kasan_init_64.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. // SPDX-License-Identifier: GPL-2.0
  2. #define DISABLE_BRANCH_PROFILING
  3. #define pr_fmt(fmt) "kasan: " fmt
  4. #include <linux/bootmem.h>
  5. #include <linux/kasan.h>
  6. #include <linux/kdebug.h>
  7. #include <linux/memblock.h>
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/vmalloc.h>
  12. #include <asm/e820/types.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/sections.h>
  16. #include <asm/pgtable.h>
  17. extern struct range pfn_mapped[E820_MAX_ENTRIES];
  18. static p4d_t tmp_p4d_table[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
  19. static __init void *early_alloc(size_t size, int nid)
  20. {
  21. return memblock_virt_alloc_try_nid_nopanic(size, size,
  22. __pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
  23. }
  24. static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
  25. unsigned long end, int nid)
  26. {
  27. pte_t *pte;
  28. if (pmd_none(*pmd)) {
  29. void *p;
  30. if (boot_cpu_has(X86_FEATURE_PSE) &&
  31. ((end - addr) == PMD_SIZE) &&
  32. IS_ALIGNED(addr, PMD_SIZE)) {
  33. p = early_alloc(PMD_SIZE, nid);
  34. if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
  35. return;
  36. else if (p)
  37. memblock_free(__pa(p), PMD_SIZE);
  38. }
  39. p = early_alloc(PAGE_SIZE, nid);
  40. pmd_populate_kernel(&init_mm, pmd, p);
  41. }
  42. pte = pte_offset_kernel(pmd, addr);
  43. do {
  44. pte_t entry;
  45. void *p;
  46. if (!pte_none(*pte))
  47. continue;
  48. p = early_alloc(PAGE_SIZE, nid);
  49. entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
  50. set_pte_at(&init_mm, addr, pte, entry);
  51. } while (pte++, addr += PAGE_SIZE, addr != end);
  52. }
  53. static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
  54. unsigned long end, int nid)
  55. {
  56. pmd_t *pmd;
  57. unsigned long next;
  58. if (pud_none(*pud)) {
  59. void *p;
  60. if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
  61. ((end - addr) == PUD_SIZE) &&
  62. IS_ALIGNED(addr, PUD_SIZE)) {
  63. p = early_alloc(PUD_SIZE, nid);
  64. if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
  65. return;
  66. else if (p)
  67. memblock_free(__pa(p), PUD_SIZE);
  68. }
  69. p = early_alloc(PAGE_SIZE, nid);
  70. pud_populate(&init_mm, pud, p);
  71. }
  72. pmd = pmd_offset(pud, addr);
  73. do {
  74. next = pmd_addr_end(addr, end);
  75. if (!pmd_large(*pmd))
  76. kasan_populate_pmd(pmd, addr, next, nid);
  77. } while (pmd++, addr = next, addr != end);
  78. }
  79. static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
  80. unsigned long end, int nid)
  81. {
  82. pud_t *pud;
  83. unsigned long next;
  84. if (p4d_none(*p4d)) {
  85. void *p = early_alloc(PAGE_SIZE, nid);
  86. p4d_populate(&init_mm, p4d, p);
  87. }
  88. pud = pud_offset(p4d, addr);
  89. do {
  90. next = pud_addr_end(addr, end);
  91. if (!pud_large(*pud))
  92. kasan_populate_pud(pud, addr, next, nid);
  93. } while (pud++, addr = next, addr != end);
  94. }
  95. static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
  96. unsigned long end, int nid)
  97. {
  98. void *p;
  99. p4d_t *p4d;
  100. unsigned long next;
  101. if (pgd_none(*pgd)) {
  102. p = early_alloc(PAGE_SIZE, nid);
  103. pgd_populate(&init_mm, pgd, p);
  104. }
  105. p4d = p4d_offset(pgd, addr);
  106. do {
  107. next = p4d_addr_end(addr, end);
  108. kasan_populate_p4d(p4d, addr, next, nid);
  109. } while (p4d++, addr = next, addr != end);
  110. }
  111. static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
  112. int nid)
  113. {
  114. pgd_t *pgd;
  115. unsigned long next;
  116. addr = addr & PAGE_MASK;
  117. end = round_up(end, PAGE_SIZE);
  118. pgd = pgd_offset_k(addr);
  119. do {
  120. next = pgd_addr_end(addr, end);
  121. kasan_populate_pgd(pgd, addr, next, nid);
  122. } while (pgd++, addr = next, addr != end);
  123. }
  124. static void __init map_range(struct range *range)
  125. {
  126. unsigned long start;
  127. unsigned long end;
  128. start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
  129. end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
  130. kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
  131. }
  132. static void __init clear_pgds(unsigned long start,
  133. unsigned long end)
  134. {
  135. pgd_t *pgd;
  136. /* See comment in kasan_init() */
  137. unsigned long pgd_end = end & PGDIR_MASK;
  138. for (; start < pgd_end; start += PGDIR_SIZE) {
  139. pgd = pgd_offset_k(start);
  140. /*
  141. * With folded p4d, pgd_clear() is nop, use p4d_clear()
  142. * instead.
