fault.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Derived from "arch/i386/mm/fault.c"
  6. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  7. *
  8. * Modified by Cort Dougan and Paul Mackerras.
  9. *
  10. * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #include <linux/signal.h>
  18. #include <linux/sched.h>
  19. #include <linux/sched/task_stack.h>
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/string.h>
  23. #include <linux/types.h>
  24. #include <linux/ptrace.h>
  25. #include <linux/mman.h>
  26. #include <linux/mm.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/highmem.h>
  29. #include <linux/extable.h>
  30. #include <linux/kprobes.h>
  31. #include <linux/kdebug.h>
  32. #include <linux/perf_event.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/context_tracking.h>
  35. #include <linux/hugetlb.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/firmware.h>
  38. #include <asm/page.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/mmu.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/siginfo.h>
  44. #include <asm/debug.h>
  45. static inline bool notify_page_fault(struct pt_regs *regs)
  46. {
  47. bool ret = false;
  48. #ifdef CONFIG_KPROBES
  49. /* kprobe_running() needs smp_processor_id() */
  50. if (!user_mode(regs)) {
  51. preempt_disable();
  52. if (kprobe_running() && kprobe_fault_handler(regs, 11))
  53. ret = true;
  54. preempt_enable();
  55. }
  56. #endif /* CONFIG_KPROBES */
  57. if (unlikely(debugger_fault_handler(regs)))
  58. ret = true;
  59. return ret;
  60. }
  61. /*
  62. * Check whether the instruction at regs->nip is a store using
  63. * an update addressing form which will update r1.
  64. */
  65. static bool store_updates_sp(struct pt_regs *regs)
  66. {
  67. unsigned int inst;
  68. if (get_user(inst, (unsigned int __user *)regs->nip))
  69. return false;
  70. /* check for 1 in the rA field */
  71. if (((inst >> 16) & 0x1f) != 1)
  72. return false;
  73. /* check major opcode */
  74. switch (inst >> 26) {
  75. case 37: /* stwu */
  76. case 39: /* stbu */
  77. case 45: /* sthu */
  78. case 53: /* stfsu */
  79. case 55: /* stfdu */
  80. return true;
  81. case 62: /* std or stdu */
  82. return (inst & 3) == 1;
  83. case 31:
  84. /* check minor opcode */
  85. switch ((inst >> 1) & 0x3ff) {
  86. case 181: /* stdux */
  87. case 183: /* stwux */
  88. case 247: /* stbux */
  89. case 439: /* sthux */
  90. case 695: /* stfsux */
  91. case 759: /* stfdux */
  92. return true;
  93. }
  94. }
  95. return false;
  96. }
  97. /*
  98. * do_page_fault error handling helpers
  99. */
  100. static int
  101. __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
  102. {
  103. /*
  104. * If we are in kernel mode, bail out with a SEGV, this will
  105. * be caught by the assembly which will restore the non-volatile
  106. * registers before calling bad_page_fault()
  107. */
  108. if (!user_mode(regs))
  109. return SIGSEGV;
  110. _exception(SIGSEGV, regs, si_code, address);
  111. return 0;
  112. }
  113. static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
  114. {
  115. return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
  116. }
  117. static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
  118. {
  119. struct mm_struct *mm = current->mm;
  120. /*
  121. * Something tried to access memory that isn't in our memory map..
  122. * Fix it, but check if it's kernel or user first..
  123. */
  124. up_read(&mm->mmap_sem);
  125. return __bad_area_nosemaphore(regs, address, si_code);
  126. }
  127. static noinline int bad_area(struct pt_regs *regs, unsigned long address)
  128. {
  129. return __bad_area(regs, address, SEGV_MAPERR);
  130. }
  131. static int do_sigbus(struct pt_regs *regs, unsigned long address,
  132. unsigned int fault)
  133. {
  134. siginfo_t info;
  135. unsigned int lsb = 0;
  136. if (!user_mode(regs))
  137. return SIGBUS;
  138. current->thread.trap_nr = BUS_ADRERR;
  139. info.si_signo = SIGBUS;
  140. info.si_errno = 0;
  141. info.si_code = BUS_ADRERR;
  142. info.si_addr = (void __user *)address;
  143. #ifdef CONFIG_MEMORY_FAILURE
  144. if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
  145. pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
  146. current->comm, current->pid, address);
  147. info.si_code = BUS_MCEERR_AR;
  148. }
  149. if (fault & VM_FAULT_HWPOISON_LARGE)
  150. lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
  151. if (fault & VM_FAULT_HWPOISON)
  152. lsb = PAGE_SHIFT;
  153. #endif
  154. info.si_addr_lsb = lsb;
  155. force_sig_info(SIGBUS, &info, current);
  156. return 0;
  157. }
  158. static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
  159. {
  160. /*
  161. * Kernel page fault interrupted by SIGKILL. We have no reason to
  162. * continue processing.
