random.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
  5. * Rights Reserved.
  6. *
  7. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  8. *
  9. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  10. * rights reserved.
  11. *
  12. * Redistribution and use in source and binary forms, with or without
  13. * modification, are permitted provided that the following conditions
  14. * are met:
  15. * 1. Redistributions of source code must retain the above copyright
  16. * notice, and the entire permission notice in its entirety,
  17. * including the disclaimer of warranties.
  18. * 2. Redistributions in binary form must reproduce the above copyright
  19. * notice, this list of conditions and the following disclaimer in the
  20. * documentation and/or other materials provided with the distribution.
  21. * 3. The name of the author may not be used to endorse or promote
  22. * products derived from this software without specific prior
  23. * written permission.
  24. *
  25. * ALTERNATIVELY, this product may be distributed under the terms of
  26. * the GNU General Public License, in which case the provisions of the GPL are
  27. * required INSTEAD OF the above restrictions. (This clause is
  28. * necessary due to a potential bad interaction between the GPL and
  29. * the restrictions contained in a BSD-style copyright.)
  30. *
  31. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  35. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42. * DAMAGE.
  43. */
  44. /*
  45. * (now, with legal B.S. out of the way.....)
  46. *
  47. * This routine gathers environmental noise from device drivers, etc.,
  48. * and returns good random numbers, suitable for cryptographic use.
  49. * Besides the obvious cryptographic uses, these numbers are also good
  50. * for seeding TCP sequence numbers, and other places where it is
  51. * desirable to have numbers which are not only random, but hard to
  52. * predict by an attacker.
  53. *
  54. * Theory of operation
  55. * ===================
  56. *
  57. * Computers are very predictable devices. Hence it is extremely hard
  58. * to produce truly random numbers on a computer --- as opposed to
  59. * pseudo-random numbers, which can easily generated by using a
  60. * algorithm. Unfortunately, it is very easy for attackers to guess
  61. * the sequence of pseudo-random number generators, and for some
  62. * applications this is not acceptable. So instead, we must try to
  63. * gather "environmental noise" from the computer's environment, which
  64. * must be hard for outside attackers to observe, and use that to
  65. * generate random numbers. In a Unix environment, this is best done
  66. * from inside the kernel.
  67. *
  68. * Sources of randomness from the environment include inter-keyboard
  69. * timings, inter-interrupt timings from some interrupts, and other
  70. * events which are both (a) non-deterministic and (b) hard for an
  71. * outside observer to measure. Randomness from these sources are
  72. * added to an "entropy pool", which is mixed using a CRC-like function.
  73. * This is not cryptographically strong, but it is adequate assuming
  74. * the randomness is not chosen maliciously, and it is fast enough that
  75. * the overhead of doing it on every interrupt is very reasonable.
  76. * As random bytes are mixed into the entropy pool, the routines keep
  77. * an *estimate* of how many bits of randomness have been stored into
  78. * the random number generator's internal state.
  79. *
  80. * When random bytes are desired, they are obtained by taking the SHA
  81. * hash of the contents of the "entropy pool". The SHA hash avoids
  82. * exposing the internal state of the entropy pool. It is believed to
  83. * be computationally infeasible to derive any useful information
  84. * about the input of SHA from its output. Even if it is possible to
  85. * analyze SHA in some clever way, as long as the amount of data
  86. * returned from the generator is less than the inherent entropy in
  87. * the pool, the output data is totally unpredictable. For this
  88. * reason, the routine decreases its internal estimate of how many
  89. * bits of "true randomness" are contained in the entropy pool as it
  90. * outputs random numbers.
  91. *
  92. * If this estimate goes to zero, the routine can still generate
  93. * random numbers; however, an attacker may (at least in theory) be
  94. * able to infer the future output of the generator from prior
  95. * outputs. This requires successful cryptanalysis of SHA, which is
  96. * not believed to be feasible, but there is a remote possibility.
  97. * Nonetheless, these numbers should be useful for the vast majority
  98. * of purposes.
  99. *
  100. * Exported interfaces ---- output
  101. * ===============================
  102. *
  103. * There are three exported interfaces; the first is one designed to
  104. * be used from within the kernel:
  105. *
  106. * void get_random_bytes(void *buf, int nbytes);
  107. *
  108. * This interface will return the requested number of random bytes,
  109. * and place it in the requested buffer.
  110. *
  111. * The two other interfaces are two character devices /dev/random and
  112. * /dev/urandom. /dev/random is suitable for use when very high
  113. * quality randomness is desired (for example, for key generation or
  114. * one-time pads), as it will only return a maximum of the number of
  115. * bits of randomness (as estimated by the random number generator)
  116. * contained in the entropy pool.
  117. *
  118. * The /dev/urandom device does not have this limit, and will return
  119. * as many bytes as are requested. As more and more random bytes are
  120. * requested without giving time for the entropy pool to recharge,
  121. * this will result in random numbers that are merely cryptographically
  122. * strong. For many applications, however, this is acceptable.
  123. *
  124. * Exported interfaces ---- input
  125. * ==============================
  126. *
  127. * The current exported interfaces for gathering environmental noise
  128. * from the devices are:
  129. *
  130. * void add_device_randomness(const void *buf, unsigned int size);
  131. * void add_input_randomness(unsigned int type, unsigned int code,
  132. * unsigned int value);
  133. * void add_interrupt_randomness(int irq, int irq_flags);
  134. * void add_disk_randomness(struct gendisk *disk);
  135. *
  136. * add_device_randomness() is for adding data to the random pool that
  137. * is likely to differ between two devices (or possibly even per boot).
  138. * This would be things like MAC addresses or serial numbers, or the
  139. * read-out of the RTC. This does *not* add any actual entropy to the
  140. * pool, but it initializes the pool to different values for devices
  141. * that might otherwise be identical and have very little entropy
  142. * available to them (particularly common in the embedded world).
  143. *
  144. * add_input_randomness() uses the input layer interrupt timing, as well as
  145. * the event type information from the hardware.
  146. *
  147. * add_interrupt_randomness() uses the interrupt timing as random
  148. * inputs to the entropy pool. Using the cycle counters and the irq source
  149. * as inputs, it feeds the randomness roughly once a second.
  150. *
  151. * add_disk_randomness() uses what amounts to the seek time of block
  152. * layer request events, on a per-disk_devt basis, as input to the
  153. * entropy pool. Note that high-speed solid state drives with very low
  154. * seek times do not make for good sources of entropy, as their seek
  155. * times are usually fairly consistent.
  156. *
  157. * All of these routines try to estimate how many bits of randomness a
  158. * particular randomness source. They do this by keeping track of the
  159. * first and second order deltas of the event timings.
  160. *
  161. * Ensuring unpredictability at system startup
  162. * ============================================
  163. *
  164. * When any operating system starts up, it will go through a sequence
  165. * of actions that are fairly predictable by an adversary, especially
  166. * if the start-up does not involve interaction with a human operator.
  167. * This reduces the actual number of bits of unpredictability in the
  168. * entropy pool below the value in entropy_count. In order to
  169. * counteract this effect, it helps to carry information in the
  170. * entropy pool across shut-downs and start-ups. To do this, put the
  171. * following lines an appropriate script which is run during the boot
  172. * sequence:
  173. *
  174. * echo "Initializing random number generator..."
  175. * random_seed=/var/run/random-seed
  176. * # Carry a random seed from start-up to start-up
  177. * # Load and then save the whole entropy pool
  178. * if [ -f $random_seed ]; then
  179. * cat $random_seed >/dev/urandom
  180. * else
  181. * touch $random_seed
  182. * fi
  183. * chmod 600 $random_seed
  184. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  185. *
  186. * and the following lines in an appropriate script which is run as
  187. * the system is shutdown:
  188. *
  189. * # Carry a random seed from shut-down to start-up
  190. * # Save the whole entropy pool
  191. * echo "Saving random seed..."
  192. * random_seed=/var/run/random-seed
  193. * touch $random_seed
  194. * chmod 600 $random_seed
  195. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  196. *
  197. * For example, on most modern systems using the System V init
  198. * scripts, such code fragments would be found in
  199. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  200. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  201. *
  202. * Effectively, these commands cause the contents of the entropy pool
  203. * to be saved at shut-down time and reloaded into the entropy pool at
  204. * start-up. (The 'dd' in the addition to the bootup script is to
  205. * make sure that /etc/random-seed is different for every start-up,
  206. * even if the system crashes without executing rc.0.) Even with
  207. * complete knowledge of the start-up activities, predicting the state
  208. * of the entropy pool requires knowledge of the previous history of
  209. * the system.
  210. *
  211. * Configuring the /dev/random driver under Linux
  212. * ==============================================
  213. *
  214. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  215. * the /dev/mem major number (#1). So if your system does not have
  216. * /dev/random and /dev/urandom created already, they can be created
  217. * by using the commands:
  218. *
  219. * mknod /dev/random c 1 8
  220. * mknod /dev/urandom c 1 9
  221. *
  222. * Acknowledgements:
  223. * =================
  224. *
  225. * Ideas for constructing this random number generator were derived
  226. * from Pretty Good Privacy's random number generator, and from private
  227. * discussions with Phil Karn. Colin Plumb provided a faster random
  228. * number generator, which speed up the mixing function of the entropy
  229. * pool, taken from PGPfone. Dale Worley has also contributed many
  230. * useful ideas and suggestions to improve this driver.
