sockmap.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924
  1. /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. /* A BPF sock_map is used to store sock objects. This is primarly used
  13. * for doing socket redirect with BPF helper routines.
  14. *
  15. * A sock map may have BPF programs attached to it, currently a program
  16. * used to parse packets and a program to provide a verdict and redirect
  17. * decision on the packet are supported. Any programs attached to a sock
  18. * map are inherited by sock objects when they are added to the map. If
  19. * no BPF programs are attached the sock object may only be used for sock
  20. * redirect.
  21. *
  22. * A sock object may be in multiple maps, but can only inherit a single
  23. * parse or verdict program. If adding a sock object to a map would result
  24. * in having multiple parsing programs the update will return an EBUSY error.
  25. *
  26. * For reference this program is similar to devmap used in XDP context
  27. * reviewing these together may be useful. For an example please review
  28. * ./samples/bpf/sockmap/.
  29. */
  30. #include <linux/bpf.h>
  31. #include <net/sock.h>
  32. #include <linux/filter.h>
  33. #include <linux/errno.h>
  34. #include <linux/file.h>
  35. #include <linux/kernel.h>
  36. #include <linux/net.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/list.h>
  40. #include <linux/mm.h>
  41. #include <net/strparser.h>
  42. #include <net/tcp.h>
  43. #include <linux/ptr_ring.h>
  44. #include <net/inet_common.h>
  45. #include <linux/sched/signal.h>
  46. #define SOCK_CREATE_FLAG_MASK \
  47. (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  48. struct bpf_stab {
  49. struct bpf_map map;
  50. struct sock **sock_map;
  51. struct bpf_prog *bpf_tx_msg;
  52. struct bpf_prog *bpf_parse;
  53. struct bpf_prog *bpf_verdict;
  54. };
  55. enum smap_psock_state {
  56. SMAP_TX_RUNNING,
  57. };
  58. struct smap_psock_map_entry {
  59. struct list_head list;
  60. struct sock **entry;
  61. };
  62. struct smap_psock {
  63. struct rcu_head rcu;
  64. refcount_t refcnt;
  65. /* datapath variables */
  66. struct sk_buff_head rxqueue;
  67. bool strp_enabled;
  68. /* datapath error path cache across tx work invocations */
  69. int save_rem;
  70. int save_off;
  71. struct sk_buff *save_skb;
  72. /* datapath variables for tx_msg ULP */
  73. struct sock *sk_redir;
  74. int apply_bytes;
  75. int cork_bytes;
  76. int sg_size;
  77. int eval;
  78. struct sk_msg_buff *cork;
  79. struct list_head ingress;
  80. struct strparser strp;
  81. struct bpf_prog *bpf_tx_msg;
  82. struct bpf_prog *bpf_parse;
  83. struct bpf_prog *bpf_verdict;
  84. struct list_head maps;
  85. /* Back reference used when sock callback trigger sockmap operations */
  86. struct sock *sock;
  87. unsigned long state;
  88. struct work_struct tx_work;
  89. struct work_struct gc_work;
  90. struct proto *sk_proto;
  91. void (*save_close)(struct sock *sk, long timeout);
  92. void (*save_data_ready)(struct sock *sk);
  93. void (*save_write_space)(struct sock *sk);
  94. };
  95. static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
  96. static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  97. int nonblock, int flags, int *addr_len);
  98. static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
  99. static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
  100. int offset, size_t size, int flags);
  101. static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
  102. {
  103. return rcu_dereference_sk_user_data(sk);
  104. }
  105. static bool bpf_tcp_stream_read(const struct sock *sk)
  106. {
  107. struct smap_psock *psock;
  108. bool empty = true;
  109. rcu_read_lock();
  110. psock = smap_psock_sk(sk);
  111. if (unlikely(!psock))
  112. goto out;
  113. empty = list_empty(&psock->ingress);
  114. out:
  115. rcu_read_unlock();
  116. return !empty;
  117. }
  118. static struct proto tcp_bpf_proto;
  119. static int bpf_tcp_init(struct sock *sk)
  120. {
  121. struct smap_psock *psock;
  122. rcu_read_lock();
  123. psock = smap_psock_sk(sk);
  124. if (unlikely(!psock)) {
  125. rcu_read_unlock();
  126. return -EINVAL;
  127. }
  128. if (unlikely(psock->sk_proto)) {
  129. rcu_read_unlock();
  130. return -EBUSY;
  131. }
  132. psock->save_close = sk->sk_prot->close;
  133. psock->sk_proto = sk->sk_prot;
  134. if (psock->bpf_tx_msg) {
  135. tcp_bpf_proto.sendmsg = bpf_tcp_sendmsg;
  136. tcp_bpf_proto.sendpage = bpf_tcp_sendpage;
  137. tcp_bpf_proto.recvmsg = bpf_tcp_recvmsg;
  138. tcp_bpf_proto.stream_memory_read = bpf_tcp_stream_read;
  139. }
  140. sk->sk_prot = &tcp_bpf_proto;
  141. rcu_read_unlock();
  142. return 0;
  143. }
  144. static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
  145. static int free_start_sg(struct sock *sk, struct sk_msg_buff *md);
  146. static void bpf_tcp_release(struct sock *sk)
  147. {
  148. struct smap_psock *psock;
  149. rcu_read_lock();
  150. psock = smap_psock_sk(sk);
  151. if (unlikely(!psock))
  152. goto out;
  153. if (psock->cork) {
  154. free_start_sg(psock->sock, psock->cork);
  155. kfree(psock->cork);
  156. psock->cork = NULL;
  157. }
  158. if (psock->sk_proto) {
  159. sk->sk_prot = psock->sk_proto;
  160. psock->sk_proto = NULL;
  161. }
  162. out:
  163. rcu_read_unlock();
  164. }
  165. static void bpf_tcp_close(struct sock *sk, long timeout)
  166. {
  167. void (*close_fun)(struct sock *sk, long timeout);
  168. struct smap_psock_map_entry *e, *tmp;
  169. struct sk_msg_buff *md, *mtmp;
  170. struct smap_psock *psock;
  171. struct sock *osk;
  172. rcu_read_lock();
  173. psock = smap_psock_sk(sk);
  174. if (unlikely(!psock)) {
  175. rcu_read_unlock();
  176. return sk->sk_prot->close(sk, timeout);
  177. }
  178. /* The psock may be destroyed anytime after exiting the RCU critial
  179. * section so by the time we use close_fun the psock may no longer
  180. * be valid. However, bpf_tcp_close is called with the sock lock
  181. * held so the close hook and sk are still valid.
