interrupt.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583
  1. /*
  2. * handling kvm guest interrupts
  3. *
  4. * Copyright IBM Corp. 2008, 2015
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License (version 2 only)
  8. * as published by the Free Software Foundation.
  9. *
  10. * Author(s): Carsten Otte <cotte@de.ibm.com>
  11. */
  12. #include <linux/interrupt.h>
  13. #include <linux/kvm_host.h>
  14. #include <linux/hrtimer.h>
  15. #include <linux/mmu_context.h>
  16. #include <linux/signal.h>
  17. #include <linux/slab.h>
  18. #include <linux/bitmap.h>
  19. #include <linux/vmalloc.h>
  20. #include <asm/asm-offsets.h>
  21. #include <asm/dis.h>
  22. #include <linux/uaccess.h>
  23. #include <asm/sclp.h>
  24. #include <asm/isc.h>
  25. #include <asm/gmap.h>
  26. #include <asm/switch_to.h>
  27. #include <asm/nmi.h>
  28. #include "kvm-s390.h"
  29. #include "gaccess.h"
  30. #include "trace-s390.h"
  31. #define PFAULT_INIT 0x0600
  32. #define PFAULT_DONE 0x0680
  33. #define VIRTIO_PARAM 0x0d00
  34. /* handle external calls via sigp interpretation facility */
  35. static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
  36. {
  37. int c, scn;
  38. if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
  39. return 0;
  40. BUG_ON(!kvm_s390_use_sca_entries());
  41. read_lock(&vcpu->kvm->arch.sca_lock);
  42. if (vcpu->kvm->arch.use_esca) {
  43. struct esca_block *sca = vcpu->kvm->arch.sca;
  44. union esca_sigp_ctrl sigp_ctrl =
  45. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  46. c = sigp_ctrl.c;
  47. scn = sigp_ctrl.scn;
  48. } else {
  49. struct bsca_block *sca = vcpu->kvm->arch.sca;
  50. union bsca_sigp_ctrl sigp_ctrl =
  51. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  52. c = sigp_ctrl.c;
  53. scn = sigp_ctrl.scn;
  54. }
  55. read_unlock(&vcpu->kvm->arch.sca_lock);
  56. if (src_id)
  57. *src_id = scn;
  58. return c;
  59. }
  60. static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
  61. {
  62. int expect, rc;
  63. BUG_ON(!kvm_s390_use_sca_entries());
  64. read_lock(&vcpu->kvm->arch.sca_lock);
  65. if (vcpu->kvm->arch.use_esca) {
  66. struct esca_block *sca = vcpu->kvm->arch.sca;
  67. union esca_sigp_ctrl *sigp_ctrl =
  68. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  69. union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  70. new_val.scn = src_id;
  71. new_val.c = 1;
  72. old_val.c = 0;
  73. expect = old_val.value;
  74. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  75. } else {
  76. struct bsca_block *sca = vcpu->kvm->arch.sca;
  77. union bsca_sigp_ctrl *sigp_ctrl =
  78. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  79. union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  80. new_val.scn = src_id;
  81. new_val.c = 1;
  82. old_val.c = 0;
  83. expect = old_val.value;
  84. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  85. }
  86. read_unlock(&vcpu->kvm->arch.sca_lock);
  87. if (rc != expect) {
  88. /* another external call is pending */
  89. return -EBUSY;
  90. }
  91. atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
  92. return 0;
  93. }
  94. static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
  95. {
  96. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  97. int rc, expect;
  98. if (!kvm_s390_use_sca_entries())
  99. return;
  100. atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
  101. read_lock(&vcpu->kvm->arch.sca_lock);
  102. if (vcpu->kvm->arch.use_esca) {
  103. struct esca_block *sca = vcpu->kvm->arch.sca;
  104. union esca_sigp_ctrl *sigp_ctrl =
  105. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  106. union esca_sigp_ctrl old = *sigp_ctrl;
  107. expect = old.value;
  108. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  109. } else {
  110. struct bsca_block *sca = vcpu->kvm->arch.sca;
  111. union bsca_sigp_ctrl *sigp_ctrl =
  112. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  113. union bsca_sigp_ctrl old = *sigp_ctrl;
  114. expect = old.value;
  115. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  116. }
  117. read_unlock(&vcpu->kvm->arch.sca_lock);
  118. WARN_ON(rc != expect); /* cannot clear? */
  119. }
  120. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  121. {
  122. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  123. }
  124. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  125. {
  126. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  127. }
  128. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  129. {
  130. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  131. }
  132. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  133. {
  134. return psw_extint_disabled(vcpu) &&
  135. psw_ioint_disabled(vcpu) &&
  136. psw_mchk_disabled(vcpu);
  137. }
  138. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  139. {
  140. if (psw_extint_disabled(vcpu) ||
  141. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  142. return 0;
  143. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  144. /* No timer interrupts when single stepping */
  145. return 0;
  146. return 1;
  147. }
  148. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  149. {
  150. if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
  151. return 0;
  152. return ckc_interrupts_enabled(vcpu);
  153. }
  154. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  155. {
  156. return !psw_extint_disabled(vcpu) &&
  157. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  158. }
  159. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  160. {
  161. if (!cpu_timer_interrupts_enabled(vcpu))
  162. return 0;
  163. return kvm_s390_get_cpu_timer(vcpu) >> 63;
  164. }
  165. static inline int is_ioirq(unsigned long irq_type)
  166. {
  167. return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
  168. (irq_type <= IRQ_PEND_IO_ISC_7));
  169. }
  170. static uint64_t isc_to_isc_bits(int isc)
  171. {
  172. return (0x80 >> isc) << 24;
  173. }
  174. static inline u8 int_word_to_isc(u32 int_word)
  175. {
  176. return (int_word & 0x38000000) >> 27;
  177. }
  178. static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
  179. {
  180. return vcpu->kvm->arch.float_int.pending_irqs |
  181. vcpu->arch.local_int.pending_irqs;
  182. }
  183. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  184. unsigned long active_mask)
  185. {
  186. int i;
  187. for (i = 0; i <= MAX_ISC; i++)
  188. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  189. active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));
  190. return active_mask;
  191. }
  192. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  193. {
  194. unsigned long active_mask;
  195. active_mask = pending_irqs(vcpu);
  196. if (!active_mask)
  197. return 0;
  198. if (psw_extint_disabled(vcpu))
  199. active_mask &= ~IRQ_PEND_EXT_MASK;
  200. if (psw_ioint_disabled(vcpu))
  201. active_mask &= ~IRQ_PEND_IO_MASK;
  202. else
  203. active_mask = disable_iscs(vcpu, active_mask);
  204. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  205. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  206. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  207. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  208. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  209. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  210. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  211. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  212. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  213. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  214. if (psw_mchk_disabled(vcpu))
  215. active_mask &= ~IRQ_PEND_MCHK_MASK;
  216. if (!(vcpu->arch.sie_block->gcr[14] &
  217. vcpu->kvm->arch.float_int.mchk.cr14))
  218. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  219. /*
  220. * STOP irqs will never be actively delivered. They are triggered via
  221. * intercept requests and cleared when the stop intercept is performed.
