intel_ringbuffer.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ring *ring)
  47. {
  48. if (ring->last_retired_head != -1) {
  49. ring->head = ring->last_retired_head;
  50. ring->last_retired_head = -1;
  51. }
  52. ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  53. ring->tail, ring->size);
  54. }
  55. static void __intel_engine_submit(struct intel_engine_cs *engine)
  56. {
  57. struct intel_ring *ring = engine->buffer;
  58. ring->tail &= ring->size - 1;
  59. engine->write_tail(engine, ring->tail);
  60. }
  61. static int
  62. gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  63. {
  64. struct intel_ring *ring = req->ring;
  65. u32 cmd;
  66. int ret;
  67. cmd = MI_FLUSH;
  68. if (mode & EMIT_INVALIDATE)
  69. cmd |= MI_READ_FLUSH;
  70. ret = intel_ring_begin(req, 2);
  71. if (ret)
  72. return ret;
  73. intel_ring_emit(ring, cmd);
  74. intel_ring_emit(ring, MI_NOOP);
  75. intel_ring_advance(ring);
  76. return 0;
  77. }
  78. static int
  79. gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  80. {
  81. struct intel_ring *ring = req->ring;
  82. u32 cmd;
  83. int ret;
  84. /*
  85. * read/write caches:
  86. *
  87. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  88. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  89. * also flushed at 2d versus 3d pipeline switches.
  90. *
  91. * read-only caches:
  92. *
  93. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  94. * MI_READ_FLUSH is set, and is always flushed on 965.
  95. *
  96. * I915_GEM_DOMAIN_COMMAND may not exist?
  97. *
  98. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  99. * invalidated when MI_EXE_FLUSH is set.
  100. *
  101. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  102. * invalidated with every MI_FLUSH.
  103. *
  104. * TLBs:
  105. *
  106. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  107. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  108. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  109. * are flushed at any MI_FLUSH.
  110. */
  111. cmd = MI_FLUSH;
  112. if (mode & EMIT_INVALIDATE) {
  113. cmd |= MI_EXE_FLUSH;
  114. if (IS_G4X(req->i915) || IS_GEN5(req->i915))
  115. cmd |= MI_INVALIDATE_ISP;
  116. }
  117. ret = intel_ring_begin(req, 2);
  118. if (ret)
  119. return ret;
  120. intel_ring_emit(ring, cmd);
  121. intel_ring_emit(ring, MI_NOOP);
  122. intel_ring_advance(ring);
  123. return 0;
  124. }
  125. /**
  126. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  127. * implementing two workarounds on gen6. From section 1.4.7.1
  128. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  129. *
  130. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  131. * produced by non-pipelined state commands), software needs to first
  132. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  133. * 0.
  134. *
  135. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  136. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  137. *
  138. * And the workaround for these two requires this workaround first:
  139. *
  140. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  141. * BEFORE the pipe-control with a post-sync op and no write-cache
  142. * flushes.
  143. *
  144. * And this last workaround is tricky because of the requirements on
  145. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  146. * volume 2 part 1:
  147. *
  148. * "1 of the following must also be set:
  149. * - Render Target Cache Flush Enable ([12] of DW1)
  150. * - Depth Cache Flush Enable ([0] of DW1)
  151. * - Stall at Pixel Scoreboard ([1] of DW1)
  152. * - Depth Stall ([13] of DW1)
  153. * - Post-Sync Operation ([13] of DW1)
  154. * - Notify Enable ([8] of DW1)"
  155. *
  156. * The cache flushes require the workaround flush that triggered this
  157. * one, so we can't use it. Depth stall would trigger the same.
  158. * Post-sync nonzero is what triggered this second workaround, so we
  159. * can't use that one either. Notify enable is IRQs, which aren't
  160. * really our business. That leaves only stall at scoreboard.
  161. */
  162. static int
  163. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  164. {
  165. struct intel_ring *ring = req->ring;
  166. u32 scratch_addr =
  167. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  168. int ret;
  169. ret = intel_ring_begin(req, 6);
  170. if (ret)
  171. return ret;
  172. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  173. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  174. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  175. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  176. intel_ring_emit(ring, 0); /* low dword */
  177. intel_ring_emit(ring, 0); /* high dword */
  178. intel_ring_emit(ring, MI_NOOP);
  179. intel_ring_advance(ring);
  180. ret = intel_ring_begin(req, 6);
  181. if (ret)
  182. return ret;
  183. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  184. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  185. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  186. intel_ring_emit(ring, 0);
  187. intel_ring_emit(ring, 0);
  188. intel_ring_emit(ring, MI_NOOP);
  189. intel_ring_advance(ring);
  190. return 0;
  191. }
  192. static int
  193. gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  194. {
  195. struct intel_ring *ring = req->ring;
  196. u32 scratch_addr =
  197. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  198. u32 flags = 0;
  199. int ret;
  200. /* Force SNB workarounds for PIPE_CONTROL flushes */
  201. ret = intel_emit_post_sync_nonzero_flush(req);
  202. if (ret)
  203. return ret;
  204. /* Just flush everything. Experiments have shown that reducing the
  205. * number of bits based on the write domains has little performance
  206. * impact.
  207. */
  208. if (mode & EMIT_FLUSH) {
  209. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  210. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  211. /*
  212. * Ensure that any following seqno writes only happen
  213. * when the render cache is indeed flushed.
  214. */
  215. flags |= PIPE_CONTROL_CS_STALL;
  216. }
  217. if (mode & EMIT_INVALIDATE) {
  218. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  219. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  220. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  221. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  222. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  223. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  224. /*
  225. * TLB invalidate requires a post-sync write.
  226. */
  227. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  228. }
  229. ret = intel_ring_begin(req, 4);
  230. if (ret)
  231. return ret;
  232. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  233. intel_ring_emit(ring, flags);
  234. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  235. intel_ring_emit(ring, 0);
  236. intel_ring_advance(ring);
  237. return 0;
  238. }
  239. static int
  240. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  241. {
  242. struct intel_ring *ring = req->ring;
  243. int ret;
  244. ret = intel_ring_begin(req, 4);
  245. if (ret)
  246. return ret;
  247. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  248. intel_ring_emit(ring,
  249. PIPE_CONTROL_CS_STALL |
  250. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  251. intel_ring_emit(ring, 0);
  252. intel_ring_emit(ring, 0);
  253. intel_ring_advance(ring);
  254. return 0;
  255. }
  256. static int
  257. gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  258. {
  259. struct intel_ring *ring = req->ring;
  260. u32 scratch_addr =
  261. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  262. u32 flags = 0;
  263. int ret;
  264. /*
  265. * Ensure that any following seqno writes only happen when the render
  266. * cache is indeed flushed.
  267. *
  268. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  269. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  270. * don't try to be clever and just set it unconditionally.
  271. */
  272. flags |= PIPE_CONTROL_CS_STALL;
  273. /* Just flush everything. Experiments have shown that reducing the
  274. * number of bits based on the write domains has little performance
  275. * impact.
  276. */
  277. if (mode & EMIT_FLUSH) {
  278. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  279. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  280. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  281. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  282. }
  283. if (mode & EMIT_INVALIDATE) {
  284. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  285. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  286. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  287. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  288. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  289. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  290. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  291. /*
  292. * TLB invalidate requires a post-sync write.
  293. */
  294. flags |= PIPE_CONTROL_QW_WRITE;
  295. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  296. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  297. /* Workaround: we must issue a pipe_control with CS-stall bit
  298. * set before a pipe_control command that has the state cache
  299. * invalidate bit set. */
  300. gen7_render_ring_cs_stall_wa(req);
  301. }
  302. ret = intel_ring_begin(req, 4);
  303. if (ret)
  304. return ret;
  305. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  306. intel_ring_emit(ring, flags);
  307. intel_ring_emit(ring, scratch_addr);
  308. intel_ring_emit(ring, 0);
  309. intel_ring_advance(ring);
  310. return 0;
  311. }
  312. static int
  313. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  314. u32 flags, u32 scratch_addr)
  315. {
  316. struct intel_ring *ring = req->ring;
  317. int ret;
  318. ret = intel_ring_begin(req, 6);
  319. if (ret)
  320. return ret;
  321. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  322. intel_ring_emit(ring, flags);
  323. intel_ring_emit(ring, scratch_addr);
  324. intel_ring_emit(ring, 0);
  325. intel_ring_emit(ring, 0);
  326. intel_ring_emit(ring, 0);
  327. intel_ring_advance(ring);
  328. return 0;
  329. }
  330. static int
  331. gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  332. {
  333. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  334. u32 flags = 0;
  335. int ret;
  336. flags |= PIPE_CONTROL_CS_STALL;
  337. if (mode & EMIT_FLUSH) {
  338. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  339. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  340. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  341. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  342. }
  343. if (mode & EMIT_INVALIDATE) {
  344. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  345. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  346. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  347. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  348. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  349. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  350. flags |= PIPE_CONTROL_QW_WRITE;
  351. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  352. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  353. ret = gen8_emit_pipe_control(req,
  354. PIPE_CONTROL_CS_STALL |
  355. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  356. 0);
  357. if (ret)
  358. return ret;
  359. }
  360. return gen8_emit_pipe_control(req, flags, scratch_addr);
  361. }
  362. static void ring_write_tail(struct intel_engine_cs *engine,
  363. u32 value)
  364. {
  365. struct drm_i915_private *dev_priv = engine->i915;
  366. I915_WRITE_TAIL(engine, value);
  367. }
  368. u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
  369. {
  370. struct drm_i915_private *dev_priv = engine->i915;
  371. u64 acthd;
  372. if (INTEL_GEN(dev_priv) >= 8)
  373. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  374. RING_ACTHD_UDW(engine->mmio_base));
  375. else if (INTEL_GEN(dev_priv) >= 4)
  376. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  377. else
  378. acthd = I915_READ(ACTHD);
  379. return acthd;
  380. }
  381. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  382. {
  383. struct drm_i915_private *dev_priv = engine->i915;
  384. u32 addr;
  385. addr = dev_priv->status_page_dmah->busaddr;
  386. if (INTEL_GEN(dev_priv) >= 4)
  387. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  388. I915_WRITE(HWS_PGA, addr);
  389. }
  390. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  391. {
  392. struct drm_i915_private *dev_priv = engine->i915;
  393. i915_reg_t mmio;
  394. /* The ring status page addresses are no longer next to the rest of
  395. * the ring registers as of gen7.