  182. */
  183. close_fun = psock->save_close;
  184. write_lock_bh(&sk->sk_callback_lock);
  185. if (psock->cork) {
  186. free_start_sg(psock->sock, psock->cork);
  187. kfree(psock->cork);
  188. psock->cork = NULL;
  189. }
  190. list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
  191. list_del(&md->list);
  192. free_start_sg(psock->sock, md);
  193. kfree(md);
  194. }
  195. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  196. osk = cmpxchg(e->entry, sk, NULL);
  197. if (osk == sk) {
  198. list_del(&e->list);
  199. smap_release_sock(psock, sk);
  200. }
  201. }
  202. write_unlock_bh(&sk->sk_callback_lock);
  203. rcu_read_unlock();
  204. close_fun(sk, timeout);
  205. }
  206. enum __sk_action {
  207. __SK_DROP = 0,
  208. __SK_PASS,
  209. __SK_REDIRECT,
  210. __SK_NONE,
  211. };
  212. static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = {
  213. .name = "bpf_tcp",
  214. .uid = TCP_ULP_BPF,
  215. .user_visible = false,
  216. .owner = NULL,
  217. .init = bpf_tcp_init,
  218. .release = bpf_tcp_release,
  219. };
  220. static int memcopy_from_iter(struct sock *sk,
  221. struct sk_msg_buff *md,
  222. struct iov_iter *from, int bytes)
  223. {
  224. struct scatterlist *sg = md->sg_data;
  225. int i = md->sg_curr, rc = -ENOSPC;
  226. do {
  227. int copy;
  228. char *to;
  229. if (md->sg_copybreak >= sg[i].length) {
  230. md->sg_copybreak = 0;
  231. if (++i == MAX_SKB_FRAGS)
  232. i = 0;
  233. if (i == md->sg_end)
  234. break;
  235. }
  236. copy = sg[i].length - md->sg_copybreak;
  237. to = sg_virt(&sg[i]) + md->sg_copybreak;
  238. md->sg_copybreak += copy;
  239. if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
  240. rc = copy_from_iter_nocache(to, copy, from);
  241. else
  242. rc = copy_from_iter(to, copy, from);
  243. if (rc != copy) {
  244. rc = -EFAULT;
  245. goto out;
  246. }
  247. bytes -= copy;
  248. if (!bytes)
  249. break;
  250. md->sg_copybreak = 0;
  251. if (++i == MAX_SKB_FRAGS)
  252. i = 0;
  253. } while (i != md->sg_end);
  254. out:
  255. md->sg_curr = i;
  256. return rc;
  257. }
  258. static int bpf_tcp_push(struct sock *sk, int apply_bytes,
  259. struct sk_msg_buff *md,
  260. int flags, bool uncharge)
  261. {
  262. bool apply = apply_bytes;
  263. struct scatterlist *sg;
  264. int offset, ret = 0;
  265. struct page *p;
  266. size_t size;
  267. while (1) {
  268. sg = md->sg_data + md->sg_start;
  269. size = (apply && apply_bytes < sg->length) ?
  270. apply_bytes : sg->length;
  271. offset = sg->offset;
  272. tcp_rate_check_app_limited(sk);
  273. p = sg_page(sg);
  274. retry:
  275. ret = do_tcp_sendpages(sk, p, offset, size, flags);
  276. if (ret != size) {
  277. if (ret > 0) {
  278. if (apply)
  279. apply_bytes -= ret;
  280. sg->offset += ret;
  281. sg->length -= ret;
  282. size -= ret;
  283. offset += ret;
  284. if (uncharge)
  285. sk_mem_uncharge(sk, ret);
  286. goto retry;
  287. }
  288. return ret;
  289. }
  290. if (apply)
  291. apply_bytes -= ret;
  292. sg->offset += ret;
  293. sg->length -= ret;
  294. if (uncharge)
  295. sk_mem_uncharge(sk, ret);
  296. if (!sg->length) {
  297. put_page(p);
  298. md->sg_start++;
  299. if (md->sg_start == MAX_SKB_FRAGS)
  300. md->sg_start = 0;
  301. sg_init_table(sg, 1);
  302. if (md->sg_start == md->sg_end)
  303. break;
  304. }
  305. if (apply && !apply_bytes)
  306. break;
  307. }
  308. return 0;
  309. }
  310. static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md)
  311. {
  312. struct scatterlist *sg = md->sg_data + md->sg_start;
  313. if (md->sg_copy[md->sg_start]) {
  314. md->data = md->data_end = 0;
  315. } else {
  316. md->data = sg_virt(sg);
  317. md->data_end = md->data + sg->length;
  318. }
  319. }
  320. static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
  321. {
  322. struct scatterlist *sg = md->sg_data;
  323. int i = md->sg_start;
  324. do {
  325. int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length;
  326. sk_mem_uncharge(sk, uncharge);
  327. bytes -= uncharge;
  328. if (!bytes)
  329. break;
  330. i++;
  331. if (i == MAX_SKB_FRAGS)
  332. i = 0;
  333. } while (i != md->sg_end);
  334. }
  335. static void free_bytes_sg(struct sock *sk, int bytes,
  336. struct sk_msg_buff *md, bool charge)
  337. {
  338. struct scatterlist *sg = md->sg_data;
  339. int i = md->sg_start, free;
  340. while (bytes && sg[i].length) {
  341. free = sg[i].length;
  342. if (bytes < free) {
  343. sg[i].length -= bytes;
  344. sg[i].offset += bytes;
  345. if (charge)
  346. sk_mem_uncharge(sk, bytes);
  347. break;
  348. }
  349. if (charge)
  350. sk_mem_uncharge(sk, sg[i].length);
  351. put_page(sg_page(&sg[i]));
  352. bytes -= sg[i].length;
  353. sg[i].length = 0;
  354. sg[i].page_link = 0;
  355. sg[i].offset = 0;
  356. i++;
  357. if (i == MAX_SKB_FRAGS)
  358. i = 0;
  359. }
  360. md->sg_start = i;
  361. }
  362. static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md)
  363. {
  364. struct scatterlist *sg = md->sg_data;
  365. int i = start, free = 0;
  366. while (sg[i].length) {
  367. free += sg[i].length;
  368. sk_mem_uncharge(sk, sg[i].length);
  369. put_page(sg_page(&sg[i]));
  370. sg[i].length = 0;
  371. sg[i].page_link = 0;
  372. sg[i].offset = 0;
  373. i++;
  374. if (i == MAX_SKB_FRAGS)
  375. i = 0;
  376. }
  377. return free;
  378. }
  379. static int free_start_sg(struct sock *sk, struct sk_msg_buff *md)
  380. {
  381. int free = free_sg(sk, md->sg_start, md);
  382. md->sg_start = md->sg_end;
  383. return free;
  384. }
  385. static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md)
  386. {
  387. return free_sg(sk, md->sg_curr, md);
  388. }
  389. static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md)
  390. {
  391. return ((_rc == SK_PASS) ?
  392. (md->map ? __SK_REDIRECT : __SK_PASS) :
  393. __SK_DROP);
  394. }
  395. static unsigned int smap_do_tx_msg(struct sock *sk,
  396. struct smap_psock *psock,
  397. struct sk_msg_buff *md)
  398. {
  399. struct bpf_prog *prog;
  400. unsigned int rc, _rc;
  401. preempt_disable();
  402. rcu_read_lock();
  403. /* If the policy was removed mid-send then default to 'accept' */
  404. prog = READ_ONCE(psock->bpf_tx_msg);
  405. if (unlikely(!prog)) {
  406. _rc = SK_PASS;
  407. goto verdict;
  408. }
  409. bpf_compute_data_pointers_sg(md);
  410. rc = (*prog->bpf_func)(md, prog->insnsi);
  411. psock->apply_bytes = md->apply_bytes;
  412. /* Moving return codes from UAPI namespace into internal namespace */
  413. _rc = bpf_map_msg_verdict(rc, md);
  414. /* The psock has a refcount on the sock but not on the map and because
  415. * we need to drop rcu read lock here its possible the map could be
  416. * removed between here and when we need it to execute the sock
  417. * redirect. So do the map lookup now for future use.
  418. */
  419. if (_rc == __SK_REDIRECT) {
  420. if (psock->sk_redir)
  421. sock_put(psock->sk_redir);
  422. psock->sk_redir = do_msg_redirect_map(md);
  423. if (!psock->sk_redir) {
  424. _rc = __SK_DROP;
  425. goto verdict;
  426. }
  427. sock_hold(psock->sk_redir);
  428. }
  429. verdict:
  430. rcu_read_unlock();
  431. preempt_enable();
  432. return _rc;
  433. }
  434. static int bpf_tcp_ingress(struct sock *sk, int apply_bytes,
  435. struct smap_psock *psock,
  436. struct sk_msg_buff *md, int flags)
  437. {
  438. bool apply = apply_bytes;
  439. size_t size, copied = 0;
  440. struct sk_msg_buff *r;
  441. int err = 0, i;
  442. r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL);
  443. if (unlikely(!r))
  444. return -ENOMEM;
  445. lock_sock(sk);
  446. r->sg_start = md->sg_start;
  447. i = md->sg_start;
  448. do {
  449. size = (apply && apply_bytes < md->sg_data[i].length) ?
