intel.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/kernel.h>
  3. #include <linux/string.h>
  4. #include <linux/bitops.h>
  5. #include <linux/smp.h>
  6. #include <linux/sched.h>
  7. #include <linux/sched/clock.h>
  8. #include <linux/thread_info.h>
  9. #include <linux/init.h>
  10. #include <linux/uaccess.h>
  11. #include <asm/cpufeature.h>
  12. #include <asm/pgtable.h>
  13. #include <asm/msr.h>
  14. #include <asm/bugs.h>
  15. #include <asm/cpu.h>
  16. #include <asm/intel-family.h>
  17. #include <asm/microcode_intel.h>
  18. #include <asm/hwcap2.h>
  19. #include <asm/elf.h>
  20. #ifdef CONFIG_X86_64
  21. #include <linux/topology.h>
  22. #endif
  23. #include "cpu.h"
  24. #ifdef CONFIG_X86_LOCAL_APIC
  25. #include <asm/mpspec.h>
  26. #include <asm/apic.h>
  27. #endif
  28. /*
  29. * Just in case our CPU detection goes bad, or you have a weird system,
  30. * allow a way to override the automatic disabling of MPX.
  31. */
  32. static int forcempx;
  33. static int __init forcempx_setup(char *__unused)
  34. {
  35. forcempx = 1;
  36. return 1;
  37. }
  38. __setup("intel-skd-046-workaround=disable", forcempx_setup);
  39. void check_mpx_erratum(struct cpuinfo_x86 *c)
  40. {
  41. if (forcempx)
  42. return;
  43. /*
  44. * Turn off the MPX feature on CPUs where SMEP is not
  45. * available or disabled.
  46. *
  47. * Works around Intel Erratum SKD046: "Branch Instructions
  48. * May Initialize MPX Bound Registers Incorrectly".
  49. *
  50. * This might falsely disable MPX on systems without
  51. * SMEP, like Atom processors without SMEP. But there
  52. * is no such hardware known at the moment.
  53. */
  54. if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  55. setup_clear_cpu_cap(X86_FEATURE_MPX);
  56. pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  57. }
  58. }
  59. static bool ring3mwait_disabled __read_mostly;
  60. static int __init ring3mwait_disable(char *__unused)
  61. {
  62. ring3mwait_disabled = true;
  63. return 0;
  64. }
  65. __setup("ring3mwait=disable", ring3mwait_disable);
  66. static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
  67. {
  68. /*
  69. * Ring 3 MONITOR/MWAIT feature cannot be detected without
  70. * cpu model and family comparison.
  71. */
  72. if (c->x86 != 6)
  73. return;
  74. switch (c->x86_model) {
  75. case INTEL_FAM6_XEON_PHI_KNL:
  76. case INTEL_FAM6_XEON_PHI_KNM:
  77. break;
  78. default:
  79. return;
  80. }
  81. if (ring3mwait_disabled)
  82. return;
  83. set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
  84. this_cpu_or(msr_misc_features_shadow,
  85. 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
  86. if (c == &boot_cpu_data)
  87. ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
  88. }
  89. static void early_init_intel(struct cpuinfo_x86 *c)
  90. {
  91. u64 misc_enable;
  92. /* Unmask CPUID levels if masked: */
  93. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  94. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  95. MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
  96. c->cpuid_level = cpuid_eax(0);
  97. get_cpu_cap(c);
  98. }
  99. }
  100. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  101. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  102. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  103. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
  104. c->microcode = intel_get_microcode_revision();
  105. /*
  106. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  107. *
  108. * A race condition between speculative fetches and invalidating
  109. * a large page. This is worked around in microcode, but we
  110. * need the microcode to have already been loaded... so if it is
  111. * not, recommend a BIOS update and disable large pages.
  112. */
  113. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
  114. c->microcode < 0x20e) {
  115. pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
  116. clear_cpu_cap(c, X86_FEATURE_PSE);
  117. }
  118. #ifdef CONFIG_X86_64
  119. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  120. #else
  121. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  122. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  123. c->x86_cache_alignment = 128;
  124. #endif
  125. /* CPUID workaround for 0F33/0F34 CPU */
  126. if (c->x86 == 0xF && c->x86_model == 0x3
  127. && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
  128. c->x86_phys_bits = 36;
  129. /*
  130. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  131. * with P/T states and does not stop in deep C-states.