  396. */
  397. if (IS_GEN7(dev_priv)) {
  398. switch (engine->id) {
  399. case RCS:
  400. mmio = RENDER_HWS_PGA_GEN7;
  401. break;
  402. case BCS:
  403. mmio = BLT_HWS_PGA_GEN7;
  404. break;
  405. /*
  406. * VCS2 actually doesn't exist on Gen7. Only shut up
  407. * gcc switch check warning
  408. */
  409. case VCS2:
  410. case VCS:
  411. mmio = BSD_HWS_PGA_GEN7;
  412. break;
  413. case VECS:
  414. mmio = VEBOX_HWS_PGA_GEN7;
  415. break;
  416. }
  417. } else if (IS_GEN6(dev_priv)) {
  418. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  419. } else {
  420. /* XXX: gen8 returns to sanity */
  421. mmio = RING_HWS_PGA(engine->mmio_base);
  422. }
  423. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  424. POSTING_READ(mmio);
  425. /*
  426. * Flush the TLB for this page
  427. *
  428. * FIXME: These two bits have disappeared on gen8, so a question
  429. * arises: do we still need this and if so how should we go about
  430. * invalidating the TLB?
  431. */
  432. if (IS_GEN(dev_priv, 6, 7)) {
  433. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  434. /* ring should be idle before issuing a sync flush*/
  435. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  436. I915_WRITE(reg,
  437. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  438. INSTPM_SYNC_FLUSH));
  439. if (intel_wait_for_register(dev_priv,
  440. reg, INSTPM_SYNC_FLUSH, 0,
  441. 1000))
  442. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  443. engine->name);
  444. }
  445. }
  446. static bool stop_ring(struct intel_engine_cs *engine)
  447. {
  448. struct drm_i915_private *dev_priv = engine->i915;
  449. if (!IS_GEN2(dev_priv)) {
  450. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  451. if (intel_wait_for_register(dev_priv,
  452. RING_MI_MODE(engine->mmio_base),
  453. MODE_IDLE,
  454. MODE_IDLE,
  455. 1000)) {
  456. DRM_ERROR("%s : timed out trying to stop ring\n",
  457. engine->name);
  458. /* Sometimes we observe that the idle flag is not
  459. * set even though the ring is empty. So double
  460. * check before giving up.
  461. */
  462. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  463. return false;
  464. }
  465. }
  466. I915_WRITE_CTL(engine, 0);
  467. I915_WRITE_HEAD(engine, 0);
  468. engine->write_tail(engine, 0);
  469. if (!IS_GEN2(dev_priv)) {
  470. (void)I915_READ_CTL(engine);
  471. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  472. }
  473. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  474. }
  475. static int init_ring_common(struct intel_engine_cs *engine)
  476. {
  477. struct drm_i915_private *dev_priv = engine->i915;
  478. struct intel_ring *ring = engine->buffer;
  479. struct drm_i915_gem_object *obj = ring->obj;
  480. int ret = 0;
  481. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  482. if (!stop_ring(engine)) {
  483. /* G45 ring initialization often fails to reset head to zero */
  484. DRM_DEBUG_KMS("%s head not reset to zero "
  485. "ctl %08x head %08x tail %08x start %08x\n",
  486. engine->name,
  487. I915_READ_CTL(engine),
  488. I915_READ_HEAD(engine),
  489. I915_READ_TAIL(engine),
  490. I915_READ_START(engine));
  491. if (!stop_ring(engine)) {
  492. DRM_ERROR("failed to set %s head to zero "
  493. "ctl %08x head %08x tail %08x start %08x\n",
  494. engine->name,
  495. I915_READ_CTL(engine),
  496. I915_READ_HEAD(engine),
  497. I915_READ_TAIL(engine),
  498. I915_READ_START(engine));
  499. ret = -EIO;
  500. goto out;
  501. }
  502. }
  503. if (I915_NEED_GFX_HWS(dev_priv))
  504. intel_ring_setup_status_page(engine);
  505. else
  506. ring_setup_phys_status_page(engine);
  507. /* Enforce ordering by reading HEAD register back */
  508. I915_READ_HEAD(engine);
  509. /* Initialize the ring. This must happen _after_ we've cleared the ring
  510. * registers with the above sequence (the readback of the HEAD registers
  511. * also enforces ordering), otherwise the hw might lose the new ring
  512. * register values. */
  513. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  514. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  515. if (I915_READ_HEAD(engine))
  516. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  517. engine->name, I915_READ_HEAD(engine));
  518. I915_WRITE_HEAD(engine, 0);
  519. (void)I915_READ_HEAD(engine);
  520. I915_WRITE_CTL(engine,
  521. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  522. | RING_VALID);
  523. /* If the head is still not zero, the ring is dead */
  524. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  525. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  526. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  527. DRM_ERROR("%s initialization failed "
  528. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  529. engine->name,
  530. I915_READ_CTL(engine),
  531. I915_READ_CTL(engine) & RING_VALID,
  532. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  533. I915_READ_START(engine),
  534. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  535. ret = -EIO;
  536. goto out;
  537. }
  538. ring->last_retired_head = -1;
  539. ring->head = I915_READ_HEAD(engine);
  540. ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  541. intel_ring_update_space(ring);
  542. intel_engine_init_hangcheck(engine);
  543. out:
  544. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  545. return ret;
  546. }
  547. void intel_fini_pipe_control(struct intel_engine_cs *engine)
  548. {
  549. if (engine->scratch.obj == NULL)
  550. return;
  551. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  552. i915_gem_object_put(engine->scratch.obj);
  553. engine->scratch.obj = NULL;
  554. }
  555. int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
  556. {
  557. struct drm_i915_gem_object *obj;
  558. int ret;
  559. WARN_ON(engine->scratch.obj);
  560. obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
  561. if (!obj)
  562. obj = i915_gem_object_create(&engine->i915->drm, size);
  563. if (IS_ERR(obj)) {
  564. DRM_ERROR("Failed to allocate scratch page\n");
  565. ret = PTR_ERR(obj);
  566. goto err;
  567. }
  568. ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
  569. if (ret)
  570. goto err_unref;
  571. engine->scratch.obj = obj;
  572. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  573. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  574. engine->name, engine->scratch.gtt_offset);
  575. return 0;
  576. err_unref:
  577. i915_gem_object_put(engine->scratch.obj);
  578. err:
  579. return ret;
  580. }
  581. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  582. {
  583. struct intel_ring *ring = req->ring;
  584. struct i915_workarounds *w = &req->i915->workarounds;
  585. int ret, i;
  586. if (w->count == 0)
  587. return 0;
  588. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  589. if (ret)
  590. return ret;
  591. ret = intel_ring_begin(req, (w->count * 2 + 2));
  592. if (ret)
  593. return ret;
  594. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  595. for (i = 0; i < w->count; i++) {
  596. intel_ring_emit_reg(ring, w->reg[i].addr);
  597. intel_ring_emit(ring, w->reg[i].value);
  598. }
  599. intel_ring_emit(ring, MI_NOOP);
  600. intel_ring_advance(ring);
  601. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  602. if (ret)
  603. return ret;
  604. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  605. return 0;
  606. }
  607. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  608. {
  609. int ret;
  610. ret = intel_ring_workarounds_emit(req);
  611. if (ret != 0)
  612. return ret;
  613. ret = i915_gem_render_state_init(req);
  614. if (ret)
  615. return ret;
  616. return 0;
  617. }
  618. static int wa_add(struct drm_i915_private *dev_priv,
  619. i915_reg_t addr,
  620. const u32 mask, const u32 val)
  621. {
  622. const u32 idx = dev_priv->workarounds.count;
  623. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  624. return -ENOSPC;
  625. dev_priv->workarounds.reg[idx].addr = addr;
  626. dev_priv->workarounds.reg[idx].value = val;
  627. dev_priv->workarounds.reg[idx].mask = mask;
  628. dev_priv->workarounds.count++;
  629. return 0;
  630. }
  631. #define WA_REG(addr, mask, val) do { \
  632. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  633. if (r) \
  634. return r; \
  635. } while (0)
  636. #define WA_SET_BIT_MASKED(addr, mask) \
  637. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  638. #define WA_CLR_BIT_MASKED(addr, mask) \
  639. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  640. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  641. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  642. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  643. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  644. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  645. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  646. i915_reg_t reg)
  647. {
  648. struct drm_i915_private *dev_priv = engine->i915;
  649. struct i915_workarounds *wa = &dev_priv->workarounds;
  650. const uint32_t index = wa->hw_whitelist_count[engine->id];
  651. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  652. return -EINVAL;
  653. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  654. i915_mmio_reg_offset(reg));
  655. wa->hw_whitelist_count[engine->id]++;
  656. return 0;
  657. }
  658. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  659. {
  660. struct drm_i915_private *dev_priv = engine->i915;
  661. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  662. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  663. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  664. /* WaDisablePartialInstShootdown:bdw,chv */
  665. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  666. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  667. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  668. * workaround for for a possible hang in the unlikely event a TLB
  669. * invalidation occurs during a PSD flush.
  670. */
  671. /* WaForceEnableNonCoherent:bdw,chv */
  672. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  673. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  674. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  675. HDC_FORCE_NON_COHERENT);
  676. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  677. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  678. * polygons in the same 8x4 pixel/sample area to be processed without
  679. * stalling waiting for the earlier ones to write to Hierarchical Z
  680. * buffer."
  681. *
  682. * This optimization is off by default for BDW and CHV; turn it on.
  683. */
  684. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  685. /* Wa4x4STCOptimizationDisable:bdw,chv */
  686. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  687. /*
  688. * BSpec recommends 8x4 when MSAA is used,
  689. * however in practice 16x4 seems fastest.