  450. apply_bytes : md->sg_data[i].length;
  451. if (!sk_wmem_schedule(sk, size)) {
  452. if (!copied)
  453. err = -ENOMEM;
  454. break;
  455. }
  456. sk_mem_charge(sk, size);
  457. r->sg_data[i] = md->sg_data[i];
  458. r->sg_data[i].length = size;
  459. md->sg_data[i].length -= size;
  460. md->sg_data[i].offset += size;
  461. copied += size;
  462. if (md->sg_data[i].length) {
  463. get_page(sg_page(&r->sg_data[i]));
  464. r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1;
  465. } else {
  466. i++;
  467. if (i == MAX_SKB_FRAGS)
  468. i = 0;
  469. r->sg_end = i;
  470. }
  471. if (apply) {
  472. apply_bytes -= size;
  473. if (!apply_bytes)
  474. break;
  475. }
  476. } while (i != md->sg_end);
  477. md->sg_start = i;
  478. if (!err) {
  479. list_add_tail(&r->list, &psock->ingress);
  480. sk->sk_data_ready(sk);
  481. } else {
  482. free_start_sg(sk, r);
  483. kfree(r);
  484. }
  485. release_sock(sk);
  486. return err;
  487. }
  488. static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send,
  489. struct sk_msg_buff *md,
  490. int flags)
  491. {
  492. bool ingress = !!(md->flags & BPF_F_INGRESS);
  493. struct smap_psock *psock;
  494. struct scatterlist *sg;
  495. int err = 0;
  496. sg = md->sg_data;
  497. rcu_read_lock();
  498. psock = smap_psock_sk(sk);
  499. if (unlikely(!psock))
  500. goto out_rcu;
  501. if (!refcount_inc_not_zero(&psock->refcnt))
  502. goto out_rcu;
  503. rcu_read_unlock();
  504. if (ingress) {
  505. err = bpf_tcp_ingress(sk, send, psock, md, flags);
  506. } else {
  507. lock_sock(sk);
  508. err = bpf_tcp_push(sk, send, md, flags, false);
  509. release_sock(sk);
  510. }
  511. smap_release_sock(psock, sk);
  512. if (unlikely(err))
  513. goto out;
  514. return 0;
  515. out_rcu:
  516. rcu_read_unlock();
  517. out:
  518. free_bytes_sg(NULL, send, md, false);
  519. return err;
  520. }
  521. static inline void bpf_md_init(struct smap_psock *psock)
  522. {
  523. if (!psock->apply_bytes) {
  524. psock->eval = __SK_NONE;
  525. if (psock->sk_redir) {
  526. sock_put(psock->sk_redir);
  527. psock->sk_redir = NULL;
  528. }
  529. }
  530. }
  531. static void apply_bytes_dec(struct smap_psock *psock, int i)
  532. {
  533. if (psock->apply_bytes) {
  534. if (psock->apply_bytes < i)
  535. psock->apply_bytes = 0;
  536. else
  537. psock->apply_bytes -= i;
  538. }
  539. }
  540. static int bpf_exec_tx_verdict(struct smap_psock *psock,
  541. struct sk_msg_buff *m,
  542. struct sock *sk,
  543. int *copied, int flags)
  544. {
  545. bool cork = false, enospc = (m->sg_start == m->sg_end);
  546. struct sock *redir;
  547. int err = 0;
  548. int send;
  549. more_data:
  550. if (psock->eval == __SK_NONE)
  551. psock->eval = smap_do_tx_msg(sk, psock, m);
  552. if (m->cork_bytes &&
  553. m->cork_bytes > psock->sg_size && !enospc) {
  554. psock->cork_bytes = m->cork_bytes - psock->sg_size;
  555. if (!psock->cork) {
  556. psock->cork = kcalloc(1,
  557. sizeof(struct sk_msg_buff),
  558. GFP_ATOMIC | __GFP_NOWARN);
  559. if (!psock->cork) {
  560. err = -ENOMEM;
  561. goto out_err;
  562. }
  563. }
  564. memcpy(psock->cork, m, sizeof(*m));
  565. goto out_err;
  566. }
  567. send = psock->sg_size;
  568. if (psock->apply_bytes && psock->apply_bytes < send)
  569. send = psock->apply_bytes;
  570. switch (psock->eval) {
  571. case __SK_PASS:
  572. err = bpf_tcp_push(sk, send, m, flags, true);
  573. if (unlikely(err)) {
  574. *copied -= free_start_sg(sk, m);
  575. break;
  576. }
  577. apply_bytes_dec(psock, send);
  578. psock->sg_size -= send;
  579. break;
  580. case __SK_REDIRECT:
  581. redir = psock->sk_redir;
  582. apply_bytes_dec(psock, send);
  583. if (psock->cork) {
  584. cork = true;
  585. psock->cork = NULL;
  586. }
  587. return_mem_sg(sk, send, m);
  588. release_sock(sk);
  589. err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags);
  590. lock_sock(sk);
  591. if (unlikely(err < 0)) {
  592. free_start_sg(sk, m);
  593. psock->sg_size = 0;
  594. if (!cork)
  595. *copied -= send;
  596. } else {
  597. psock->sg_size -= send;
  598. }
  599. if (cork) {
  600. free_start_sg(sk, m);
  601. psock->sg_size = 0;
  602. kfree(m);
  603. m = NULL;
  604. err = 0;
  605. }
  606. break;
  607. case __SK_DROP:
  608. default:
  609. free_bytes_sg(sk, send, m, true);
  610. apply_bytes_dec(psock, send);
  611. *copied -= send;
  612. psock->sg_size -= send;
  613. err = -EACCES;
  614. break;
  615. }
  616. if (likely(!err)) {
  617. bpf_md_init(psock);
  618. if (m &&
  619. m->sg_data[m->sg_start].page_link &&
  620. m->sg_data[m->sg_start].length)
  621. goto more_data;
  622. }
  623. out_err:
  624. return err;
  625. }
  626. static int bpf_wait_data(struct sock *sk,
  627. struct smap_psock *psk, int flags,
  628. long timeo, int *err)
  629. {
  630. int rc;
  631. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  632. add_wait_queue(sk_sleep(sk), &wait);
  633. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  634. rc = sk_wait_event(sk, &timeo,
  635. !list_empty(&psk->ingress) ||
  636. !skb_queue_empty(&sk->sk_receive_queue),
  637. &wait);
  638. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  639. remove_wait_queue(sk_sleep(sk), &wait);
  640. return rc;
  641. }
  642. static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  643. int nonblock, int flags, int *addr_len)
  644. {
  645. struct iov_iter *iter = &msg->msg_iter;
  646. struct smap_psock *psock;
  647. int copied = 0;
  648. if (unlikely(flags & MSG_ERRQUEUE))
  649. return inet_recv_error(sk, msg, len, addr_len);
  650. rcu_read_lock();
  651. psock = smap_psock_sk(sk);
  652. if (unlikely(!psock))
  653. goto out;
  654. if (unlikely(!refcount_inc_not_zero(&psock->refcnt)))
  655. goto out;
  656. rcu_read_unlock();
  657. if (!skb_queue_empty(&sk->sk_receive_queue))
  658. return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  659. lock_sock(sk);
  660. bytes_ready:
  661. while (copied != len) {
  662. struct scatterlist *sg;
  663. struct sk_msg_buff *md;
  664. int i;
  665. md = list_first_entry_or_null(&psock->ingress,
  666. struct sk_msg_buff, list);
  667. if (unlikely(!md))
  668. break;
  669. i = md->sg_start;
  670. do {
  671. struct page *page;
  672. int n, copy;
  673. sg = &md->sg_data[i];
  674. copy = sg->length;
  675. page = sg_page(sg);
  676. if (copied + copy > len)
  677. copy = len - copied;
  678. n = copy_page_to_iter(page, sg->offset, copy, iter);
  679. if (n != copy) {
  680. md->sg_start = i;
  681. release_sock(sk);
  682. smap_release_sock(psock, sk);
  683. return -EFAULT;
  684. }
  685. copied += copy;
  686. sg->offset += copy;
  687. sg->length -= copy;
  688. sk_mem_uncharge(sk, copy);
  689. if (!sg->length) {
  690. i++;
  691. if (i == MAX_SKB_FRAGS)
  692. i = 0;
  693. if (!md->skb)
  694. put_page(page);
  695. }
  696. if (copied == len)
  697. break;
  698. } while (i != md->sg_end);
  699. md->sg_start = i;
  700. if (!sg->length && md->sg_start == md->sg_end) {