  163. */
  164. if (fatal_signal_pending(current) && !user_mode(regs))
  165. return SIGKILL;
  166. /* Out of memory */
  167. if (fault & VM_FAULT_OOM) {
  168. /*
  169. * We ran out of memory, or some other thing happened to us that
  170. * made us unable to handle the page fault gracefully.
  171. */
  172. if (!user_mode(regs))
  173. return SIGSEGV;
  174. pagefault_out_of_memory();
  175. } else {
  176. if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
  177. VM_FAULT_HWPOISON_LARGE))
  178. return do_sigbus(regs, addr, fault);
  179. else if (fault & VM_FAULT_SIGSEGV)
  180. return bad_area_nosemaphore(regs, addr);
  181. else
  182. BUG();
  183. }
  184. return 0;
  185. }
  186. /* Is this a bad kernel fault ? */
  187. static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
  188. unsigned long address)
  189. {
  190. if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
  191. printk_ratelimited(KERN_CRIT "kernel tried to execute"
  192. " exec-protected page (%lx) -"
  193. "exploit attempt? (uid: %d)\n",
  194. address, from_kuid(&init_user_ns,
  195. current_uid()));
  196. }
  197. return is_exec || (address >= TASK_SIZE);
  198. }
  199. static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
  200. struct vm_area_struct *vma,
  201. bool store_update_sp)
  202. {
  203. /*
  204. * N.B. The POWER/Open ABI allows programs to access up to
  205. * 288 bytes below the stack pointer.
  206. * The kernel signal delivery code writes up to about 1.5kB
  207. * below the stack pointer (r1) before decrementing it.
  208. * The exec code can write slightly over 640kB to the stack
  209. * before setting the user r1. Thus we allow the stack to
  210. * expand to 1MB without further checks.
  211. */
  212. if (address + 0x100000 < vma->vm_end) {
  213. /* get user regs even if this fault is in kernel mode */
  214. struct pt_regs *uregs = current->thread.regs;
  215. if (uregs == NULL)
  216. return true;
  217. /*
  218. * A user-mode access to an address a long way below
  219. * the stack pointer is only valid if the instruction
  220. * is one which would update the stack pointer to the
  221. * address accessed if the instruction completed,
  222. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  223. * (or the byte, halfword, float or double forms).
  224. *
  225. * If we don't check this then any write to the area
  226. * between the last mapped region and the stack will
  227. * expand the stack rather than segfaulting.
  228. */
  229. if (address + 2048 < uregs->gpr[1] && !store_update_sp)
  230. return true;
  231. }
  232. return false;
  233. }
  234. static bool access_error(bool is_write, bool is_exec,
  235. struct vm_area_struct *vma)
  236. {
  237. /*
  238. * Allow execution from readable areas if the MMU does not
  239. * provide separate controls over reading and executing.
  240. *
  241. * Note: That code used to not be enabled for 4xx/BookE.
  242. * It is now as I/D cache coherency for these is done at
  243. * set_pte_at() time and I see no reason why the test
  244. * below wouldn't be valid on those processors. This -may-
  245. * break programs compiled with a really old ABI though.
  246. */
  247. if (is_exec) {
  248. return !(vma->vm_flags & VM_EXEC) &&
  249. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  250. !(vma->vm_flags & (VM_READ | VM_WRITE)));
  251. }
  252. if (is_write) {
  253. if (unlikely(!(vma->vm_flags & VM_WRITE)))
  254. return true;
  255. return false;
  256. }
  257. if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
  258. return true;
  259. return false;
  260. }
  261. #ifdef CONFIG_PPC_SMLPAR
  262. static inline void cmo_account_page_fault(void)
  263. {
  264. if (firmware_has_feature(FW_FEATURE_CMO)) {
  265. u32 page_ins;
  266. preempt_disable();
  267. page_ins = be32_to_cpu(get_lppaca()->page_ins);
  268. page_ins += 1 << PAGE_FACTOR;
  269. get_lppaca()->page_ins = cpu_to_be32(page_ins);
  270. preempt_enable();
  271. }
  272. }
  273. #else
  274. static inline void cmo_account_page_fault(void) { }
  275. #endif /* CONFIG_PPC_SMLPAR */
  276. #ifdef CONFIG_PPC_STD_MMU
  277. static void sanity_check_fault(bool is_write, unsigned long error_code)
  278. {
  279. /*
  280. * For hash translation mode, we should never get a
  281. * PROTFAULT. Any update to pte to reduce access will result in us
  282. * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
  283. * fault instead of DSISR_PROTFAULT.
  284. *
  285. * A pte update to relax the access will not result in a hash page table
  286. * entry invalidate and hence can result in DSISR_PROTFAULT.