  132. *
  133. * It is also reliable across cores and sockets. (but not across
  134. * cabinets - we turn it off in that case explicitly.)
  135. */
  136. if (c->x86_power & (1 << 8)) {
  137. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  138. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  139. }
  140. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  141. if (c->x86 == 6) {
  142. switch (c->x86_model) {
  143. case 0x27: /* Penwell */
  144. case 0x35: /* Cloverview */
  145. case 0x4a: /* Merrifield */
  146. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  147. break;
  148. default:
  149. break;
  150. }
  151. }
  152. /*
  153. * There is a known erratum on Pentium III and Core Solo
  154. * and Core Duo CPUs.
  155. * " Page with PAT set to WC while associated MTRR is UC
  156. * may consolidate to UC "
  157. * Because of this erratum, it is better to stick with
  158. * setting WC in MTRR rather than using PAT on these CPUs.
  159. *
  160. * Enable PAT WC only on P4, Core 2 or later CPUs.
  161. */
  162. if (c->x86 == 6 && c->x86_model < 15)
  163. clear_cpu_cap(c, X86_FEATURE_PAT);
  164. /*
  165. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  166. * clear the fast string and enhanced fast string CPU capabilities.
  167. */
  168. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  169. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  170. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  171. pr_info("Disabled fast string operations\n");
  172. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  173. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  174. }
  175. }
  176. /*
  177. * Intel Quark Core DevMan_001.pdf section 6.4.11
  178. * "The operating system also is required to invalidate (i.e., flush)
  179. * the TLB when any changes are made to any of the page table entries.
  180. * The operating system must reload CR3 to cause the TLB to be flushed"
  181. *
  182. * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
  183. * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
  184. * to be modified.
  185. */
  186. if (c->x86 == 5 && c->x86_model == 9) {
  187. pr_info("Disabling PGE capability bit\n");
  188. setup_clear_cpu_cap(X86_FEATURE_PGE);
  189. }
  190. if (c->cpuid_level >= 0x00000001) {
  191. u32 eax, ebx, ecx, edx;
  192. cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
  193. /*
  194. * If HTT (EDX[28]) is set EBX[16:23] contain the number of
  195. * apicids which are reserved per package. Store the resulting
  196. * shift value for the package management code.
  197. */
  198. if (edx & (1U << 28))
  199. c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
  200. }
  201. check_mpx_erratum(c);
  202. }
  203. #ifdef CONFIG_X86_32
  204. /*
  205. * Early probe support logic for ppro memory erratum #50
  206. *
  207. * This is called before we do cpu ident work
  208. */
  209. int ppro_with_ram_bug(void)
  210. {
  211. /* Uses data from early_cpu_detect now */
  212. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  213. boot_cpu_data.x86 == 6 &&
  214. boot_cpu_data.x86_model == 1 &&
  215. boot_cpu_data.x86_mask < 8) {
  216. pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  217. return 1;
  218. }
  219. return 0;
  220. }
  221. static void intel_smp_check(struct cpuinfo_x86 *c)
  222. {
  223. /* calling is from identify_secondary_cpu() ? */
  224. if (!c->cpu_index)
  225. return;
  226. /*
  227. * Mask B, Pentium, but not Pentium MMX
  228. */
  229. if (c->x86 == 5 &&
  230. c->x86_mask >= 1 && c->x86_mask <= 4 &&
  231. c->x86_model <= 3) {
  232. /*
  233. * Remember we have B step Pentia with bugs
  234. */
  235. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  236. "with B stepping processors.\n");
  237. }
  238. }
  239. static int forcepae;
  240. static int __init forcepae_setup(char *__unused)
  241. {
  242. forcepae = 1;
  243. return 1;
  244. }
  245. __setup("forcepae", forcepae_setup);
  246. static void intel_workarounds(struct cpuinfo_x86 *c)
  247. {
  248. #ifdef CONFIG_X86_F00F_BUG
  249. /*
  250. * All models of Pentium and Pentium with MMX technology CPUs
  251. * have the F0 0F bug, which lets nonprivileged users lock up the
  252. * system. Announce that the fault handler will be checking for it.