  231. *
  232. * Any flaws in the design are solely my responsibility, and should
  233. * not be attributed to the Phil, Colin, or any of authors of PGP.
  234. *
  235. * Further background information on this topic may be obtained from
  236. * RFC 1750, "Randomness Recommendations for Security", by Donald
  237. * Eastlake, Steve Crocker, and Jeff Schiller.
  238. */
  239. #include <linux/utsname.h>
  240. #include <linux/module.h>
  241. #include <linux/kernel.h>
  242. #include <linux/major.h>
  243. #include <linux/string.h>
  244. #include <linux/fcntl.h>
  245. #include <linux/slab.h>
  246. #include <linux/random.h>
  247. #include <linux/poll.h>
  248. #include <linux/init.h>
  249. #include <linux/fs.h>
  250. #include <linux/genhd.h>
  251. #include <linux/interrupt.h>
  252. #include <linux/mm.h>
  253. #include <linux/nodemask.h>
  254. #include <linux/spinlock.h>
  255. #include <linux/kthread.h>
  256. #include <linux/percpu.h>
  257. #include <linux/cryptohash.h>
  258. #include <linux/fips.h>
  259. #include <linux/ptrace.h>
  260. #include <linux/workqueue.h>
  261. #include <linux/irq.h>
  262. #include <linux/syscalls.h>
  263. #include <linux/completion.h>
  264. #include <linux/uuid.h>
  265. #include <crypto/chacha20.h>
  266. #include <asm/processor.h>
  267. #include <linux/uaccess.h>
  268. #include <asm/irq.h>
  269. #include <asm/irq_regs.h>
  270. #include <asm/io.h>
  271. #define CREATE_TRACE_POINTS
  272. #include <trace/events/random.h>
  273. /* #define ADD_INTERRUPT_BENCH */
  274. /*
  275. * Configuration information
  276. */
  277. #define INPUT_POOL_SHIFT 12
  278. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  279. #define OUTPUT_POOL_SHIFT 10
  280. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  281. #define SEC_XFER_SIZE 512
  282. #define EXTRACT_SIZE 10
  283. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  284. /*
  285. * To allow fractional bits to be tracked, the entropy_count field is
  286. * denominated in units of 1/8th bits.
  287. *
  288. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  289. * credit_entropy_bits() needs to be 64 bits wide.
  290. */
  291. #define ENTROPY_SHIFT 3
  292. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  293. /*
  294. * The minimum number of bits of entropy before we wake up a read on
  295. * /dev/random. Should be enough to do a significant reseed.
  296. */
  297. static int random_read_wakeup_bits = 64;
  298. /*
  299. * If the entropy count falls under this number of bits, then we
  300. * should wake up processes which are selecting or polling on write
  301. * access to /dev/random.
  302. */
  303. static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
  304. /*
  305. * Originally, we used a primitive polynomial of degree .poolwords
  306. * over GF(2). The taps for various sizes are defined below. They
  307. * were chosen to be evenly spaced except for the last tap, which is 1
  308. * to get the twisting happening as fast as possible.
  309. *
  310. * For the purposes of better mixing, we use the CRC-32 polynomial as
  311. * well to make a (modified) twisted Generalized Feedback Shift
  312. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  313. * generators. ACM Transactions on Modeling and Computer Simulation
  314. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  315. * GFSR generators II. ACM Transactions on Modeling and Computer
  316. * Simulation 4:254-266)
  317. *
  318. * Thanks to Colin Plumb for suggesting this.
  319. *
  320. * The mixing operation is much less sensitive than the output hash,
  321. * where we use SHA-1. All that we want of mixing operation is that
  322. * it be a good non-cryptographic hash; i.e. it not produce collisions
  323. * when fed "random" data of the sort we expect to see. As long as
  324. * the pool state differs for different inputs, we have preserved the
  325. * input entropy and done a good job. The fact that an intelligent
  326. * attacker can construct inputs that will produce controlled
  327. * alterations to the pool's state is not important because we don't
  328. * consider such inputs to contribute any randomness. The only
  329. * property we need with respect to them is that the attacker can't
  330. * increase his/her knowledge of the pool's state. Since all
  331. * additions are reversible (knowing the final state and the input,
  332. * you can reconstruct the initial state), if an attacker has any
  333. * uncertainty about the initial state, he/she can only shuffle that
  334. * uncertainty about, but never cause any collisions (which would
  335. * decrease the uncertainty).
  336. *
  337. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  338. * Videau in their paper, "The Linux Pseudorandom Number Generator
  339. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  340. * paper, they point out that we are not using a true Twisted GFSR,
  341. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  342. * is, with only three taps, instead of the six that we are using).
  343. * As a result, the resulting polynomial is neither primitive nor
  344. * irreducible, and hence does not have a maximal period over
  345. * GF(2**32). They suggest a slight change to the generator
  346. * polynomial which improves the resulting TGFSR polynomial to be
  347. * irreducible, which we have made here.
  348. */
  349. static struct poolinfo {
  350. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  351. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  352. int tap1, tap2, tap3, tap4, tap5;
  353. } poolinfo_table[] = {
  354. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  355. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  356. { S(128), 104, 76, 51, 25, 1 },
  357. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  358. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  359. { S(32), 26, 19, 14, 7, 1 },
  360. #if 0
  361. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  362. { S(2048), 1638, 1231, 819, 411, 1 },
  363. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  364. { S(1024), 817, 615, 412, 204, 1 },
  365. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  366. { S(1024), 819, 616, 410, 207, 2 },
  367. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  368. { S(512), 411, 308, 208, 104, 1 },
  369. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  370. { S(512), 409, 307, 206, 102, 2 },
  371. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  372. { S(512), 409, 309, 205, 103, 2 },
  373. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  374. { S(256), 205, 155, 101, 52, 1 },
  375. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  376. { S(128), 103, 78, 51, 27, 2 },
  377. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  378. { S(64), 52, 39, 26, 14, 1 },
  379. #endif
  380. };
  381. /*
  382. * Static global variables
  383. */
  384. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  385. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  386. static struct fasync_struct *fasync;
  387. static DEFINE_SPINLOCK(random_ready_list_lock);
  388. static LIST_HEAD(random_ready_list);
  389. struct crng_state {
  390. __u32 state[16];
  391. unsigned long init_time;
  392. spinlock_t lock;
  393. };
  394. struct crng_state primary_crng = {
  395. .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
  396. };
  397. /*
  398. * crng_init = 0 --> Uninitialized
  399. * 1 --> Initialized
  400. * 2 --> Initialized from input_pool
  401. *
  402. * crng_init is protected by primary_crng->lock, and only increases
  403. * its value (from 0->1->2).
  404. */
  405. static int crng_init = 0;
  406. #define crng_ready() (likely(crng_init > 0))
  407. static int crng_init_cnt = 0;
  408. #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
  409. static void _extract_crng(struct crng_state *crng,
  410. __u8 out[CHACHA20_BLOCK_SIZE]);
  411. static void _crng_backtrack_protect(struct crng_state *crng,
  412. __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
  413. static void process_random_ready_list(void);
  414. static void _get_random_bytes(void *buf, int nbytes);
  415. /**********************************************************************
  416. *
  417. * OS independent entropy store. Here are the functions which handle
  418. * storing entropy in an entropy pool.
  419. *
  420. **********************************************************************/
  421. struct entropy_store;
  422. struct entropy_store {
  423. /* read-only data: */
  424. const struct poolinfo *poolinfo;
  425. __u32 *pool;
  426. const char *name;
  427. struct entropy_store *pull;
  428. struct work_struct push_work;
  429. /* read-write data: */
  430. unsigned long last_pulled;
  431. spinlock_t lock;
  432. unsigned short add_ptr;
  433. unsigned short input_rotate;
  434. int entropy_count;
  435. int entropy_total;
  436. unsigned int initialized:1;
  437. unsigned int last_data_init:1;
  438. __u8 last_data[EXTRACT_SIZE];
  439. };
  440. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  441. size_t nbytes, int min, int rsvd);
  442. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  443. size_t nbytes, int fips);
  444. static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
  445. static void push_to_pool(struct work_struct *work);
  446. static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
  447. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
  448. static struct entropy_store input_pool = {
  449. .poolinfo = &poolinfo_table[0],
  450. .name = "input",
  451. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  452. .pool = input_pool_data
  453. };
  454. static struct entropy_store blocking_pool = {
  455. .poolinfo = &poolinfo_table[1],
  456. .name = "blocking",
  457. .pull = &input_pool,
  458. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  459. .pool = blocking_pool_data,
  460. .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
  461. push_to_pool),
  462. };
  463. static __u32 const twist_table[8] = {
  464. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  465. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  466. /*
  467. * This function adds bytes into the entropy "pool". It does not
  468. * update the entropy estimate. The caller should call
  469. * credit_entropy_bits if this is appropriate.
  470. *
  471. * The pool is stirred with a primitive polynomial of the appropriate
  472. * degree, and then twisted. We twist by three bits at a time because
  473. * it's cheap to do so and helps slightly in the expected case where
  474. * the entropy is concentrated in the low-order bits.