  287. * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
  288. * the special !is_write in the below conditional.
  289. *
  290. * For platforms that doesn't supports coherent icache and do support
  291. * per page noexec bit, we do setup things such that we do the
  292. * sync between D/I cache via fault. But that is handled via low level
  293. * hash fault code (hash_page_do_lazy_icache()) and we should not reach
  294. * here in such case.
  295. *
  296. * For wrong access that can result in PROTFAULT, the above vma->vm_flags
  297. * check should handle those and hence we should fall to the bad_area
  298. * handling correctly.
  299. *
  300. * For embedded with per page exec support that doesn't support coherent
  301. * icache we do get PROTFAULT and we handle that D/I cache sync in
  302. * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
  303. * is conditional for server MMU.
  304. *
  305. * For radix, we can get prot fault for autonuma case, because radix
  306. * page table will have them marked noaccess for user.
  307. */
  308. if (!radix_enabled() && !is_write)
  309. WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
  310. }
  311. #else
  312. static void sanity_check_fault(bool is_write, unsigned long error_code) { }
  313. #endif /* CONFIG_PPC_STD_MMU */
  314. /*
  315. * Define the correct "is_write" bit in error_code based
  316. * on the processor family
  317. */
  318. #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  319. #define page_fault_is_write(__err) ((__err) & ESR_DST)
  320. #define page_fault_is_bad(__err) (0)
  321. #else
  322. #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
  323. #if defined(CONFIG_PPC_8xx)
  324. #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
  325. #elif defined(CONFIG_PPC64)
  326. #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
  327. #else
  328. #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
  329. #endif
  330. #endif
  331. /*
  332. * For 600- and 800-family processors, the error_code parameter is DSISR
  333. * for a data fault, SRR1 for an instruction fault. For 400-family processors
  334. * the error_code parameter is ESR for a data fault, 0 for an instruction
  335. * fault.
  336. * For 64-bit processors, the error_code parameter is
  337. * - DSISR for a non-SLB data access fault,
  338. * - SRR1 & 0x08000000 for a non-SLB instruction access fault
  339. * - 0 any SLB fault.
  340. *
  341. * The return value is 0 if the fault was handled, or the signal
  342. * number if this is a kernel fault that can't be handled here.
  343. */
  344. static int __do_page_fault(struct pt_regs *regs, unsigned long address,
  345. unsigned long error_code)
  346. {
  347. struct vm_area_struct * vma;
  348. struct mm_struct *mm = current->mm;
  349. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  350. int is_exec = TRAP(regs) == 0x400;
  351. int is_user = user_mode(regs);
  352. int is_write = page_fault_is_write(error_code);
  353. int fault, major = 0;
  354. bool store_update_sp = false;
  355. if (notify_page_fault(regs))
  356. return 0;
  357. if (unlikely(page_fault_is_bad(error_code))) {
  358. if (is_user) {
  359. _exception(SIGBUS, regs, BUS_OBJERR, address);
  360. return 0;
  361. }
  362. return SIGBUS;
  363. }
  364. /* Additional sanity check(s) */
  365. sanity_check_fault(is_write, error_code);
  366. /*
  367. * The kernel should never take an execute fault nor should it
  368. * take a page fault to a kernel address.
  369. */
  370. if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
  371. return SIGSEGV;
  372. /*
  373. * If we're in an interrupt, have no user context or are running
  374. * in a region with pagefaults disabled then we must not take the fault
  375. */
  376. if (unlikely(faulthandler_disabled() || !mm)) {
  377. if (is_user)
  378. printk_ratelimited(KERN_ERR "Page fault in user mode"
  379. " with faulthandler_disabled()=%d"
  380. " mm=%p\n",
  381. faulthandler_disabled(), mm);
  382. return bad_area_nosemaphore(regs, address);
  383. }
  384. /* We restore the interrupt state now */
  385. if (!arch_irq_disabled_regs(regs))
  386. local_irq_enable();
  387. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  388. /*
  389. * We want to do this outside mmap_sem, because reading code around nip
  390. * can result in fault, which will cause a deadlock when called with
  391. * mmap_sem held
  392. */
  393. if (is_write && is_user)
  394. store_update_sp = store_updates_sp(regs);
  395. if (is_user)
  396. flags |= FAULT_FLAG_USER;
  397. if (is_write)
  398. flags |= FAULT_FLAG_WRITE;
  399. if (is_exec)
  400. flags |= FAULT_FLAG_INSTRUCTION;
  401. /* When running in the kernel we expect faults to occur only to
  402. * addresses in user space. All other faults represent errors in the
  403. * kernel and should generate an OOPS. Unfortunately, in the case of an
  404. * erroneous fault occurring in a code path which already holds mmap_sem
  405. * we will deadlock attempting to validate the fault against the
  406. * address space. Luckily the kernel only validly references user
  407. * space from well defined areas of code, which are listed in the
  408. * exceptions table.