  253. * The Quark is also family 5, but does not have the same bug.
  254. */
  255. clear_cpu_bug(c, X86_BUG_F00F);
  256. if (c->x86 == 5 && c->x86_model < 9) {
  257. static int f00f_workaround_enabled;
  258. set_cpu_bug(c, X86_BUG_F00F);
  259. if (!f00f_workaround_enabled) {
  260. pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
  261. f00f_workaround_enabled = 1;
  262. }
  263. }
  264. #endif
  265. /*
  266. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  267. * model 3 mask 3
  268. */
  269. if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
  270. clear_cpu_cap(c, X86_FEATURE_SEP);
  271. /*
  272. * PAE CPUID issue: many Pentium M report no PAE but may have a
  273. * functionally usable PAE implementation.
  274. * Forcefully enable PAE if kernel parameter "forcepae" is present.
  275. */
  276. if (forcepae) {
  277. pr_warn("PAE forced!\n");
  278. set_cpu_cap(c, X86_FEATURE_PAE);
  279. add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
  280. }
  281. /*
  282. * P4 Xeon erratum 037 workaround.
  283. * Hardware prefetcher may cause stale data to be loaded into the cache.
  284. */
  285. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
  286. if (msr_set_bit(MSR_IA32_MISC_ENABLE,
  287. MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
  288. pr_info("CPU: C0 stepping P4 Xeon detected.\n");
  289. pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
  290. }
  291. }
  292. /*
  293. * See if we have a good local APIC by checking for buggy Pentia,
  294. * i.e. all B steppings and the C2 stepping of P54C when using their
  295. * integrated APIC (see 11AP erratum in "Pentium Processor
  296. * Specification Update").
  297. */
  298. if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  299. (c->x86_mask < 0x6 || c->x86_mask == 0xb))
  300. set_cpu_bug(c, X86_BUG_11AP);
  301. #ifdef CONFIG_X86_INTEL_USERCOPY
  302. /*
  303. * Set up the preferred alignment for movsl bulk memory moves
  304. */
  305. switch (c->x86) {
  306. case 4: /* 486: untested */
  307. break;
  308. case 5: /* Old Pentia: untested */
  309. break;
  310. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  311. movsl_mask.mask = 7;
  312. break;
  313. case 15: /* P4 is OK down to 8-byte alignment */
  314. movsl_mask.mask = 7;
  315. break;
  316. }
  317. #endif
  318. intel_smp_check(c);
  319. }
  320. #else
  321. static void intel_workarounds(struct cpuinfo_x86 *c)
  322. {
  323. }
  324. #endif
  325. static void srat_detect_node(struct cpuinfo_x86 *c)
  326. {
  327. #ifdef CONFIG_NUMA
  328. unsigned node;
  329. int cpu = smp_processor_id();
  330. /* Don't do the funky fallback heuristics the AMD version employs
  331. for now. */
  332. node = numa_cpu_node(cpu);
  333. if (node == NUMA_NO_NODE || !node_online(node)) {
  334. /* reuse the value from init_cpu_to_node() */
  335. node = cpu_to_node(cpu);
  336. }
  337. numa_set_node(cpu, node);
  338. #endif
  339. }
  340. /*
  341. * find out the number of processor cores on the die
  342. */
  343. static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
  344. {
  345. unsigned int eax, ebx, ecx, edx;
  346. if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
  347. return 1;
  348. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  349. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  350. if (eax & 0x1f)
  351. return (eax >> 26) + 1;
  352. else
  353. return 1;
  354. }
  355. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  356. {
  357. /* Intel VMX MSR indicated features */
  358. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  359. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  360. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  361. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  362. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  363. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  364. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  365. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  366. clear_cpu_cap(c, X86_FEATURE_VNMI);
  367. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  368. clear_cpu_cap(c, X86_FEATURE_EPT);
  369. clear_cpu_cap(c, X86_FEATURE_VPID);
  370. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  371. msr_ctl = vmx_msr_high | vmx_msr_low;
  372. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  373. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  374. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  375. set_cpu_cap(c, X86_FEATURE_VNMI);
  376. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  377. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  378. vmx_msr_low, vmx_msr_high);
  379. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  380. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  381. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  382. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  383. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  384. set_cpu_cap(c, X86_FEATURE_EPT);
  385. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  386. set_cpu_cap(c, X86_FEATURE_VPID);
  387. }
  388. }
  389. static void init_intel_energy_perf(struct cpuinfo_x86 *c)
  390. {
  391. u64 epb;
  392. /*
  393. * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
  394. * (x86_energy_perf_policy(8) is available to change it at run-time.)