  222. */
  223. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  224. return active_mask;
  225. }
  226. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  227. {
  228. atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  229. set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  230. }
  231. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  232. {
  233. atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  234. clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  235. }
  236. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  237. {
  238. atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
  239. &vcpu->arch.sie_block->cpuflags);
  240. vcpu->arch.sie_block->lctl = 0x0000;
  241. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  242. if (guestdbg_enabled(vcpu)) {
  243. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  244. LCTL_CR10 | LCTL_CR11);
  245. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  246. }
  247. }
  248. static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
  249. {
  250. atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
  251. }
  252. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  253. {
  254. if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
  255. return;
  256. else if (psw_ioint_disabled(vcpu))
  257. __set_cpuflag(vcpu, CPUSTAT_IO_INT);
  258. else
  259. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  260. }
  261. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  262. {
  263. if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  264. return;
  265. if (psw_extint_disabled(vcpu))
  266. __set_cpuflag(vcpu, CPUSTAT_EXT_INT);
  267. else
  268. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  269. }
  270. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  271. {
  272. if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  273. return;
  274. if (psw_mchk_disabled(vcpu))
  275. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  276. else
  277. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  278. }
  279. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  280. {
  281. if (kvm_s390_is_stop_irq_pending(vcpu))
  282. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  283. }
  284. /* Set interception request for non-deliverable interrupts */
  285. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  286. {
  287. set_intercept_indicators_io(vcpu);
  288. set_intercept_indicators_ext(vcpu);
  289. set_intercept_indicators_mchk(vcpu);
  290. set_intercept_indicators_stop(vcpu);
  291. }
  292. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  293. {
  294. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  295. int rc;
  296. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  297. 0, 0);
  298. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  299. (u16 *)__LC_EXT_INT_CODE);
  300. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  301. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  302. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  303. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  304. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  305. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  306. return rc ? -EFAULT : 0;
  307. }
  308. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  309. {
  310. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  311. int rc;
  312. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  313. 0, 0);
  314. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  315. (u16 __user *)__LC_EXT_INT_CODE);
  316. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  317. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  318. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  319. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  320. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  321. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  322. return rc ? -EFAULT : 0;
  323. }
  324. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  325. {
  326. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  327. struct kvm_s390_ext_info ext;
  328. int rc;
  329. spin_lock(&li->lock);
  330. ext = li->irq.ext;
  331. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  332. li->irq.ext.ext_params2 = 0;
  333. spin_unlock(&li->lock);
  334. VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
  335. ext.ext_params2);
  336. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  337. KVM_S390_INT_PFAULT_INIT,
  338. 0, ext.ext_params2);
  339. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  340. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  341. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  342. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  343. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  344. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  345. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  346. return rc ? -EFAULT : 0;
  347. }
  348. static int __write_machine_check(struct kvm_vcpu *vcpu,
  349. struct kvm_s390_mchk_info *mchk)
  350. {
  351. unsigned long ext_sa_addr;
  352. unsigned long lc;
  353. freg_t fprs[NUM_FPRS];
  354. union mci mci;
  355. int rc;
  356. mci.val = mchk->mcic;
  357. /* take care of lazy register loading */
  358. save_fpu_regs();
  359. save_access_regs(vcpu->run->s.regs.acrs);
  360. if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
  361. save_gs_cb(current->thread.gs_cb);
  362. /* Extended save area */
  363. rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
  364. sizeof(unsigned long));
  365. /* Only bits 0 through 63-LC are used for address formation */
  366. lc = ext_sa_addr & MCESA_LC_MASK;
  367. if (test_kvm_facility(vcpu->kvm, 133)) {
  368. switch (lc) {
  369. case 0:
  370. case 10:
  371. ext_sa_addr &= ~0x3ffUL;
  372. break;
  373. case 11:
  374. ext_sa_addr &= ~0x7ffUL;
  375. break;
  376. case 12:
  377. ext_sa_addr &= ~0xfffUL;
  378. break;
  379. default:
  380. ext_sa_addr = 0;
  381. break;
  382. }
  383. } else {
  384. ext_sa_addr &= ~0x3ffUL;
  385. }
  386. if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
  387. if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
  388. 512))
  389. mci.vr = 0;
  390. } else {
  391. mci.vr = 0;
  392. }
  393. if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
  394. && (lc == 11 || lc == 12)) {
  395. if (write_guest_abs(vcpu, ext_sa_addr + 1024,
  396. &vcpu->run->s.regs.gscb, 32))
  397. mci.gs = 0;
  398. } else {
  399. mci.gs = 0;
  400. }
  401. /* General interruption information */
  402. rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
  403. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  404. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  405. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  406. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  407. rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
  408. /* Register-save areas */
  409. if (MACHINE_HAS_VX) {
  410. convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
  411. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
  412. } else {
  413. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
  414. vcpu->run->s.regs.fprs, 128);
  415. }
  416. rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
  417. vcpu->run->s.regs.gprs, 128);
  418. rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
  419. (u32 __user *) __LC_FP_CREG_SAVE_AREA);
  420. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
  421. (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
  422. rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
  423. (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
  424. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
  425. (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
  426. rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
  427. &vcpu->run->s.regs.acrs, 64);
  428. rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
  429. &vcpu->arch.sie_block->gcr, 128);
  430. /* Extended interruption information */
  431. rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
  432. (u32 __user *) __LC_EXT_DAMAGE_CODE);
  433. rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
  434. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  435. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
  436. sizeof(mchk->fixed_logout));
  437. return rc ? -EFAULT : 0;
  438. }
  439. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  440. {
  441. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  442. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  443. struct kvm_s390_mchk_info mchk = {};
  444. int deliver = 0;
  445. int rc = 0;
  446. spin_lock(&fi->lock);
  447. spin_lock(&li->lock);
  448. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  449. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  450. /*
  451. * If there was an exigent machine check pending, then any
  452. * repressible machine checks that might have been pending
  453. * are indicated along with it, so always clear bits for
  454. * repressible and exigent interrupts
  455. */
  456. mchk = li->irq.mchk;
  457. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  458. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  459. memset(&li->irq.mchk, 0, sizeof(mchk));
  460. deliver = 1;
  461. }
  462. /*
  463. * We indicate floating repressible conditions along with
  464. * other pending conditions. Channel Report Pending and Channel
  465. * Subsystem damage are the only two and and are indicated by
  466. * bits in mcic and masked in cr14.
  467. */
  468. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  469. mchk.mcic |= fi->mchk.mcic;
  470. mchk.cr14 |= fi->mchk.cr14;
  471. memset(&fi->mchk, 0, sizeof(mchk));
  472. deliver = 1;
  473. }
  474. spin_unlock(&li->lock);
  475. spin_unlock(&fi->lock);
  476. if (deliver) {
  477. VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
  478. mchk.mcic);
  479. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  480. KVM_S390_MCHK,
  481. mchk.cr14, mchk.mcic);
  482. rc = __write_machine_check(vcpu, &mchk);
  483. }
  484. return rc;
  485. }
  486. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  487. {
  488. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  489. int rc;
  490. VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
  491. vcpu->stat.deliver_restart_signal++;
  492. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  493. rc = write_guest_lc(vcpu,
  494. offsetof(struct lowcore, restart_old_psw),
  495. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  496. rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
  497. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  498. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  499. return rc ? -EFAULT : 0;
  500. }
  501. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  502. {
  503. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  504. struct kvm_s390_prefix_info prefix;
  505. spin_lock(&li->lock);
  506. prefix = li->irq.prefix;
  507. li->irq.prefix.address = 0;
  508. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  509. spin_unlock(&li->lock);
  510. vcpu->stat.deliver_prefix_signal++;
  511. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  512. KVM_S390_SIGP_SET_PREFIX,
  513. prefix.address, 0);
  514. kvm_s390_set_prefix(vcpu, prefix.address);
  515. return 0;
  516. }
  517. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  518. {
  519. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  520. int rc;
  521. int cpu_addr;
  522. spin_lock(&li->lock);
  523. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  524. clear_bit(cpu_addr, li->sigp_emerg_pending);
  525. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  526. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  527. spin_unlock(&li->lock);
  528. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
  529. vcpu->stat.deliver_emergency_signal++;
  530. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  531. cpu_addr, 0);
  532. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  533. (u16 *)__LC_EXT_INT_CODE);
  534. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  535. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  536. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  537. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  538. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  539. return rc ? -EFAULT : 0;
  540. }
  541. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  542. {
  543. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  544. struct kvm_s390_extcall_info extcall;
  545. int rc;
  546. spin_lock(&li->lock);
  547. extcall = li->irq.extcall;
  548. li->irq.extcall.code = 0;
  549. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  550. spin_unlock(&li->lock);
  551. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
  552. vcpu->stat.deliver_external_call++;
  553. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  554. KVM_S390_INT_EXTERNAL_CALL,
  555. extcall.code, 0);
  556. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  557. (u16 *)__LC_EXT_INT_CODE);
  558. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  559. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  560. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  561. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  562. sizeof(psw_t));
  563. return rc ? -EFAULT : 0;
  564. }
  565. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  566. {
  567. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  568. struct kvm_s390_pgm_info pgm_info;
  569. int rc = 0, nullifying = false;
  570. u16 ilen;
  571. spin_lock(&li->lock);
  572. pgm_info = li->irq.pgm;
  573. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  574. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  575. spin_unlock(&li->lock);