  475. */
  476. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  477. int nbytes)
  478. {
  479. unsigned long i, tap1, tap2, tap3, tap4, tap5;
  480. int input_rotate;
  481. int wordmask = r->poolinfo->poolwords - 1;
  482. const char *bytes = in;
  483. __u32 w;
  484. tap1 = r->poolinfo->tap1;
  485. tap2 = r->poolinfo->tap2;
  486. tap3 = r->poolinfo->tap3;
  487. tap4 = r->poolinfo->tap4;
  488. tap5 = r->poolinfo->tap5;
  489. input_rotate = r->input_rotate;
  490. i = r->add_ptr;
  491. /* mix one byte at a time to simplify size handling and churn faster */
  492. while (nbytes--) {
  493. w = rol32(*bytes++, input_rotate);
  494. i = (i - 1) & wordmask;
  495. /* XOR in the various taps */
  496. w ^= r->pool[i];
  497. w ^= r->pool[(i + tap1) & wordmask];
  498. w ^= r->pool[(i + tap2) & wordmask];
  499. w ^= r->pool[(i + tap3) & wordmask];
  500. w ^= r->pool[(i + tap4) & wordmask];
  501. w ^= r->pool[(i + tap5) & wordmask];
  502. /* Mix the result back in with a twist */
  503. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  504. /*
  505. * Normally, we add 7 bits of rotation to the pool.
  506. * At the beginning of the pool, add an extra 7 bits
  507. * rotation, so that successive passes spread the
  508. * input bits across the pool evenly.
  509. */
  510. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  511. }
  512. r->input_rotate = input_rotate;
  513. r->add_ptr = i;
  514. }
  515. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  516. int nbytes)
  517. {
  518. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  519. _mix_pool_bytes(r, in, nbytes);
  520. }
  521. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  522. int nbytes)
  523. {
  524. unsigned long flags;
  525. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  526. spin_lock_irqsave(&r->lock, flags);
  527. _mix_pool_bytes(r, in, nbytes);
  528. spin_unlock_irqrestore(&r->lock, flags);
  529. }
  530. struct fast_pool {
  531. __u32 pool[4];
  532. unsigned long last;
  533. unsigned short reg_idx;
  534. unsigned char count;
  535. };
  536. /*
  537. * This is a fast mixing routine used by the interrupt randomness
  538. * collector. It's hardcoded for an 128 bit pool and assumes that any
  539. * locks that might be needed are taken by the caller.
  540. */
  541. static void fast_mix(struct fast_pool *f)
  542. {
  543. __u32 a = f->pool[0], b = f->pool[1];
  544. __u32 c = f->pool[2], d = f->pool[3];
  545. a += b; c += d;
  546. b = rol32(b, 6); d = rol32(d, 27);
  547. d ^= a; b ^= c;
  548. a += b; c += d;
  549. b = rol32(b, 16); d = rol32(d, 14);
  550. d ^= a; b ^= c;
  551. a += b; c += d;
  552. b = rol32(b, 6); d = rol32(d, 27);
  553. d ^= a; b ^= c;
  554. a += b; c += d;
  555. b = rol32(b, 16); d = rol32(d, 14);
  556. d ^= a; b ^= c;
  557. f->pool[0] = a; f->pool[1] = b;
  558. f->pool[2] = c; f->pool[3] = d;
  559. f->count++;
  560. }
  561. static void process_random_ready_list(void)
  562. {
  563. unsigned long flags;
  564. struct random_ready_callback *rdy, *tmp;
  565. spin_lock_irqsave(&random_ready_list_lock, flags);
  566. list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
  567. struct module *owner = rdy->owner;
  568. list_del_init(&rdy->list);
  569. rdy->func(rdy);
  570. module_put(owner);
  571. }
  572. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  573. }
  574. /*
  575. * Credit (or debit) the entropy store with n bits of entropy.
  576. * Use credit_entropy_bits_safe() if the value comes from userspace
  577. * or otherwise should be checked for extreme values.
  578. */
  579. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  580. {
  581. int entropy_count, orig;
  582. const int pool_size = r->poolinfo->poolfracbits;
  583. int nfrac = nbits << ENTROPY_SHIFT;
  584. if (!nbits)
  585. return;
  586. retry:
  587. entropy_count = orig = READ_ONCE(r->entropy_count);
  588. if (nfrac < 0) {
  589. /* Debit */
  590. entropy_count += nfrac;
  591. } else {
  592. /*
  593. * Credit: we have to account for the possibility of
  594. * overwriting already present entropy. Even in the
  595. * ideal case of pure Shannon entropy, new contributions
  596. * approach the full value asymptotically:
  597. *
  598. * entropy <- entropy + (pool_size - entropy) *
  599. * (1 - exp(-add_entropy/pool_size))
  600. *
  601. * For add_entropy <= pool_size/2 then
  602. * (1 - exp(-add_entropy/pool_size)) >=
  603. * (add_entropy/pool_size)*0.7869...
  604. * so we can approximate the exponential with
  605. * 3/4*add_entropy/pool_size and still be on the
  606. * safe side by adding at most pool_size/2 at a time.
  607. *
  608. * The use of pool_size-2 in the while statement is to
  609. * prevent rounding artifacts from making the loop
  610. * arbitrarily long; this limits the loop to log2(pool_size)*2
  611. * turns no matter how large nbits is.
  612. */
  613. int pnfrac = nfrac;
  614. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  615. /* The +2 corresponds to the /4 in the denominator */
  616. do {
  617. unsigned int anfrac = min(pnfrac, pool_size/2);
  618. unsigned int add =
  619. ((pool_size - entropy_count)*anfrac*3) >> s;
  620. entropy_count += add;
  621. pnfrac -= anfrac;
  622. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  623. }
  624. if (unlikely(entropy_count < 0)) {
  625. pr_warn("random: negative entropy/overflow: pool %s count %d\n",
  626. r->name, entropy_count);
  627. WARN_ON(1);
  628. entropy_count = 0;
  629. } else if (entropy_count > pool_size)
  630. entropy_count = pool_size;
  631. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  632. goto retry;
  633. r->entropy_total += nbits;
  634. if (!r->initialized && r->entropy_total > 128) {
  635. r->initialized = 1;
  636. r->entropy_total = 0;
  637. }
  638. trace_credit_entropy_bits(r->name, nbits,
  639. entropy_count >> ENTROPY_SHIFT,
  640. r->entropy_total, _RET_IP_);
  641. if (r == &input_pool) {
  642. int entropy_bits = entropy_count >> ENTROPY_SHIFT;
  643. if (crng_init < 2 && entropy_bits >= 128) {
  644. crng_reseed(&primary_crng, r);
  645. entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
  646. }
  647. /* should we wake readers? */
  648. if (entropy_bits >= random_read_wakeup_bits) {
  649. wake_up_interruptible(&random_read_wait);
  650. kill_fasync(&fasync, SIGIO, POLL_IN);
  651. }
  652. /* If the input pool is getting full, send some
  653. * entropy to the blocking pool until it is 75% full.
  654. */
  655. if (entropy_bits > random_write_wakeup_bits &&
  656. r->initialized &&
  657. r->entropy_total >= 2*random_read_wakeup_bits) {
  658. struct entropy_store *other = &blocking_pool;
  659. if (other->entropy_count <=
  660. 3 * other->poolinfo->poolfracbits / 4) {
  661. schedule_work(&other->push_work);
  662. r->entropy_total = 0;
  663. }
  664. }
  665. }
  666. }
  667. static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  668. {
  669. const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
  670. if (nbits < 0)
  671. return -EINVAL;
  672. /* Cap the value to avoid overflows */
  673. nbits = min(nbits, nbits_max);
  674. credit_entropy_bits(r, nbits);
  675. return 0;
  676. }
  677. /*********************************************************************
  678. *
  679. * CRNG using CHACHA20
  680. *
  681. *********************************************************************/
  682. #define CRNG_RESEED_INTERVAL (300*HZ)
  683. static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  684. #ifdef CONFIG_NUMA
  685. /*
  686. * Hack to deal with crazy userspace progams when they are all trying
  687. * to access /dev/urandom in parallel. The programs are almost
  688. * certainly doing something terribly wrong, but we'll work around
  689. * their brain damage.