  395. */
  396. if (!cpu_has(c, X86_FEATURE_EPB))
  397. return;
  398. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  399. if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
  400. return;
  401. pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
  402. pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
  403. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  404. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  405. }
  406. static void intel_bsp_resume(struct cpuinfo_x86 *c)
  407. {
  408. /*
  409. * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
  410. * so reinitialize it properly like during bootup:
  411. */
  412. init_intel_energy_perf(c);
  413. }
  414. static void init_cpuid_fault(struct cpuinfo_x86 *c)
  415. {
  416. u64 msr;
  417. if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
  418. if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
  419. set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
  420. }
  421. }
  422. static void init_intel_misc_features(struct cpuinfo_x86 *c)
  423. {
  424. u64 msr;
  425. if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
  426. return;
  427. /* Clear all MISC features */
  428. this_cpu_write(msr_misc_features_shadow, 0);
  429. /* Check features and update capabilities and shadow control bits */
  430. init_cpuid_fault(c);
  431. probe_xeon_phi_r3mwait(c);
  432. msr = this_cpu_read(msr_misc_features_shadow);
  433. wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
  434. }
  435. static void init_intel(struct cpuinfo_x86 *c)
  436. {
  437. unsigned int l2 = 0;
  438. early_init_intel(c);
  439. intel_workarounds(c);
  440. /*
  441. * Detect the extended topology information if available. This
  442. * will reinitialise the initial_apicid which will be used
  443. * in init_intel_cacheinfo()
  444. */
  445. detect_extended_topology(c);
  446. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  447. /*
  448. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  449. * detection.
  450. */
  451. c->x86_max_cores = intel_num_cpu_cores(c);
  452. #ifdef CONFIG_X86_32
  453. detect_ht(c);
  454. #endif
  455. }
  456. l2 = init_intel_cacheinfo(c);
  457. /* Detect legacy cache sizes if init_intel_cacheinfo did not */
  458. if (l2 == 0) {
  459. cpu_detect_cache_sizes(c);
  460. l2 = c->x86_cache_size;
  461. }
  462. if (c->cpuid_level > 9) {
  463. unsigned eax = cpuid_eax(10);
  464. /* Check for version and the number of counters */
  465. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  466. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  467. }
  468. if (cpu_has(c, X86_FEATURE_XMM2))
  469. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  470. if (boot_cpu_has(X86_FEATURE_DS)) {
  471. unsigned int l1;
  472. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  473. if (!(l1 & (1<<11)))
  474. set_cpu_cap(c, X86_FEATURE_BTS);
  475. if (!(l1 & (1<<12)))
  476. set_cpu_cap(c, X86_FEATURE_PEBS);
  477. }
  478. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
  479. (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
  480. set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
  481. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
  482. ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
  483. set_cpu_bug(c, X86_BUG_MONITOR);
  484. #ifdef CONFIG_X86_64
  485. if (c->x86 == 15)
  486. c->x86_cache_alignment = c->x86_clflush_size * 2;
  487. if (c->x86 == 6)
  488. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  489. #else
  490. /*
  491. * Names for the Pentium II/Celeron processors
  492. * detectable only by also checking the cache size.
  493. * Dixon is NOT a Celeron.
