk_input_names); i++) {
  271. int idx = of_property_match_string(np, "clock-names",
  272. swdt_ext_clk_input_names[i]);
  273. if (idx >= 0)
  274. swdt_ext_clk_mux_parents[i + 1] =
  275. of_clk_get_parent_name(np, idx);
  276. else
  277. swdt_ext_clk_mux_parents[i + 1] = dummy_nm;
  278. }
  279. clks[swdt] = clk_register_mux(NULL, clk_output_name[swdt],
  280. swdt_ext_clk_mux_parents, 2, CLK_SET_RATE_PARENT |
  281. CLK_SET_RATE_NO_REPARENT, SLCR_SWDT_CLK_SEL, 0, 1, 0,
  282. &swdtclk_lock);
  283. /* DDR clocks */
  284. clk = clk_register_divider(NULL, "ddr2x_div", "ddrpll", 0,
  285. SLCR_DDR_CLK_CTRL, 26, 6, CLK_DIVIDER_ONE_BASED |
  286. CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock);
  287. clks[ddr2x] = clk_register_gate(NULL, clk_output_name[ddr2x],
  288. "ddr2x_div", 0, SLCR_DDR_CLK_CTRL, 1, 0, &ddrclk_lock);
  289. clk_prepare_enable(clks[ddr2x]);
  290. clk = clk_register_divider(NULL, "ddr3x_div", "ddrpll", 0,
  291. SLCR_DDR_CLK_CTRL, 20, 6, CLK_DIVIDER_ONE_BASED |
  292. CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock);
  293. clks[ddr3x] = clk_register_gate(NULL, clk_output_name[ddr3x],
  294. "ddr3x_div", 0, SLCR_DDR_CLK_CTRL, 0, 0, &ddrclk_lock);
  295. clk_prepare_enable(clks[ddr3x]);
  296. clk = clk_register_divider(NULL, "dci_div0", "ddrpll", 0,
  297. SLCR_DCI_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  298. CLK_DIVIDER_ALLOW_ZERO, &dciclk_lock);
  299. clk = clk_register_divider(NULL, "dci_div1", "dci_div0",
  300. CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 20, 6,
  301. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  302. &dciclk_lock);
  303. clks[dci] = clk_register_gate(NULL, clk_output_name[dci], "dci_div1",
  304. CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 0, 0,
  305. &dciclk_lock);
  306. clk_prepare_enable(clks[dci]);
  307. /* Peripheral clocks */
  308. for (i = fclk0; i <= fclk3; i++) {
  309. int enable = !!(fclk_enable & BIT(i - fclk0));
  310. zynq_clk_register_fclk(i, clk_output_name[i],
  311. SLCR_FPGA0_CLK_CTRL + 0x10 * (i - fclk0),
  312. periph_parents, enable);
  313. }
  314. zynq_clk_register_periph_clk(lqspi, 0, clk_output_name[lqspi], NULL,
  315. SLCR_LQSPI_CLK_CTRL, periph_parents, 0);
  316. zynq_clk_register_periph_clk(smc, 0, clk_output_name[smc], NULL,
  317. SLCR_SMC_CLK_CTRL, periph_parents, 0);
  318. zynq_clk_register_periph_clk(pcap, 0, clk_output_name[pcap], NULL,
  319. SLCR_PCAP_CLK_CTRL, periph_parents, 0);
  320. zynq_clk_register_periph_clk(sdio0, sdio1, clk_output_name[sdio0],
  321. clk_output_name[sdio1], SLCR_SDIO_CLK_CTRL,
  322. periph_parents, 1);
  323. zynq_clk_register_periph_clk(uart0, uart1, clk_output_name[uart0],
  324. clk_output_name[uart1], SLCR_UART_CLK_CTRL,
  325. periph_parents, 1);
  326. zynq_clk_register_periph_clk(spi0, spi1, clk_output_name[spi0],
  327. clk_output_name[spi1], SLCR_SPI_CLK_CTRL,
  328. periph_parents, 1);
  329. for (i = 0; i < ARRAY_SIZE(gem0_emio_input_names); i++) {
  330. int idx = of_property_match_string(np, "clock-names",
  331. gem0_emio_input_names[i]);
  332. if (idx >= 0)
  333. gem0_mux_parents[i + 1] = of_clk_get_parent_name(np,
  334. idx);
  335. }
  336. clk = clk_register_mux(NULL, "gem0_mux", periph_parents, 4,
  337. CLK_SET_RATE_NO_REPARENT, SLCR_GEM0_CLK_CTRL, 4, 2, 0,
  338. &gem0clk_lock);
  339. clk = clk_register_divider(NULL, "gem0_div0", "gem0_mux", 0,
  340. SLCR_GEM0_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  341. CLK_DIVIDER_ALLOW_ZERO, &gem0clk_lock);
  342. clk = clk_register_divider(NULL, "gem0_div1", "gem0_div0",
  343. CLK_SET_RATE_PARENT, SLCR_GEM0_CLK_CTRL, 20, 6,
  344. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  345. &gem0clk_lock);
  346. clk = clk_register_mux(NULL, "gem0_emio_mux", gem0_mux_parents, 2,
  347. CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT,
  348. SLCR_GEM0_CLK_CTRL, 6, 1, 0,
  349. &gem0clk_lock);
  350. clks[gem0] = clk_register_gate(NULL, clk_output_name[gem0],