  690. *
  691. * Note that PS/WM thread counts depend on the WIZ hashing
  692. * disable bit, which we don't touch here, but it's good
  693. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  694. */
  695. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  696. GEN6_WIZ_HASHING_MASK,
  697. GEN6_WIZ_HASHING_16x4);
  698. return 0;
  699. }
  700. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  701. {
  702. struct drm_i915_private *dev_priv = engine->i915;
  703. int ret;
  704. ret = gen8_init_workarounds(engine);
  705. if (ret)
  706. return ret;
  707. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  708. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  709. /* WaDisableDopClockGating:bdw */
  710. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  711. DOP_CLOCK_GATING_DISABLE);
  712. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  713. GEN8_SAMPLER_POWER_BYPASS_DIS);
  714. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  715. /* WaForceContextSaveRestoreNonCoherent:bdw */
  716. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  717. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  718. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  719. return 0;
  720. }
  721. static int chv_init_workarounds(struct intel_engine_cs *engine)
  722. {
  723. struct drm_i915_private *dev_priv = engine->i915;
  724. int ret;
  725. ret = gen8_init_workarounds(engine);
  726. if (ret)
  727. return ret;
  728. /* WaDisableThreadStallDopClockGating:chv */
  729. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  730. /* Improve HiZ throughput on CHV. */
  731. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  732. return 0;
  733. }
  734. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  735. {
  736. struct drm_i915_private *dev_priv = engine->i915;
  737. int ret;
  738. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  739. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  740. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  741. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  742. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  743. /* WaDisableKillLogic:bxt,skl,kbl */
  744. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  745. ECOCHK_DIS_TLB);
  746. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  747. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  748. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  749. FLOW_CONTROL_ENABLE |
  750. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  751. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  752. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  753. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  754. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  755. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  756. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  757. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  758. GEN9_DG_MIRROR_FIX_ENABLE);
  759. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  760. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  761. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  762. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  763. GEN9_RHWO_OPTIMIZATION_DISABLE);
  764. /*
  765. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  766. * but we do that in per ctx batchbuffer as there is an issue
  767. * with this register not getting restored on ctx restore
  768. */
  769. }
  770. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  771. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  772. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  773. GEN9_ENABLE_YV12_BUGFIX |
  774. GEN9_ENABLE_GPGPU_PREEMPTION);
  775. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  776. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  777. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  778. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  779. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  780. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  781. GEN9_CCS_TLB_PREFETCH_ENABLE);
  782. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  783. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  784. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  785. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  786. PIXEL_MASK_CAMMING_DISABLE);
  787. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  788. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  789. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  790. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  791. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  792. * both tied to WaForceContextSaveRestoreNonCoherent
  793. * in some hsds for skl. We keep the tie for all gen9. The
  794. * documentation is a bit hazy and so we want to get common behaviour,
  795. * even though there is no clear evidence we would need both on kbl/bxt.
  796. * This area has been source of system hangs so we play it safe
  797. * and mimic the skl regardless of what bspec says.
  798. *
  799. * Use Force Non-Coherent whenever executing a 3D context. This
  800. * is a workaround for a possible hang in the unlikely event
  801. * a TLB invalidation occurs during a PSD flush.
  802. */
  803. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  804. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  805. HDC_FORCE_NON_COHERENT);
  806. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  807. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  808. BDW_DISABLE_HDC_INVALIDATION);
  809. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  810. if (IS_SKYLAKE(dev_priv) ||
  811. IS_KABYLAKE(dev_priv) ||
  812. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  813. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  814. GEN8_SAMPLER_POWER_BYPASS_DIS);
  815. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  816. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  817. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  818. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  819. GEN8_LQSC_FLUSH_COHERENT_LINES));
  820. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  821. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  822. if (ret)
  823. return ret;
  824. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  825. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  826. if (ret)
  827. return ret;
  828. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  829. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  830. if (ret)
  831. return ret;
  832. return 0;
  833. }
  834. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  835. {
  836. struct drm_i915_private *dev_priv = engine->i915;
  837. u8 vals[3] = { 0, 0, 0 };
  838. unsigned int i;
  839. for (i = 0; i < 3; i++) {
  840. u8 ss;
  841. /*
  842. * Only consider slices where one, and only one, subslice has 7
  843. * EUs
  844. */
  845. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  846. continue;
  847. /*
  848. * subslice_7eu[i] != 0 (because of the check above) and
  849. * ss_max == 4 (maximum number of subslices possible per slice)
  850. *
  851. * -> 0 <= ss <= 3;
  852. */
  853. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  854. vals[i] = 3 - ss;
  855. }
  856. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  857. return 0;
  858. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  859. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  860. GEN9_IZ_HASHING_MASK(2) |
  861. GEN9_IZ_HASHING_MASK(1) |
  862. GEN9_IZ_HASHING_MASK(0),
  863. GEN9_IZ_HASHING(2, vals[2]) |
  864. GEN9_IZ_HASHING(1, vals[1]) |
  865. GEN9_IZ_HASHING(0, vals[0]));
  866. return 0;
  867. }
  868. static int skl_init_workarounds(struct intel_engine_cs *engine)
  869. {
  870. struct drm_i915_private *dev_priv = engine->i915;
  871. int ret;
  872. ret = gen9_init_workarounds(engine);
  873. if (ret)
  874. return ret;
  875. /*
  876. * Actual WA is to disable percontext preemption granularity control
  877. * until D0 which is the default case so this is equivalent to
  878. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  879. */
  880. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  881. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  882. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  883. }
  884. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
  885. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  886. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  887. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  888. }
  889. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  890. * involving this register should also be added to WA batch as required.
  891. */
  892. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  893. /* WaDisableLSQCROPERFforOCL:skl */
  894. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  895. GEN8_LQSC_RO_PERF_DIS);
  896. /* WaEnableGapsTsvCreditFix:skl */
  897. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  898. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  899. GEN9_GAPS_TSV_CREDIT_DISABLE));
  900. }
  901. /* WaDisablePowerCompilerClockGating:skl */
  902. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  903. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  904. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  905. /* WaBarrierPerformanceFixDisable:skl */
  906. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  907. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  908. HDC_FENCE_DEST_SLM_DISABLE |
  909. HDC_BARRIER_PERFORMANCE_DISABLE);
  910. /* WaDisableSbeCacheDispatchPortSharing:skl */
  911. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  912. WA_SET_BIT_MASKED(
  913. GEN7_HALF_SLICE_CHICKEN1,
  914. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  915. /* WaDisableGafsUnitClkGating:skl */
  916. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  917. /* WaInPlaceDecompressionHang:skl */
  918. if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
  919. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  920. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  921. /* WaDisableLSQCROPERFforOCL:skl */
  922. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  923. if (ret)
  924. return ret;
  925. return skl_tune_iz_hashing(engine);
  926. }
  927. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  928. {
  929. struct drm_i915_private *dev_priv = engine->i915;
  930. int ret;
  931. ret = gen9_init_workarounds(engine);
  932. if (ret)
  933. return ret;
  934. /* WaStoreMultiplePTEenable:bxt */
  935. /* This is a requirement according to Hardware specification */
  936. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  937. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  938. /* WaSetClckGatingDisableMedia:bxt */
  939. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  940. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  941. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  942. }
  943. /* WaDisableThreadStallDopClockGating:bxt */
  944. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  945. STALL_DOP_GATING_DISABLE);
  946. /* WaDisablePooledEuLoadBalancingFix:bxt */
  947. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  948. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  949. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  950. }
  951. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  952. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  953. WA_SET_BIT_MASKED(
  954. GEN7_HALF_SLICE_CHICKEN1,
  955. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  956. }
  957. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  958. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  959. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  960. /* WaDisableLSQCROPERFforOCL:bxt */
  961. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  962. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  963. if (ret)
  964. return ret;
  965. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  966. if (ret)
  967. return ret;
  968. }
  969. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  970. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  971. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  972. L3_HIGH_PRIO_CREDITS(2));
  973. /* WaInsertDummyPushConstPs:bxt */
  974. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  975. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  976. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  977. /* WaInPlaceDecompressionHang:bxt */
  978. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  979. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  980. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  981. return 0;
  982. }
  983. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  984. {
  985. struct drm_i915_private *dev_priv = engine->i915;
  986. int ret;
  987. ret = gen9_init_workarounds(engine);
  988. if (ret)
  989. return ret;
  990. /* WaEnableGapsTsvCreditFix:kbl */
  991. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  992. GEN9_GAPS_TSV_CREDIT_DISABLE));
  993. /* WaDisableDynamicCreditSharing:kbl */
  994. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  995. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  996. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  997. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  998. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  999. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  1000. HDC_FENCE_DEST_SLM_DISABLE);
  1001. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  1002. * involving this register should also be added to WA batch as required.
  1003. */
  1004. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  1005. /* WaDisableLSQCROPERFforOCL:kbl */
  1006. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  1007. GEN8_LQSC_RO_PERF_DIS);
  1008. /* WaInsertDummyPushConstPs:kbl */
  1009. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1010. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1011. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1012. /* WaDisableGafsUnitClkGating:kbl */
  1013. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  1014. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  1015. WA_SET_BIT_MASKED(
  1016. GEN7_HALF_SLICE_CHICKEN1,
  1017. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  1018. /* WaInPlaceDecompressionHang:kbl */
  1019. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  1020. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  1021. /* WaDisableLSQCROPERFforOCL:kbl */
  1022. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  1023. if (ret)
  1024. return ret;
  1025. return 0;
  1026. }
  1027. int init_workarounds_ring(struct intel_engine_cs *engine)
  1028. {
  1029. struct drm_i915_private *dev_priv = engine->i915;
  1030. WARN_ON(engine->id != RCS);
  1031. dev_priv->workarounds.count = 0;
  1032. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1033. if (IS_BROADWELL(dev_priv))
  1034. return bdw_init_workarounds(engine);
  1035. if (IS_CHERRYVIEW(dev_priv))
  1036. return chv_init_workarounds(engine);
  1037. if (IS_SKYLAKE(dev_priv))
  1038. return skl_init_workarounds(engine);
  1039. if (IS_BROXTON(dev_priv))
  1040. return bxt_init_workarounds(engine);
  1041. if (IS_KABYLAKE(dev_priv))
  1042. return kbl_init_workarounds(engine);
  1043. return 0;
  1044. }
  1045. static int init_render_ring(struct intel_engine_cs *engine)
  1046. {
  1047. struct drm_i915_private *dev_priv = engine->i915;
  1048. int ret = init_ring_common(engine);
  1049. if (ret)
  1050. return ret;
  1051. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1052. if (IS_GEN(dev_priv, 4, 6))
  1053. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1054. /* We need to disable the AsyncFlip performance optimisations in order
  1055. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1056. * programmed to '1' on all products.