  494. */
  495. if (c->x86 == 6) {
  496. char *p = NULL;
  497. switch (c->x86_model) {
  498. case 5:
  499. if (l2 == 0)
  500. p = "Celeron (Covington)";
  501. else if (l2 == 256)
  502. p = "Mobile Pentium II (Dixon)";
  503. break;
  504. case 6:
  505. if (l2 == 128)
  506. p = "Celeron (Mendocino)";
  507. else if (c->x86_mask == 0 || c->x86_mask == 5)
  508. p = "Celeron-A";
  509. break;
  510. case 8:
  511. if (l2 == 128)
  512. p = "Celeron (Coppermine)";
  513. break;
  514. }
  515. if (p)
  516. strcpy(c->x86_model_id, p);
  517. }
  518. if (c->x86 == 15)
  519. set_cpu_cap(c, X86_FEATURE_P4);
  520. if (c->x86 == 6)
  521. set_cpu_cap(c, X86_FEATURE_P3);
  522. #endif
  523. /* Work around errata */
  524. srat_detect_node(c);
  525. if (cpu_has(c, X86_FEATURE_VMX))
  526. detect_vmx_virtcap(c);
  527. init_intel_energy_perf(c);
  528. init_intel_misc_features(c);
  529. }
  530. #ifdef CONFIG_X86_32
  531. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  532. {
  533. /*
  534. * Intel PIII Tualatin. This comes in two flavours.
  535. * One has 256kb of cache, the other 512. We have no way
  536. * to determine which, so we use a boottime override
  537. * for the 512kb model, and assume 256 otherwise.
  538. */
  539. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  540. size = 256;
  541. /*
  542. * Intel Quark SoC X1000 contains a 4-way set associative
  543. * 16K cache with a 16 byte cache line and 256 lines per tag
  544. */
  545. if ((c->x86 == 5) && (c->x86_model == 9))
  546. size = 16;
  547. return size;
  548. }
  549. #endif
  550. #define TLB_INST_4K 0x01
  551. #define TLB_INST_4M 0x02
  552. #define TLB_INST_2M_4M 0x03
  553. #define TLB_INST_ALL 0x05
  554. #define TLB_INST_1G 0x06
  555. #define TLB_DATA_4K 0x11
  556. #define TLB_DATA_4M 0x12
  557. #define TLB_DATA_2M_4M 0x13
  558. #define TLB_DATA_4K_4M 0x14
  559. #define TLB_DATA_1G 0x16
  560. #define TLB_DATA0_4K 0x21
  561. #define TLB_DATA0_4M 0x22
  562. #define TLB_DATA0_2M_4M 0x23
  563. #define STLB_4K 0x41
  564. #define STLB_4K_2M 0x42
  565. static const struct _tlb_table intel_tlb_table[] = {
  566. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  567. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  568. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  569. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  570. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  571. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  572. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  573. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  574. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  575. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  576. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  577. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  578. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  579. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  580. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  581. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  582. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  583. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  584. { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
  585. { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
  586. { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  587. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  588. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  589. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  590. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  591. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  592. { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
  593. { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
  594. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  595. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  596. { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
  597. { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
  598. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  599. { 0x00, 0, 0 }
  600. };
  601. static void intel_tlb_lookup(const unsigned char desc)
  602. {
  603. unsigned char k;
  604. if (desc == 0)
  605. return;
  606. /* look up this descriptor in the table */
  607. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  608. intel_tlb_table[k].descriptor != 0; k++)
  609. ;
  610. if (intel_tlb_table[k].tlb_type == 0)
  611. return;
  612. switch (intel_tlb_table[k].tlb_type) {
  613. case STLB_4K:
  614. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  615. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  616. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  617. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  618. break;
  619. case STLB_4K_2M:
  620. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  621. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  622. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  623. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  624. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  625. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  626. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  627. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  628. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  629. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  630. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  631. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  632. break;
  633. case TLB_INST_ALL:
  634. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  635. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  636. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  637. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  638. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  639. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  640. break;
  641. case TLB_INST_4K:
  642. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  643. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  644. break;
  645. case TLB_INST_4M:
  646. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  647. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  648. break;
  649. case TLB_INST_2M_4M:
  650. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  651. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  652. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  653. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  654. break;
  655. case TLB_DATA_4K:
  656. case TLB_DATA0_4K:
  657. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  658. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  659. break;
  660. case TLB_DATA_4M:
  661. case TLB_DATA0_4M:
  662. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  663. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  664. break;
  665. case TLB_DATA_2M_4M:
  666. case TLB_DATA0_2M_4M:
  667. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  668. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  669. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  670. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  671. break;
  672. case TLB_DATA_4K_4M:
  673. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  674. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  675. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  676. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  677. break;
  678. case TLB_DATA_1G:
  679. if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
  680. tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
  681. break;
  682. }
  683. }
  684. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  685. {
  686. int i, j, n;
  687. unsigned int regs[4];
  688. unsigned char *desc = (unsigned char *)regs;
  689. if (c->cpuid_level < 2)
  690. return;
  691. /* Number of times to iterate */
  692. n = cpuid_eax(2) & 0xFF;
  693. for (i = 0 ; i < n ; i++) {
  694. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  695. /* If bit 31 is set, this is an unknown format */
  696. for (j = 0 ; j < 3 ; j++)
  697. if (regs[j] & (1 << 31))
  698. regs[j] = 0;
  699. /* Byte 0 is level count, not a descriptor */
  700. for (j = 1 ; j < 16 ; j++)
  701. intel_tlb_lookup(desc[j]);
  702. }
  703. }
  704. static const struct cpu_dev intel_cpu_dev = {
  705. .c_vendor = "Intel",
  706. .c_ident = { "GenuineIntel" },
  707. #ifdef CONFIG_X86_32
  708. .legacy_models = {
  709. { .family = 4, .model_names =
  710. {
  711. [0] = "486 DX-25/33",
  712. [1] = "486 DX-50",
  713. [2] = "486 SX",
  714. [3] = "486 DX/2",
  715. [4] = "486 SL",
  716. [5] = "486 SX/2",
  717. [7] = "486 DX/2-WB",
  718. [8] = "486 DX/4",
  719. [9] = "486 DX/4-WB"
  720. }
  721. },
  722. { .family = 5, .model_names =
  723. {
  724. [0] = "Pentium 60/66 A-step",
  725. [1] = "Pentium 60/66",
  726. [2] = "Pentium 75 - 200",
  727. [3] = "OverDrive PODP5V83",
  728. [4] = "Pentium MMX",
  729. [7] = "Mobile Pentium 75 - 200",
  730. [8] = "Mobile Pentium MMX",
  731. [9] = "Quark SoC X1000",
  732. }
  733. },
  734. { .family = 6, .model_names =
  735. {
  736. [0] = "Pentium Pro A-step",
  737. [1] = "Pentium Pro",
  738. [3] = "Pentium II (Klamath)",
  739. [4] = "Pentium II (Deschutes)",
  740. [5] = "Pentium II (Deschutes)",
  741. [6] = "Mobile Pentium II",
  742. [7] = "Pentium III (Katmai)",
  743. [8] = "Pentium III (Coppermine)",
  744. [10] = "Pentium III (Cascades)",
  745. [11] = "Pentium III (Tualatin)",
  746. }
  747. },
  748. { .family = 15, .model_names =
  749. {
  750. [0] = "Pentium 4 (Unknown)",
  751. [1] = "Pentium 4 (Willamette)",
  752. [2] = "Pentium 4 (Northwood)",
  753. [4] = "Pentium 4 (Foster)",
  754. [5] = "Pentium 4 (Foster)",
  755. }
  756. },
  757. },
  758. .legacy_cache_size = intel_size_cache,
  759. #endif
  760. .c_detect_tlb = intel_detect_tlb,
  761. .c_early_init = early_init_intel,
  762. .c_init = init_intel,
  763. .c_bsp_resume = intel_bsp_resume,
  764. .c_x86_vendor = X86_VENDOR_INTEL,
  765. };
  766. cpu_dev_register(intel_cpu_dev);