mm.h 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/percpu-refcount.h>
  17. #include <linux/bit_spinlock.h>
  18. #include <linux/shrinker.h>
  19. #include <linux/resource.h>
  20. #include <linux/page_ext.h>
  21. #include <linux/err.h>
  22. #include <linux/page_ref.h>
  23. #include <linux/memremap.h>
  24. struct mempolicy;
  25. struct anon_vma;
  26. struct anon_vma_chain;
  27. struct file_ra_state;
  28. struct user_struct;
  29. struct writeback_control;
  30. struct bdi_writeback;
  31. void init_mm_internals(void);
  32. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  33. extern unsigned long max_mapnr;
  34. static inline void set_max_mapnr(unsigned long limit)
  35. {
  36. max_mapnr = limit;
  37. }
  38. #else
  39. static inline void set_max_mapnr(unsigned long limit) { }
  40. #endif
  41. extern unsigned long totalram_pages;
  42. extern void * high_memory;
  43. extern int page_cluster;
  44. #ifdef CONFIG_SYSCTL
  45. extern int sysctl_legacy_va_layout;
  46. #else
  47. #define sysctl_legacy_va_layout 0
  48. #endif
  49. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  50. extern const int mmap_rnd_bits_min;
  51. extern const int mmap_rnd_bits_max;
  52. extern int mmap_rnd_bits __read_mostly;
  53. #endif
  54. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  55. extern const int mmap_rnd_compat_bits_min;
  56. extern const int mmap_rnd_compat_bits_max;
  57. extern int mmap_rnd_compat_bits __read_mostly;
  58. #endif
  59. #include <asm/page.h>
  60. #include <asm/pgtable.h>
  61. #include <asm/processor.h>
  62. #ifndef __pa_symbol
  63. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  64. #endif
  65. #ifndef page_to_virt
  66. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  67. #endif
  68. #ifndef lm_alias
  69. #define lm_alias(x) __va(__pa_symbol(x))
  70. #endif
  71. /*
  72. * To prevent common memory management code establishing
  73. * a zero page mapping on a read fault.
  74. * This macro should be defined within <asm/pgtable.h>.
  75. * s390 does this to prevent multiplexing of hardware bits
  76. * related to the physical page in case of virtualization.
  77. */
  78. #ifndef mm_forbids_zeropage
  79. #define mm_forbids_zeropage(X) (0)
  80. #endif
  81. /*
  82. * Default maximum number of active map areas, this limits the number of vmas
  83. * per mm struct. Users can overwrite this number by sysctl but there is a
  84. * problem.
  85. *
  86. * When a program's coredump is generated as ELF format, a section is created
  87. * per a vma. In ELF, the number of sections is represented in unsigned short.
  88. * This means the number of sections should be smaller than 65535 at coredump.
  89. * Because the kernel adds some informative sections to a image of program at
  90. * generating coredump, we need some margin. The number of extra sections is
  91. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  92. *
  93. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  94. * not a hard limit any more. Although some userspace tools can be surprised by
  95. * that.
  96. */
  97. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  98. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  99. extern int sysctl_max_map_count;
  100. extern unsigned long sysctl_user_reserve_kbytes;
  101. extern unsigned long sysctl_admin_reserve_kbytes;
  102. extern int sysctl_overcommit_memory;
  103. extern int sysctl_overcommit_ratio;
  104. extern unsigned long sysctl_overcommit_kbytes;
  105. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  106. size_t *, loff_t *);
  107. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  108. size_t *, loff_t *);
  109. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  110. /* to align the pointer to the (next) page boundary */
  111. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  112. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  113. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  114. /*
  115. * Linux kernel virtual memory manager primitives.
  116. * The idea being to have a "virtual" mm in the same way
  117. * we have a virtual fs - giving a cleaner interface to the
  118. * mm details, and allowing different kinds of memory mappings
  119. * (from shared memory to executable loading to arbitrary
  120. * mmap() functions).
  121. */
  122. extern struct kmem_cache *vm_area_cachep;
  123. #ifndef CONFIG_MMU
  124. extern struct rb_root nommu_region_tree;
  125. extern struct rw_semaphore nommu_region_sem;
  126. extern unsigned int kobjsize(const void *objp);
  127. #endif
  128. /*
  129. * vm_flags in vm_area_struct, see mm_types.h.