  1057. *
  1058. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1059. */
  1060. if (IS_GEN(dev_priv, 6, 7))
  1061. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1062. /* Required for the hardware to program scanline values for waiting */
  1063. /* WaEnableFlushTlbInvalidationMode:snb */
  1064. if (IS_GEN6(dev_priv))
  1065. I915_WRITE(GFX_MODE,
  1066. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1067. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1068. if (IS_GEN7(dev_priv))
  1069. I915_WRITE(GFX_MODE_GEN7,
  1070. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1071. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1072. if (IS_GEN6(dev_priv)) {
  1073. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1074. * "If this bit is set, STCunit will have LRA as replacement
  1075. * policy. [...] This bit must be reset. LRA replacement
  1076. * policy is not supported."
  1077. */
  1078. I915_WRITE(CACHE_MODE_0,
  1079. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1080. }
  1081. if (IS_GEN(dev_priv, 6, 7))
  1082. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1083. if (INTEL_INFO(dev_priv)->gen >= 6)
  1084. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1085. return init_workarounds_ring(engine);
  1086. }
  1087. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1088. {
  1089. struct drm_i915_private *dev_priv = engine->i915;
  1090. if (dev_priv->semaphore_obj) {
  1091. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1092. i915_gem_object_put(dev_priv->semaphore_obj);
  1093. dev_priv->semaphore_obj = NULL;
  1094. }
  1095. intel_fini_pipe_control(engine);
  1096. }
  1097. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1098. unsigned int num_dwords)
  1099. {
  1100. #define MBOX_UPDATE_DWORDS 8
  1101. struct intel_ring *signaller = signaller_req->ring;
  1102. struct drm_i915_private *dev_priv = signaller_req->i915;
  1103. struct intel_engine_cs *waiter;
  1104. enum intel_engine_id id;
  1105. int ret, num_rings;
  1106. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1107. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1108. #undef MBOX_UPDATE_DWORDS
  1109. ret = intel_ring_begin(signaller_req, num_dwords);
  1110. if (ret)
  1111. return ret;
  1112. for_each_engine_id(waiter, dev_priv, id) {
  1113. u64 gtt_offset =
  1114. signaller_req->engine->semaphore.signal_ggtt[id];
  1115. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1116. continue;
  1117. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1118. intel_ring_emit(signaller,
  1119. PIPE_CONTROL_GLOBAL_GTT_IVB |
  1120. PIPE_CONTROL_QW_WRITE |
  1121. PIPE_CONTROL_CS_STALL);
  1122. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1123. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1124. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1125. intel_ring_emit(signaller, 0);
  1126. intel_ring_emit(signaller,
  1127. MI_SEMAPHORE_SIGNAL |
  1128. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1129. intel_ring_emit(signaller, 0);
  1130. }
  1131. return 0;
  1132. }
  1133. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1134. unsigned int num_dwords)
  1135. {
  1136. #define MBOX_UPDATE_DWORDS 6
  1137. struct intel_ring *signaller = signaller_req->ring;
  1138. struct drm_i915_private *dev_priv = signaller_req->i915;
  1139. struct intel_engine_cs *waiter;
  1140. enum intel_engine_id id;
  1141. int ret, num_rings;
  1142. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1143. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1144. #undef MBOX_UPDATE_DWORDS
  1145. ret = intel_ring_begin(signaller_req, num_dwords);
  1146. if (ret)
  1147. return ret;
  1148. for_each_engine_id(waiter, dev_priv, id) {
  1149. u64 gtt_offset =
  1150. signaller_req->engine->semaphore.signal_ggtt[id];
  1151. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1152. continue;
  1153. intel_ring_emit(signaller,
  1154. (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
  1155. intel_ring_emit(signaller,
  1156. lower_32_bits(gtt_offset) |
  1157. MI_FLUSH_DW_USE_GTT);
  1158. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1159. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1160. intel_ring_emit(signaller,
  1161. MI_SEMAPHORE_SIGNAL |
  1162. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1163. intel_ring_emit(signaller, 0);
  1164. }
  1165. return 0;
  1166. }
  1167. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1168. unsigned int num_dwords)
  1169. {
  1170. struct intel_ring *signaller = signaller_req->ring;
  1171. struct drm_i915_private *dev_priv = signaller_req->i915;
  1172. struct intel_engine_cs *useless;
  1173. enum intel_engine_id id;
  1174. int ret, num_rings;
  1175. #define MBOX_UPDATE_DWORDS 3
  1176. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1177. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1178. #undef MBOX_UPDATE_DWORDS
  1179. ret = intel_ring_begin(signaller_req, num_dwords);
  1180. if (ret)
  1181. return ret;
  1182. for_each_engine_id(useless, dev_priv, id) {
  1183. i915_reg_t mbox_reg =
  1184. signaller_req->engine->semaphore.mbox.signal[id];
  1185. if (i915_mmio_reg_valid(mbox_reg)) {
  1186. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1187. intel_ring_emit_reg(signaller, mbox_reg);
  1188. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1189. }
  1190. }
  1191. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1192. if (num_rings % 2 == 0)
  1193. intel_ring_emit(signaller, MI_NOOP);
  1194. return 0;
  1195. }
  1196. /**
  1197. * gen6_add_request - Update the semaphore mailbox registers
  1198. *
  1199. * @request - request to write to the ring
  1200. *
  1201. * Update the mailbox registers in the *other* rings with the current seqno.
  1202. * This acts like a signal in the canonical semaphore.
  1203. */
  1204. static int
  1205. gen6_add_request(struct drm_i915_gem_request *req)
  1206. {
  1207. struct intel_engine_cs *engine = req->engine;
  1208. struct intel_ring *ring = req->ring;
  1209. int ret;
  1210. if (engine->semaphore.signal)
  1211. ret = engine->semaphore.signal(req, 4);
  1212. else
  1213. ret = intel_ring_begin(req, 4);
  1214. if (ret)
  1215. return ret;
  1216. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1217. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1218. intel_ring_emit(ring, req->fence.seqno);
  1219. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1220. __intel_engine_submit(engine);
  1221. return 0;
  1222. }
  1223. static int
  1224. gen8_render_add_request(struct drm_i915_gem_request *req)
  1225. {
  1226. struct intel_engine_cs *engine = req->engine;
  1227. struct intel_ring *ring = req->ring;
  1228. int ret;
  1229. if (engine->semaphore.signal)
  1230. ret = engine->semaphore.signal(req, 8);
  1231. else
  1232. ret = intel_ring_begin(req, 8);
  1233. if (ret)
  1234. return ret;
  1235. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  1236. intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1237. PIPE_CONTROL_CS_STALL |
  1238. PIPE_CONTROL_QW_WRITE));
  1239. intel_ring_emit(ring, intel_hws_seqno_address(engine));
  1240. intel_ring_emit(ring, 0);
  1241. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1242. /* We're thrashing one dword of HWS. */
  1243. intel_ring_emit(ring, 0);
  1244. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1245. intel_ring_emit(ring, MI_NOOP);
  1246. __intel_engine_submit(engine);
  1247. return 0;
  1248. }
  1249. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1250. u32 seqno)
  1251. {
  1252. return dev_priv->last_seqno < seqno;
  1253. }
  1254. /**
  1255. * intel_ring_sync - sync the waiter to the signaller on seqno
  1256. *
  1257. * @waiter - ring that is waiting
  1258. * @signaller - ring which has, or will signal
  1259. * @seqno - seqno which the waiter will block on
  1260. */
  1261. static int
  1262. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1263. struct intel_engine_cs *signaller,
  1264. u32 seqno)
  1265. {
  1266. struct intel_ring *waiter = waiter_req->ring;
  1267. struct drm_i915_private *dev_priv = waiter_req->i915;
  1268. u64 offset = GEN8_WAIT_OFFSET(waiter_req->engine, signaller->id);
  1269. struct i915_hw_ppgtt *ppgtt;
  1270. int ret;
  1271. ret = intel_ring_begin(waiter_req, 4);
  1272. if (ret)
  1273. return ret;
  1274. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1275. MI_SEMAPHORE_GLOBAL_GTT |
  1276. MI_SEMAPHORE_SAD_GTE_SDD);
  1277. intel_ring_emit(waiter, seqno);
  1278. intel_ring_emit(waiter, lower_32_bits(offset));
  1279. intel_ring_emit(waiter, upper_32_bits(offset));
  1280. intel_ring_advance(waiter);
  1281. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1282. * pagetables and we must reload them before executing the batch.
  1283. * We do this on the i915_switch_context() following the wait and
  1284. * before the dispatch.
  1285. */
  1286. ppgtt = waiter_req->ctx->ppgtt;
  1287. if (ppgtt && waiter_req->engine->id != RCS)
  1288. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1289. return 0;
  1290. }
  1291. static int
  1292. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1293. struct intel_engine_cs *signaller,
  1294. u32 seqno)
  1295. {
  1296. struct intel_ring *waiter = waiter_req->ring;
  1297. u32 dw1 = MI_SEMAPHORE_MBOX |
  1298. MI_SEMAPHORE_COMPARE |
  1299. MI_SEMAPHORE_REGISTER;
  1300. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter_req->engine->id];
  1301. int ret;
  1302. /* Throughout all of the GEM code, seqno passed implies our current
  1303. * seqno is >= the last seqno executed. However for hardware the
  1304. * comparison is strictly greater than.
  1305. */
  1306. seqno -= 1;
  1307. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1308. ret = intel_ring_begin(waiter_req, 4);
  1309. if (ret)
  1310. return ret;
  1311. /* If seqno wrap happened, omit the wait with no-ops */
  1312. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1313. intel_ring_emit(waiter, dw1 | wait_mbox);
  1314. intel_ring_emit(waiter, seqno);
  1315. intel_ring_emit(waiter, 0);
  1316. intel_ring_emit(waiter, MI_NOOP);
  1317. } else {
  1318. intel_ring_emit(waiter, MI_NOOP);
  1319. intel_ring_emit(waiter, MI_NOOP);
  1320. intel_ring_emit(waiter, MI_NOOP);
  1321. intel_ring_emit(waiter, MI_NOOP);
  1322. }
  1323. intel_ring_advance(waiter);
  1324. return 0;
  1325. }
  1326. static void
  1327. gen5_seqno_barrier(struct intel_engine_cs *engine)
  1328. {
  1329. /* MI_STORE are internally buffered by the GPU and not flushed
  1330. * either by MI_FLUSH or SyncFlush or any other combination of
  1331. * MI commands.