  576. ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
  577. VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
  578. pgm_info.code, ilen);
  579. vcpu->stat.deliver_program_int++;
  580. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  581. pgm_info.code, 0);
  582. switch (pgm_info.code & ~PGM_PER) {
  583. case PGM_AFX_TRANSLATION:
  584. case PGM_ASX_TRANSLATION:
  585. case PGM_EX_TRANSLATION:
  586. case PGM_LFX_TRANSLATION:
  587. case PGM_LSTE_SEQUENCE:
  588. case PGM_LSX_TRANSLATION:
  589. case PGM_LX_TRANSLATION:
  590. case PGM_PRIMARY_AUTHORITY:
  591. case PGM_SECONDARY_AUTHORITY:
  592. nullifying = true;
  593. /* fall through */
  594. case PGM_SPACE_SWITCH:
  595. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  596. (u64 *)__LC_TRANS_EXC_CODE);
  597. break;
  598. case PGM_ALEN_TRANSLATION:
  599. case PGM_ALE_SEQUENCE:
  600. case PGM_ASTE_INSTANCE:
  601. case PGM_ASTE_SEQUENCE:
  602. case PGM_ASTE_VALIDITY:
  603. case PGM_EXTENDED_AUTHORITY:
  604. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  605. (u8 *)__LC_EXC_ACCESS_ID);
  606. nullifying = true;
  607. break;
  608. case PGM_ASCE_TYPE:
  609. case PGM_PAGE_TRANSLATION:
  610. case PGM_REGION_FIRST_TRANS:
  611. case PGM_REGION_SECOND_TRANS:
  612. case PGM_REGION_THIRD_TRANS:
  613. case PGM_SEGMENT_TRANSLATION:
  614. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  615. (u64 *)__LC_TRANS_EXC_CODE);
  616. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  617. (u8 *)__LC_EXC_ACCESS_ID);
  618. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  619. (u8 *)__LC_OP_ACCESS_ID);
  620. nullifying = true;
  621. break;
  622. case PGM_MONITOR:
  623. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  624. (u16 *)__LC_MON_CLASS_NR);
  625. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  626. (u64 *)__LC_MON_CODE);
  627. break;
  628. case PGM_VECTOR_PROCESSING:
  629. case PGM_DATA:
  630. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  631. (u32 *)__LC_DATA_EXC_CODE);
  632. break;
  633. case PGM_PROTECTION:
  634. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  635. (u64 *)__LC_TRANS_EXC_CODE);
  636. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  637. (u8 *)__LC_EXC_ACCESS_ID);
  638. break;
  639. case PGM_STACK_FULL:
  640. case PGM_STACK_EMPTY:
  641. case PGM_STACK_SPECIFICATION:
  642. case PGM_STACK_TYPE:
  643. case PGM_STACK_OPERATION:
  644. case PGM_TRACE_TABEL:
  645. case PGM_CRYPTO_OPERATION:
  646. nullifying = true;
  647. break;
  648. }
  649. if (pgm_info.code & PGM_PER) {
  650. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  651. (u8 *) __LC_PER_CODE);
  652. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  653. (u8 *)__LC_PER_ATMID);
  654. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  655. (u64 *) __LC_PER_ADDRESS);
  656. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  657. (u8 *) __LC_PER_ACCESS_ID);
  658. }
  659. if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
  660. kvm_s390_rewind_psw(vcpu, ilen);
  661. /* bit 1+2 of the target are the ilc, so we can directly use ilen */
  662. rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
  663. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  664. (u64 *) __LC_LAST_BREAK);
  665. rc |= put_guest_lc(vcpu, pgm_info.code,
  666. (u16 *)__LC_PGM_INT_CODE);
  667. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  668. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  669. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  670. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  671. return rc ? -EFAULT : 0;
  672. }
  673. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  674. {
  675. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  676. struct kvm_s390_ext_info ext;
  677. int rc = 0;
  678. spin_lock(&fi->lock);
  679. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  680. spin_unlock(&fi->lock);
  681. return 0;
  682. }
  683. ext = fi->srv_signal;
  684. memset(&fi->srv_signal, 0, sizeof(ext));
  685. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  686. spin_unlock(&fi->lock);
  687. VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
  688. ext.ext_params);
  689. vcpu->stat.deliver_service_signal++;
  690. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  691. ext.ext_params, 0);
  692. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  693. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  694. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  695. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  696. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  697. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  698. rc |= put_guest_lc(vcpu, ext.ext_params,
  699. (u32 *)__LC_EXT_PARAMS);
  700. return rc ? -EFAULT : 0;
  701. }
  702. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  703. {
  704. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  705. struct kvm_s390_interrupt_info *inti;
  706. int rc = 0;
  707. spin_lock(&fi->lock);
  708. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  709. struct kvm_s390_interrupt_info,
  710. list);
  711. if (inti) {
  712. list_del(&inti->list);
  713. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  714. }
  715. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  716. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  717. spin_unlock(&fi->lock);
  718. if (inti) {
  719. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  720. KVM_S390_INT_PFAULT_DONE, 0,
  721. inti->ext.ext_params2);
  722. VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
  723. inti->ext.ext_params2);
  724. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  725. (u16 *)__LC_EXT_INT_CODE);
  726. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  727. (u16 *)__LC_EXT_CPU_ADDR);
  728. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  729. &vcpu->arch.sie_block->gpsw,
  730. sizeof(psw_t));
  731. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  732. &vcpu->arch.sie_block->gpsw,
  733. sizeof(psw_t));
  734. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  735. (u64 *)__LC_EXT_PARAMS2);
  736. kfree(inti);
  737. }
  738. return rc ? -EFAULT : 0;
  739. }
  740. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  741. {
  742. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  743. struct kvm_s390_interrupt_info *inti;
  744. int rc = 0;
  745. spin_lock(&fi->lock);
  746. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  747. struct kvm_s390_interrupt_info,
  748. list);
  749. if (inti) {
  750. VCPU_EVENT(vcpu, 4,
  751. "deliver: virtio parm: 0x%x,parm64: 0x%llx",
  752. inti->ext.ext_params, inti->ext.ext_params2);
  753. vcpu->stat.deliver_virtio_interrupt++;
  754. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  755. inti->type,
  756. inti->ext.ext_params,
  757. inti->ext.ext_params2);
  758. list_del(&inti->list);
  759. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  760. }
  761. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  762. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  763. spin_unlock(&fi->lock);
  764. if (inti) {
  765. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  766. (u16 *)__LC_EXT_INT_CODE);
  767. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  768. (u16 *)__LC_EXT_CPU_ADDR);
  769. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  770. &vcpu->arch.sie_block->gpsw,
  771. sizeof(psw_t));
  772. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  773. &vcpu->arch.sie_block->gpsw,
  774. sizeof(psw_t));
  775. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  776. (u32 *)__LC_EXT_PARAMS);
  777. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  778. (u64 *)__LC_EXT_PARAMS2);
  779. kfree(inti);
  780. }
  781. return rc ? -EFAULT : 0;
  782. }
  783. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  784. unsigned long irq_type)
  785. {
  786. struct list_head *isc_list;
  787. struct kvm_s390_float_interrupt *fi;
  788. struct kvm_s390_interrupt_info *inti = NULL;
  789. int rc = 0;
  790. fi = &vcpu->kvm->arch.float_int;
  791. spin_lock(&fi->lock);
  792. isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
  793. inti = list_first_entry_or_null(isc_list,
  794. struct kvm_s390_interrupt_info,
  795. list);
  796. if (inti) {
  797. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  798. VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
  799. else
  800. VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
  801. inti->io.subchannel_id >> 8,
  802. inti->io.subchannel_id >> 1 & 0x3,
  803. inti->io.subchannel_nr);
  804. vcpu->stat.deliver_io_int++;
  805. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  806. inti->type,
  807. ((__u32)inti->io.subchannel_id << 16) |
  808. inti->io.subchannel_nr,
  809. ((__u64)inti->io.io_int_parm << 32) |
  810. inti->io.io_int_word);
  811. list_del(&inti->list);
  812. fi->counters[FIRQ_CNTR_IO] -= 1;
  813. }
  814. if (list_empty(isc_list))
  815. clear_bit(irq_type, &fi->pending_irqs);
  816. spin_unlock(&fi->lock);
  817. if (inti) {
  818. rc = put_guest_lc(vcpu, inti->io.subchannel_id,
  819. (u16 *)__LC_SUBCHANNEL_ID);
  820. rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
  821. (u16 *)__LC_SUBCHANNEL_NR);
  822. rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
  823. (u32 *)__LC_IO_INT_PARM);
  824. rc |= put_guest_lc(vcpu, inti->io.io_int_word,
  825. (u32 *)__LC_IO_INT_WORD);
  826. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  827. &vcpu->arch.sie_block->gpsw,
  828. sizeof(psw_t));
  829. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  830. &vcpu->arch.sie_block->gpsw,
  831. sizeof(psw_t));
  832. kfree(inti);
  833. }
  834. return rc ? -EFAULT : 0;
  835. }
  836. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  837. static const deliver_irq_t deliver_irq_funcs[] = {
  838. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  839. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  840. [IRQ_PEND_PROG] = __deliver_prog,
  841. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  842. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  843. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  844. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  845. [IRQ_PEND_RESTART] = __deliver_restart,
  846. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  847. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  848. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  849. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  850. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  851. };
  852. /* Check whether an external call is pending (deliverable or not) */
  853. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  854. {
  855. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  856. if (!sclp.has_sigpif)
  857. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  858. return sca_ext_call_pending(vcpu, NULL);
  859. }
  860. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  861. {
  862. if (deliverable_irqs(vcpu))
  863. return 1;
  864. if (kvm_cpu_has_pending_timer(vcpu))
  865. return 1;
  866. /* external call pending and deliverable */
  867. if (kvm_s390_ext_call_pending(vcpu) &&
  868. !psw_extint_disabled(vcpu) &&
  869. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  870. return 1;
  871. if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  872. return 1;
  873. return 0;
  874. }
  875. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  876. {
  877. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  878. }
  879. static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
  880. {
  881. u64 now, cputm, sltime = 0;
  882. if (ckc_interrupts_enabled(vcpu)) {
  883. now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  884. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  885. /* already expired or overflow? */
  886. if (!sltime || vcpu->arch.sie_block->ckc <= now)
  887. return 0;
  888. if (cpu_timer_interrupts_enabled(vcpu)) {
  889. cputm = kvm_s390_get_cpu_timer(vcpu);
  890. /* already expired? */
  891. if (cputm >> 63)
  892. return 0;
  893. return min(sltime, tod_to_ns(cputm));
  894. }
  895. } else if (cpu_timer_interrupts_enabled(vcpu)) {
  896. sltime = kvm_s390_get_cpu_timer(vcpu);
  897. /* already expired? */
  898. if (sltime >> 63)
  899. return 0;
  900. }
  901. return sltime;
  902. }
  903. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  904. {
  905. u64 sltime;
  906. vcpu->stat.exit_wait_state++;
  907. /* fast path */
  908. if (kvm_arch_vcpu_runnable(vcpu))
  909. return 0;
  910. if (psw_interrupts_disabled(vcpu)) {
  911. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  912. return -EOPNOTSUPP; /* disabled wait */
  913. }
  914. if (!ckc_interrupts_enabled(vcpu) &&
  915. !cpu_timer_interrupts_enabled(vcpu)) {
  916. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  917. __set_cpu_idle(vcpu);
  918. goto no_timer;
  919. }
  920. sltime = __calculate_sltime(vcpu);
  921. if (!sltime)
  922. return 0;
  923. __set_cpu_idle(vcpu);
  924. hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
  925. VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
  926. no_timer:
  927. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  928. kvm_vcpu_block(vcpu);
  929. __unset_cpu_idle(vcpu);
  930. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  931. hrtimer_cancel(&vcpu->arch.ckc_timer);
  932. return 0;
  933. }
  934. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  935. {
  936. /*
  937. * We cannot move this into the if, as the CPU might be already
  938. * in kvm_vcpu_block without having the waitqueue set (polling)
  939. */
  940. vcpu->valid_wakeup = true;
  941. if (swait_active(&vcpu->wq)) {
  942. /*
  943. * The vcpu gave up the cpu voluntarily, mark it as a good
  944. * yield-candidate.