  130. * When changing, update also include/trace/events/mmflags.h
  131. */
  132. #define VM_NONE 0x00000000
  133. #define VM_READ 0x00000001 /* currently active flags */
  134. #define VM_WRITE 0x00000002
  135. #define VM_EXEC 0x00000004
  136. #define VM_SHARED 0x00000008
  137. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  138. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  139. #define VM_MAYWRITE 0x00000020
  140. #define VM_MAYEXEC 0x00000040
  141. #define VM_MAYSHARE 0x00000080
  142. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  143. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  144. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  145. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  146. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  147. #define VM_LOCKED 0x00002000
  148. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  149. /* Used by sys_madvise() */
  150. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  151. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  152. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  153. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  154. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  155. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  156. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  157. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  158. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  159. #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
  160. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  161. #ifdef CONFIG_MEM_SOFT_DIRTY
  162. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  163. #else
  164. # define VM_SOFTDIRTY 0
  165. #endif
  166. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  167. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  168. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  169. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  170. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  171. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  172. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  173. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  174. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  175. #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
  176. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  177. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  178. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  179. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  180. #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
  181. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  182. #if defined(CONFIG_X86)
  183. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  184. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  185. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  186. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  187. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  188. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  189. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  190. #endif
  191. #elif defined(CONFIG_PPC)
  192. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  193. #elif defined(CONFIG_PARISC)
  194. # define VM_GROWSUP VM_ARCH_1
  195. #elif defined(CONFIG_METAG)
  196. # define VM_GROWSUP VM_ARCH_1
  197. #elif defined(CONFIG_IA64)
  198. # define VM_GROWSUP VM_ARCH_1
  199. #elif !defined(CONFIG_MMU)
  200. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  201. #endif
  202. #if defined(CONFIG_X86_INTEL_MPX)
  203. /* MPX specific bounds table or bounds directory */
  204. # define VM_MPX VM_HIGH_ARCH_BIT_4
  205. #else
  206. # define VM_MPX VM_NONE
  207. #endif
  208. #ifndef VM_GROWSUP
  209. # define VM_GROWSUP VM_NONE
  210. #endif
  211. /* Bits set in the VMA until the stack is in its final location */
  212. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  213. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  214. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  215. #endif
  216. #ifdef CONFIG_STACK_GROWSUP
  217. #define VM_STACK VM_GROWSUP
  218. #else
  219. #define VM_STACK VM_GROWSDOWN
  220. #endif
  221. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  222. /*
  223. * Special vmas that are non-mergable, non-mlock()able.
  224. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  225. */
  226. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  227. /* This mask defines which mm->def_flags a process can inherit its parent */
  228. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  229. /* This mask is used to clear all the VMA flags used by mlock */
  230. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  231. /*
  232. * mapping from the currently active vm_flags protection bits (the
  233. * low four bits) to a page protection mask..
  234. */
  235. extern pgprot_t protection_map[16];
  236. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  237. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  238. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  239. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  240. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  241. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  242. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  243. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  244. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  245. #define FAULT_FLAG_TRACE \
  246. { FAULT_FLAG_WRITE, "WRITE" }, \
  247. { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
  248. { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
  249. { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
  250. { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
  251. { FAULT_FLAG_TRIED, "TRIED" }, \
  252. { FAULT_FLAG_USER, "USER" }, \
  253. { FAULT_FLAG_REMOTE, "REMOTE" }, \
  254. { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
  255. /*
  256. * vm_fault is filled by the the pagefault handler and passed to the vma's
  257. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  258. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  259. *
  260. * MM layer fills up gfp_mask for page allocations but fault handler might
  261. * alter it if its implementation requires a different allocation context.
  262. *
  263. * pgoff should be used in favour of virtual_address, if possible.
  264. */
  265. struct vm_fault {
  266. struct vm_area_struct *vma; /* Target VMA */
  267. unsigned int flags; /* FAULT_FLAG_xxx flags */
  268. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  269. pgoff_t pgoff; /* Logical page offset based on vma */
  270. unsigned long address; /* Faulting virtual address */
  271. pmd_t *pmd; /* Pointer to pmd entry matching
  272. * the 'address' */
  273. pud_t *pud; /* Pointer to pud entry matching
  274. * the 'address'
  275. */
  276. pte_t orig_pte; /* Value of PTE at the time of fault */
  277. struct page *cow_page; /* Page handler may use for COW fault */
  278. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  279. struct page *page; /* ->fault handlers should return a
  280. * page here, unless VM_FAULT_NOPAGE
  281. * is set (which is also implied by
  282. * VM_FAULT_ERROR).
  283. */
  284. /* These three entries are valid only while holding ptl lock */
  285. pte_t *pte; /* Pointer to pte entry matching
  286. * the 'address'. NULL if the page
  287. * table hasn't been allocated.
  288. */
  289. spinlock_t *ptl; /* Page table lock.
  290. * Protects pte page table if 'pte'
  291. * is not NULL, otherwise pmd.
  292. */
  293. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  294. * vm_ops->map_pages() calls
  295. * alloc_set_pte() from atomic context.
  296. * do_fault_around() pre-allocates
  297. * page table to avoid allocation from
  298. * atomic context.