  701. list_del(&md->list);
  702. if (md->skb)
  703. consume_skb(md->skb);
  704. kfree(md);
  705. }
  706. }
  707. if (!copied) {
  708. long timeo;
  709. int data;
  710. int err = 0;
  711. timeo = sock_rcvtimeo(sk, nonblock);
  712. data = bpf_wait_data(sk, psock, flags, timeo, &err);
  713. if (data) {
  714. if (!skb_queue_empty(&sk->sk_receive_queue)) {
  715. release_sock(sk);
  716. smap_release_sock(psock, sk);
  717. copied = tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  718. return copied;
  719. }
  720. goto bytes_ready;
  721. }
  722. if (err)
  723. copied = err;
  724. }
  725. release_sock(sk);
  726. smap_release_sock(psock, sk);
  727. return copied;
  728. out:
  729. rcu_read_unlock();
  730. return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  731. }
  732. static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
  733. {
  734. int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS;
  735. struct sk_msg_buff md = {0};
  736. unsigned int sg_copy = 0;
  737. struct smap_psock *psock;
  738. int copied = 0, err = 0;
  739. struct scatterlist *sg;
  740. long timeo;
  741. /* Its possible a sock event or user removed the psock _but_ the ops
  742. * have not been reprogrammed yet so we get here. In this case fallback
  743. * to tcp_sendmsg. Note this only works because we _only_ ever allow
  744. * a single ULP there is no hierarchy here.
  745. */
  746. rcu_read_lock();
  747. psock = smap_psock_sk(sk);
  748. if (unlikely(!psock)) {
  749. rcu_read_unlock();
  750. return tcp_sendmsg(sk, msg, size);
  751. }
  752. /* Increment the psock refcnt to ensure its not released while sending a
  753. * message. Required because sk lookup and bpf programs are used in
  754. * separate rcu critical sections. Its OK if we lose the map entry
  755. * but we can't lose the sock reference.
  756. */
  757. if (!refcount_inc_not_zero(&psock->refcnt)) {
  758. rcu_read_unlock();
  759. return tcp_sendmsg(sk, msg, size);
  760. }
  761. sg = md.sg_data;
  762. sg_init_marker(sg, MAX_SKB_FRAGS);
  763. rcu_read_unlock();
  764. lock_sock(sk);
  765. timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
  766. while (msg_data_left(msg)) {
  767. struct sk_msg_buff *m;
  768. bool enospc = false;
  769. int copy;
  770. if (sk->sk_err) {
  771. err = sk->sk_err;
  772. goto out_err;
  773. }
  774. copy = msg_data_left(msg);
  775. if (!sk_stream_memory_free(sk))
  776. goto wait_for_sndbuf;
  777. m = psock->cork_bytes ? psock->cork : &md;
  778. m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end;
  779. err = sk_alloc_sg(sk, copy, m->sg_data,
  780. m->sg_start, &m->sg_end, &sg_copy,
  781. m->sg_end - 1);
  782. if (err) {
  783. if (err != -ENOSPC)
  784. goto wait_for_memory;
  785. enospc = true;
  786. copy = sg_copy;
  787. }
  788. err = memcopy_from_iter(sk, m, &msg->msg_iter, copy);
  789. if (err < 0) {
  790. free_curr_sg(sk, m);
  791. goto out_err;
  792. }
  793. psock->sg_size += copy;
  794. copied += copy;
  795. sg_copy = 0;
  796. /* When bytes are being corked skip running BPF program and
  797. * applying verdict unless there is no more buffer space. In
  798. * the ENOSPC case simply run BPF prorgram with currently
  799. * accumulated data. We don't have much choice at this point
  800. * we could try extending the page frags or chaining complex
  801. * frags but even in these cases _eventually_ we will hit an
  802. * OOM scenario. More complex recovery schemes may be
  803. * implemented in the future, but BPF programs must handle
  804. * the case where apply_cork requests are not honored. The
  805. * canonical method to verify this is to check data length.
  806. */
  807. if (psock->cork_bytes) {
  808. if (copy > psock->cork_bytes)
  809. psock->cork_bytes = 0;
  810. else
  811. psock->cork_bytes -= copy;
  812. if (psock->cork_bytes && !enospc)
  813. goto out_cork;
  814. /* All cork bytes accounted for re-run filter */
  815. psock->eval = __SK_NONE;
  816. psock->cork_bytes = 0;
  817. }
  818. err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
  819. if (unlikely(err < 0))
  820. goto out_err;
  821. continue;
  822. wait_for_sndbuf:
  823. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  824. wait_for_memory:
  825. err = sk_stream_wait_memory(sk, &timeo);
  826. if (err)
  827. goto out_err;
  828. }
  829. out_err:
  830. if (err < 0)
  831. err = sk_stream_error(sk, msg->msg_flags, err);
  832. out_cork:
  833. release_sock(sk);
  834. smap_release_sock(psock, sk);
  835. return copied ? copied : err;
  836. }
  837. static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
  838. int offset, size_t size, int flags)
  839. {
  840. struct sk_msg_buff md = {0}, *m = NULL;
  841. int err = 0, copied = 0;
  842. struct smap_psock *psock;
  843. struct scatterlist *sg;
  844. bool enospc = false;
  845. rcu_read_lock();
  846. psock = smap_psock_sk(sk);
  847. if (unlikely(!psock))
  848. goto accept;
  849. if (!refcount_inc_not_zero(&psock->refcnt))
  850. goto accept;
  851. rcu_read_unlock();
  852. lock_sock(sk);
  853. if (psock->cork_bytes) {
  854. m = psock->cork;
  855. sg = &m->sg_data[m->sg_end];
  856. } else {
  857. m = &md;
  858. sg = m->sg_data;
  859. sg_init_marker(sg, MAX_SKB_FRAGS);
  860. }
  861. /* Catch case where ring is full and sendpage is stalled. */
  862. if (unlikely(m->sg_end == m->sg_start &&
  863. m->sg_data[m->sg_end].length))
  864. goto out_err;
  865. psock->sg_size += size;
  866. sg_set_page(sg, page, size, offset);
  867. get_page(page);
  868. m->sg_copy[m->sg_end] = true;
  869. sk_mem_charge(sk, size);
  870. m->sg_end++;
  871. copied = size;
  872. if (m->sg_end == MAX_SKB_FRAGS)
  873. m->sg_end = 0;
  874. if (m->sg_end == m->sg_start)
  875. enospc = true;
  876. if (psock->cork_bytes) {
  877. if (size > psock->cork_bytes)
  878. psock->cork_bytes = 0;
  879. else
  880. psock->cork_bytes -= size;
  881. if (psock->cork_bytes && !enospc)
  882. goto out_err;
  883. /* All cork bytes accounted for re-run filter */
  884. psock->eval = __SK_NONE;
  885. psock->cork_bytes = 0;
  886. }
  887. err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
  888. out_err:
  889. release_sock(sk);
  890. smap_release_sock(psock, sk);
  891. return copied ? copied : err;
  892. accept:
  893. rcu_read_unlock();
  894. return tcp_sendpage(sk, page, offset, size, flags);
  895. }
  896. static void bpf_tcp_msg_add(struct smap_psock *psock,
  897. struct sock *sk,
  898. struct bpf_prog *tx_msg)
  899. {
  900. struct bpf_prog *orig_tx_msg;
  901. orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg);
  902. if (orig_tx_msg)
  903. bpf_prog_put(orig_tx_msg);
  904. }
  905. static int bpf_tcp_ulp_register(void)
  906. {
  907. tcp_bpf_proto = tcp_prot;
  908. tcp_bpf_proto.close = bpf_tcp_close;
  909. /* Once BPF TX ULP is registered it is never unregistered. It
  910. * will be in the ULP list for the lifetime of the system. Doing
  911. * duplicate registers is not a problem.