  690. */
  691. static struct crng_state **crng_node_pool __read_mostly;
  692. #endif
  693. static void invalidate_batched_entropy(void);
  694. static void crng_initialize(struct crng_state *crng)
  695. {
  696. int i;
  697. unsigned long rv;
  698. memcpy(&crng->state[0], "expand 32-byte k", 16);
  699. if (crng == &primary_crng)
  700. _extract_entropy(&input_pool, &crng->state[4],
  701. sizeof(__u32) * 12, 0);
  702. else
  703. _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
  704. for (i = 4; i < 16; i++) {
  705. if (!arch_get_random_seed_long(&rv) &&
  706. !arch_get_random_long(&rv))
  707. rv = random_get_entropy();
  708. crng->state[i] ^= rv;
  709. }
  710. crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
  711. }
  712. static int crng_fast_load(const char *cp, size_t len)
  713. {
  714. unsigned long flags;
  715. char *p;
  716. if (!spin_trylock_irqsave(&primary_crng.lock, flags))
  717. return 0;
  718. if (crng_ready()) {
  719. spin_unlock_irqrestore(&primary_crng.lock, flags);
  720. return 0;
  721. }
  722. p = (unsigned char *) &primary_crng.state[4];
  723. while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
  724. p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
  725. cp++; crng_init_cnt++; len--;
  726. }
  727. spin_unlock_irqrestore(&primary_crng.lock, flags);
  728. if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
  729. invalidate_batched_entropy();
  730. crng_init = 1;
  731. wake_up_interruptible(&crng_init_wait);
  732. pr_notice("random: fast init done\n");
  733. }
  734. return 1;
  735. }
  736. static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
  737. {
  738. unsigned long flags;
  739. int i, num;
  740. union {
  741. __u8 block[CHACHA20_BLOCK_SIZE];
  742. __u32 key[8];
  743. } buf;
  744. if (r) {
  745. num = extract_entropy(r, &buf, 32, 16, 0);
  746. if (num == 0)
  747. return;
  748. } else {
  749. _extract_crng(&primary_crng, buf.block);
  750. _crng_backtrack_protect(&primary_crng, buf.block,
  751. CHACHA20_KEY_SIZE);
  752. }
  753. spin_lock_irqsave(&primary_crng.lock, flags);
  754. for (i = 0; i < 8; i++) {
  755. unsigned long rv;
  756. if (!arch_get_random_seed_long(&rv) &&
  757. !arch_get_random_long(&rv))
  758. rv = random_get_entropy();
  759. crng->state[i+4] ^= buf.key[i] ^ rv;
  760. }
  761. memzero_explicit(&buf, sizeof(buf));
  762. crng->init_time = jiffies;
  763. spin_unlock_irqrestore(&primary_crng.lock, flags);
  764. if (crng == &primary_crng && crng_init < 2) {
  765. invalidate_batched_entropy();
  766. crng_init = 2;
  767. process_random_ready_list();
  768. wake_up_interruptible(&crng_init_wait);
  769. pr_notice("random: crng init done\n");
  770. }
  771. }
  772. static void _extract_crng(struct crng_state *crng,
  773. __u8 out[CHACHA20_BLOCK_SIZE])
  774. {
  775. unsigned long v, flags;
  776. if (crng_init > 1 &&
  777. time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
  778. crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
  779. spin_lock_irqsave(&crng->lock, flags);
  780. if (arch_get_random_long(&v))
  781. crng->state[14] ^= v;
  782. chacha20_block(&crng->state[0], out);
  783. if (crng->state[12] == 0)
  784. crng->state[13]++;
  785. spin_unlock_irqrestore(&crng->lock, flags);
  786. }
  787. static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
  788. {
  789. struct crng_state *crng = NULL;
  790. #ifdef CONFIG_NUMA
  791. if (crng_node_pool)
  792. crng = crng_node_pool[numa_node_id()];
  793. if (crng == NULL)
  794. #endif
  795. crng = &primary_crng;
  796. _extract_crng(crng, out);
  797. }
  798. /*
  799. * Use the leftover bytes from the CRNG block output (if there is
  800. * enough) to mutate the CRNG key to provide backtracking protection.
  801. */
  802. static void _crng_backtrack_protect(struct crng_state *crng,
  803. __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
  804. {
  805. unsigned long flags;
  806. __u32 *s, *d;
  807. int i;
  808. used = round_up(used, sizeof(__u32));
  809. if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
  810. extract_crng(tmp);
  811. used = 0;
  812. }
  813. spin_lock_irqsave(&crng->lock, flags);
  814. s = (__u32 *) &tmp[used];
  815. d = &crng->state[4];
  816. for (i=0; i < 8; i++)
  817. *d++ ^= *s++;
  818. spin_unlock_irqrestore(&crng->lock, flags);
  819. }
  820. static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
  821. {
  822. struct crng_state *crng = NULL;
  823. #ifdef CONFIG_NUMA
  824. if (crng_node_pool)
  825. crng = crng_node_pool[numa_node_id()];
  826. if (crng == NULL)
  827. #endif
  828. crng = &primary_crng;
  829. _crng_backtrack_protect(crng, tmp, used);
  830. }
  831. static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
  832. {
  833. ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
  834. __u8 tmp[CHACHA20_BLOCK_SIZE];
  835. int large_request = (nbytes > 256);
  836. while (nbytes) {
  837. if (large_request && need_resched()) {
  838. if (signal_pending(current)) {
  839. if (ret == 0)
  840. ret = -ERESTARTSYS;
  841. break;
  842. }
  843. schedule();
  844. }
  845. extract_crng(tmp);
  846. i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
  847. if (copy_to_user(buf, tmp, i)) {
  848. ret = -EFAULT;
  849. break;
  850. }
  851. nbytes -= i;
  852. buf += i;
  853. ret += i;
  854. }
  855. crng_backtrack_protect(tmp, i);
  856. /* Wipe data just written to memory */
  857. memzero_explicit(tmp, sizeof(tmp));
  858. return ret;
  859. }
  860. /*********************************************************************
  861. *
  862. * Entropy input management
  863. *
  864. *********************************************************************/
  865. /* There is one of these per entropy source */
  866. struct timer_rand_state {
  867. cycles_t last_time;
  868. long last_delta, last_delta2;
  869. unsigned dont_count_entropy:1;
  870. };
  871. #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
  872. /*
  873. * Add device- or boot-specific data to the input pool to help
  874. * initialize it.
  875. *
  876. * None of this adds any entropy; it is meant to avoid the problem of
  877. * the entropy pool having similar initial state across largely
  878. * identical devices.
  879. */
  880. void add_device_randomness(const void *buf, unsigned int size)
  881. {
  882. unsigned long time = random_get_entropy() ^ jiffies;
  883. unsigned long flags;
  884. if (!crng_ready()) {
  885. crng_fast_load(buf, size);
  886. return;
  887. }
  888. trace_add_device_randomness(size, _RET_IP_);
  889. spin_lock_irqsave(&input_pool.lock, flags);
  890. _mix_pool_bytes(&input_pool, buf, size);
  891. _mix_pool_bytes(&input_pool, &time, sizeof(time));
  892. spin_unlock_irqrestore(&input_pool.lock, flags);
  893. }
  894. EXPORT_SYMBOL(add_device_randomness);
  895. static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
  896. /*
  897. * This function adds entropy to the entropy "pool" by using timing
  898. * delays. It uses the timer_rand_state structure to make an estimate
  899. * of how many bits of entropy this call has added to the pool.
  900. *
  901. * The number "num" is also added to the pool - it should somehow describe
  902. * the type of event which just happened. This is currently 0-255 for
  903. * keyboard scan codes, and 256 upwards for interrupts.
  904. *
  905. */
  906. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  907. {
  908. struct entropy_store *r;
  909. struct {
  910. long jiffies;
  911. unsigned cycles;
  912. unsigned num;
  913. } sample;
  914. long delta, delta2, delta3;
  915. preempt_disable();
  916. sample.jiffies = jiffies;
  917. sample.cycles = random_get_entropy();
  918. sample.num = num;
  919. r = &input_pool;
  920. mix_pool_bytes(r, &sample, sizeof(sample));
  921. /*
  922. * Calculate number of bits of randomness we probably added.
  923. * We take into account the first, second and third-order deltas
  924. * in order to make our estimate.
  925. */
  926. if (!state->dont_count_entropy) {
  927. delta = sample.jiffies - state->last_time;
  928. state->last_time = sample.jiffies;
  929. delta2 = delta - state->last_delta;
  930. state->last_delta = delta;
  931. delta3 = delta2 - state->last_delta2;
  932. state->last_delta2 = delta2;
  933. if (delta < 0)
  934. delta = -delta;
  935. if (delta2 < 0)
  936. delta2 = -delta2;
  937. if (delta3 < 0)
  938. delta3 = -delta3;
  939. if (delta > delta2)
  940. delta = delta2;
  941. if (delta > delta3)
  942. delta = delta3;
  943. /*
  944. * delta is now minimum absolute delta.
  945. * Round down by 1 bit on general principles,
  946. * and limit entropy entimate to 12 bits.