  143. */
  144. if (CONFIG_PGTABLE_LEVELS < 5)
  145. p4d_clear(p4d_offset(pgd, start));
  146. else
  147. pgd_clear(pgd);
  148. }
  149. pgd = pgd_offset_k(start);
  150. for (; start < end; start += P4D_SIZE)
  151. p4d_clear(p4d_offset(pgd, start));
  152. }
  153. static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
  154. {
  155. unsigned long p4d;
  156. if (!IS_ENABLED(CONFIG_X86_5LEVEL))
  157. return (p4d_t *)pgd;
  158. p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
  159. p4d += __START_KERNEL_map - phys_base;
  160. return (p4d_t *)p4d + p4d_index(addr);
  161. }
  162. static void __init kasan_early_p4d_populate(pgd_t *pgd,
  163. unsigned long addr,
  164. unsigned long end)
  165. {
  166. pgd_t pgd_entry;
  167. p4d_t *p4d, p4d_entry;
  168. unsigned long next;
  169. if (pgd_none(*pgd)) {
  170. pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
  171. set_pgd(pgd, pgd_entry);
  172. }
  173. p4d = early_p4d_offset(pgd, addr);
  174. do {
  175. next = p4d_addr_end(addr, end);
  176. if (!p4d_none(*p4d))
  177. continue;
  178. p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
  179. set_p4d(p4d, p4d_entry);
  180. } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
  181. }
  182. static void __init kasan_map_early_shadow(pgd_t *pgd)
  183. {
  184. /* See comment in kasan_init() */
  185. unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
  186. unsigned long end = KASAN_SHADOW_END;
  187. unsigned long next;
  188. pgd += pgd_index(addr);
  189. do {
  190. next = pgd_addr_end(addr, end);
  191. kasan_early_p4d_populate(pgd, addr, next);
  192. } while (pgd++, addr = next, addr != end);
  193. }
  194. #ifdef CONFIG_KASAN_INLINE
  195. static int kasan_die_handler(struct notifier_block *self,
  196. unsigned long val,
  197. void *data)
  198. {
  199. if (val == DIE_GPF) {
  200. pr_emerg("CONFIG_KASAN_INLINE enabled\n");
  201. pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
  202. }
  203. return NOTIFY_OK;
  204. }
  205. static struct notifier_block kasan_die_notifier = {
  206. .notifier_call = kasan_die_handler,
  207. };
  208. #endif
  209. void __init kasan_early_init(void)
  210. {
  211. int i;
  212. pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
  213. pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
  214. pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
  215. p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
  216. for (i = 0; i < PTRS_PER_PTE; i++)
  217. kasan_zero_pte[i] = __pte(pte_val);
  218. for (i = 0; i < PTRS_PER_PMD; i++)
  219. kasan_zero_pmd[i] = __pmd(pmd_val);
  220. for (i = 0; i < PTRS_PER_PUD; i++)
  221. kasan_zero_pud[i] = __pud(pud_val);
  222. for (i = 0; IS_ENABLED(CONFIG_X86_5LEVEL) && i < PTRS_PER_P4D; i++)
  223. kasan_zero_p4d[i] = __p4d(p4d_val);
  224. kasan_map_early_shadow(early_top_pgt);
  225. kasan_map_early_shadow(init_top_pgt);
  226. }
  227. void __init kasan_init(void)
  228. {
  229. int i;
  230. #ifdef CONFIG_KASAN_INLINE
  231. register_die_notifier(&kasan_die_notifier);
  232. #endif
  233. memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
  234. /*
  235. * We use the same shadow offset for 4- and 5-level paging to
  236. * facilitate boot-time switching between paging modes.
  237. * As result in 5-level paging mode KASAN_SHADOW_START and
  238. * KASAN_SHADOW_END are not aligned to PGD boundary.
  239. *
  240. * KASAN_SHADOW_START doesn't share PGD with anything else.
  241. * We claim whole PGD entry to make things easier.
  242. *
  243. * KASAN_SHADOW_END lands in the last PGD entry and it collides with
  244. * bunch of things like kernel code, modules, EFI mapping, etc.
  245. * We need to take extra steps to not overwrite them.
  246. */
  247. if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
  248. void *ptr;
  249. ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
  250. memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
  251. set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
  252. __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
  253. }
  254. load_cr3(early_top_pgt);
  255. __flush_tlb_all();
  256. clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
  257. kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
  258. kasan_mem_to_shadow((void *)PAGE_OFFSET));
  259. for (i = 0; i < E820_MAX_ENTRIES; i++) {
  260. if (pfn_mapped[i].end == 0)
  261. break;
  262. map_range(&pfn_mapped[i]);
  263. }
  264. kasan_populate_zero_shadow(
  265. kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
  266. kasan_mem_to_shadow((void *)__START_KERNEL_map));
  267. kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
  268. (unsigned long)kasan_mem_to_shadow(_end),
  269. early_pfn_to_nid(__pa(_stext)));
  270. kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
  271. (void *)KASAN_SHADOW_END);
  272. load_cr3(init_top_pgt);
  273. __flush_tlb_all();
  274. /*
  275. * kasan_zero_page has been used as early shadow memory, thus it may
  276. * contain some garbage. Now we can clear and write protect it, since
  277. * after the TLB flush no one should write to it.
  278. */
  279. memset(kasan_zero_page, 0, PAGE_SIZE);
  280. for (i = 0; i < PTRS_PER_PTE; i++) {
  281. pte_t pte = __pte(__pa(kasan_zero_page) | __PAGE_KERNEL_RO | _PAGE_ENC);
  282. set_pte(&kasan_zero_pte[i], pte);
  283. }
  284. /* Flush TLBs again to be sure that write protection applied. */
  285. __flush_tlb_all();
  286. init_task.kasan_depth = 0;
  287. pr_info("KernelAddressSanitizer initialized\n");
  288. }