  912. */
  913. return tcp_register_ulp(&bpf_tcp_ulp_ops);
  914. }
  915. static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
  916. {
  917. struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
  918. int rc;
  919. if (unlikely(!prog))
  920. return __SK_DROP;
  921. skb_orphan(skb);
  922. /* We need to ensure that BPF metadata for maps is also cleared
  923. * when we orphan the skb so that we don't have the possibility
  924. * to reference a stale map.
  925. */
  926. TCP_SKB_CB(skb)->bpf.map = NULL;
  927. skb->sk = psock->sock;
  928. bpf_compute_data_pointers(skb);
  929. preempt_disable();
  930. rc = (*prog->bpf_func)(skb, prog->insnsi);
  931. preempt_enable();
  932. skb->sk = NULL;
  933. /* Moving return codes from UAPI namespace into internal namespace */
  934. return rc == SK_PASS ?
  935. (TCP_SKB_CB(skb)->bpf.map ? __SK_REDIRECT : __SK_PASS) :
  936. __SK_DROP;
  937. }
  938. static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb)
  939. {
  940. struct sock *sk = psock->sock;
  941. int copied = 0, num_sg;
  942. struct sk_msg_buff *r;
  943. r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC);
  944. if (unlikely(!r))
  945. return -EAGAIN;
  946. if (!sk_rmem_schedule(sk, skb, skb->len)) {
  947. kfree(r);
  948. return -EAGAIN;
  949. }
  950. sg_init_table(r->sg_data, MAX_SKB_FRAGS);
  951. num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len);
  952. if (unlikely(num_sg < 0)) {
  953. kfree(r);
  954. return num_sg;
  955. }
  956. sk_mem_charge(sk, skb->len);
  957. copied = skb->len;
  958. r->sg_start = 0;
  959. r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg;
  960. r->skb = skb;
  961. list_add_tail(&r->list, &psock->ingress);
  962. sk->sk_data_ready(sk);
  963. return copied;
  964. }
  965. static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
  966. {
  967. struct smap_psock *peer;
  968. struct sock *sk;
  969. __u32 in;
  970. int rc;
  971. rc = smap_verdict_func(psock, skb);
  972. switch (rc) {
  973. case __SK_REDIRECT:
  974. sk = do_sk_redirect_map(skb);
  975. if (!sk) {
  976. kfree_skb(skb);
  977. break;
  978. }
  979. peer = smap_psock_sk(sk);
  980. in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
  981. if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) ||
  982. !test_bit(SMAP_TX_RUNNING, &peer->state))) {
  983. kfree_skb(skb);
  984. break;
  985. }
  986. if (!in && sock_writeable(sk)) {
  987. skb_set_owner_w(skb, sk);
  988. skb_queue_tail(&peer->rxqueue, skb);
  989. schedule_work(&peer->tx_work);
  990. break;
  991. } else if (in &&
  992. atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  993. skb_queue_tail(&peer->rxqueue, skb);
  994. schedule_work(&peer->tx_work);
  995. break;
  996. }
  997. /* Fall through and free skb otherwise */
  998. case __SK_DROP:
  999. default:
  1000. kfree_skb(skb);
  1001. }
  1002. }
  1003. static void smap_report_sk_error(struct smap_psock *psock, int err)
  1004. {
  1005. struct sock *sk = psock->sock;
  1006. sk->sk_err = err;
  1007. sk->sk_error_report(sk);
  1008. }
  1009. static void smap_read_sock_strparser(struct strparser *strp,
  1010. struct sk_buff *skb)
  1011. {
  1012. struct smap_psock *psock;
  1013. rcu_read_lock();
  1014. psock = container_of(strp, struct smap_psock, strp);
  1015. smap_do_verdict(psock, skb);
  1016. rcu_read_unlock();
  1017. }
  1018. /* Called with lock held on socket */
  1019. static void smap_data_ready(struct sock *sk)
  1020. {
  1021. struct smap_psock *psock;
  1022. rcu_read_lock();
  1023. psock = smap_psock_sk(sk);
  1024. if (likely(psock)) {
  1025. write_lock_bh(&sk->sk_callback_lock);
  1026. strp_data_ready(&psock->strp);
  1027. write_unlock_bh(&sk->sk_callback_lock);
  1028. }
  1029. rcu_read_unlock();
  1030. }
  1031. static void smap_tx_work(struct work_struct *w)
  1032. {
  1033. struct smap_psock *psock;
  1034. struct sk_buff *skb;
  1035. int rem, off, n;
  1036. psock = container_of(w, struct smap_psock, tx_work);
  1037. /* lock sock to avoid losing sk_socket at some point during loop */
  1038. lock_sock(psock->sock);
  1039. if (psock->save_skb) {
  1040. skb = psock->save_skb;
  1041. rem = psock->save_rem;
  1042. off = psock->save_off;
  1043. psock->save_skb = NULL;
  1044. goto start;
  1045. }
  1046. while ((skb = skb_dequeue(&psock->rxqueue))) {
  1047. __u32 flags;
  1048. rem = skb->len;
  1049. off = 0;
  1050. start:
  1051. flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
  1052. do {
  1053. if (likely(psock->sock->sk_socket)) {
  1054. if (flags)
  1055. n = smap_do_ingress(psock, skb);
  1056. else
  1057. n = skb_send_sock_locked(psock->sock,
  1058. skb, off, rem);
  1059. } else {
  1060. n = -EINVAL;
  1061. }
  1062. if (n <= 0) {
  1063. if (n == -EAGAIN) {
  1064. /* Retry when space is available */
  1065. psock->save_skb = skb;
  1066. psock->save_rem = rem;
  1067. psock->save_off = off;
  1068. goto out;
  1069. }
  1070. /* Hard errors break pipe and stop xmit */
  1071. smap_report_sk_error(psock, n ? -n : EPIPE);
  1072. clear_bit(SMAP_TX_RUNNING, &psock->state);
  1073. kfree_skb(skb);
  1074. goto out;
  1075. }
  1076. rem -= n;
  1077. off += n;
  1078. } while (rem);
  1079. if (!flags)
  1080. kfree_skb(skb);
  1081. }
  1082. out:
  1083. release_sock(psock->sock);
  1084. }
  1085. static void smap_write_space(struct sock *sk)
  1086. {
  1087. struct smap_psock *psock;
  1088. rcu_read_lock();
  1089. psock = smap_psock_sk(sk);
  1090. if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
  1091. schedule_work(&psock->tx_work);
  1092. rcu_read_unlock();
  1093. }
  1094. static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
  1095. {
  1096. if (!psock->strp_enabled)
  1097. return;
  1098. sk->sk_data_ready = psock->save_data_ready;
  1099. sk->sk_write_space = psock->save_write_space;
  1100. psock->save_data_ready = NULL;
  1101. psock->save_write_space = NULL;
  1102. strp_stop(&psock->strp);
  1103. psock->strp_enabled = false;
  1104. }
  1105. static void smap_destroy_psock(struct rcu_head *rcu)
  1106. {
  1107. struct smap_psock *psock = container_of(rcu,
  1108. struct smap_psock, rcu);
  1109. /* Now that a grace period has passed there is no longer
  1110. * any reference to this sock in the sockmap so we can
  1111. * destroy the psock, strparser, and bpf programs. But,
  1112. * because we use workqueue sync operations we can not
  1113. * do it in rcu context
  1114. */
  1115. schedule_work(&psock->gc_work);
  1116. }
  1117. static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
  1118. {
  1119. if (refcount_dec_and_test(&psock->refcnt)) {
  1120. tcp_cleanup_ulp(sock);