  947. */
  948. credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
  949. }
  950. preempt_enable();
  951. }
  952. void add_input_randomness(unsigned int type, unsigned int code,
  953. unsigned int value)
  954. {
  955. static unsigned char last_value;
  956. /* ignore autorepeat and the like */
  957. if (value == last_value)
  958. return;
  959. last_value = value;
  960. add_timer_randomness(&input_timer_state,
  961. (type << 4) ^ code ^ (code >> 4) ^ value);
  962. trace_add_input_randomness(ENTROPY_BITS(&input_pool));
  963. }
  964. EXPORT_SYMBOL_GPL(add_input_randomness);
  965. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  966. #ifdef ADD_INTERRUPT_BENCH
  967. static unsigned long avg_cycles, avg_deviation;
  968. #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
  969. #define FIXED_1_2 (1 << (AVG_SHIFT-1))
  970. static void add_interrupt_bench(cycles_t start)
  971. {
  972. long delta = random_get_entropy() - start;
  973. /* Use a weighted moving average */
  974. delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
  975. avg_cycles += delta;
  976. /* And average deviation */
  977. delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
  978. avg_deviation += delta;
  979. }
  980. #else
  981. #define add_interrupt_bench(x)
  982. #endif
  983. static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
  984. {
  985. __u32 *ptr = (__u32 *) regs;
  986. unsigned int idx;
  987. if (regs == NULL)
  988. return 0;
  989. idx = READ_ONCE(f->reg_idx);
  990. if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
  991. idx = 0;
  992. ptr += idx++;
  993. WRITE_ONCE(f->reg_idx, idx);
  994. return *ptr;
  995. }
  996. void add_interrupt_randomness(int irq, int irq_flags)
  997. {
  998. struct entropy_store *r;
  999. struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
  1000. struct pt_regs *regs = get_irq_regs();
  1001. unsigned long now = jiffies;
  1002. cycles_t cycles = random_get_entropy();
  1003. __u32 c_high, j_high;
  1004. __u64 ip;
  1005. unsigned long seed;
  1006. int credit = 0;
  1007. if (cycles == 0)
  1008. cycles = get_reg(fast_pool, regs);
  1009. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  1010. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  1011. fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
  1012. fast_pool->pool[1] ^= now ^ c_high;
  1013. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  1014. fast_pool->pool[2] ^= ip;
  1015. fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
  1016. get_reg(fast_pool, regs);
  1017. fast_mix(fast_pool);
  1018. add_interrupt_bench(cycles);
  1019. if (!crng_ready()) {
  1020. if ((fast_pool->count >= 64) &&
  1021. crng_fast_load((char *) fast_pool->pool,
  1022. sizeof(fast_pool->pool))) {
  1023. fast_pool->count = 0;
  1024. fast_pool->last = now;
  1025. }
  1026. return;
  1027. }
  1028. if ((fast_pool->count < 64) &&
  1029. !time_after(now, fast_pool->last + HZ))
  1030. return;
  1031. r = &input_pool;
  1032. if (!spin_trylock(&r->lock))
  1033. return;
  1034. fast_pool->last = now;
  1035. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
  1036. /*
  1037. * If we have architectural seed generator, produce a seed and
  1038. * add it to the pool. For the sake of paranoia don't let the
  1039. * architectural seed generator dominate the input from the
  1040. * interrupt noise.
  1041. */
  1042. if (arch_get_random_seed_long(&seed)) {
  1043. __mix_pool_bytes(r, &seed, sizeof(seed));
  1044. credit = 1;
  1045. }
  1046. spin_unlock(&r->lock);
  1047. fast_pool->count = 0;
  1048. /* award one bit for the contents of the fast pool */
  1049. credit_entropy_bits(r, credit + 1);
  1050. }
  1051. EXPORT_SYMBOL_GPL(add_interrupt_randomness);
  1052. #ifdef CONFIG_BLOCK
  1053. void add_disk_randomness(struct gendisk *disk)
  1054. {
  1055. if (!disk || !disk->random)
  1056. return;
  1057. /* first major is 1, so we get >= 0x200 here */
  1058. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  1059. trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
  1060. }
  1061. EXPORT_SYMBOL_GPL(add_disk_randomness);
  1062. #endif
  1063. /*********************************************************************
  1064. *
  1065. * Entropy extraction routines
  1066. *
  1067. *********************************************************************/
  1068. /*
  1069. * This utility inline function is responsible for transferring entropy
  1070. * from the primary pool to the secondary extraction pool. We make
  1071. * sure we pull enough for a 'catastrophic reseed'.
  1072. */
  1073. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
  1074. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1075. {
  1076. if (!r->pull ||
  1077. r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
  1078. r->entropy_count > r->poolinfo->poolfracbits)
  1079. return;
  1080. _xfer_secondary_pool(r, nbytes);
  1081. }
  1082. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1083. {
  1084. __u32 tmp[OUTPUT_POOL_WORDS];
  1085. int bytes = nbytes;
  1086. /* pull at least as much as a wakeup */
  1087. bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
  1088. /* but never more than the buffer size */
  1089. bytes = min_t(int, bytes, sizeof(tmp));
  1090. trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
  1091. ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
  1092. bytes = extract_entropy(r->pull, tmp, bytes,
  1093. random_read_wakeup_bits / 8, 0);
  1094. mix_pool_bytes(r, tmp, bytes);
  1095. credit_entropy_bits(r, bytes*8);
  1096. }
  1097. /*
  1098. * Used as a workqueue function so that when the input pool is getting
  1099. * full, we can "spill over" some entropy to the output pools. That
  1100. * way the output pools can store some of the excess entropy instead
  1101. * of letting it go to waste.
  1102. */
  1103. static void push_to_pool(struct work_struct *work)
  1104. {
  1105. struct entropy_store *r = container_of(work, struct entropy_store,
  1106. push_work);
  1107. BUG_ON(!r);
  1108. _xfer_secondary_pool(r, random_read_wakeup_bits/8);
  1109. trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
  1110. r->pull->entropy_count >> ENTROPY_SHIFT);
  1111. }
  1112. /*
  1113. * This function decides how many bytes to actually take from the
  1114. * given pool, and also debits the entropy count accordingly.
  1115. */
  1116. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  1117. int reserved)
  1118. {
  1119. int entropy_count, orig, have_bytes;
  1120. size_t ibytes, nfrac;
  1121. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  1122. /* Can we pull enough? */
  1123. retry:
  1124. entropy_count = orig = READ_ONCE(r->entropy_count);
  1125. ibytes = nbytes;
  1126. /* never pull more than available */
  1127. have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  1128. if ((have_bytes -= reserved) < 0)
  1129. have_bytes = 0;
  1130. ibytes = min_t(size_t, ibytes, have_bytes);
  1131. if (ibytes < min)
  1132. ibytes = 0;
  1133. if (unlikely(entropy_count < 0)) {
  1134. pr_warn("random: negative entropy count: pool %s count %d\n",
  1135. r->name, entropy_count);
  1136. WARN_ON(1);
  1137. entropy_count = 0;
  1138. }
  1139. nfrac = ibytes << (ENTROPY_SHIFT + 3);
  1140. if ((size_t) entropy_count > nfrac)
  1141. entropy_count -= nfrac;
  1142. else
  1143. entropy_count = 0;
  1144. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  1145. goto retry;
  1146. trace_debit_entropy(r->name, 8 * ibytes);
  1147. if (ibytes &&
  1148. (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
  1149. wake_up_interruptible(&random_write_wait);
  1150. kill_fasync(&fasync, SIGIO, POLL_OUT);
  1151. }
  1152. return ibytes;
  1153. }
  1154. /*
  1155. * This function does the actual extraction for extract_entropy and
  1156. * extract_entropy_user.
  1157. *
  1158. * Note: we assume that .poolwords is a multiple of 16 words.
  1159. */
  1160. static void extract_buf(struct entropy_store *r, __u8 *out)
  1161. {
  1162. int i;
  1163. union {
  1164. __u32 w[5];
  1165. unsigned long l[LONGS(20)];
  1166. } hash;
  1167. __u32 workspace[SHA_WORKSPACE_WORDS];
  1168. unsigned long flags;
  1169. /*
  1170. * If we have an architectural hardware random number
  1171. * generator, use it for SHA's initial vector
  1172. */
  1173. sha_init(hash.w);
  1174. for (i = 0; i < LONGS(20); i++) {
  1175. unsigned long v;
  1176. if (!arch_get_random_long(&v))
  1177. break;
  1178. hash.l[i] = v;
  1179. }
  1180. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  1181. spin_lock_irqsave(&r->lock, flags);
  1182. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  1183. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  1184. /*
  1185. * We mix the hash back into the pool to prevent backtracking
  1186. * attacks (where the attacker knows the state of the pool
  1187. * plus the current outputs, and attempts to find previous
  1188. * ouputs), unless the hash function can be inverted. By
  1189. * mixing at least a SHA1 worth of hash data back, we make
  1190. * brute-forcing the feedback as hard as brute-forcing the
  1191. * hash.
  1192. */
  1193. __mix_pool_bytes(r, hash.w, sizeof(hash.w));
  1194. spin_unlock_irqrestore(&r->lock, flags);
  1195. memzero_explicit(workspace, sizeof(workspace));
  1196. /*
  1197. * In case the hash function has some recognizable output
  1198. * pattern, we fold it in half. Thus, we always feed back
  1199. * twice as much data as we output.
  1200. */
  1201. hash.w[0] ^= hash.w[3];
  1202. hash.w[1] ^= hash.w[4];
  1203. hash.w[2] ^= rol32(hash.w[2], 16);
  1204. memcpy(out, &hash, EXTRACT_SIZE);
  1205. memzero_explicit(&hash, sizeof(hash));
  1206. }
  1207. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  1208. size_t nbytes, int fips)
  1209. {
  1210. ssize_t ret = 0, i;
  1211. __u8 tmp[EXTRACT_SIZE];
  1212. unsigned long flags;
  1213. while (nbytes) {
  1214. extract_buf(r, tmp);
  1215. if (fips) {
  1216. spin_lock_irqsave(&r->lock, flags);
  1217. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  1218. panic("Hardware RNG duplicated output!\n");
  1219. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1220. spin_unlock_irqrestore(&r->lock, flags);
  1221. }
  1222. i = min_t(int, nbytes, EXTRACT_SIZE);
  1223. memcpy(buf, tmp, i);
  1224. nbytes -= i;
  1225. buf += i;
  1226. ret += i;
  1227. }
  1228. /* Wipe data just returned from memory */
  1229. memzero_explicit(tmp, sizeof(tmp));
  1230. return ret;
  1231. }
  1232. /*
  1233. * This function extracts randomness from the "entropy pool", and
  1234. * returns it in a buffer.