  945. */
  946. vcpu->preempted = true;
  947. swake_up(&vcpu->wq);
  948. vcpu->stat.halt_wakeup++;
  949. }
  950. /*
  951. * The VCPU might not be sleeping but is executing the VSIE. Let's
  952. * kick it, so it leaves the SIE to process the request.
  953. */
  954. kvm_s390_vsie_kick(vcpu);
  955. }
  956. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  957. {
  958. struct kvm_vcpu *vcpu;
  959. u64 sltime;
  960. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  961. sltime = __calculate_sltime(vcpu);
  962. /*
  963. * If the monotonic clock runs faster than the tod clock we might be
  964. * woken up too early and have to go back to sleep to avoid deadlocks.
  965. */
  966. if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  967. return HRTIMER_RESTART;
  968. kvm_s390_vcpu_wakeup(vcpu);
  969. return HRTIMER_NORESTART;
  970. }
  971. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  972. {
  973. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  974. spin_lock(&li->lock);
  975. li->pending_irqs = 0;
  976. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  977. memset(&li->irq, 0, sizeof(li->irq));
  978. spin_unlock(&li->lock);
  979. sca_clear_ext_call(vcpu);
  980. }
  981. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  982. {
  983. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  984. deliver_irq_t func;
  985. int rc = 0;
  986. unsigned long irq_type;
  987. unsigned long irqs;
  988. __reset_intercept_indicators(vcpu);
  989. /* pending ckc conditions might have been invalidated */
  990. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  991. if (ckc_irq_pending(vcpu))
  992. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  993. /* pending cpu timer conditions might have been invalidated */
  994. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  995. if (cpu_timer_irq_pending(vcpu))
  996. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  997. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  998. /* bits are in the order of interrupt priority */
  999. irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
  1000. if (is_ioirq(irq_type)) {
  1001. rc = __deliver_io(vcpu, irq_type);
  1002. } else {
  1003. func = deliver_irq_funcs[irq_type];
  1004. if (!func) {
  1005. WARN_ON_ONCE(func == NULL);
  1006. clear_bit(irq_type, &li->pending_irqs);
  1007. continue;
  1008. }
  1009. rc = func(vcpu);
  1010. }
  1011. }
  1012. set_intercept_indicators(vcpu);
  1013. return rc;
  1014. }
  1015. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1016. {
  1017. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1018. VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
  1019. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  1020. irq->u.pgm.code, 0);
  1021. if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
  1022. /* auto detection if no valid ILC was given */
  1023. irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
  1024. irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
  1025. irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
  1026. }
  1027. if (irq->u.pgm.code == PGM_PER) {
  1028. li->irq.pgm.code |= PGM_PER;
  1029. li->irq.pgm.flags = irq->u.pgm.flags;
  1030. /* only modify PER related information */
  1031. li->irq.pgm.per_address = irq->u.pgm.per_address;
  1032. li->irq.pgm.per_code = irq->u.pgm.per_code;
  1033. li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
  1034. li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
  1035. } else if (!(irq->u.pgm.code & PGM_PER)) {
  1036. li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
  1037. irq->u.pgm.code;
  1038. li->irq.pgm.flags = irq->u.pgm.flags;
  1039. /* only modify non-PER information */
  1040. li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
  1041. li->irq.pgm.mon_code = irq->u.pgm.mon_code;
  1042. li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
  1043. li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
  1044. li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
  1045. li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
  1046. } else {
  1047. li->irq.pgm = irq->u.pgm;
  1048. }
  1049. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  1050. return 0;
  1051. }
  1052. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1053. {
  1054. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1055. VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
  1056. irq->u.ext.ext_params2);
  1057. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  1058. irq->u.ext.ext_params,
  1059. irq->u.ext.ext_params2);
  1060. li->irq.ext = irq->u.ext;
  1061. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  1062. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1063. return 0;
  1064. }
  1065. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1066. {
  1067. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1068. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  1069. uint16_t src_id = irq->u.extcall.code;
  1070. VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
  1071. src_id);
  1072. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  1073. src_id, 0);
  1074. /* sending vcpu invalid */
  1075. if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
  1076. return -EINVAL;
  1077. if (sclp.has_sigpif)
  1078. return sca_inject_ext_call(vcpu, src_id);
  1079. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  1080. return -EBUSY;
  1081. *extcall = irq->u.extcall;
  1082. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1083. return 0;
  1084. }
  1085. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1086. {
  1087. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1088. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  1089. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
  1090. irq->u.prefix.address);
  1091. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  1092. irq->u.prefix.address, 0);
  1093. if (!is_vcpu_stopped(vcpu))
  1094. return -EBUSY;
  1095. *prefix = irq->u.prefix;
  1096. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  1097. return 0;
  1098. }
  1099. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  1100. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1101. {
  1102. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1103. struct kvm_s390_stop_info *stop = &li->irq.stop;
  1104. int rc = 0;
  1105. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
  1106. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  1107. return -EINVAL;
  1108. if (is_vcpu_stopped(vcpu)) {
  1109. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  1110. rc = kvm_s390_store_status_unloaded(vcpu,
  1111. KVM_S390_STORE_STATUS_NOADDR);
  1112. return rc;
  1113. }
  1114. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  1115. return -EBUSY;
  1116. stop->flags = irq->u.stop.flags;
  1117. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  1118. return 0;
  1119. }
  1120. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  1121. struct kvm_s390_irq *irq)
  1122. {
  1123. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1124. VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
  1125. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  1126. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  1127. return 0;
  1128. }
  1129. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  1130. struct kvm_s390_irq *irq)
  1131. {
  1132. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1133. VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
  1134. irq->u.emerg.code);
  1135. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  1136. irq->u.emerg.code, 0);
  1137. /* sending vcpu invalid */
  1138. if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
  1139. return -EINVAL;
  1140. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  1141. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  1142. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1143. return 0;
  1144. }
  1145. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1146. {
  1147. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1148. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  1149. VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
  1150. irq->u.mchk.mcic);
  1151. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  1152. irq->u.mchk.mcic);
  1153. /*
  1154. * Because repressible machine checks can be indicated along with
  1155. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1156. * we need to combine cr14, mcic and external damage code.