  351. "gem0_emio_mux", CLK_SET_RATE_PARENT,
  352. SLCR_GEM0_CLK_CTRL, 0, 0, &gem0clk_lock);
  353. for (i = 0; i < ARRAY_SIZE(gem1_emio_input_names); i++) {
  354. int idx = of_property_match_string(np, "clock-names",
  355. gem1_emio_input_names[i]);
  356. if (idx >= 0)
  357. gem1_mux_parents[i + 1] = of_clk_get_parent_name(np,
  358. idx);
  359. }
  360. clk = clk_register_mux(NULL, "gem1_mux", periph_parents, 4,
  361. CLK_SET_RATE_NO_REPARENT, SLCR_GEM1_CLK_CTRL, 4, 2, 0,
  362. &gem1clk_lock);
  363. clk = clk_register_divider(NULL, "gem1_div0", "gem1_mux", 0,
  364. SLCR_GEM1_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  365. CLK_DIVIDER_ALLOW_ZERO, &gem1clk_lock);
  366. clk = clk_register_divider(NULL, "gem1_div1", "gem1_div0",
  367. CLK_SET_RATE_PARENT, SLCR_GEM1_CLK_CTRL, 20, 6,
  368. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  369. &gem1clk_lock);
  370. clk = clk_register_mux(NULL, "gem1_emio_mux", gem1_mux_parents, 2,
  371. CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT,
  372. SLCR_GEM1_CLK_CTRL, 6, 1, 0,
  373. &gem1clk_lock);
  374. clks[gem1] = clk_register_gate(NULL, clk_output_name[gem1],
  375. "gem1_emio_mux", CLK_SET_RATE_PARENT,
  376. SLCR_GEM1_CLK_CTRL, 0, 0, &gem1clk_lock);
  377. tmp = strlen("mio_clk_00x");
  378. clk_name = kmalloc(tmp, GFP_KERNEL);
  379. for (i = 0; i < NUM_MIO_PINS; i++) {
  380. int idx;
  381. snprintf(clk_name, tmp, "mio_clk_%2.2d", i);
  382. idx = of_property_match_string(np, "clock-names", clk_name);
  383. if (idx >= 0)
  384. can_mio_mux_parents[i] = of_clk_get_parent_name(np,
  385. idx);
  386. else
  387. can_mio_mux_parents[i] = dummy_nm;
  388. }
  389. kfree(clk_name);
  390. clk = clk_register_mux(NULL, "can_mux", periph_parents, 4,
  391. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_CLK_CTRL, 4, 2, 0,
  392. &canclk_lock);
  393. clk = clk_register_divider(NULL, "can_div0", "can_mux", 0,
  394. SLCR_CAN_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  395. CLK_DIVIDER_ALLOW_ZERO, &canclk_lock);
  396. clk = clk_register_divider(NULL, "can_div1", "can_div0",
  397. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 20, 6,
  398. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  399. &canclk_lock);
  400. clk = clk_register_gate(NULL, "can0_gate", "can_div1",
  401. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 0, 0,
  402. &canclk_lock);
  403. clk = clk_register_gate(NULL, "can1_gate", "can_div1",
  404. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 1, 0,
  405. &canclk_lock);
  406. clk = clk_register_mux(NULL, "can0_mio_mux",
  407. can_mio_mux_parents, 54, CLK_SET_RATE_PARENT |
  408. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 0, 6, 0,
  409. &canmioclk_lock);
  410. clk = clk_register_mux(NULL, "can1_mio_mux",
  411. can_mio_mux_parents, 54, CLK_SET_RATE_PARENT |
  412. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 16, 6,
  413. 0, &canmioclk_lock);
  414. clks[can0] = clk_register_mux(NULL, clk_output_name[can0],
  415. can0_mio_mux2_parents, 2, CLK_SET_RATE_PARENT |
  416. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 6, 1, 0,
  417. &canmioclk_lock);
  418. clks[can1] = clk_register_mux(NULL, clk_output_name[can1],
  419. can1_mio_mux2_parents, 2, CLK_SET_RATE_PARENT |
  420. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 22, 1,
  421. 0, &canmioclk_lock);
  422. for (i = 0; i < ARRAY_SIZE(dbgtrc_emio_input_names); i++) {
  423. int idx = of_property_match_string(np, "clock-names",
  424. dbgtrc_emio_input_names[i]);
  425. if (idx >= 0)
  426. dbg_emio_mux_parents[i + 1] = of_clk_get_parent_name(np,
  427. idx);
  428. }
  429. clk = clk_register_mux(NULL, "dbg_mux", periph_parents, 4,
  430. CLK_SET_RATE_NO_REPARENT, SLCR_DBG_CLK_CTRL, 4, 2, 0,
  431. &dbgclk_lock);
  432. clk = clk_register_divider(NULL, "dbg_div", "dbg_mux", 0,
  433. SLCR_DBG_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  434. CLK_DIVIDER_ALLOW_ZERO, &dbgclk_lock);
  435. clk = clk_register_mux(NULL, "dbg_emio_mux", dbg_emio_mux_parents, 2,