  409. *
  410. * As the vast majority of faults will be valid we will only perform
  411. * the source reference check when there is a possibility of a deadlock.
  412. * Attempt to lock the address space, if we cannot we then validate the
  413. * source. If this is invalid we can skip the address space check,
  414. * thus avoiding the deadlock.
  415. */
  416. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  417. if (!is_user && !search_exception_tables(regs->nip))
  418. return bad_area_nosemaphore(regs, address);
  419. retry:
  420. down_read(&mm->mmap_sem);
  421. } else {
  422. /*
  423. * The above down_read_trylock() might have succeeded in
  424. * which case we'll have missed the might_sleep() from
  425. * down_read():
  426. */
  427. might_sleep();
  428. }
  429. vma = find_vma(mm, address);
  430. if (unlikely(!vma))
  431. return bad_area(regs, address);
  432. if (likely(vma->vm_start <= address))
  433. goto good_area;
  434. if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
  435. return bad_area(regs, address);
  436. /* The stack is being expanded, check if it's valid */
  437. if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
  438. return bad_area(regs, address);
  439. /* Try to expand it */
  440. if (unlikely(expand_stack(vma, address)))
  441. return bad_area(regs, address);
  442. good_area:
  443. if (unlikely(access_error(is_write, is_exec, vma)))
  444. return bad_area(regs, address);
  445. /*
  446. * If for any reason at all we couldn't handle the fault,
  447. * make sure we exit gracefully rather than endlessly redo
  448. * the fault.
  449. */
  450. fault = handle_mm_fault(vma, address, flags);
  451. major |= fault & VM_FAULT_MAJOR;
  452. /*
  453. * Handle the retry right now, the mmap_sem has been released in that
  454. * case.
  455. */
  456. if (unlikely(fault & VM_FAULT_RETRY)) {
  457. /* We retry only once */
  458. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  459. /*
  460. * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  461. * of starvation.
  462. */
  463. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  464. flags |= FAULT_FLAG_TRIED;
  465. if (!fatal_signal_pending(current))
  466. goto retry;
  467. }
  468. /*
  469. * User mode? Just return to handle the fatal exception otherwise
  470. * return to bad_page_fault
  471. */
  472. return is_user ? 0 : SIGBUS;
  473. }
  474. up_read(&current->mm->mmap_sem);
  475. if (unlikely(fault & VM_FAULT_ERROR))
  476. return mm_fault_error(regs, address, fault);
  477. /*
  478. * Major/minor page fault accounting.
  479. */
  480. if (major) {
  481. current->maj_flt++;
  482. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
  483. cmo_account_page_fault();
  484. } else {
  485. current->min_flt++;
  486. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
  487. }
  488. return 0;
  489. }
  490. NOKPROBE_SYMBOL(__do_page_fault);
  491. int do_page_fault(struct pt_regs *regs, unsigned long address,
  492. unsigned long error_code)
  493. {
  494. enum ctx_state prev_state = exception_enter();
  495. int rc = __do_page_fault(regs, address, error_code);
  496. exception_exit(prev_state);
  497. return rc;
  498. }
  499. NOKPROBE_SYMBOL(do_page_fault);
  500. /*
  501. * bad_page_fault is called when we have a bad access from the kernel.
  502. * It is called from the DSI and ISI handlers in head.S and from some
  503. * of the procedures in traps.c.
  504. */
  505. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  506. {
  507. const struct exception_table_entry *entry;
  508. /* Are we prepared to handle this fault? */
  509. if ((entry = search_exception_tables(regs->nip)) != NULL) {
  510. regs->nip = extable_fixup(entry);
  511. return;
  512. }
  513. /* kernel has accessed a bad area */
  514. switch (regs->trap) {
  515. case 0x300:
  516. case 0x380:
  517. printk(KERN_ALERT "Unable to handle kernel paging request for "
  518. "data at address 0x%08lx\n", regs->dar);
  519. break;
  520. case 0x400:
  521. case 0x480:
  522. printk(KERN_ALERT "Unable to handle kernel paging request for "
  523. "instruction fetch\n");
  524. break;
  525. case 0x600:
  526. printk(KERN_ALERT "Unable to handle kernel paging request for "
  527. "unaligned access at address 0x%08lx\n", regs->dar);
  528. break;
  529. default:
  530. printk(KERN_ALERT "Unable to handle kernel paging request for "
  531. "unknown fault\n");
  532. break;
  533. }
  534. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  535. regs->nip);
  536. if (task_stack_end_corrupted(current))
  537. printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
  538. die("Kernel access of bad area", regs, sig);
  539. }