  1235. *
  1236. * The min parameter specifies the minimum amount we can pull before
  1237. * failing to avoid races that defeat catastrophic reseeding while the
  1238. * reserved parameter indicates how much entropy we must leave in the
  1239. * pool after each pull to avoid starving other readers.
  1240. */
  1241. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  1242. size_t nbytes, int min, int reserved)
  1243. {
  1244. __u8 tmp[EXTRACT_SIZE];
  1245. unsigned long flags;
  1246. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  1247. if (fips_enabled) {
  1248. spin_lock_irqsave(&r->lock, flags);
  1249. if (!r->last_data_init) {
  1250. r->last_data_init = 1;
  1251. spin_unlock_irqrestore(&r->lock, flags);
  1252. trace_extract_entropy(r->name, EXTRACT_SIZE,
  1253. ENTROPY_BITS(r), _RET_IP_);
  1254. xfer_secondary_pool(r, EXTRACT_SIZE);
  1255. extract_buf(r, tmp);
  1256. spin_lock_irqsave(&r->lock, flags);
  1257. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1258. }
  1259. spin_unlock_irqrestore(&r->lock, flags);
  1260. }
  1261. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1262. xfer_secondary_pool(r, nbytes);
  1263. nbytes = account(r, nbytes, min, reserved);
  1264. return _extract_entropy(r, buf, nbytes, fips_enabled);
  1265. }
  1266. /*
  1267. * This function extracts randomness from the "entropy pool", and
  1268. * returns it in a userspace buffer.
  1269. */
  1270. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  1271. size_t nbytes)
  1272. {
  1273. ssize_t ret = 0, i;
  1274. __u8 tmp[EXTRACT_SIZE];
  1275. int large_request = (nbytes > 256);
  1276. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1277. xfer_secondary_pool(r, nbytes);
  1278. nbytes = account(r, nbytes, 0, 0);
  1279. while (nbytes) {
  1280. if (large_request && need_resched()) {
  1281. if (signal_pending(current)) {
  1282. if (ret == 0)
  1283. ret = -ERESTARTSYS;
  1284. break;
  1285. }
  1286. schedule();
  1287. }
  1288. extract_buf(r, tmp);
  1289. i = min_t(int, nbytes, EXTRACT_SIZE);
  1290. if (copy_to_user(buf, tmp, i)) {
  1291. ret = -EFAULT;
  1292. break;
  1293. }
  1294. nbytes -= i;
  1295. buf += i;
  1296. ret += i;
  1297. }
  1298. /* Wipe data just returned from memory */
  1299. memzero_explicit(tmp, sizeof(tmp));
  1300. return ret;
  1301. }
  1302. #define warn_unseeded_randomness(previous) \
  1303. _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
  1304. static void _warn_unseeded_randomness(const char *func_name, void *caller,
  1305. void **previous)
  1306. {
  1307. #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
  1308. const bool print_once = false;
  1309. #else
  1310. static bool print_once __read_mostly;
  1311. #endif
  1312. if (print_once ||
  1313. crng_ready() ||
  1314. (previous && (caller == READ_ONCE(*previous))))
  1315. return;
  1316. WRITE_ONCE(*previous, caller);
  1317. #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
  1318. print_once = true;
  1319. #endif
  1320. pr_notice("random: %s called from %pS with crng_init=%d\n",
  1321. func_name, caller, crng_init);
  1322. }
  1323. /*
  1324. * This function is the exported kernel interface. It returns some
  1325. * number of good random numbers, suitable for key generation, seeding
  1326. * TCP sequence numbers, etc. It does not rely on the hardware random
  1327. * number generator. For random bytes direct from the hardware RNG
  1328. * (when available), use get_random_bytes_arch(). In order to ensure
  1329. * that the randomness provided by this function is okay, the function
  1330. * wait_for_random_bytes() should be called and return 0 at least once
  1331. * at any point prior.
  1332. */
  1333. static void _get_random_bytes(void *buf, int nbytes)
  1334. {
  1335. __u8 tmp[CHACHA20_BLOCK_SIZE];
  1336. trace_get_random_bytes(nbytes, _RET_IP_);
  1337. while (nbytes >= CHACHA20_BLOCK_SIZE) {
  1338. extract_crng(buf);
  1339. buf += CHACHA20_BLOCK_SIZE;
  1340. nbytes -= CHACHA20_BLOCK_SIZE;
  1341. }
  1342. if (nbytes > 0) {
  1343. extract_crng(tmp);
  1344. memcpy(buf, tmp, nbytes);
  1345. crng_backtrack_protect(tmp, nbytes);
  1346. } else
  1347. crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
  1348. memzero_explicit(tmp, sizeof(tmp));
  1349. }
  1350. void get_random_bytes(void *buf, int nbytes)
  1351. {
  1352. static void *previous;
  1353. warn_unseeded_randomness(&previous);
  1354. _get_random_bytes(buf, nbytes);
  1355. }
  1356. EXPORT_SYMBOL(get_random_bytes);
  1357. /*
  1358. * Wait for the urandom pool to be seeded and thus guaranteed to supply
  1359. * cryptographically secure random numbers. This applies to: the /dev/urandom
  1360. * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
  1361. * family of functions. Using any of these functions without first calling
  1362. * this function forfeits the guarantee of security.
  1363. *
  1364. * Returns: 0 if the urandom pool has been seeded.
  1365. * -ERESTARTSYS if the function was interrupted by a signal.
  1366. */
  1367. int wait_for_random_bytes(void)
  1368. {
  1369. if (likely(crng_ready()))
  1370. return 0;
  1371. return wait_event_interruptible(crng_init_wait, crng_ready());
  1372. }
  1373. EXPORT_SYMBOL(wait_for_random_bytes);
  1374. /*
  1375. * Add a callback function that will be invoked when the nonblocking
  1376. * pool is initialised.
  1377. *
  1378. * returns: 0 if callback is successfully added
  1379. * -EALREADY if pool is already initialised (callback not called)
  1380. * -ENOENT if module for callback is not alive
  1381. */
  1382. int add_random_ready_callback(struct random_ready_callback *rdy)
  1383. {
  1384. struct module *owner;
  1385. unsigned long flags;
  1386. int err = -EALREADY;
  1387. if (crng_ready())
  1388. return err;
  1389. owner = rdy->owner;
  1390. if (!try_module_get(owner))
  1391. return -ENOENT;
  1392. spin_lock_irqsave(&random_ready_list_lock, flags);
  1393. if (crng_ready())
  1394. goto out;
  1395. owner = NULL;
  1396. list_add(&rdy->list, &random_ready_list);
  1397. err = 0;
  1398. out:
  1399. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1400. module_put(owner);
  1401. return err;
  1402. }
  1403. EXPORT_SYMBOL(add_random_ready_callback);
  1404. /*
  1405. * Delete a previously registered readiness callback function.
  1406. */
  1407. void del_random_ready_callback(struct random_ready_callback *rdy)
  1408. {
  1409. unsigned long flags;
  1410. struct module *owner = NULL;
  1411. spin_lock_irqsave(&random_ready_list_lock, flags);
  1412. if (!list_empty(&rdy->list)) {
  1413. list_del_init(&rdy->list);
  1414. owner = rdy->owner;
  1415. }
  1416. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1417. module_put(owner);
  1418. }
  1419. EXPORT_SYMBOL(del_random_ready_callback);
  1420. /*
  1421. * This function will use the architecture-specific hardware random
  1422. * number generator if it is available. The arch-specific hw RNG will
  1423. * almost certainly be faster than what we can do in software, but it
  1424. * is impossible to verify that it is implemented securely (as
  1425. * opposed, to, say, the AES encryption of a sequence number using a
  1426. * key known by the NSA). So it's useful if we need the speed, but
  1427. * only if we're willing to trust the hardware manufacturer not to
  1428. * have put in a back door.
  1429. */
  1430. void get_random_bytes_arch(void *buf, int nbytes)
  1431. {
  1432. char *p = buf;
  1433. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1434. while (nbytes) {
  1435. unsigned long v;
  1436. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1437. if (!arch_get_random_long(&v))
  1438. break;
  1439. memcpy(p, &v, chunk);
  1440. p += chunk;
  1441. nbytes -= chunk;
  1442. }
  1443. if (nbytes)
  1444. get_random_bytes(p, nbytes);
  1445. }
  1446. EXPORT_SYMBOL(get_random_bytes_arch);
  1447. /*
  1448. * init_std_data - initialize pool with system data
  1449. *
  1450. * @r: pool to initialize
  1451. *
  1452. * This function clears the pool's entropy count and mixes some system
  1453. * data into the pool to prepare it for use. The pool is not cleared
  1454. * as that can only decrease the entropy in the pool.