  1332. *
  1333. * "Only the submission of the store operation is guaranteed.
  1334. * The write result will be complete (coherent) some time later
  1335. * (this is practically a finite period but there is no guaranteed
  1336. * latency)."
  1337. *
  1338. * Empirically, we observe that we need a delay of at least 75us to
  1339. * be sure that the seqno write is visible by the CPU.
  1340. */
  1341. usleep_range(125, 250);
  1342. }
  1343. static void
  1344. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1345. {
  1346. struct drm_i915_private *dev_priv = engine->i915;
  1347. /* Workaround to force correct ordering between irq and seqno writes on
  1348. * ivb (and maybe also on snb) by reading from a CS register (like
  1349. * ACTHD) before reading the status page.
  1350. *
  1351. * Note that this effectively stalls the read by the time it takes to
  1352. * do a memory transaction, which more or less ensures that the write
  1353. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1354. * Alternatively we could delay the interrupt from the CS ring to give
  1355. * the write time to land, but that would incur a delay after every
  1356. * batch i.e. much more frequent than a delay when waiting for the
  1357. * interrupt (with the same net latency).
  1358. *
  1359. * Also note that to prevent whole machine hangs on gen7, we have to
  1360. * take the spinlock to guard against concurrent cacheline access.
  1361. */
  1362. spin_lock_irq(&dev_priv->uncore.lock);
  1363. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1364. spin_unlock_irq(&dev_priv->uncore.lock);
  1365. }
  1366. static void
  1367. gen5_irq_enable(struct intel_engine_cs *engine)
  1368. {
  1369. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1370. }
  1371. static void
  1372. gen5_irq_disable(struct intel_engine_cs *engine)
  1373. {
  1374. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1375. }
  1376. static void
  1377. i9xx_irq_enable(struct intel_engine_cs *engine)
  1378. {
  1379. struct drm_i915_private *dev_priv = engine->i915;
  1380. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1381. I915_WRITE(IMR, dev_priv->irq_mask);
  1382. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1383. }
  1384. static void
  1385. i9xx_irq_disable(struct intel_engine_cs *engine)
  1386. {
  1387. struct drm_i915_private *dev_priv = engine->i915;
  1388. dev_priv->irq_mask |= engine->irq_enable_mask;
  1389. I915_WRITE(IMR, dev_priv->irq_mask);
  1390. }
  1391. static void
  1392. i8xx_irq_enable(struct intel_engine_cs *engine)
  1393. {
  1394. struct drm_i915_private *dev_priv = engine->i915;
  1395. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1396. I915_WRITE16(IMR, dev_priv->irq_mask);
  1397. POSTING_READ16(RING_IMR(engine->mmio_base));
  1398. }
  1399. static void
  1400. i8xx_irq_disable(struct intel_engine_cs *engine)
  1401. {
  1402. struct drm_i915_private *dev_priv = engine->i915;
  1403. dev_priv->irq_mask |= engine->irq_enable_mask;
  1404. I915_WRITE16(IMR, dev_priv->irq_mask);
  1405. }
  1406. static int
  1407. bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1408. {
  1409. struct intel_ring *ring = req->ring;
  1410. int ret;
  1411. ret = intel_ring_begin(req, 2);
  1412. if (ret)
  1413. return ret;
  1414. intel_ring_emit(ring, MI_FLUSH);
  1415. intel_ring_emit(ring, MI_NOOP);
  1416. intel_ring_advance(ring);
  1417. return 0;
  1418. }
  1419. static int
  1420. i9xx_add_request(struct drm_i915_gem_request *req)
  1421. {
  1422. struct intel_ring *ring = req->ring;
  1423. int ret;
  1424. ret = intel_ring_begin(req, 4);
  1425. if (ret)
  1426. return ret;
  1427. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1428. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1429. intel_ring_emit(ring, req->fence.seqno);
  1430. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1431. __intel_engine_submit(req->engine);
  1432. return 0;
  1433. }
  1434. static void
  1435. gen6_irq_enable(struct intel_engine_cs *engine)
  1436. {
  1437. struct drm_i915_private *dev_priv = engine->i915;
  1438. I915_WRITE_IMR(engine,
  1439. ~(engine->irq_enable_mask |
  1440. engine->irq_keep_mask));
  1441. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1442. }
  1443. static void
  1444. gen6_irq_disable(struct intel_engine_cs *engine)
  1445. {
  1446. struct drm_i915_private *dev_priv = engine->i915;
  1447. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1448. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1449. }
  1450. static void
  1451. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1452. {
  1453. struct drm_i915_private *dev_priv = engine->i915;
  1454. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1455. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1456. }
  1457. static void
  1458. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1459. {
  1460. struct drm_i915_private *dev_priv = engine->i915;
  1461. I915_WRITE_IMR(engine, ~0);
  1462. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1463. }
  1464. static void
  1465. gen8_irq_enable(struct intel_engine_cs *engine)
  1466. {
  1467. struct drm_i915_private *dev_priv = engine->i915;
  1468. I915_WRITE_IMR(engine,
  1469. ~(engine->irq_enable_mask |
  1470. engine->irq_keep_mask));
  1471. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1472. }
  1473. static void
  1474. gen8_irq_disable(struct intel_engine_cs *engine)
  1475. {
  1476. struct drm_i915_private *dev_priv = engine->i915;
  1477. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1478. }
  1479. static int
  1480. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1481. u64 offset, u32 length,
  1482. unsigned dispatch_flags)
  1483. {
  1484. struct intel_ring *ring = req->ring;
  1485. int ret;
  1486. ret = intel_ring_begin(req, 2);
  1487. if (ret)
  1488. return ret;
  1489. intel_ring_emit(ring,
  1490. MI_BATCH_BUFFER_START |
  1491. MI_BATCH_GTT |
  1492. (dispatch_flags & I915_DISPATCH_SECURE ?
  1493. 0 : MI_BATCH_NON_SECURE_I965));
  1494. intel_ring_emit(ring, offset);
  1495. intel_ring_advance(ring);
  1496. return 0;
  1497. }
  1498. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1499. #define I830_BATCH_LIMIT (256*1024)
  1500. #define I830_TLB_ENTRIES (2)
  1501. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1502. static int
  1503. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1504. u64 offset, u32 len,
  1505. unsigned dispatch_flags)
  1506. {
  1507. struct intel_ring *ring = req->ring;
  1508. u32 cs_offset = req->engine->scratch.gtt_offset;
  1509. int ret;
  1510. ret = intel_ring_begin(req, 6);
  1511. if (ret)
  1512. return ret;
  1513. /* Evict the invalid PTE TLBs */
  1514. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1515. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1516. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1517. intel_ring_emit(ring, cs_offset);
  1518. intel_ring_emit(ring, 0xdeadbeef);
  1519. intel_ring_emit(ring, MI_NOOP);
  1520. intel_ring_advance(ring);
  1521. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1522. if (len > I830_BATCH_LIMIT)
  1523. return -ENOSPC;
  1524. ret = intel_ring_begin(req, 6 + 2);
  1525. if (ret)
  1526. return ret;
  1527. /* Blit the batch (which has now all relocs applied) to the
  1528. * stable batch scratch bo area (so that the CS never
  1529. * stumbles over its tlb invalidation bug) ...
  1530. */
  1531. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1532. intel_ring_emit(ring,
  1533. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1534. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1535. intel_ring_emit(ring, cs_offset);
  1536. intel_ring_emit(ring, 4096);
  1537. intel_ring_emit(ring, offset);
  1538. intel_ring_emit(ring, MI_FLUSH);
  1539. intel_ring_emit(ring, MI_NOOP);
  1540. intel_ring_advance(ring);
  1541. /* ... and execute it. */
  1542. offset = cs_offset;
  1543. }
  1544. ret = intel_ring_begin(req, 2);
  1545. if (ret)
  1546. return ret;
  1547. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1548. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1549. 0 : MI_BATCH_NON_SECURE));
  1550. intel_ring_advance(ring);
  1551. return 0;
  1552. }
  1553. static int
  1554. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1555. u64 offset, u32 len,
  1556. unsigned dispatch_flags)
  1557. {
  1558. struct intel_ring *ring = req->ring;
  1559. int ret;
  1560. ret = intel_ring_begin(req, 2);
  1561. if (ret)
  1562. return ret;
  1563. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1564. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1565. 0 : MI_BATCH_NON_SECURE));
  1566. intel_ring_advance(ring);
  1567. return 0;
  1568. }
  1569. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1570. {
  1571. struct drm_i915_private *dev_priv = engine->i915;
  1572. if (!dev_priv->status_page_dmah)
  1573. return;
  1574. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1575. engine->status_page.page_addr = NULL;
  1576. }
  1577. static void cleanup_status_page(struct intel_engine_cs *engine)
  1578. {
  1579. struct drm_i915_gem_object *obj;
  1580. obj = engine->status_page.obj;
  1581. if (obj == NULL)
  1582. return;
  1583. kunmap(sg_page(obj->pages->sgl));
  1584. i915_gem_object_ggtt_unpin(obj);
  1585. i915_gem_object_put(obj);
  1586. engine->status_page.obj = NULL;
  1587. }
  1588. static int init_status_page(struct intel_engine_cs *engine)
  1589. {
  1590. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1591. if (obj == NULL) {
  1592. unsigned flags;
  1593. int ret;
  1594. obj = i915_gem_object_create(&engine->i915->drm, 4096);
  1595. if (IS_ERR(obj)) {
  1596. DRM_ERROR("Failed to allocate status page\n");
  1597. return PTR_ERR(obj);
  1598. }
  1599. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1600. if (ret)
  1601. goto err_unref;
  1602. flags = 0;
  1603. if (!HAS_LLC(engine->i915))
  1604. /* On g33, we cannot place HWS above 256MiB, so
  1605. * restrict its pinning to the low mappable arena.
  1606. * Though this restriction is not documented for
  1607. * gen4, gen5, or byt, they also behave similarly
  1608. * and hang if the HWS is placed at the top of the
  1609. * GTT. To generalise, it appears that all !llc
  1610. * platforms have issues with us placing the HWS
  1611. * above the mappable region (even though we never
  1612. * actualy map it).