  1157. * Failing storage address and the logout area should not be or'ed
  1158. * together, we just indicate the last occurrence of the corresponding
  1159. * machine check
  1160. */
  1161. mchk->cr14 |= irq->u.mchk.cr14;
  1162. mchk->mcic |= irq->u.mchk.mcic;
  1163. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1164. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1165. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1166. sizeof(mchk->fixed_logout));
  1167. if (mchk->mcic & MCHK_EX_MASK)
  1168. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1169. else if (mchk->mcic & MCHK_REP_MASK)
  1170. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1171. return 0;
  1172. }
  1173. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1174. {
  1175. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1176. VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
  1177. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1178. 0, 0);
  1179. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1180. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1181. return 0;
  1182. }
  1183. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1184. {
  1185. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1186. VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
  1187. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1188. 0, 0);
  1189. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1190. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1191. return 0;
  1192. }
  1193. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1194. int isc, u32 schid)
  1195. {
  1196. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1197. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1198. struct kvm_s390_interrupt_info *iter;
  1199. u16 id = (schid & 0xffff0000U) >> 16;
  1200. u16 nr = schid & 0x0000ffffU;
  1201. spin_lock(&fi->lock);
  1202. list_for_each_entry(iter, isc_list, list) {
  1203. if (schid && (id != iter->io.subchannel_id ||
  1204. nr != iter->io.subchannel_nr))
  1205. continue;
  1206. /* found an appropriate entry */
  1207. list_del_init(&iter->list);
  1208. fi->counters[FIRQ_CNTR_IO] -= 1;
  1209. if (list_empty(isc_list))
  1210. clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1211. spin_unlock(&fi->lock);
  1212. return iter;
  1213. }
  1214. spin_unlock(&fi->lock);
  1215. return NULL;
  1216. }
  1217. /*
  1218. * Dequeue and return an I/O interrupt matching any of the interruption
  1219. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1220. */
  1221. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1222. u64 isc_mask, u32 schid)
  1223. {
  1224. struct kvm_s390_interrupt_info *inti = NULL;
  1225. int isc;
  1226. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1227. if (isc_mask & isc_to_isc_bits(isc))
  1228. inti = get_io_int(kvm, isc, schid);
  1229. }
  1230. return inti;
  1231. }
  1232. #define SCCB_MASK 0xFFFFFFF8
  1233. #define SCCB_EVENT_PENDING 0x3
  1234. static int __inject_service(struct kvm *kvm,
  1235. struct kvm_s390_interrupt_info *inti)
  1236. {
  1237. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1238. spin_lock(&fi->lock);
  1239. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1240. /*
  1241. * Early versions of the QEMU s390 bios will inject several
  1242. * service interrupts after another without handling a
  1243. * condition code indicating busy.
  1244. * We will silently ignore those superfluous sccb values.
  1245. * A future version of QEMU will take care of serialization
  1246. * of servc requests
  1247. */
  1248. if (fi->srv_signal.ext_params & SCCB_MASK)
  1249. goto out;
  1250. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1251. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1252. out:
  1253. spin_unlock(&fi->lock);
  1254. kfree(inti);
  1255. return 0;
  1256. }
  1257. static int __inject_virtio(struct kvm *kvm,
  1258. struct kvm_s390_interrupt_info *inti)
  1259. {
  1260. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1261. spin_lock(&fi->lock);
  1262. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1263. spin_unlock(&fi->lock);
  1264. return -EBUSY;
  1265. }
  1266. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1267. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1268. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1269. spin_unlock(&fi->lock);
  1270. return 0;
  1271. }
  1272. static int __inject_pfault_done(struct kvm *kvm,
  1273. struct kvm_s390_interrupt_info *inti)
  1274. {
  1275. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1276. spin_lock(&fi->lock);
  1277. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1278. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1279. spin_unlock(&fi->lock);
  1280. return -EBUSY;
  1281. }
  1282. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1283. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1284. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1285. spin_unlock(&fi->lock);
  1286. return 0;
  1287. }
  1288. #define CR_PENDING_SUBCLASS 28
  1289. static int __inject_float_mchk(struct kvm *kvm,
  1290. struct kvm_s390_interrupt_info *inti)
  1291. {
  1292. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1293. spin_lock(&fi->lock);
  1294. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1295. fi->mchk.mcic |= inti->mchk.mcic;
  1296. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1297. spin_unlock(&fi->lock);
  1298. kfree(inti);
  1299. return 0;
  1300. }
  1301. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1302. {
  1303. struct kvm_s390_float_interrupt *fi;
  1304. struct list_head *list;
  1305. int isc;
  1306. fi = &kvm->arch.float_int;
  1307. spin_lock(&fi->lock);
  1308. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1309. spin_unlock(&fi->lock);
  1310. return -EBUSY;
  1311. }
  1312. fi->counters[FIRQ_CNTR_IO] += 1;
  1313. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  1314. VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
  1315. else
  1316. VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
  1317. inti->io.subchannel_id >> 8,
  1318. inti->io.subchannel_id >> 1 & 0x3,
  1319. inti->io.subchannel_nr);
  1320. isc = int_word_to_isc(inti->io.io_int_word);
  1321. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1322. list_add_tail(&inti->list, list);
  1323. set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1324. spin_unlock(&fi->lock);
  1325. return 0;
  1326. }
  1327. /*
  1328. * Find a destination VCPU for a floating irq and kick it.
  1329. */
  1330. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1331. {
  1332. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1333. struct kvm_s390_local_interrupt *li;
  1334. struct kvm_vcpu *dst_vcpu;
  1335. int sigcpu, online_vcpus, nr_tries = 0;
  1336. online_vcpus = atomic_read(&kvm->online_vcpus);
  1337. if (!online_vcpus)
  1338. return;
  1339. /* find idle VCPUs first, then round robin */
  1340. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1341. if (sigcpu == online_vcpus) {
  1342. do {
  1343. sigcpu = fi->next_rr_cpu;
  1344. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1345. /* avoid endless loops if all vcpus are stopped */
  1346. if (nr_tries++ >= online_vcpus)
  1347. return;
  1348. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1349. }
  1350. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1351. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1352. li = &dst_vcpu->arch.local_int;
  1353. spin_lock(&li->lock);
  1354. switch (type) {
  1355. case KVM_S390_MCHK:
  1356. atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
  1357. break;
  1358. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1359. atomic_or(CPUSTAT_IO_INT, li->cpuflags);
  1360. break;
  1361. default:
  1362. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1363. break;
  1364. }
  1365. spin_unlock(&li->lock);
  1366. kvm_s390_vcpu_wakeup(dst_vcpu);
  1367. }
  1368. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1369. {
  1370. u64 type = READ_ONCE(inti->type);
  1371. int rc;
  1372. switch (type) {
  1373. case KVM_S390_MCHK:
  1374. rc = __inject_float_mchk(kvm, inti);
  1375. break;
  1376. case KVM_S390_INT_VIRTIO:
  1377. rc = __inject_virtio(kvm, inti);
  1378. break;
  1379. case KVM_S390_INT_SERVICE:
  1380. rc = __inject_service(kvm, inti);
  1381. break;
  1382. case KVM_S390_INT_PFAULT_DONE:
  1383. rc = __inject_pfault_done(kvm, inti);
  1384. break;
  1385. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1386. rc = __inject_io(kvm, inti);
  1387. break;
  1388. default:
  1389. rc = -EINVAL;
  1390. }
  1391. if (rc)
  1392. return rc;
  1393. __floating_irq_kick(kvm, type);
  1394. return 0;
  1395. }
  1396. int kvm_s390_inject_vm(struct kvm *kvm,
  1397. struct kvm_s390_interrupt *s390int)
  1398. {
  1399. struct kvm_s390_interrupt_info *inti;
  1400. int rc;
  1401. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1402. if (!inti)
  1403. return -ENOMEM;
  1404. inti->type = s390int->type;
  1405. switch (inti->type) {
  1406. case KVM_S390_INT_VIRTIO:
  1407. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1408. s390int->parm, s390int->parm64);
  1409. inti->ext.ext_params = s390int->parm;
  1410. inti->ext.ext_params2 = s390int->parm64;
  1411. break;
  1412. case KVM_S390_INT_SERVICE:
  1413. VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
  1414. inti->ext.ext_params = s390int->parm;
  1415. break;
  1416. case KVM_S390_INT_PFAULT_DONE:
  1417. inti->ext.ext_params2 = s390int->parm64;
  1418. break;
  1419. case KVM_S390_MCHK:
  1420. VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
  1421. s390int->parm64);
  1422. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1423. inti->mchk.mcic = s390int->parm64;
  1424. break;
  1425. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1426. inti->io.subchannel_id = s390int->parm >> 16;
  1427. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1428. inti->io.io_int_parm = s390int->parm64 >> 32;
  1429. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1430. break;
  1431. default:
  1432. kfree(inti);
  1433. return -EINVAL;
  1434. }
  1435. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1436. 2);
  1437. rc = __inject_vm(kvm, inti);
  1438. if (rc)
  1439. kfree(inti);
  1440. return rc;
  1441. }
  1442. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1443. struct kvm_s390_interrupt_info *inti)
  1444. {
  1445. return __inject_vm(kvm, inti);
  1446. }
  1447. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1448. struct kvm_s390_irq *irq)
  1449. {
  1450. irq->type = s390int->type;
  1451. switch (irq->type) {
  1452. case KVM_S390_PROGRAM_INT:
  1453. if (s390int->parm & 0xffff0000)
  1454. return -EINVAL;
  1455. irq->u.pgm.code = s390int->parm;
  1456. break;
  1457. case KVM_S390_SIGP_SET_PREFIX:
  1458. irq->u.prefix.address = s390int->parm;
  1459. break;
  1460. case KVM_S390_SIGP_STOP:
  1461. irq->u.stop.flags = s390int->parm;
  1462. break;
  1463. case KVM_S390_INT_EXTERNAL_CALL:
  1464. if (s390int->parm & 0xffff0000)
  1465. return -EINVAL;
  1466. irq->u.extcall.code = s390int->parm;
  1467. break;
  1468. case KVM_S390_INT_EMERGENCY:
  1469. if (s390int->parm & 0xffff0000)
  1470. return -EINVAL;
  1471. irq->u.emerg.code = s390int->parm;
  1472. break;
  1473. case KVM_S390_MCHK:
  1474. irq->u.mchk.mcic = s390int->parm64;
  1475. break;
  1476. }
  1477. return 0;
  1478. }
  1479. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1480. {
  1481. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1482. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1483. }
  1484. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1485. {
  1486. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1487. spin_lock(&li->lock);
  1488. li->irq.stop.flags = 0;
  1489. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1490. spin_unlock(&li->lock);
  1491. }
  1492. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1493. {
  1494. int rc;
  1495. switch (irq->type) {
  1496. case KVM_S390_PROGRAM_INT:
  1497. rc = __inject_prog(vcpu, irq);
  1498. break;
  1499. case KVM_S390_SIGP_SET_PREFIX:
  1500. rc = __inject_set_prefix(vcpu, irq);
  1501. break;
  1502. case KVM_S390_SIGP_STOP:
  1503. rc = __inject_sigp_stop(vcpu, irq);
  1504. break;
  1505. case KVM_S390_RESTART:
  1506. rc = __inject_sigp_restart(vcpu, irq);
  1507. break;
  1508. case KVM_S390_INT_CLOCK_COMP:
  1509. rc = __inject_ckc(vcpu);
  1510. break;
  1511. case KVM_S390_INT_CPU_TIMER:
  1512. rc = __inject_cpu_timer(vcpu);
  1513. break;
  1514. case KVM_S390_INT_EXTERNAL_CALL:
  1515. rc = __inject_extcall(vcpu, irq);
  1516. break;
  1517. case KVM_S390_INT_EMERGENCY:
  1518. rc = __inject_sigp_emergency(vcpu, irq);
  1519. break;
  1520. case KVM_S390_MCHK:
  1521. rc = __inject_mchk(vcpu, irq);
  1522. break;
  1523. case KVM_S390_INT_PFAULT_INIT:
  1524. rc = __inject_pfault_init(vcpu, irq);
  1525. break;
  1526. case KVM_S390_INT_VIRTIO:
  1527. case KVM_S390_INT_SERVICE:
  1528. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1529. default:
  1530. rc = -EINVAL;
  1531. }
  1532. return rc;
  1533. }
  1534. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1535. {
  1536. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1537. int rc;
  1538. spin_lock(&li->lock);
  1539. rc = do_inject_vcpu(vcpu, irq);
  1540. spin_unlock(&li->lock);
  1541. if (!rc)
  1542. kvm_s390_vcpu_wakeup(vcpu);
  1543. return rc;
  1544. }
  1545. static inline void clear_irq_list(struct list_head *_list)
  1546. {
  1547. struct kvm_s390_interrupt_info *inti, *n;
  1548. list_for_each_entry_safe(inti, n, _list, list) {
  1549. list_del(&inti->list);
  1550. kfree(inti);
  1551. }
  1552. }
  1553. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1554. struct kvm_s390_irq *irq)
  1555. {
  1556. irq->type = inti->type;
  1557. switch (inti->type) {
  1558. case KVM_S390_INT_PFAULT_INIT:
  1559. case KVM_S390_INT_PFAULT_DONE:
  1560. case KVM_S390_INT_VIRTIO:
  1561. irq->u.ext = inti->ext;
  1562. break;
  1563. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1564. irq->u.io = inti->io;
  1565. break;
  1566. }
  1567. }
  1568. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1569. {
  1570. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1571. int i;
  1572. spin_lock(&fi->lock);
  1573. fi->pending_irqs = 0;
  1574. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1575. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1576. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1577. clear_irq_list(&fi->lists[i]);
  1578. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1579. fi->counters[i] = 0;
  1580. spin_unlock(&fi->lock);
  1581. };
  1582. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1583. {
  1584. struct kvm_s390_interrupt_info *inti;
  1585. struct kvm_s390_float_interrupt *fi;
  1586. struct kvm_s390_irq *buf;
  1587. struct kvm_s390_irq *irq;
  1588. int max_irqs;
  1589. int ret = 0;
  1590. int n = 0;
  1591. int i;
  1592. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1593. return -EINVAL;
  1594. /*
  1595. * We are already using -ENOMEM to signal
  1596. * userspace it may retry with a bigger buffer,
  1597. * so we need to use something else for this case
  1598. */
  1599. buf = vzalloc(len);
  1600. if (!buf)
  1601. return -ENOBUFS;
  1602. max_irqs = len / sizeof(struct kvm_s390_irq);
  1603. fi = &kvm->arch.float_int;
  1604. spin_lock(&fi->lock);
  1605. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1606. list_for_each_entry(inti, &fi->lists[i], list) {
  1607. if (n == max_irqs) {
  1608. /* signal userspace to try again */
  1609. ret = -ENOMEM;
  1610. goto out;
  1611. }
  1612. inti_to_irq(inti, &buf[n]);
  1613. n++;
  1614. }
  1615. }
  1616. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1617. if (n == max_irqs) {
  1618. /* signal userspace to try again */
  1619. ret = -ENOMEM;
  1620. goto out;
  1621. }
  1622. irq = (struct kvm_s390_irq *) &buf[n];
  1623. irq->type = KVM_S390_INT_SERVICE;
  1624. irq->u.ext = fi->srv_signal;
  1625. n++;
  1626. }
  1627. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1628. if (n == max_irqs) {
  1629. /* signal userspace to try again */
  1630. ret = -ENOMEM;
  1631. goto out;
  1632. }
  1633. irq = (struct kvm_s390_irq *) &buf[n];
  1634. irq->type = KVM_S390_MCHK;
  1635. irq->u.mchk = fi->mchk;
  1636. n++;
  1637. }
  1638. out:
  1639. spin_unlock(&fi->lock);
  1640. if (!ret && n > 0) {
  1641. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1642. ret = -EFAULT;
  1643. }
  1644. vfree(buf);
  1645. return ret < 0 ? ret : n;
  1646. }
  1647. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1648. {
  1649. int r;
  1650. switch (attr->group) {
  1651. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1652. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1653. attr->attr);
  1654. break;
  1655. default:
  1656. r = -EINVAL;
  1657. }
  1658. return r;
  1659. }
  1660. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1661. u64 addr)
  1662. {
  1663. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1664. void *target = NULL;
  1665. void __user *source;
  1666. u64 size;
  1667. if (get_user(inti->type, (u64 __user *)addr))
  1668. return -EFAULT;
  1669. switch (inti->type) {
  1670. case KVM_S390_INT_PFAULT_INIT:
  1671. case KVM_S390_INT_PFAULT_DONE:
  1672. case KVM_S390_INT_VIRTIO:
  1673. case KVM_S390_INT_SERVICE:
  1674. target = (void *) &inti->ext;
  1675. source = &uptr->u.ext;
  1676. size = sizeof(inti->ext);
  1677. break;
  1678. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1679. target = (void *) &inti->io;
  1680. source = &uptr->u.io;
  1681. size = sizeof(inti->io);
  1682. break;
  1683. case KVM_S390_MCHK:
  1684. target = (void *) &inti->mchk;
  1685. source = &uptr->u.mchk;
  1686. size = sizeof(inti->mchk);
  1687. break;
  1688. default:
  1689. return -EINVAL;
  1690. }
  1691. if (copy_from_user(target, source, size))
  1692. return -EFAULT;
  1693. return 0;
  1694. }
  1695. static int enqueue_floating_irq(struct kvm_device *dev,
  1696. struct kvm_device_attr *attr)
  1697. {
  1698. struct kvm_s390_interrupt_info *inti = NULL;