  299. */
  300. };
  301. /* page entry size for vm->huge_fault() */
  302. enum page_entry_size {
  303. PE_SIZE_PTE = 0,
  304. PE_SIZE_PMD,
  305. PE_SIZE_PUD,
  306. };
  307. /*
  308. * These are the virtual MM functions - opening of an area, closing and
  309. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  310. * to the functions called when a no-page or a wp-page exception occurs.
  311. */
  312. struct vm_operations_struct {
  313. void (*open)(struct vm_area_struct * area);
  314. void (*close)(struct vm_area_struct * area);
  315. int (*mremap)(struct vm_area_struct * area);
  316. int (*fault)(struct vm_fault *vmf);
  317. int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
  318. void (*map_pages)(struct vm_fault *vmf,
  319. pgoff_t start_pgoff, pgoff_t end_pgoff);
  320. /* notification that a previously read-only page is about to become
  321. * writable, if an error is returned it will cause a SIGBUS */
  322. int (*page_mkwrite)(struct vm_fault *vmf);
  323. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  324. int (*pfn_mkwrite)(struct vm_fault *vmf);
  325. /* called by access_process_vm when get_user_pages() fails, typically
  326. * for use by special VMAs that can switch between memory and hardware
  327. */
  328. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  329. void *buf, int len, int write);
  330. /* Called by the /proc/PID/maps code to ask the vma whether it
  331. * has a special name. Returning non-NULL will also cause this
  332. * vma to be dumped unconditionally. */
  333. const char *(*name)(struct vm_area_struct *vma);
  334. #ifdef CONFIG_NUMA
  335. /*
  336. * set_policy() op must add a reference to any non-NULL @new mempolicy
  337. * to hold the policy upon return. Caller should pass NULL @new to
  338. * remove a policy and fall back to surrounding context--i.e. do not
  339. * install a MPOL_DEFAULT policy, nor the task or system default
  340. * mempolicy.
  341. */
  342. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  343. /*
  344. * get_policy() op must add reference [mpol_get()] to any policy at
  345. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  346. * in mm/mempolicy.c will do this automatically.
  347. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  348. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  349. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  350. * must return NULL--i.e., do not "fallback" to task or system default
  351. * policy.
  352. */
  353. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  354. unsigned long addr);
  355. #endif
  356. /*
  357. * Called by vm_normal_page() for special PTEs to find the
  358. * page for @addr. This is useful if the default behavior
  359. * (using pte_page()) would not find the correct page.
  360. */
  361. struct page *(*find_special_page)(struct vm_area_struct *vma,
  362. unsigned long addr);
  363. };
  364. struct mmu_gather;
  365. struct inode;
  366. #define page_private(page) ((page)->private)
  367. #define set_page_private(page, v) ((page)->private = (v))
  368. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  369. static inline int pmd_devmap(pmd_t pmd)
  370. {
  371. return 0;
  372. }
  373. static inline int pud_devmap(pud_t pud)
  374. {
  375. return 0;
  376. }
  377. static inline int pgd_devmap(pgd_t pgd)
  378. {
  379. return 0;
  380. }
  381. #endif
  382. /*
  383. * FIXME: take this include out, include page-flags.h in
  384. * files which need it (119 of them)
  385. */
  386. #include <linux/page-flags.h>
  387. #include <linux/huge_mm.h>
  388. /*
  389. * Methods to modify the page usage count.
  390. *
  391. * What counts for a page usage:
  392. * - cache mapping (page->mapping)
  393. * - private data (page->private)
  394. * - page mapped in a task's page tables, each mapping
  395. * is counted separately
  396. *
  397. * Also, many kernel routines increase the page count before a critical
  398. * routine so they can be sure the page doesn't go away from under them.
  399. */
  400. /*
  401. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  402. */
  403. static inline int put_page_testzero(struct page *page)
  404. {
  405. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  406. return page_ref_dec_and_test(page);
  407. }
  408. /*
  409. * Try to grab a ref unless the page has a refcount of zero, return false if
  410. * that is the case.
  411. * This can be called when MMU is off so it must not access
  412. * any of the virtual mappings.
  413. */
  414. static inline int get_page_unless_zero(struct page *page)
  415. {
  416. return page_ref_add_unless(page, 1, 0);
  417. }
  418. extern int page_is_ram(unsigned long pfn);
  419. enum {
  420. REGION_INTERSECTS,
  421. REGION_DISJOINT,
  422. REGION_MIXED,
  423. };
  424. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  425. unsigned long desc);
  426. /* Support for virtually mapped pages */
  427. struct page *vmalloc_to_page(const void *addr);
  428. unsigned long vmalloc_to_pfn(const void *addr);
  429. /*
  430. * Determine if an address is within the vmalloc range
  431. *
  432. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  433. * is no special casing required.