  1613. */
  1614. flags |= PIN_MAPPABLE;
  1615. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1616. if (ret) {
  1617. err_unref:
  1618. i915_gem_object_put(obj);
  1619. return ret;
  1620. }
  1621. engine->status_page.obj = obj;
  1622. }
  1623. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1624. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1625. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1626. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1627. engine->name, engine->status_page.gfx_addr);
  1628. return 0;
  1629. }
  1630. static int init_phys_status_page(struct intel_engine_cs *engine)
  1631. {
  1632. struct drm_i915_private *dev_priv = engine->i915;
  1633. if (!dev_priv->status_page_dmah) {
  1634. dev_priv->status_page_dmah =
  1635. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1636. if (!dev_priv->status_page_dmah)
  1637. return -ENOMEM;
  1638. }
  1639. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1640. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1641. return 0;
  1642. }
  1643. int intel_ring_pin(struct intel_ring *ring)
  1644. {
  1645. struct drm_i915_private *dev_priv = ring->engine->i915;
  1646. struct drm_i915_gem_object *obj = ring->obj;
  1647. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1648. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1649. void *addr;
  1650. int ret;
  1651. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1652. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1653. if (ret)
  1654. return ret;
  1655. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1656. if (ret)
  1657. goto err_unpin;
  1658. addr = i915_gem_object_pin_map(obj);
  1659. if (IS_ERR(addr)) {
  1660. ret = PTR_ERR(addr);
  1661. goto err_unpin;
  1662. }
  1663. } else {
  1664. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1665. flags | PIN_MAPPABLE);
  1666. if (ret)
  1667. return ret;
  1668. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1669. if (ret)
  1670. goto err_unpin;
  1671. /* Access through the GTT requires the device to be awake. */
  1672. assert_rpm_wakelock_held(dev_priv);
  1673. addr = (void __force *)
  1674. i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1675. if (IS_ERR(addr)) {
  1676. ret = PTR_ERR(addr);
  1677. goto err_unpin;
  1678. }
  1679. }
  1680. ring->vaddr = addr;
  1681. ring->vma = i915_gem_obj_to_ggtt(obj);
  1682. return 0;
  1683. err_unpin:
  1684. i915_gem_object_ggtt_unpin(obj);
  1685. return ret;
  1686. }
  1687. void intel_ring_unpin(struct intel_ring *ring)
  1688. {
  1689. GEM_BUG_ON(!ring->vma);
  1690. GEM_BUG_ON(!ring->vaddr);
  1691. if (HAS_LLC(ring->engine->i915) && !ring->obj->stolen)
  1692. i915_gem_object_unpin_map(ring->obj);
  1693. else
  1694. i915_vma_unpin_iomap(ring->vma);
  1695. ring->vaddr = NULL;
  1696. i915_gem_object_ggtt_unpin(ring->obj);
  1697. ring->vma = NULL;
  1698. }
  1699. static void intel_destroy_ringbuffer_obj(struct intel_ring *ring)
  1700. {
  1701. i915_gem_object_put(ring->obj);
  1702. ring->obj = NULL;
  1703. }
  1704. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1705. struct intel_ring *ring)
  1706. {
  1707. struct drm_i915_gem_object *obj;
  1708. obj = NULL;
  1709. if (!HAS_LLC(dev))
  1710. obj = i915_gem_object_create_stolen(dev, ring->size);
  1711. if (obj == NULL)
  1712. obj = i915_gem_object_create(dev, ring->size);
  1713. if (IS_ERR(obj))
  1714. return PTR_ERR(obj);
  1715. /* mark ring buffers as read-only from GPU side by default */
  1716. obj->gt_ro = 1;
  1717. ring->obj = obj;
  1718. return 0;
  1719. }
  1720. struct intel_ring *
  1721. intel_engine_create_ring(struct intel_engine_cs *engine, int size)
  1722. {
  1723. struct intel_ring *ring;
  1724. int ret;
  1725. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1726. if (ring == NULL) {
  1727. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1728. engine->name);
  1729. return ERR_PTR(-ENOMEM);
  1730. }
  1731. ring->engine = engine;
  1732. list_add(&ring->link, &engine->buffers);
  1733. ring->size = size;
  1734. /* Workaround an erratum on the i830 which causes a hang if
  1735. * the TAIL pointer points to within the last 2 cachelines
  1736. * of the buffer.
  1737. */
  1738. ring->effective_size = size;
  1739. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1740. ring->effective_size -= 2 * CACHELINE_BYTES;
  1741. ring->last_retired_head = -1;
  1742. intel_ring_update_space(ring);
  1743. ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
  1744. if (ret) {
  1745. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1746. engine->name, ret);
  1747. list_del(&ring->link);
  1748. kfree(ring);
  1749. return ERR_PTR(ret);
  1750. }
  1751. return ring;
  1752. }
  1753. void
  1754. intel_ring_free(struct intel_ring *ring)
  1755. {
  1756. intel_destroy_ringbuffer_obj(ring);
  1757. list_del(&ring->link);
  1758. kfree(ring);
  1759. }
  1760. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1761. struct intel_engine_cs *engine)
  1762. {
  1763. struct intel_context *ce = &ctx->engine[engine->id];
  1764. int ret;
  1765. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1766. if (ce->pin_count++)
  1767. return 0;
  1768. if (ce->state) {
  1769. ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
  1770. if (ret)
  1771. goto error;
  1772. }
  1773. /* The kernel context is only used as a placeholder for flushing the
  1774. * active context. It is never used for submitting user rendering and
  1775. * as such never requires the golden render context, and so we can skip
  1776. * emitting it when we switch to the kernel context. This is required
  1777. * as during eviction we cannot allocate and pin the renderstate in
  1778. * order to initialise the context.
  1779. */
  1780. if (ctx == ctx->i915->kernel_context)
  1781. ce->initialised = true;
  1782. i915_gem_context_get(ctx);
  1783. return 0;
  1784. error:
  1785. ce->pin_count = 0;
  1786. return ret;
  1787. }
  1788. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1789. struct intel_engine_cs *engine)
  1790. {
  1791. struct intel_context *ce = &ctx->engine[engine->id];
  1792. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1793. if (--ce->pin_count)
  1794. return;
  1795. if (ce->state)
  1796. i915_gem_object_ggtt_unpin(ce->state);
  1797. i915_gem_context_put(ctx);
  1798. }
  1799. static int intel_init_ring_buffer(struct intel_engine_cs *engine)
  1800. {
  1801. struct drm_i915_private *dev_priv = engine->i915;
  1802. struct intel_ring *ring;
  1803. int ret;
  1804. WARN_ON(engine->buffer);
  1805. intel_engine_setup_common(engine);
  1806. memset(engine->semaphore.sync_seqno, 0,
  1807. sizeof(engine->semaphore.sync_seqno));
  1808. ret = intel_engine_init_common(engine);
  1809. if (ret)
  1810. goto error;
  1811. /* We may need to do things with the shrinker which
  1812. * require us to immediately switch back to the default
  1813. * context. This can cause a problem as pinning the
  1814. * default context also requires GTT space which may not
  1815. * be available. To avoid this we always pin the default
  1816. * context.
  1817. */
  1818. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1819. if (ret)
  1820. goto error;
  1821. ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
  1822. if (IS_ERR(ring)) {
  1823. ret = PTR_ERR(ring);
  1824. goto error;
  1825. }
  1826. engine->buffer = ring;
  1827. if (I915_NEED_GFX_HWS(dev_priv)) {
  1828. ret = init_status_page(engine);
  1829. if (ret)
  1830. goto error;
  1831. } else {
  1832. WARN_ON(engine->id != RCS);
  1833. ret = init_phys_status_page(engine);
  1834. if (ret)
  1835. goto error;
  1836. }
  1837. ret = intel_ring_pin(ring);
  1838. if (ret) {
  1839. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1840. engine->name, ret);
  1841. intel_destroy_ringbuffer_obj(ring);
  1842. goto error;
  1843. }
  1844. return 0;
  1845. error:
  1846. intel_engine_cleanup(engine);
  1847. return ret;
  1848. }
  1849. void intel_engine_cleanup(struct intel_engine_cs *engine)
  1850. {
  1851. struct drm_i915_private *dev_priv;
  1852. if (!intel_engine_initialized(engine))
  1853. return;
  1854. dev_priv = engine->i915;
  1855. if (engine->buffer) {
  1856. intel_engine_stop(engine);
  1857. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1858. intel_ring_unpin(engine->buffer);
  1859. intel_ring_free(engine->buffer);
  1860. engine->buffer = NULL;
  1861. }
  1862. if (engine->cleanup)
  1863. engine->cleanup(engine);
  1864. if (I915_NEED_GFX_HWS(dev_priv)) {
  1865. cleanup_status_page(engine);
  1866. } else {
  1867. WARN_ON(engine->id != RCS);
  1868. cleanup_phys_status_page(engine);
  1869. }
  1870. intel_engine_cleanup_cmd_parser(engine);
  1871. i915_gem_batch_pool_fini(&engine->batch_pool);
  1872. intel_engine_fini_breadcrumbs(engine);
  1873. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  1874. engine->i915 = NULL;
  1875. }
  1876. int intel_engine_idle(struct intel_engine_cs *engine)
  1877. {
  1878. struct drm_i915_gem_request *req;
  1879. /* Wait upon the last request to be completed */
  1880. if (list_empty(&engine->request_list))
  1881. return 0;
  1882. req = list_entry(engine->request_list.prev,
  1883. struct drm_i915_gem_request,
  1884. list);
  1885. /* Make sure we do not trigger any retires */
  1886. return __i915_wait_request(req,
  1887. req->i915->mm.interruptible,
  1888. NULL, NULL);
  1889. }
  1890. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1891. {
  1892. int ret;
  1893. /* Flush enough space to reduce the likelihood of waiting after
  1894. * we start building the request - in which case we will just
  1895. * have to repeat work.
  1896. */
  1897. request->reserved_space += LEGACY_REQUEST_SIZE;
  1898. request->ring = request->engine->buffer;
  1899. ret = intel_ring_begin(request, 0);
  1900. if (ret)
  1901. return ret;
  1902. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1903. return 0;
  1904. }
  1905. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1906. {
  1907. struct intel_ring *ring = req->ring;
  1908. struct intel_engine_cs *engine = req->engine;
  1909. struct drm_i915_gem_request *target;
  1910. intel_ring_update_space(ring);
  1911. if (ring->space >= bytes)
  1912. return 0;
  1913. /*
  1914. * Space is reserved in the ringbuffer for finalising the request,
  1915. * as that cannot be allowed to fail. During request finalisation,
  1916. * reserved_space is set to 0 to stop the overallocation and the
  1917. * assumption is that then we never need to wait (which has the
  1918. * risk of failing with EINTR).