  1121. smap_stop_sock(psock, sock);
  1122. clear_bit(SMAP_TX_RUNNING, &psock->state);
  1123. rcu_assign_sk_user_data(sock, NULL);
  1124. call_rcu_sched(&psock->rcu, smap_destroy_psock);
  1125. }
  1126. }
  1127. static int smap_parse_func_strparser(struct strparser *strp,
  1128. struct sk_buff *skb)
  1129. {
  1130. struct smap_psock *psock;
  1131. struct bpf_prog *prog;
  1132. int rc;
  1133. rcu_read_lock();
  1134. psock = container_of(strp, struct smap_psock, strp);
  1135. prog = READ_ONCE(psock->bpf_parse);
  1136. if (unlikely(!prog)) {
  1137. rcu_read_unlock();
  1138. return skb->len;
  1139. }
  1140. /* Attach socket for bpf program to use if needed we can do this
  1141. * because strparser clones the skb before handing it to a upper
  1142. * layer, meaning skb_orphan has been called. We NULL sk on the
  1143. * way out to ensure we don't trigger a BUG_ON in skb/sk operations
  1144. * later and because we are not charging the memory of this skb to
  1145. * any socket yet.
  1146. */
  1147. skb->sk = psock->sock;
  1148. bpf_compute_data_pointers(skb);
  1149. rc = (*prog->bpf_func)(skb, prog->insnsi);
  1150. skb->sk = NULL;
  1151. rcu_read_unlock();
  1152. return rc;
  1153. }
  1154. static int smap_read_sock_done(struct strparser *strp, int err)
  1155. {
  1156. return err;
  1157. }
  1158. static int smap_init_sock(struct smap_psock *psock,
  1159. struct sock *sk)
  1160. {
  1161. static const struct strp_callbacks cb = {
  1162. .rcv_msg = smap_read_sock_strparser,
  1163. .parse_msg = smap_parse_func_strparser,
  1164. .read_sock_done = smap_read_sock_done,
  1165. };
  1166. return strp_init(&psock->strp, sk, &cb);
  1167. }
  1168. static void smap_init_progs(struct smap_psock *psock,
  1169. struct bpf_stab *stab,
  1170. struct bpf_prog *verdict,
  1171. struct bpf_prog *parse)
  1172. {
  1173. struct bpf_prog *orig_parse, *orig_verdict;
  1174. orig_parse = xchg(&psock->bpf_parse, parse);
  1175. orig_verdict = xchg(&psock->bpf_verdict, verdict);
  1176. if (orig_verdict)
  1177. bpf_prog_put(orig_verdict);
  1178. if (orig_parse)
  1179. bpf_prog_put(orig_parse);
  1180. }
  1181. static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
  1182. {
  1183. if (sk->sk_data_ready == smap_data_ready)
  1184. return;
  1185. psock->save_data_ready = sk->sk_data_ready;
  1186. psock->save_write_space = sk->sk_write_space;
  1187. sk->sk_data_ready = smap_data_ready;
  1188. sk->sk_write_space = smap_write_space;
  1189. psock->strp_enabled = true;
  1190. }
  1191. static void sock_map_remove_complete(struct bpf_stab *stab)
  1192. {
  1193. bpf_map_area_free(stab->sock_map);
  1194. kfree(stab);
  1195. }
  1196. static void smap_gc_work(struct work_struct *w)
  1197. {
  1198. struct smap_psock_map_entry *e, *tmp;
  1199. struct sk_msg_buff *md, *mtmp;
  1200. struct smap_psock *psock;
  1201. psock = container_of(w, struct smap_psock, gc_work);
  1202. /* no callback lock needed because we already detached sockmap ops */
  1203. if (psock->strp_enabled)
  1204. strp_done(&psock->strp);
  1205. cancel_work_sync(&psock->tx_work);
  1206. __skb_queue_purge(&psock->rxqueue);
  1207. /* At this point all strparser and xmit work must be complete */
  1208. if (psock->bpf_parse)
  1209. bpf_prog_put(psock->bpf_parse);
  1210. if (psock->bpf_verdict)
  1211. bpf_prog_put(psock->bpf_verdict);
  1212. if (psock->bpf_tx_msg)
  1213. bpf_prog_put(psock->bpf_tx_msg);
  1214. if (psock->cork) {
  1215. free_start_sg(psock->sock, psock->cork);
  1216. kfree(psock->cork);
  1217. }
  1218. list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
  1219. list_del(&md->list);
  1220. free_start_sg(psock->sock, md);
  1221. kfree(md);
  1222. }
  1223. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1224. list_del(&e->list);
  1225. kfree(e);
  1226. }
  1227. if (psock->sk_redir)
  1228. sock_put(psock->sk_redir);
  1229. sock_put(psock->sock);
  1230. kfree(psock);
  1231. }
  1232. static struct smap_psock *smap_init_psock(struct sock *sock,
  1233. struct bpf_stab *stab)
  1234. {
  1235. struct smap_psock *psock;
  1236. psock = kzalloc_node(sizeof(struct smap_psock),
  1237. GFP_ATOMIC | __GFP_NOWARN,
  1238. stab->map.numa_node);
  1239. if (!psock)
  1240. return ERR_PTR(-ENOMEM);
  1241. psock->eval = __SK_NONE;
  1242. psock->sock = sock;
  1243. skb_queue_head_init(&psock->rxqueue);
  1244. INIT_WORK(&psock->tx_work, smap_tx_work);
  1245. INIT_WORK(&psock->gc_work, smap_gc_work);
  1246. INIT_LIST_HEAD(&psock->maps);
  1247. INIT_LIST_HEAD(&psock->ingress);
  1248. refcount_set(&psock->refcnt, 1);
  1249. rcu_assign_sk_user_data(sock, psock);
  1250. sock_hold(sock);
  1251. return psock;
  1252. }
  1253. static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
  1254. {
  1255. struct bpf_stab *stab;
  1256. u64 cost;
  1257. int err;
  1258. if (!capable(CAP_NET_ADMIN))
  1259. return ERR_PTR(-EPERM);
  1260. /* check sanity of attributes */
  1261. if (attr->max_entries == 0 || attr->key_size != 4 ||
  1262. attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
  1263. return ERR_PTR(-EINVAL);
  1264. err = bpf_tcp_ulp_register();
  1265. if (err && err != -EEXIST)
  1266. return ERR_PTR(err);
  1267. stab = kzalloc(sizeof(*stab), GFP_USER);
  1268. if (!stab)
  1269. return ERR_PTR(-ENOMEM);
  1270. bpf_map_init_from_attr(&stab->map, attr);
  1271. /* make sure page count doesn't overflow */
  1272. cost = (u64) stab->map.max_entries * sizeof(struct sock *);
  1273. err = -EINVAL;
  1274. if (cost >= U32_MAX - PAGE_SIZE)
  1275. goto free_stab;
  1276. stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  1277. /* if map size is larger than memlock limit, reject it early */
  1278. err = bpf_map_precharge_memlock(stab->map.pages);
  1279. if (err)
  1280. goto free_stab;
  1281. err = -ENOMEM;
  1282. stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
  1283. sizeof(struct sock *),
  1284. stab->map.numa_node);
  1285. if (!stab->sock_map)
  1286. goto free_stab;
  1287. return &stab->map;
  1288. free_stab:
  1289. kfree(stab);
  1290. return ERR_PTR(err);
  1291. }
  1292. static void smap_list_remove(struct smap_psock *psock, struct sock **entry)
  1293. {
  1294. struct smap_psock_map_entry *e, *tmp;
  1295. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1296. if (e->entry == entry) {
  1297. list_del(&e->list);
  1298. break;
  1299. }
  1300. }
  1301. }
  1302. static void sock_map_free(struct bpf_map *map)
  1303. {
  1304. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1305. int i;
  1306. synchronize_rcu();
  1307. /* At this point no update, lookup or delete operations can happen.