  1699. int r = 0;
  1700. int len = attr->attr;
  1701. if (len % sizeof(struct kvm_s390_irq) != 0)
  1702. return -EINVAL;
  1703. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1704. return -EINVAL;
  1705. while (len >= sizeof(struct kvm_s390_irq)) {
  1706. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1707. if (!inti)
  1708. return -ENOMEM;
  1709. r = copy_irq_from_user(inti, attr->addr);
  1710. if (r) {
  1711. kfree(inti);
  1712. return r;
  1713. }
  1714. r = __inject_vm(dev->kvm, inti);
  1715. if (r) {
  1716. kfree(inti);
  1717. return r;
  1718. }
  1719. len -= sizeof(struct kvm_s390_irq);
  1720. attr->addr += sizeof(struct kvm_s390_irq);
  1721. }
  1722. return r;
  1723. }
  1724. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1725. {
  1726. if (id >= MAX_S390_IO_ADAPTERS)
  1727. return NULL;
  1728. return kvm->arch.adapters[id];
  1729. }
  1730. static int register_io_adapter(struct kvm_device *dev,
  1731. struct kvm_device_attr *attr)
  1732. {
  1733. struct s390_io_adapter *adapter;
  1734. struct kvm_s390_io_adapter adapter_info;
  1735. if (copy_from_user(&adapter_info,
  1736. (void __user *)attr->addr, sizeof(adapter_info)))
  1737. return -EFAULT;
  1738. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1739. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1740. return -EINVAL;
  1741. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1742. if (!adapter)
  1743. return -ENOMEM;
  1744. INIT_LIST_HEAD(&adapter->maps);
  1745. init_rwsem(&adapter->maps_lock);
  1746. atomic_set(&adapter->nr_maps, 0);
  1747. adapter->id = adapter_info.id;
  1748. adapter->isc = adapter_info.isc;
  1749. adapter->maskable = adapter_info.maskable;
  1750. adapter->masked = false;
  1751. adapter->swap = adapter_info.swap;
  1752. adapter->suppressible = (adapter_info.flags) &
  1753. KVM_S390_ADAPTER_SUPPRESSIBLE;
  1754. dev->kvm->arch.adapters[adapter->id] = adapter;
  1755. return 0;
  1756. }
  1757. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1758. {
  1759. int ret;
  1760. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1761. if (!adapter || !adapter->maskable)
  1762. return -EINVAL;
  1763. ret = adapter->masked;
  1764. adapter->masked = masked;
  1765. return ret;
  1766. }
  1767. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1768. {
  1769. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1770. struct s390_map_info *map;
  1771. int ret;
  1772. if (!adapter || !addr)
  1773. return -EINVAL;
  1774. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1775. if (!map) {
  1776. ret = -ENOMEM;
  1777. goto out;
  1778. }
  1779. INIT_LIST_HEAD(&map->list);
  1780. map->guest_addr = addr;
  1781. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1782. if (map->addr == -EFAULT) {
  1783. ret = -EFAULT;
  1784. goto out;
  1785. }
  1786. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1787. if (ret < 0)
  1788. goto out;
  1789. BUG_ON(ret != 1);
  1790. down_write(&adapter->maps_lock);
  1791. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1792. list_add_tail(&map->list, &adapter->maps);
  1793. ret = 0;
  1794. } else {
  1795. put_page(map->page);
  1796. ret = -EINVAL;
  1797. }
  1798. up_write(&adapter->maps_lock);
  1799. out:
  1800. if (ret)
  1801. kfree(map);
  1802. return ret;
  1803. }
  1804. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1805. {
  1806. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1807. struct s390_map_info *map, *tmp;
  1808. int found = 0;
  1809. if (!adapter || !addr)
  1810. return -EINVAL;
  1811. down_write(&adapter->maps_lock);
  1812. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1813. if (map->guest_addr == addr) {
  1814. found = 1;
  1815. atomic_dec(&adapter->nr_maps);
  1816. list_del(&map->list);
  1817. put_page(map->page);
  1818. kfree(map);
  1819. break;
  1820. }
  1821. }
  1822. up_write(&adapter->maps_lock);
  1823. return found ? 0 : -EINVAL;
  1824. }
  1825. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1826. {
  1827. int i;
  1828. struct s390_map_info *map, *tmp;
  1829. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1830. if (!kvm->arch.adapters[i])
  1831. continue;
  1832. list_for_each_entry_safe(map, tmp,
  1833. &kvm->arch.adapters[i]->maps, list) {
  1834. list_del(&map->list);
  1835. put_page(map->page);
  1836. kfree(map);
  1837. }
  1838. kfree(kvm->arch.adapters[i]);
  1839. }
  1840. }
  1841. static int modify_io_adapter(struct kvm_device *dev,
  1842. struct kvm_device_attr *attr)
  1843. {
  1844. struct kvm_s390_io_adapter_req req;
  1845. struct s390_io_adapter *adapter;
  1846. int ret;
  1847. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1848. return -EFAULT;
  1849. adapter = get_io_adapter(dev->kvm, req.id);
  1850. if (!adapter)
  1851. return -EINVAL;
  1852. switch (req.type) {
  1853. case KVM_S390_IO_ADAPTER_MASK:
  1854. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  1855. if (ret > 0)
  1856. ret = 0;
  1857. break;
  1858. case KVM_S390_IO_ADAPTER_MAP:
  1859. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  1860. break;
  1861. case KVM_S390_IO_ADAPTER_UNMAP:
  1862. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  1863. break;
  1864. default:
  1865. ret = -EINVAL;
  1866. }
  1867. return ret;
  1868. }
  1869. static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
  1870. {
  1871. const u64 isc_mask = 0xffUL << 24; /* all iscs set */
  1872. u32 schid;
  1873. if (attr->flags)
  1874. return -EINVAL;
  1875. if (attr->attr != sizeof(schid))
  1876. return -EINVAL;
  1877. if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
  1878. return -EFAULT;
  1879. kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
  1880. /*
  1881. * If userspace is conforming to the architecture, we can have at most
  1882. * one pending I/O interrupt per subchannel, so this is effectively a
  1883. * clear all.
  1884. */
  1885. return 0;
  1886. }
  1887. static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
  1888. {
  1889. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1890. struct kvm_s390_ais_req req;
  1891. int ret = 0;
  1892. if (!test_kvm_facility(kvm, 72))
  1893. return -ENOTSUPP;
  1894. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1895. return -EFAULT;
  1896. if (req.isc > MAX_ISC)
  1897. return -EINVAL;
  1898. trace_kvm_s390_modify_ais_mode(req.isc,
  1899. (fi->simm & AIS_MODE_MASK(req.isc)) ?
  1900. (fi->nimm & AIS_MODE_MASK(req.isc)) ?
  1901. 2 : KVM_S390_AIS_MODE_SINGLE :
  1902. KVM_S390_AIS_MODE_ALL, req.mode);
  1903. mutex_lock(&fi->ais_lock);
  1904. switch (req.mode) {
  1905. case KVM_S390_AIS_MODE_ALL:
  1906. fi->simm &= ~AIS_MODE_MASK(req.isc);
  1907. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  1908. break;
  1909. case KVM_S390_AIS_MODE_SINGLE:
  1910. fi->simm |= AIS_MODE_MASK(req.isc);
  1911. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  1912. break;
  1913. default:
  1914. ret = -EINVAL;
  1915. }
  1916. mutex_unlock(&fi->ais_lock);
  1917. return ret;
  1918. }
  1919. static int kvm_s390_inject_airq(struct kvm *kvm,
  1920. struct s390_io_adapter *adapter)
  1921. {
  1922. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1923. struct kvm_s390_interrupt s390int = {
  1924. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  1925. .parm = 0,
  1926. .parm64 = (adapter->isc << 27) | 0x80000000,
  1927. };
  1928. int ret = 0;
  1929. if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
  1930. return kvm_s390_inject_vm(kvm, &s390int);
  1931. mutex_lock(&fi->ais_lock);
  1932. if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
  1933. trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
  1934. goto out;
  1935. }
  1936. ret = kvm_s390_inject_vm(kvm, &s390int);
  1937. if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
  1938. fi->nimm |= AIS_MODE_MASK(adapter->isc);
  1939. trace_kvm_s390_modify_ais_mode(adapter->isc,
  1940. KVM_S390_AIS_MODE_SINGLE, 2);
  1941. }
  1942. out:
  1943. mutex_unlock(&fi->ais_lock);
  1944. return ret;
  1945. }
  1946. static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
  1947. {
  1948. unsigned int id = attr->attr;
  1949. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1950. if (!adapter)
  1951. return -EINVAL;
  1952. return kvm_s390_inject_airq(kvm, adapter);
  1953. }
  1954. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1955. {
  1956. int r = 0;
  1957. unsigned int i;
  1958. struct kvm_vcpu *vcpu;
  1959. switch (attr->group) {
  1960. case KVM_DEV_FLIC_ENQUEUE:
  1961. r = enqueue_floating_irq(dev, attr);
  1962. break;
  1963. case KVM_DEV_FLIC_CLEAR_IRQS:
  1964. kvm_s390_clear_float_irqs(dev->kvm);
  1965. break;
  1966. case KVM_DEV_FLIC_APF_ENABLE:
  1967. dev->kvm->arch.gmap->pfault_enabled = 1;
  1968. break;
  1969. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  1970. dev->kvm->arch.gmap->pfault_enabled = 0;
  1971. /*
  1972. * Make sure no async faults are in transition when
  1973. * clearing the queues. So we don't need to worry
  1974. * about late coming workers.