  1455. */
  1456. static void init_std_data(struct entropy_store *r)
  1457. {
  1458. int i;
  1459. ktime_t now = ktime_get_real();
  1460. unsigned long rv;
  1461. r->last_pulled = jiffies;
  1462. mix_pool_bytes(r, &now, sizeof(now));
  1463. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1464. if (!arch_get_random_seed_long(&rv) &&
  1465. !arch_get_random_long(&rv))
  1466. rv = random_get_entropy();
  1467. mix_pool_bytes(r, &rv, sizeof(rv));
  1468. }
  1469. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  1470. }
  1471. /*
  1472. * Note that setup_arch() may call add_device_randomness()
  1473. * long before we get here. This allows seeding of the pools
  1474. * with some platform dependent data very early in the boot
  1475. * process. But it limits our options here. We must use
  1476. * statically allocated structures that already have all
  1477. * initializations complete at compile time. We should also
  1478. * take care not to overwrite the precious per platform data
  1479. * we were given.
  1480. */
  1481. static int rand_initialize(void)
  1482. {
  1483. #ifdef CONFIG_NUMA
  1484. int i;
  1485. struct crng_state *crng;
  1486. struct crng_state **pool;
  1487. #endif
  1488. init_std_data(&input_pool);
  1489. init_std_data(&blocking_pool);
  1490. crng_initialize(&primary_crng);
  1491. #ifdef CONFIG_NUMA
  1492. pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
  1493. for_each_online_node(i) {
  1494. crng = kmalloc_node(sizeof(struct crng_state),
  1495. GFP_KERNEL | __GFP_NOFAIL, i);
  1496. spin_lock_init(&crng->lock);
  1497. crng_initialize(crng);
  1498. pool[i] = crng;
  1499. }
  1500. mb();
  1501. crng_node_pool = pool;
  1502. #endif
  1503. return 0;
  1504. }
  1505. early_initcall(rand_initialize);
  1506. #ifdef CONFIG_BLOCK
  1507. void rand_initialize_disk(struct gendisk *disk)
  1508. {
  1509. struct timer_rand_state *state;
  1510. /*
  1511. * If kzalloc returns null, we just won't use that entropy
  1512. * source.
  1513. */
  1514. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1515. if (state) {
  1516. state->last_time = INITIAL_JIFFIES;
  1517. disk->random = state;
  1518. }
  1519. }
  1520. #endif
  1521. static ssize_t
  1522. _random_read(int nonblock, char __user *buf, size_t nbytes)
  1523. {
  1524. ssize_t n;
  1525. if (nbytes == 0)
  1526. return 0;
  1527. nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
  1528. while (1) {
  1529. n = extract_entropy_user(&blocking_pool, buf, nbytes);
  1530. if (n < 0)
  1531. return n;
  1532. trace_random_read(n*8, (nbytes-n)*8,
  1533. ENTROPY_BITS(&blocking_pool),
  1534. ENTROPY_BITS(&input_pool));
  1535. if (n > 0)
  1536. return n;
  1537. /* Pool is (near) empty. Maybe wait and retry. */
  1538. if (nonblock)
  1539. return -EAGAIN;
  1540. wait_event_interruptible(random_read_wait,
  1541. ENTROPY_BITS(&input_pool) >=
  1542. random_read_wakeup_bits);
  1543. if (signal_pending(current))
  1544. return -ERESTARTSYS;
  1545. }
  1546. }
  1547. static ssize_t
  1548. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1549. {
  1550. return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
  1551. }
  1552. static ssize_t
  1553. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1554. {
  1555. unsigned long flags;
  1556. static int maxwarn = 10;
  1557. int ret;
  1558. if (!crng_ready() && maxwarn > 0) {
  1559. maxwarn--;
  1560. printk(KERN_NOTICE "random: %s: uninitialized urandom read "
  1561. "(%zd bytes read)\n",
  1562. current->comm, nbytes);
  1563. spin_lock_irqsave(&primary_crng.lock, flags);
  1564. crng_init_cnt = 0;
  1565. spin_unlock_irqrestore(&primary_crng.lock, flags);
  1566. }
  1567. nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
  1568. ret = extract_crng_user(buf, nbytes);
  1569. trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
  1570. return ret;
  1571. }
  1572. static unsigned int
  1573. random_poll(struct file *file, poll_table * wait)
  1574. {
  1575. unsigned int mask;
  1576. poll_wait(file, &random_read_wait, wait);
  1577. poll_wait(file, &random_write_wait, wait);
  1578. mask = 0;
  1579. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
  1580. mask |= POLLIN | POLLRDNORM;
  1581. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
  1582. mask |= POLLOUT | POLLWRNORM;
  1583. return mask;
  1584. }
  1585. static int
  1586. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1587. {
  1588. size_t bytes;
  1589. __u32 buf[16];
  1590. const char __user *p = buffer;
  1591. while (count > 0) {
  1592. bytes = min(count, sizeof(buf));
  1593. if (copy_from_user(&buf, p, bytes))
  1594. return -EFAULT;
  1595. count -= bytes;
  1596. p += bytes;
  1597. mix_pool_bytes(r, buf, bytes);
  1598. cond_resched();
  1599. }
  1600. return 0;
  1601. }
  1602. static ssize_t random_write(struct file *file, const char __user *buffer,
  1603. size_t count, loff_t *ppos)
  1604. {
  1605. size_t ret;
  1606. ret = write_pool(&input_pool, buffer, count);
  1607. if (ret)
  1608. return ret;
  1609. return (ssize_t)count;
  1610. }
  1611. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1612. {
  1613. int size, ent_count;
  1614. int __user *p = (int __user *)arg;
  1615. int retval;
  1616. switch (cmd) {
  1617. case RNDGETENTCNT:
  1618. /* inherently racy, no point locking */
  1619. ent_count = ENTROPY_BITS(&input_pool);
  1620. if (put_user(ent_count, p))
  1621. return -EFAULT;
  1622. return 0;
  1623. case RNDADDTOENTCNT:
  1624. if (!capable(CAP_SYS_ADMIN))
  1625. return -EPERM;
  1626. if (get_user(ent_count, p))
  1627. return -EFAULT;
  1628. return credit_entropy_bits_safe(&input_pool, ent_count);
  1629. case RNDADDENTROPY:
  1630. if (!capable(CAP_SYS_ADMIN))
  1631. return -EPERM;
  1632. if (get_user(ent_count, p++))
  1633. return -EFAULT;
  1634. if (ent_count < 0)
  1635. return -EINVAL;
  1636. if (get_user(size, p++))
  1637. return -EFAULT;
  1638. retval = write_pool(&input_pool, (const char __user *)p,
  1639. size);
  1640. if (retval < 0)
  1641. return retval;
  1642. return credit_entropy_bits_safe(&input_pool, ent_count);
  1643. case RNDZAPENTCNT:
  1644. case RNDCLEARPOOL:
  1645. /*
  1646. * Clear the entropy pool counters. We no longer clear
  1647. * the entropy pool, as that's silly.
  1648. */
  1649. if (!capable(CAP_SYS_ADMIN))
  1650. return -EPERM;
  1651. input_pool.entropy_count = 0;
  1652. blocking_pool.entropy_count = 0;
  1653. return 0;
  1654. default:
  1655. return -EINVAL;
  1656. }
  1657. }
  1658. static int random_fasync(int fd, struct file *filp, int on)
  1659. {
  1660. return fasync_helper(fd, filp, on, &fasync);
  1661. }
  1662. const struct file_operations random_fops = {
  1663. .read = random_read,
  1664. .write = random_write,
  1665. .poll = random_poll,
  1666. .unlocked_ioctl = random_ioctl,
  1667. .fasync = random_fasync,
  1668. .llseek = noop_llseek,
  1669. };
  1670. const struct file_operations urandom_fops = {
  1671. .read = urandom_read,
  1672. .write = random_write,
  1673. .unlocked_ioctl = random_ioctl,
  1674. .fasync = random_fasync,
  1675. .llseek = noop_llseek,
  1676. };
  1677. SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
  1678. unsigned int, flags)
  1679. {
  1680. int ret;
  1681. if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
  1682. return -EINVAL;
  1683. if (count > INT_MAX)
  1684. count = INT_MAX;
  1685. if (flags & GRND_RANDOM)
  1686. return _random_read(flags & GRND_NONBLOCK, buf, count);
  1687. if (!crng_ready()) {
  1688. if (flags & GRND_NONBLOCK)
  1689. return -EAGAIN;
  1690. ret = wait_for_random_bytes();
  1691. if (unlikely(ret))
  1692. return ret;
  1693. }
  1694. return urandom_read(NULL, buf, count, NULL);
  1695. }
  1696. /********************************************************************
  1697. *
  1698. * Sysctl interface
  1699. *
  1700. ********************************************************************/
  1701. #ifdef CONFIG_SYSCTL
  1702. #include <linux/sysctl.h>
  1703. static int min_read_thresh = 8, min_write_thresh;
  1704. static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
  1705. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1706. static int random_min_urandom_seed = 60;
  1707. static char sysctl_bootid[16];
  1708. /*
  1709. * This function is used to return both the bootid UUID, and random
  1710. * UUID. The difference is in whether table->data is NULL; if it is,
  1711. * then a new UUID is generated and returned to the user.
  1712. *
  1713. * If the user accesses this via the proc interface, the UUID will be
  1714. * returned as an ASCII string in the standard UUID format; if via the
  1715. * sysctl system call, as 16 bytes of binary data.