  1919. *
  1920. * See also i915_gem_request_alloc() and i915_add_request().
  1921. */
  1922. GEM_BUG_ON(!req->reserved_space);
  1923. list_for_each_entry(target, &engine->request_list, list) {
  1924. unsigned space;
  1925. /*
  1926. * The request queue is per-engine, so can contain requests
  1927. * from multiple ringbuffers. Here, we must ignore any that
  1928. * aren't from the ringbuffer we're considering.
  1929. */
  1930. if (target->ring != ring)
  1931. continue;
  1932. /* Would completion of this request free enough space? */
  1933. space = __intel_ring_space(target->postfix, ring->tail,
  1934. ring->size);
  1935. if (space >= bytes)
  1936. break;
  1937. }
  1938. if (WARN_ON(&target->list == &engine->request_list))
  1939. return -ENOSPC;
  1940. return i915_wait_request(target);
  1941. }
  1942. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1943. {
  1944. struct intel_ring *ring = req->ring;
  1945. int remain_actual = ring->size - ring->tail;
  1946. int remain_usable = ring->effective_size - ring->tail;
  1947. int bytes = num_dwords * sizeof(u32);
  1948. int total_bytes, wait_bytes;
  1949. bool need_wrap = false;
  1950. total_bytes = bytes + req->reserved_space;
  1951. if (unlikely(bytes > remain_usable)) {
  1952. /*
  1953. * Not enough space for the basic request. So need to flush
  1954. * out the remainder and then wait for base + reserved.
  1955. */
  1956. wait_bytes = remain_actual + total_bytes;
  1957. need_wrap = true;
  1958. } else if (unlikely(total_bytes > remain_usable)) {
  1959. /*
  1960. * The base request will fit but the reserved space
  1961. * falls off the end. So we don't need an immediate wrap
  1962. * and only need to effectively wait for the reserved
  1963. * size space from the start of ringbuffer.
  1964. */
  1965. wait_bytes = remain_actual + req->reserved_space;
  1966. } else {
  1967. /* No wrapping required, just waiting. */
  1968. wait_bytes = total_bytes;
  1969. }
  1970. if (wait_bytes > ring->space) {
  1971. int ret = wait_for_space(req, wait_bytes);
  1972. if (unlikely(ret))
  1973. return ret;
  1974. intel_ring_update_space(ring);
  1975. if (unlikely(ring->space < wait_bytes))
  1976. return -EAGAIN;
  1977. }
  1978. if (unlikely(need_wrap)) {
  1979. GEM_BUG_ON(remain_actual > ring->space);
  1980. GEM_BUG_ON(ring->tail + remain_actual > ring->size);
  1981. /* Fill the tail with MI_NOOP */
  1982. memset(ring->vaddr + ring->tail, 0, remain_actual);
  1983. ring->tail = 0;
  1984. ring->space -= remain_actual;
  1985. }
  1986. ring->space -= bytes;
  1987. GEM_BUG_ON(ring->space < 0);
  1988. return 0;
  1989. }
  1990. /* Align the ring tail to a cacheline boundary */
  1991. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1992. {
  1993. struct intel_ring *ring = req->ring;
  1994. int num_dwords =
  1995. (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1996. int ret;
  1997. if (num_dwords == 0)
  1998. return 0;
  1999. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2000. ret = intel_ring_begin(req, num_dwords);
  2001. if (ret)
  2002. return ret;
  2003. while (num_dwords--)
  2004. intel_ring_emit(ring, MI_NOOP);
  2005. intel_ring_advance(ring);
  2006. return 0;
  2007. }
  2008. void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2009. {
  2010. struct drm_i915_private *dev_priv = engine->i915;
  2011. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2012. * so long as the semaphore value in the register/page is greater
  2013. * than the sync value), so whenever we reset the seqno,
  2014. * so long as we reset the tracking semaphore value to 0, it will
  2015. * always be before the next request's seqno. If we don't reset
  2016. * the semaphore value, then when the seqno moves backwards all
  2017. * future waits will complete instantly (causing rendering corruption).
  2018. */
  2019. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  2020. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2021. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2022. if (HAS_VEBOX(dev_priv))
  2023. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2024. }
  2025. if (dev_priv->semaphore_obj) {
  2026. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2027. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2028. void *semaphores = kmap(page);
  2029. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2030. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2031. kunmap(page);
  2032. }
  2033. memset(engine->semaphore.sync_seqno, 0,
  2034. sizeof(engine->semaphore.sync_seqno));
  2035. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  2036. if (engine->irq_seqno_barrier)
  2037. engine->irq_seqno_barrier(engine);
  2038. engine->last_submitted_seqno = seqno;
  2039. engine->hangcheck.seqno = seqno;
  2040. /* After manually advancing the seqno, fake the interrupt in case
  2041. * there are any waiters for that seqno.
  2042. */
  2043. rcu_read_lock();
  2044. intel_engine_wakeup(engine);
  2045. rcu_read_unlock();
  2046. }
  2047. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2048. u32 value)
  2049. {
  2050. struct drm_i915_private *dev_priv = engine->i915;
  2051. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  2052. /* Every tail move must follow the sequence below */
  2053. /* Disable notification that the ring is IDLE. The GT
  2054. * will then assume that it is busy and bring it out of rc6.
  2055. */
  2056. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2057. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2058. /* Clear the context id. Here be magic! */
  2059. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  2060. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2061. if (intel_wait_for_register_fw(dev_priv,
  2062. GEN6_BSD_SLEEP_PSMI_CONTROL,
  2063. GEN6_BSD_SLEEP_INDICATOR,
  2064. 0,
  2065. 50))
  2066. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2067. /* Now that the ring is fully powered up, update the tail */
  2068. I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
  2069. POSTING_READ_FW(RING_TAIL(engine->mmio_base));
  2070. /* Let the ring send IDLE messages to the GT again,
  2071. * and so let it sleep to conserve power when idle.
  2072. */
  2073. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2074. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2075. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  2076. }
  2077. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  2078. {
  2079. struct intel_ring *ring = req->ring;
  2080. uint32_t cmd;
  2081. int ret;
  2082. ret = intel_ring_begin(req, 4);
  2083. if (ret)
  2084. return ret;
  2085. cmd = MI_FLUSH_DW;
  2086. if (INTEL_GEN(req->i915) >= 8)
  2087. cmd += 1;
  2088. /* We always require a command barrier so that subsequent
  2089. * commands, such as breadcrumb interrupts, are strictly ordered
  2090. * wrt the contents of the write cache being flushed to memory
  2091. * (and thus being coherent from the CPU).
  2092. */
  2093. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2094. /*
  2095. * Bspec vol 1c.5 - video engine command streamer:
  2096. * "If ENABLED, all TLBs will be invalidated once the flush
  2097. * operation is complete. This bit is only valid when the
  2098. * Post-Sync Operation field is a value of 1h or 3h."
  2099. */
  2100. if (mode & EMIT_INVALIDATE)
  2101. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2102. intel_ring_emit(ring, cmd);
  2103. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2104. if (INTEL_GEN(req->i915) >= 8) {
  2105. intel_ring_emit(ring, 0); /* upper addr */
  2106. intel_ring_emit(ring, 0); /* value */
  2107. } else {
  2108. intel_ring_emit(ring, 0);
  2109. intel_ring_emit(ring, MI_NOOP);
  2110. }
  2111. intel_ring_advance(ring);
  2112. return 0;
  2113. }
  2114. static int
  2115. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2116. u64 offset, u32 len,
  2117. unsigned dispatch_flags)
  2118. {
  2119. struct intel_ring *ring = req->ring;
  2120. bool ppgtt = USES_PPGTT(req->i915) &&
  2121. !(dispatch_flags & I915_DISPATCH_SECURE);
  2122. int ret;
  2123. ret = intel_ring_begin(req, 4);
  2124. if (ret)
  2125. return ret;
  2126. /* FIXME(BDW): Address space and security selectors. */
  2127. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2128. (dispatch_flags & I915_DISPATCH_RS ?
  2129. MI_BATCH_RESOURCE_STREAMER : 0));
  2130. intel_ring_emit(ring, lower_32_bits(offset));
  2131. intel_ring_emit(ring, upper_32_bits(offset));
  2132. intel_ring_emit(ring, MI_NOOP);
  2133. intel_ring_advance(ring);
  2134. return 0;
  2135. }
  2136. static int
  2137. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2138. u64 offset, u32 len,
  2139. unsigned dispatch_flags)
  2140. {
  2141. struct intel_ring *ring = req->ring;
  2142. int ret;
  2143. ret = intel_ring_begin(req, 2);
  2144. if (ret)
  2145. return ret;
  2146. intel_ring_emit(ring,
  2147. MI_BATCH_BUFFER_START |
  2148. (dispatch_flags & I915_DISPATCH_SECURE ?
  2149. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2150. (dispatch_flags & I915_DISPATCH_RS ?
  2151. MI_BATCH_RESOURCE_STREAMER : 0));
  2152. /* bit0-7 is the length on GEN6+ */
  2153. intel_ring_emit(ring, offset);
  2154. intel_ring_advance(ring);
  2155. return 0;
  2156. }
  2157. static int
  2158. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2159. u64 offset, u32 len,
  2160. unsigned dispatch_flags)
  2161. {
  2162. struct intel_ring *ring = req->ring;
  2163. int ret;
  2164. ret = intel_ring_begin(req, 2);
  2165. if (ret)
  2166. return ret;
  2167. intel_ring_emit(ring,
  2168. MI_BATCH_BUFFER_START |
  2169. (dispatch_flags & I915_DISPATCH_SECURE ?
  2170. 0 : MI_BATCH_NON_SECURE_I965));
  2171. /* bit0-7 is the length on GEN6+ */
  2172. intel_ring_emit(ring, offset);
  2173. intel_ring_advance(ring);
  2174. return 0;
  2175. }
  2176. /* Blitter support (SandyBridge+) */
  2177. static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  2178. {
  2179. struct intel_ring *ring = req->ring;
  2180. uint32_t cmd;
  2181. int ret;
  2182. ret = intel_ring_begin(req, 4);
  2183. if (ret)
  2184. return ret;
  2185. cmd = MI_FLUSH_DW;
  2186. if (INTEL_GEN(req->i915) >= 8)
  2187. cmd += 1;
  2188. /* We always require a command barrier so that subsequent
  2189. * commands, such as breadcrumb interrupts, are strictly ordered
  2190. * wrt the contents of the write cache being flushed to memory
  2191. * (and thus being coherent from the CPU).