  1975. */
  1976. synchronize_srcu(&dev->kvm->srcu);
  1977. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  1978. kvm_clear_async_pf_completion_queue(vcpu);
  1979. break;
  1980. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  1981. r = register_io_adapter(dev, attr);
  1982. break;
  1983. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  1984. r = modify_io_adapter(dev, attr);
  1985. break;
  1986. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  1987. r = clear_io_irq(dev->kvm, attr);
  1988. break;
  1989. case KVM_DEV_FLIC_AISM:
  1990. r = modify_ais_mode(dev->kvm, attr);
  1991. break;
  1992. case KVM_DEV_FLIC_AIRQ_INJECT:
  1993. r = flic_inject_airq(dev->kvm, attr);
  1994. break;
  1995. default:
  1996. r = -EINVAL;
  1997. }
  1998. return r;
  1999. }
  2000. static int flic_has_attr(struct kvm_device *dev,
  2001. struct kvm_device_attr *attr)
  2002. {
  2003. switch (attr->group) {
  2004. case KVM_DEV_FLIC_GET_ALL_IRQS:
  2005. case KVM_DEV_FLIC_ENQUEUE:
  2006. case KVM_DEV_FLIC_CLEAR_IRQS:
  2007. case KVM_DEV_FLIC_APF_ENABLE:
  2008. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2009. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2010. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2011. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2012. case KVM_DEV_FLIC_AISM:
  2013. case KVM_DEV_FLIC_AIRQ_INJECT:
  2014. return 0;
  2015. }
  2016. return -ENXIO;
  2017. }
  2018. static int flic_create(struct kvm_device *dev, u32 type)
  2019. {
  2020. if (!dev)
  2021. return -EINVAL;
  2022. if (dev->kvm->arch.flic)
  2023. return -EINVAL;
  2024. dev->kvm->arch.flic = dev;
  2025. return 0;
  2026. }
  2027. static void flic_destroy(struct kvm_device *dev)
  2028. {
  2029. dev->kvm->arch.flic = NULL;
  2030. kfree(dev);
  2031. }
  2032. /* s390 floating irq controller (flic) */
  2033. struct kvm_device_ops kvm_flic_ops = {
  2034. .name = "kvm-flic",
  2035. .get_attr = flic_get_attr,
  2036. .set_attr = flic_set_attr,
  2037. .has_attr = flic_has_attr,
  2038. .create = flic_create,
  2039. .destroy = flic_destroy,
  2040. };
  2041. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  2042. {
  2043. unsigned long bit;
  2044. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  2045. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  2046. }
  2047. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  2048. u64 addr)
  2049. {
  2050. struct s390_map_info *map;
  2051. if (!adapter)
  2052. return NULL;
  2053. list_for_each_entry(map, &adapter->maps, list) {
  2054. if (map->guest_addr == addr)
  2055. return map;
  2056. }
  2057. return NULL;
  2058. }
  2059. static int adapter_indicators_set(struct kvm *kvm,
  2060. struct s390_io_adapter *adapter,
  2061. struct kvm_s390_adapter_int *adapter_int)
  2062. {
  2063. unsigned long bit;
  2064. int summary_set, idx;
  2065. struct s390_map_info *info;
  2066. void *map;
  2067. info = get_map_info(adapter, adapter_int->ind_addr);
  2068. if (!info)
  2069. return -1;
  2070. map = page_address(info->page);
  2071. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  2072. set_bit(bit, map);
  2073. idx = srcu_read_lock(&kvm->srcu);
  2074. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2075. set_page_dirty_lock(info->page);
  2076. info = get_map_info(adapter, adapter_int->summary_addr);
  2077. if (!info) {
  2078. srcu_read_unlock(&kvm->srcu, idx);
  2079. return -1;
  2080. }
  2081. map = page_address(info->page);
  2082. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  2083. adapter->swap);
  2084. summary_set = test_and_set_bit(bit, map);
  2085. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2086. set_page_dirty_lock(info->page);
  2087. srcu_read_unlock(&kvm->srcu, idx);
  2088. return summary_set ? 0 : 1;
  2089. }
  2090. /*
  2091. * < 0 - not injected due to error
  2092. * = 0 - coalesced, summary indicator already active
  2093. * > 0 - injected interrupt
  2094. */
  2095. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  2096. struct kvm *kvm, int irq_source_id, int level,
  2097. bool line_status)
  2098. {
  2099. int ret;
  2100. struct s390_io_adapter *adapter;
  2101. /* We're only interested in the 0->1 transition. */
  2102. if (!level)
  2103. return 0;
  2104. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  2105. if (!adapter)
  2106. return -1;
  2107. down_read(&adapter->maps_lock);
  2108. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  2109. up_read(&adapter->maps_lock);
  2110. if ((ret > 0) && !adapter->masked) {
  2111. ret = kvm_s390_inject_airq(kvm, adapter);
  2112. if (ret == 0)
  2113. ret = 1;
  2114. }
  2115. return ret;
  2116. }
  2117. int kvm_set_routing_entry(struct kvm *kvm,
  2118. struct kvm_kernel_irq_routing_entry *e,
  2119. const struct kvm_irq_routing_entry *ue)
  2120. {
  2121. int ret;
  2122. switch (ue->type) {
  2123. case KVM_IRQ_ROUTING_S390_ADAPTER:
  2124. e->set = set_adapter_int;
  2125. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  2126. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  2127. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  2128. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  2129. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  2130. ret = 0;
  2131. break;
  2132. default:
  2133. ret = -EINVAL;
  2134. }
  2135. return ret;
  2136. }
  2137. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  2138. int irq_source_id, int level, bool line_status)
  2139. {
  2140. return -EINVAL;
  2141. }
  2142. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  2143. {
  2144. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2145. struct kvm_s390_irq *buf;
  2146. int r = 0;
  2147. int n;
  2148. buf = vmalloc(len);
  2149. if (!buf)
  2150. return -ENOMEM;
  2151. if (copy_from_user((void *) buf, irqstate, len)) {
  2152. r = -EFAULT;
  2153. goto out_free;
  2154. }
  2155. /*
  2156. * Don't allow setting the interrupt state
  2157. * when there are already interrupts pending
  2158. */
  2159. spin_lock(&li->lock);
  2160. if (li->pending_irqs) {
  2161. r = -EBUSY;
  2162. goto out_unlock;
  2163. }
  2164. for (n = 0; n < len / sizeof(*buf); n++) {
  2165. r = do_inject_vcpu(vcpu, &buf[n]);
  2166. if (r)
  2167. break;
  2168. }
  2169. out_unlock:
  2170. spin_unlock(&li->lock);
  2171. out_free:
  2172. vfree(buf);
  2173. return r;
  2174. }
  2175. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  2176. struct kvm_s390_irq *irq,
  2177. unsigned long irq_type)
  2178. {
  2179. switch (irq_type) {
  2180. case IRQ_PEND_MCHK_EX:
  2181. case IRQ_PEND_MCHK_REP:
  2182. irq->type = KVM_S390_MCHK;
  2183. irq->u.mchk = li->irq.mchk;
  2184. break;
  2185. case IRQ_PEND_PROG:
  2186. irq->type = KVM_S390_PROGRAM_INT;
  2187. irq->u.pgm = li->irq.pgm;
  2188. break;
  2189. case IRQ_PEND_PFAULT_INIT:
  2190. irq->type = KVM_S390_INT_PFAULT_INIT;
  2191. irq->u.ext = li->irq.ext;
  2192. break;
  2193. case IRQ_PEND_EXT_EXTERNAL:
  2194. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  2195. irq->u.extcall = li->irq.extcall;
  2196. break;
  2197. case IRQ_PEND_EXT_CLOCK_COMP:
  2198. irq->type = KVM_S390_INT_CLOCK_COMP;
  2199. break;
  2200. case IRQ_PEND_EXT_CPU_TIMER:
  2201. irq->type = KVM_S390_INT_CPU_TIMER;
  2202. break;
  2203. case IRQ_PEND_SIGP_STOP:
  2204. irq->type = KVM_S390_SIGP_STOP;
  2205. irq->u.stop = li->irq.stop;
  2206. break;
  2207. case IRQ_PEND_RESTART:
  2208. irq->type = KVM_S390_RESTART;
  2209. break;
  2210. case IRQ_PEND_SET_PREFIX:
  2211. irq->type = KVM_S390_SIGP_SET_PREFIX;
  2212. irq->u.prefix = li->irq.prefix;
  2213. break;
  2214. }
  2215. }
  2216. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  2217. {
  2218. int scn;
  2219. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  2220. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2221. unsigned long pending_irqs;
  2222. struct kvm_s390_irq irq;
  2223. unsigned long irq_type;
  2224. int cpuaddr;
  2225. int n = 0;
  2226. spin_lock(&li->lock);
  2227. pending_irqs = li->pending_irqs;
  2228. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  2229. sizeof(sigp_emerg_pending));
  2230. spin_unlock(&li->lock);
  2231. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  2232. memset(&irq, 0, sizeof(irq));
  2233. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  2234. continue;
  2235. if (n + sizeof(irq) > len)
  2236. return -ENOBUFS;
  2237. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  2238. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2239. return -EFAULT;
  2240. n += sizeof(irq);
  2241. }
  2242. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  2243. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  2244. memset(&irq, 0, sizeof(irq));
  2245. if (n + sizeof(irq) > len)
  2246. return -ENOBUFS;
  2247. irq.type = KVM_S390_INT_EMERGENCY;
  2248. irq.u.emerg.code = cpuaddr;
  2249. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2250. return -EFAULT;
  2251. n += sizeof(irq);
  2252. }
  2253. }
  2254. if (sca_ext_call_pending(vcpu, &scn)) {
  2255. if (n + sizeof(irq) > len)
  2256. return -ENOBUFS;
  2257. memset(&irq, 0, sizeof(irq));
  2258. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  2259. irq.u.extcall.code = scn;
  2260. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2261. return -EFAULT;
  2262. n += sizeof(irq);
  2263. }
  2264. return n;
  2265. }