  436. CLK_SET_RATE_NO_REPARENT, SLCR_DBG_CLK_CTRL, 6, 1, 0,
  437. &dbgclk_lock);
  438. clks[dbg_trc] = clk_register_gate(NULL, clk_output_name[dbg_trc],
  439. "dbg_emio_mux", CLK_SET_RATE_PARENT, SLCR_DBG_CLK_CTRL,
  440. 0, 0, &dbgclk_lock);
  441. clks[dbg_apb] = clk_register_gate(NULL, clk_output_name[dbg_apb],
  442. clk_output_name[cpu_1x], 0, SLCR_DBG_CLK_CTRL, 1, 0,
  443. &dbgclk_lock);
  444. /* One gated clock for all APER clocks. */
  445. clks[dma] = clk_register_gate(NULL, clk_output_name[dma],
  446. clk_output_name[cpu_2x], 0, SLCR_APER_CLK_CTRL, 0, 0,
  447. &aperclk_lock);
  448. clks[usb0_aper] = clk_register_gate(NULL, clk_output_name[usb0_aper],
  449. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 2, 0,
  450. &aperclk_lock);
  451. clks[usb1_aper] = clk_register_gate(NULL, clk_output_name[usb1_aper],
  452. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 3, 0,
  453. &aperclk_lock);
  454. clks[gem0_aper] = clk_register_gate(NULL, clk_output_name[gem0_aper],
  455. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 6, 0,
  456. &aperclk_lock);
  457. clks[gem1_aper] = clk_register_gate(NULL, clk_output_name[gem1_aper],
  458. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 7, 0,
  459. &aperclk_lock);
  460. clks[sdio0_aper] = clk_register_gate(NULL, clk_output_name[sdio0_aper],
  461. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 10, 0,
  462. &aperclk_lock);
  463. clks[sdio1_aper] = clk_register_gate(NULL, clk_output_name[sdio1_aper],
  464. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 11, 0,
  465. &aperclk_lock);
  466. clks[spi0_aper] = clk_register_gate(NULL, clk_output_name[spi0_aper],
  467. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 14, 0,
  468. &aperclk_lock);
  469. clks[spi1_aper] = clk_register_gate(NULL, clk_output_name[spi1_aper],
  470. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 15, 0,
  471. &aperclk_lock);
  472. clks[can0_aper] = clk_register_gate(NULL, clk_output_name[can0_aper],
  473. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 16, 0,
  474. &aperclk_lock);
  475. clks[can1_aper] = clk_register_gate(NULL, clk_output_name[can1_aper],
  476. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 17, 0,
  477. &aperclk_lock);
  478. clks[i2c0_aper] = clk_register_gate(NULL, clk_output_name[i2c0_aper],
  479. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 18, 0,
  480. &aperclk_lock);
  481. clks[i2c1_aper] = clk_register_gate(NULL, clk_output_name[i2c1_aper],
  482. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 19, 0,
  483. &aperclk_lock);
  484. clks[uart0_aper] = clk_register_gate(NULL, clk_output_name[uart0_aper],
  485. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 20, 0,
  486. &aperclk_lock);
  487. clks[uart1_aper] = clk_register_gate(NULL, clk_output_name[uart1_aper],
  488. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 21, 0,
  489. &aperclk_lock);
  490. clks[gpio_aper] = clk_register_gate(NULL, clk_output_name[gpio_aper],
  491. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 22, 0,
  492. &aperclk_lock);
  493. clks[lqspi_aper] = clk_register_gate(NULL, clk_output_name[lqspi_aper],
  494. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 23, 0,
  495. &aperclk_lock);
  496. clks[smc_aper] = clk_register_gate(NULL, clk_output_name[smc_aper],
  497. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 24, 0,
  498. &aperclk_lock);
  499. for (i = 0; i < ARRAY_SIZE(clks); i++) {
  500. if (IS_ERR(clks[i])) {
  501. pr_err("Zynq clk %d: register failed with %ld\n",
  502. i, PTR_ERR(clks[i]));
  503. BUG();
  504. }
  505. }
  506. clk_data.clks = clks;
  507. clk_data.clk_num = ARRAY_SIZE(clks);
  508. of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
  509. }
  510. CLK_OF_DECLARE(zynq_clkc, "xlnx,ps7-clkc", zynq_clk_setup);
  511. void __init zynq_clock_init(void __iomem *slcr_base)
  512. {
  513. zynq_slcr_base_priv = slcr_base;
  514. of_clk_init(NULL);
  515. }