  2192. */
  2193. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2194. /*
  2195. * Bspec vol 1c.3 - blitter engine command streamer:
  2196. * "If ENABLED, all TLBs will be invalidated once the flush
  2197. * operation is complete. This bit is only valid when the
  2198. * Post-Sync Operation field is a value of 1h or 3h."
  2199. */
  2200. if (mode & EMIT_INVALIDATE)
  2201. cmd |= MI_INVALIDATE_TLB;
  2202. intel_ring_emit(ring, cmd);
  2203. intel_ring_emit(ring,
  2204. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2205. if (INTEL_GEN(req->i915) >= 8) {
  2206. intel_ring_emit(ring, 0); /* upper addr */
  2207. intel_ring_emit(ring, 0); /* value */
  2208. } else {
  2209. intel_ring_emit(ring, 0);
  2210. intel_ring_emit(ring, MI_NOOP);
  2211. }
  2212. intel_ring_advance(ring);
  2213. return 0;
  2214. }
  2215. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2216. struct intel_engine_cs *engine)
  2217. {
  2218. struct drm_i915_gem_object *obj;
  2219. int ret, i;
  2220. if (!i915.semaphores)
  2221. return;
  2222. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
  2223. obj = i915_gem_object_create(&dev_priv->drm, 4096);
  2224. if (IS_ERR(obj)) {
  2225. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2226. i915.semaphores = 0;
  2227. } else {
  2228. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2229. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2230. if (ret != 0) {
  2231. i915_gem_object_put(obj);
  2232. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2233. i915.semaphores = 0;
  2234. } else {
  2235. dev_priv->semaphore_obj = obj;
  2236. }
  2237. }
  2238. }
  2239. if (!i915.semaphores)
  2240. return;
  2241. if (INTEL_GEN(dev_priv) >= 8) {
  2242. u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
  2243. engine->semaphore.sync_to = gen8_ring_sync;
  2244. engine->semaphore.signal = gen8_xcs_signal;
  2245. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2246. u64 ring_offset;
  2247. if (i != engine->id)
  2248. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2249. else
  2250. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2251. engine->semaphore.signal_ggtt[i] = ring_offset;
  2252. }
  2253. } else if (INTEL_GEN(dev_priv) >= 6) {
  2254. engine->semaphore.sync_to = gen6_ring_sync;
  2255. engine->semaphore.signal = gen6_signal;
  2256. /*
  2257. * The current semaphore is only applied on pre-gen8
  2258. * platform. And there is no VCS2 ring on the pre-gen8
  2259. * platform. So the semaphore between RCS and VCS2 is
  2260. * initialized as INVALID. Gen8 will initialize the
  2261. * sema between VCS2 and RCS later.
  2262. */
  2263. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2264. static const struct {
  2265. u32 wait_mbox;
  2266. i915_reg_t mbox_reg;
  2267. } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
  2268. [RCS] = {
  2269. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2270. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2271. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2272. },
  2273. [VCS] = {
  2274. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2275. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2276. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2277. },
  2278. [BCS] = {
  2279. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2280. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2281. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2282. },
  2283. [VECS] = {
  2284. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2285. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2286. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2287. },
  2288. };
  2289. u32 wait_mbox;
  2290. i915_reg_t mbox_reg;
  2291. if (i == engine->id || i == VCS2) {
  2292. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2293. mbox_reg = GEN6_NOSYNC;
  2294. } else {
  2295. wait_mbox = sem_data[engine->id][i].wait_mbox;
  2296. mbox_reg = sem_data[engine->id][i].mbox_reg;
  2297. }
  2298. engine->semaphore.mbox.wait[i] = wait_mbox;
  2299. engine->semaphore.mbox.signal[i] = mbox_reg;
  2300. }
  2301. }
  2302. }
  2303. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2304. struct intel_engine_cs *engine)
  2305. {
  2306. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
  2307. if (INTEL_GEN(dev_priv) >= 8) {
  2308. engine->irq_enable = gen8_irq_enable;
  2309. engine->irq_disable = gen8_irq_disable;
  2310. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2311. } else if (INTEL_GEN(dev_priv) >= 6) {
  2312. engine->irq_enable = gen6_irq_enable;
  2313. engine->irq_disable = gen6_irq_disable;
  2314. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2315. } else if (INTEL_GEN(dev_priv) >= 5) {
  2316. engine->irq_enable = gen5_irq_enable;
  2317. engine->irq_disable = gen5_irq_disable;
  2318. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2319. } else if (INTEL_GEN(dev_priv) >= 3) {
  2320. engine->irq_enable = i9xx_irq_enable;
  2321. engine->irq_disable = i9xx_irq_disable;
  2322. } else {
  2323. engine->irq_enable = i8xx_irq_enable;
  2324. engine->irq_disable = i8xx_irq_disable;
  2325. }
  2326. }
  2327. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2328. struct intel_engine_cs *engine)
  2329. {
  2330. engine->init_hw = init_ring_common;
  2331. engine->write_tail = ring_write_tail;
  2332. engine->add_request = i9xx_add_request;
  2333. if (INTEL_GEN(dev_priv) >= 6)
  2334. engine->add_request = gen6_add_request;
  2335. if (INTEL_GEN(dev_priv) >= 8)
  2336. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2337. else if (INTEL_GEN(dev_priv) >= 6)
  2338. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2339. else if (INTEL_GEN(dev_priv) >= 4)
  2340. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2341. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2342. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2343. else
  2344. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2345. intel_ring_init_irq(dev_priv, engine);
  2346. intel_ring_init_semaphores(dev_priv, engine);
  2347. }
  2348. int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
  2349. {
  2350. struct drm_i915_private *dev_priv = engine->i915;
  2351. int ret;
  2352. intel_ring_default_vfuncs(dev_priv, engine);
  2353. if (HAS_L3_DPF(dev_priv))
  2354. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2355. if (INTEL_GEN(dev_priv) >= 8) {
  2356. engine->init_context = intel_rcs_ctx_init;
  2357. engine->add_request = gen8_render_add_request;
  2358. engine->emit_flush = gen8_render_ring_flush;
  2359. if (i915.semaphores)
  2360. engine->semaphore.signal = gen8_rcs_signal;
  2361. } else if (INTEL_GEN(dev_priv) >= 6) {
  2362. engine->init_context = intel_rcs_ctx_init;
  2363. engine->emit_flush = gen7_render_ring_flush;
  2364. if (IS_GEN6(dev_priv))
  2365. engine->emit_flush = gen6_render_ring_flush;
  2366. } else if (IS_GEN5(dev_priv)) {
  2367. engine->emit_flush = gen4_render_ring_flush;
  2368. } else {
  2369. if (INTEL_GEN(dev_priv) < 4)
  2370. engine->emit_flush = gen2_render_ring_flush;
  2371. else
  2372. engine->emit_flush = gen4_render_ring_flush;
  2373. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2374. }
  2375. if (IS_HASWELL(dev_priv))
  2376. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2377. engine->init_hw = init_render_ring;
  2378. engine->cleanup = render_ring_cleanup;
  2379. ret = intel_init_ring_buffer(engine);
  2380. if (ret)
  2381. return ret;
  2382. if (INTEL_GEN(dev_priv) >= 6) {
  2383. ret = intel_init_pipe_control(engine, 4096);
  2384. if (ret)
  2385. return ret;
  2386. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2387. ret = intel_init_pipe_control(engine, I830_WA_SIZE);
  2388. if (ret)
  2389. return ret;
  2390. }
  2391. return 0;
  2392. }
  2393. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
  2394. {
  2395. struct drm_i915_private *dev_priv = engine->i915;
  2396. intel_ring_default_vfuncs(dev_priv, engine);
  2397. if (INTEL_GEN(dev_priv) >= 6) {
  2398. /* gen6 bsd needs a special wa for tail updates */
  2399. if (IS_GEN6(dev_priv))
  2400. engine->write_tail = gen6_bsd_ring_write_tail;
  2401. engine->emit_flush = gen6_bsd_ring_flush;
  2402. if (INTEL_GEN(dev_priv) < 8)
  2403. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2404. } else {
  2405. engine->mmio_base = BSD_RING_BASE;
  2406. engine->emit_flush = bsd_ring_flush;
  2407. if (IS_GEN5(dev_priv))
  2408. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2409. else
  2410. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2411. }
  2412. return intel_init_ring_buffer(engine);
  2413. }
  2414. /**
  2415. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2416. */
  2417. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
  2418. {
  2419. struct drm_i915_private *dev_priv = engine->i915;
  2420. intel_ring_default_vfuncs(dev_priv, engine);
  2421. engine->emit_flush = gen6_bsd_ring_flush;
  2422. return intel_init_ring_buffer(engine);
  2423. }
  2424. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
  2425. {
  2426. struct drm_i915_private *dev_priv = engine->i915;
  2427. intel_ring_default_vfuncs(dev_priv, engine);
  2428. engine->emit_flush = gen6_ring_flush;
  2429. if (INTEL_GEN(dev_priv) < 8)
  2430. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2431. return intel_init_ring_buffer(engine);
  2432. }
  2433. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
  2434. {
  2435. struct drm_i915_private *dev_priv = engine->i915;
  2436. intel_ring_default_vfuncs(dev_priv, engine);
  2437. engine->emit_flush = gen6_ring_flush;
  2438. if (INTEL_GEN(dev_priv) < 8) {
  2439. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2440. engine->irq_enable = hsw_vebox_irq_enable;
  2441. engine->irq_disable = hsw_vebox_irq_disable;
  2442. }
  2443. return intel_init_ring_buffer(engine);
  2444. }
  2445. void intel_engine_stop(struct intel_engine_cs *engine)
  2446. {
  2447. int ret;
  2448. if (!intel_engine_initialized(engine))
  2449. return;
  2450. ret = intel_engine_idle(engine);
  2451. if (ret)
  2452. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2453. engine->name, ret);
  2454. stop_ring(engine);
  2455. }