  1308. * However, be aware we can still get a socket state event updates,
  1309. * and data ready callabacks that reference the psock from sk_user_data
  1310. * Also psock worker threads are still in-flight. So smap_release_sock
  1311. * will only free the psock after cancel_sync on the worker threads
  1312. * and a grace period expire to ensure psock is really safe to remove.
  1313. */
  1314. rcu_read_lock();
  1315. for (i = 0; i < stab->map.max_entries; i++) {
  1316. struct smap_psock *psock;
  1317. struct sock *sock;
  1318. sock = xchg(&stab->sock_map[i], NULL);
  1319. if (!sock)
  1320. continue;
  1321. write_lock_bh(&sock->sk_callback_lock);
  1322. psock = smap_psock_sk(sock);
  1323. /* This check handles a racing sock event that can get the
  1324. * sk_callback_lock before this case but after xchg happens
  1325. * causing the refcnt to hit zero and sock user data (psock)
  1326. * to be null and queued for garbage collection.
  1327. */
  1328. if (likely(psock)) {
  1329. smap_list_remove(psock, &stab->sock_map[i]);
  1330. smap_release_sock(psock, sock);
  1331. }
  1332. write_unlock_bh(&sock->sk_callback_lock);
  1333. }
  1334. rcu_read_unlock();
  1335. sock_map_remove_complete(stab);
  1336. }
  1337. static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  1338. {
  1339. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1340. u32 i = key ? *(u32 *)key : U32_MAX;
  1341. u32 *next = (u32 *)next_key;
  1342. if (i >= stab->map.max_entries) {
  1343. *next = 0;
  1344. return 0;
  1345. }
  1346. if (i == stab->map.max_entries - 1)
  1347. return -ENOENT;
  1348. *next = i + 1;
  1349. return 0;
  1350. }
  1351. struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
  1352. {
  1353. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1354. if (key >= map->max_entries)
  1355. return NULL;
  1356. return READ_ONCE(stab->sock_map[key]);
  1357. }
  1358. static int sock_map_delete_elem(struct bpf_map *map, void *key)
  1359. {
  1360. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1361. struct smap_psock *psock;
  1362. int k = *(u32 *)key;
  1363. struct sock *sock;
  1364. if (k >= map->max_entries)
  1365. return -EINVAL;
  1366. sock = xchg(&stab->sock_map[k], NULL);
  1367. if (!sock)
  1368. return -EINVAL;
  1369. write_lock_bh(&sock->sk_callback_lock);
  1370. psock = smap_psock_sk(sock);
  1371. if (!psock)
  1372. goto out;
  1373. if (psock->bpf_parse)
  1374. smap_stop_sock(psock, sock);
  1375. smap_list_remove(psock, &stab->sock_map[k]);
  1376. smap_release_sock(psock, sock);
  1377. out:
  1378. write_unlock_bh(&sock->sk_callback_lock);
  1379. return 0;
  1380. }
  1381. /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
  1382. * done inside rcu critical sections. This ensures on updates that the psock
  1383. * will not be released via smap_release_sock() until concurrent updates/deletes
  1384. * complete. All operations operate on sock_map using cmpxchg and xchg
  1385. * operations to ensure we do not get stale references. Any reads into the
  1386. * map must be done with READ_ONCE() because of this.
  1387. *
  1388. * A psock is destroyed via call_rcu and after any worker threads are cancelled
  1389. * and syncd so we are certain all references from the update/lookup/delete
  1390. * operations as well as references in the data path are no longer in use.
  1391. *
  1392. * Psocks may exist in multiple maps, but only a single set of parse/verdict
  1393. * programs may be inherited from the maps it belongs to. A reference count
  1394. * is kept with the total number of references to the psock from all maps. The
  1395. * psock will not be released until this reaches zero. The psock and sock
  1396. * user data data use the sk_callback_lock to protect critical data structures
  1397. * from concurrent access. This allows us to avoid two updates from modifying
  1398. * the user data in sock and the lock is required anyways for modifying
  1399. * callbacks, we simply increase its scope slightly.
  1400. *
  1401. * Rules to follow,
  1402. * - psock must always be read inside RCU critical section
  1403. * - sk_user_data must only be modified inside sk_callback_lock and read
  1404. * inside RCU critical section.
  1405. * - psock->maps list must only be read & modified inside sk_callback_lock
  1406. * - sock_map must use READ_ONCE and (cmp)xchg operations
  1407. * - BPF verdict/parse programs must use READ_ONCE and xchg operations
  1408. */
  1409. static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
  1410. struct bpf_map *map,
  1411. void *key, u64 flags)
  1412. {
  1413. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1414. struct smap_psock_map_entry *e = NULL;
  1415. struct bpf_prog *verdict, *parse, *tx_msg;
  1416. struct sock *osock, *sock;
  1417. struct smap_psock *psock;
  1418. u32 i = *(u32 *)key;
  1419. bool new = false;
  1420. int err;
  1421. if (unlikely(flags > BPF_EXIST))
  1422. return -EINVAL;
  1423. if (unlikely(i >= stab->map.max_entries))
  1424. return -E2BIG;
  1425. sock = READ_ONCE(stab->sock_map[i]);
  1426. if (flags == BPF_EXIST && !sock)
  1427. return -ENOENT;
  1428. else if (flags == BPF_NOEXIST && sock)
  1429. return -EEXIST;
  1430. sock = skops->sk;
  1431. /* 1. If sock map has BPF programs those will be inherited by the
  1432. * sock being added. If the sock is already attached to BPF programs
  1433. * this results in an error.
  1434. */
  1435. verdict = READ_ONCE(stab->bpf_verdict);
  1436. parse = READ_ONCE(stab->bpf_parse);
  1437. tx_msg = READ_ONCE(stab->bpf_tx_msg);
  1438. if (parse && verdict) {
  1439. /* bpf prog refcnt may be zero if a concurrent attach operation
  1440. * removes the program after the above READ_ONCE() but before
  1441. * we increment the refcnt. If this is the case abort with an
  1442. * error.