  1716. */
  1717. static int proc_do_uuid(struct ctl_table *table, int write,
  1718. void __user *buffer, size_t *lenp, loff_t *ppos)
  1719. {
  1720. struct ctl_table fake_table;
  1721. unsigned char buf[64], tmp_uuid[16], *uuid;
  1722. uuid = table->data;
  1723. if (!uuid) {
  1724. uuid = tmp_uuid;
  1725. generate_random_uuid(uuid);
  1726. } else {
  1727. static DEFINE_SPINLOCK(bootid_spinlock);
  1728. spin_lock(&bootid_spinlock);
  1729. if (!uuid[8])
  1730. generate_random_uuid(uuid);
  1731. spin_unlock(&bootid_spinlock);
  1732. }
  1733. sprintf(buf, "%pU", uuid);
  1734. fake_table.data = buf;
  1735. fake_table.maxlen = sizeof(buf);
  1736. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1737. }
  1738. /*
  1739. * Return entropy available scaled to integral bits
  1740. */
  1741. static int proc_do_entropy(struct ctl_table *table, int write,
  1742. void __user *buffer, size_t *lenp, loff_t *ppos)
  1743. {
  1744. struct ctl_table fake_table;
  1745. int entropy_count;
  1746. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1747. fake_table.data = &entropy_count;
  1748. fake_table.maxlen = sizeof(entropy_count);
  1749. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1750. }
  1751. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1752. extern struct ctl_table random_table[];
  1753. struct ctl_table random_table[] = {
  1754. {
  1755. .procname = "poolsize",
  1756. .data = &sysctl_poolsize,
  1757. .maxlen = sizeof(int),
  1758. .mode = 0444,
  1759. .proc_handler = proc_dointvec,
  1760. },
  1761. {
  1762. .procname = "entropy_avail",
  1763. .maxlen = sizeof(int),
  1764. .mode = 0444,
  1765. .proc_handler = proc_do_entropy,
  1766. .data = &input_pool.entropy_count,
  1767. },
  1768. {
  1769. .procname = "read_wakeup_threshold",
  1770. .data = &random_read_wakeup_bits,
  1771. .maxlen = sizeof(int),
  1772. .mode = 0644,
  1773. .proc_handler = proc_dointvec_minmax,
  1774. .extra1 = &min_read_thresh,
  1775. .extra2 = &max_read_thresh,
  1776. },
  1777. {
  1778. .procname = "write_wakeup_threshold",
  1779. .data = &random_write_wakeup_bits,
  1780. .maxlen = sizeof(int),
  1781. .mode = 0644,
  1782. .proc_handler = proc_dointvec_minmax,
  1783. .extra1 = &min_write_thresh,
  1784. .extra2 = &max_write_thresh,
  1785. },
  1786. {
  1787. .procname = "urandom_min_reseed_secs",
  1788. .data = &random_min_urandom_seed,
  1789. .maxlen = sizeof(int),
  1790. .mode = 0644,
  1791. .proc_handler = proc_dointvec,
  1792. },
  1793. {
  1794. .procname = "boot_id",
  1795. .data = &sysctl_bootid,
  1796. .maxlen = 16,
  1797. .mode = 0444,
  1798. .proc_handler = proc_do_uuid,
  1799. },
  1800. {
  1801. .procname = "uuid",
  1802. .maxlen = 16,
  1803. .mode = 0444,
  1804. .proc_handler = proc_do_uuid,
  1805. },
  1806. #ifdef ADD_INTERRUPT_BENCH
  1807. {
  1808. .procname = "add_interrupt_avg_cycles",
  1809. .data = &avg_cycles,
  1810. .maxlen = sizeof(avg_cycles),
  1811. .mode = 0444,
  1812. .proc_handler = proc_doulongvec_minmax,
  1813. },
  1814. {
  1815. .procname = "add_interrupt_avg_deviation",
  1816. .data = &avg_deviation,
  1817. .maxlen = sizeof(avg_deviation),
  1818. .mode = 0444,
  1819. .proc_handler = proc_doulongvec_minmax,
  1820. },
  1821. #endif
  1822. { }
  1823. };
  1824. #endif /* CONFIG_SYSCTL */
  1825. struct batched_entropy {
  1826. union {
  1827. u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
  1828. u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
  1829. };
  1830. unsigned int position;
  1831. };
  1832. static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
  1833. /*
  1834. * Get a random word for internal kernel use only. The quality of the random
  1835. * number is either as good as RDRAND or as good as /dev/urandom, with the
  1836. * goal of being quite fast and not depleting entropy. In order to ensure
  1837. * that the randomness provided by this function is okay, the function
  1838. * wait_for_random_bytes() should be called and return 0 at least once
  1839. * at any point prior.
  1840. */
  1841. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
  1842. u64 get_random_u64(void)
  1843. {
  1844. u64 ret;
  1845. bool use_lock;
  1846. unsigned long flags = 0;
  1847. struct batched_entropy *batch;
  1848. static void *previous;
  1849. #if BITS_PER_LONG == 64
  1850. if (arch_get_random_long((unsigned long *)&ret))
  1851. return ret;
  1852. #else
  1853. if (arch_get_random_long((unsigned long *)&ret) &&
  1854. arch_get_random_long((unsigned long *)&ret + 1))
  1855. return ret;
  1856. #endif
  1857. warn_unseeded_randomness(&previous);
  1858. use_lock = READ_ONCE(crng_init) < 2;
  1859. batch = &get_cpu_var(batched_entropy_u64);
  1860. if (use_lock)
  1861. read_lock_irqsave(&batched_entropy_reset_lock, flags);
  1862. if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
  1863. extract_crng((u8 *)batch->entropy_u64);
  1864. batch->position = 0;
  1865. }
  1866. ret = batch->entropy_u64[batch->position++];
  1867. if (use_lock)
  1868. read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  1869. put_cpu_var(batched_entropy_u64);
  1870. return ret;
  1871. }
  1872. EXPORT_SYMBOL(get_random_u64);
  1873. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
  1874. u32 get_random_u32(void)
  1875. {
  1876. u32 ret;
  1877. bool use_lock;
  1878. unsigned long flags = 0;
  1879. struct batched_entropy *batch;
  1880. static void *previous;
  1881. if (arch_get_random_int(&ret))
  1882. return ret;
  1883. warn_unseeded_randomness(&previous);
  1884. use_lock = READ_ONCE(crng_init) < 2;
  1885. batch = &get_cpu_var(batched_entropy_u32);
  1886. if (use_lock)
  1887. read_lock_irqsave(&batched_entropy_reset_lock, flags);
  1888. if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
  1889. extract_crng((u8 *)batch->entropy_u32);
  1890. batch->position = 0;
  1891. }
  1892. ret = batch->entropy_u32[batch->position++];
  1893. if (use_lock)
  1894. read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  1895. put_cpu_var(batched_entropy_u32);
  1896. return ret;
  1897. }
  1898. EXPORT_SYMBOL(get_random_u32);
  1899. /* It's important to invalidate all potential batched entropy that might
  1900. * be stored before the crng is initialized, which we can do lazily by
  1901. * simply resetting the counter to zero so that it's re-extracted on the
  1902. * next usage. */
  1903. static void invalidate_batched_entropy(void)
  1904. {
  1905. int cpu;
  1906. unsigned long flags;
  1907. write_lock_irqsave(&batched_entropy_reset_lock, flags);
  1908. for_each_possible_cpu (cpu) {
  1909. per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
  1910. per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
  1911. }
  1912. write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  1913. }
  1914. /**
  1915. * randomize_page - Generate a random, page aligned address
  1916. * @start: The smallest acceptable address the caller will take.
  1917. * @range: The size of the area, starting at @start, within which the
  1918. * random address must fall.
  1919. *
  1920. * If @start + @range would overflow, @range is capped.
  1921. *
  1922. * NOTE: Historical use of randomize_range, which this replaces, presumed that
  1923. * @start was already page aligned. We now align it regardless.
  1924. *
  1925. * Return: A page aligned address within [start, start + range). On error,
  1926. * @start is returned.
  1927. */
  1928. unsigned long
  1929. randomize_page(unsigned long start, unsigned long range)
  1930. {
  1931. if (!PAGE_ALIGNED(start)) {
  1932. range -= PAGE_ALIGN(start) - start;
  1933. start = PAGE_ALIGN(start);
  1934. }
  1935. if (start > ULONG_MAX - range)
  1936. range = ULONG_MAX - start;
  1937. range >>= PAGE_SHIFT;
  1938. if (range == 0)
  1939. return start;
  1940. return start + (get_random_long() % range << PAGE_SHIFT);
  1941. }
  1942. /* Interface for in-kernel drivers of true hardware RNGs.
  1943. * Those devices may produce endless random bits and will be throttled
  1944. * when our pool is full.
  1945. */
  1946. void add_hwgenerator_randomness(const char *buffer, size_t count,
  1947. size_t entropy)
  1948. {
  1949. struct entropy_store *poolp = &input_pool;
  1950. if (!crng_ready()) {
  1951. crng_fast_load(buffer, count);
  1952. return;
  1953. }
  1954. /* Suspend writing if we're above the trickle threshold.
  1955. * We'll be woken up again once below random_write_wakeup_thresh,
  1956. * or when the calling thread is about to terminate.
  1957. */
  1958. wait_event_interruptible(random_write_wait, kthread_should_stop() ||
  1959. ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
  1960. mix_pool_bytes(poolp, buffer, count);
  1961. credit_entropy_bits(poolp, entropy);
  1962. }
  1963. EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);