  1443. */
  1444. verdict = bpf_prog_inc_not_zero(stab->bpf_verdict);
  1445. if (IS_ERR(verdict))
  1446. return PTR_ERR(verdict);
  1447. parse = bpf_prog_inc_not_zero(stab->bpf_parse);
  1448. if (IS_ERR(parse)) {
  1449. bpf_prog_put(verdict);
  1450. return PTR_ERR(parse);
  1451. }
  1452. }
  1453. if (tx_msg) {
  1454. tx_msg = bpf_prog_inc_not_zero(stab->bpf_tx_msg);
  1455. if (IS_ERR(tx_msg)) {
  1456. if (verdict)
  1457. bpf_prog_put(verdict);
  1458. if (parse)
  1459. bpf_prog_put(parse);
  1460. return PTR_ERR(tx_msg);
  1461. }
  1462. }
  1463. write_lock_bh(&sock->sk_callback_lock);
  1464. psock = smap_psock_sk(sock);
  1465. /* 2. Do not allow inheriting programs if psock exists and has
  1466. * already inherited programs. This would create confusion on
  1467. * which parser/verdict program is running. If no psock exists
  1468. * create one. Inside sk_callback_lock to ensure concurrent create
  1469. * doesn't update user data.
  1470. */
  1471. if (psock) {
  1472. if (READ_ONCE(psock->bpf_parse) && parse) {
  1473. err = -EBUSY;
  1474. goto out_progs;
  1475. }
  1476. if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) {
  1477. err = -EBUSY;
  1478. goto out_progs;
  1479. }
  1480. if (!refcount_inc_not_zero(&psock->refcnt)) {
  1481. err = -EAGAIN;
  1482. goto out_progs;
  1483. }
  1484. } else {
  1485. psock = smap_init_psock(sock, stab);
  1486. if (IS_ERR(psock)) {
  1487. err = PTR_ERR(psock);
  1488. goto out_progs;
  1489. }
  1490. set_bit(SMAP_TX_RUNNING, &psock->state);
  1491. new = true;
  1492. }
  1493. e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
  1494. if (!e) {
  1495. err = -ENOMEM;
  1496. goto out_progs;
  1497. }
  1498. e->entry = &stab->sock_map[i];
  1499. /* 3. At this point we have a reference to a valid psock that is
  1500. * running. Attach any BPF programs needed.
  1501. */
  1502. if (tx_msg)
  1503. bpf_tcp_msg_add(psock, sock, tx_msg);
  1504. if (new) {
  1505. err = tcp_set_ulp_id(sock, TCP_ULP_BPF);
  1506. if (err)
  1507. goto out_free;
  1508. }
  1509. if (parse && verdict && !psock->strp_enabled) {
  1510. err = smap_init_sock(psock, sock);
  1511. if (err)
  1512. goto out_free;
  1513. smap_init_progs(psock, stab, verdict, parse);
  1514. smap_start_sock(psock, sock);
  1515. }
  1516. /* 4. Place psock in sockmap for use and stop any programs on
  1517. * the old sock assuming its not the same sock we are replacing
  1518. * it with. Because we can only have a single set of programs if
  1519. * old_sock has a strp we can stop it.
  1520. */
  1521. list_add_tail(&e->list, &psock->maps);
  1522. write_unlock_bh(&sock->sk_callback_lock);
  1523. osock = xchg(&stab->sock_map[i], sock);
  1524. if (osock) {
  1525. struct smap_psock *opsock = smap_psock_sk(osock);
  1526. write_lock_bh(&osock->sk_callback_lock);
  1527. smap_list_remove(opsock, &stab->sock_map[i]);
  1528. smap_release_sock(opsock, osock);
  1529. write_unlock_bh(&osock->sk_callback_lock);
  1530. }
  1531. return 0;
  1532. out_free:
  1533. smap_release_sock(psock, sock);
  1534. out_progs:
  1535. if (verdict)
  1536. bpf_prog_put(verdict);
  1537. if (parse)
  1538. bpf_prog_put(parse);
  1539. if (tx_msg)
  1540. bpf_prog_put(tx_msg);
  1541. write_unlock_bh(&sock->sk_callback_lock);
  1542. kfree(e);
  1543. return err;
  1544. }
  1545. int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
  1546. {
  1547. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1548. struct bpf_prog *orig;
  1549. if (unlikely(map->map_type != BPF_MAP_TYPE_SOCKMAP))
  1550. return -EINVAL;
  1551. switch (type) {
  1552. case BPF_SK_MSG_VERDICT:
  1553. orig = xchg(&stab->bpf_tx_msg, prog);
  1554. break;
  1555. case BPF_SK_SKB_STREAM_PARSER:
  1556. orig = xchg(&stab->bpf_parse, prog);
  1557. break;
  1558. case BPF_SK_SKB_STREAM_VERDICT:
  1559. orig = xchg(&stab->bpf_verdict, prog);
  1560. break;
  1561. default:
  1562. return -EOPNOTSUPP;
  1563. }
  1564. if (orig)
  1565. bpf_prog_put(orig);
  1566. return 0;
  1567. }
  1568. static void *sock_map_lookup(struct bpf_map *map, void *key)
  1569. {
  1570. return NULL;
  1571. }
  1572. static int sock_map_update_elem(struct bpf_map *map,
  1573. void *key, void *value, u64 flags)
  1574. {
  1575. struct bpf_sock_ops_kern skops;
  1576. u32 fd = *(u32 *)value;
  1577. struct socket *socket;
  1578. int err;
  1579. socket = sockfd_lookup(fd, &err);
  1580. if (!socket)
  1581. return err;
  1582. skops.sk = socket->sk;
  1583. if (!skops.sk) {
  1584. fput(socket->file);
  1585. return -EINVAL;
  1586. }
  1587. if (skops.sk->sk_type != SOCK_STREAM ||
  1588. skops.sk->sk_protocol != IPPROTO_TCP) {
  1589. fput(socket->file);
  1590. return -EOPNOTSUPP;
  1591. }
  1592. err = sock_map_ctx_update_elem(&skops, map, key, flags);
  1593. fput(socket->file);
  1594. return err;
  1595. }
  1596. static void sock_map_release(struct bpf_map *map)
  1597. {
  1598. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1599. struct bpf_prog *orig;
  1600. orig = xchg(&stab->bpf_parse, NULL);
  1601. if (orig)
  1602. bpf_prog_put(orig);
  1603. orig = xchg(&stab->bpf_verdict, NULL);
  1604. if (orig)
  1605. bpf_prog_put(orig);
  1606. orig = xchg(&stab->bpf_tx_msg, NULL);
  1607. if (orig)
  1608. bpf_prog_put(orig);
  1609. }
  1610. const struct bpf_map_ops sock_map_ops = {
  1611. .map_alloc = sock_map_alloc,
  1612. .map_free = sock_map_free,
  1613. .map_lookup_elem = sock_map_lookup,
  1614. .map_get_next_key = sock_map_get_next_key,
  1615. .map_update_elem = sock_map_update_elem,
  1616. .map_delete_elem = sock_map_delete_elem,
  1617. .map_release_uref = sock_map_release,
  1618. };
  1619. BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
  1620. struct bpf_map *, map, void *, key, u64, flags)
  1621. {
  1622. WARN_ON_ONCE(!rcu_read_lock_held());
  1623. return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
  1624. }
  1625. const struct bpf_func_proto bpf_sock_map_update_proto = {
  1626. .func = bpf_sock_map_update,
  1627. .gpl_only = false,
  1628. .pkt_access = true,
  1629. .ret_type = RET_INTEGER,
  1630. .arg1_type = ARG_PTR_TO_CTX,
  1631. .arg2_type = ARG_CONST_MAP_PTR,
  1632. .arg3_type = ARG_PTR_TO_MAP_KEY,
  1633. .arg4_type = ARG_ANYTHING,
  1634. };