  434. */
  435. static inline bool is_vmalloc_addr(const void *x)
  436. {
  437. #ifdef CONFIG_MMU
  438. unsigned long addr = (unsigned long)x;
  439. return addr >= VMALLOC_START && addr < VMALLOC_END;
  440. #else
  441. return false;
  442. #endif
  443. }
  444. #ifdef CONFIG_MMU
  445. extern int is_vmalloc_or_module_addr(const void *x);
  446. #else
  447. static inline int is_vmalloc_or_module_addr(const void *x)
  448. {
  449. return 0;
  450. }
  451. #endif
  452. extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
  453. static inline void *kvmalloc(size_t size, gfp_t flags)
  454. {
  455. return kvmalloc_node(size, flags, NUMA_NO_NODE);
  456. }
  457. static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
  458. {
  459. return kvmalloc_node(size, flags | __GFP_ZERO, node);
  460. }
  461. static inline void *kvzalloc(size_t size, gfp_t flags)
  462. {
  463. return kvmalloc(size, flags | __GFP_ZERO);
  464. }
  465. static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
  466. {
  467. if (size != 0 && n > SIZE_MAX / size)
  468. return NULL;
  469. return kvmalloc(n * size, flags);
  470. }
  471. extern void kvfree(const void *addr);
  472. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  473. {
  474. return &page[1].compound_mapcount;
  475. }
  476. static inline int compound_mapcount(struct page *page)
  477. {
  478. VM_BUG_ON_PAGE(!PageCompound(page), page);
  479. page = compound_head(page);
  480. return atomic_read(compound_mapcount_ptr(page)) + 1;
  481. }
  482. /*
  483. * The atomic page->_mapcount, starts from -1: so that transitions
  484. * both from it and to it can be tracked, using atomic_inc_and_test
  485. * and atomic_add_negative(-1).
  486. */
  487. static inline void page_mapcount_reset(struct page *page)
  488. {
  489. atomic_set(&(page)->_mapcount, -1);
  490. }
  491. int __page_mapcount(struct page *page);
  492. static inline int page_mapcount(struct page *page)
  493. {
  494. VM_BUG_ON_PAGE(PageSlab(page), page);
  495. if (unlikely(PageCompound(page)))
  496. return __page_mapcount(page);
  497. return atomic_read(&page->_mapcount) + 1;
  498. }
  499. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  500. int total_mapcount(struct page *page);
  501. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  502. #else
  503. static inline int total_mapcount(struct page *page)
  504. {
  505. return page_mapcount(page);
  506. }
  507. static inline int page_trans_huge_mapcount(struct page *page,
  508. int *total_mapcount)
  509. {
  510. int mapcount = page_mapcount(page);
  511. if (total_mapcount)
  512. *total_mapcount = mapcount;
  513. return mapcount;
  514. }
  515. #endif
  516. static inline struct page *virt_to_head_page(const void *x)
  517. {
  518. struct page *page = virt_to_page(x);
  519. return compound_head(page);
  520. }
  521. void __put_page(struct page *page);
  522. void put_pages_list(struct list_head *pages);
  523. void split_page(struct page *page, unsigned int order);
  524. /*
  525. * Compound pages have a destructor function. Provide a
  526. * prototype for that function and accessor functions.
  527. * These are _only_ valid on the head of a compound page.
  528. */
  529. typedef void compound_page_dtor(struct page *);
  530. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  531. enum compound_dtor_id {
  532. NULL_COMPOUND_DTOR,
  533. COMPOUND_PAGE_DTOR,
  534. #ifdef CONFIG_HUGETLB_PAGE
  535. HUGETLB_PAGE_DTOR,
  536. #endif
  537. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  538. TRANSHUGE_PAGE_DTOR,
  539. #endif
  540. NR_COMPOUND_DTORS,
  541. };
  542. extern compound_page_dtor * const compound_page_dtors[];
  543. static inline void set_compound_page_dtor(struct page *page,
  544. enum compound_dtor_id compound_dtor)
  545. {
  546. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  547. page[1].compound_dtor = compound_dtor;
  548. }
  549. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  550. {
  551. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  552. return compound_page_dtors[page[1].compound_dtor];
  553. }
  554. static inline unsigned int compound_order(struct page *page)
  555. {
  556. if (!PageHead(page))
  557. return 0;
  558. return page[1].compound_order;
  559. }
  560. static inline void set_compound_order(struct page *page, unsigned int order)
  561. {
  562. page[1].compound_order = order;
  563. }
  564. void free_compound_page(struct page *page);
  565. #ifdef CONFIG_MMU
  566. /*
  567. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  568. * servicing faults for write access. In the normal case, do always want
  569. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  570. * that do not have writing enabled, when used by access_process_vm.
  571. */
  572. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  573. {
  574. if (likely(vma->vm_flags & VM_WRITE))
  575. pte = pte_mkwrite(pte);
  576. return pte;
  577. }
  578. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  579. struct page *page);
  580. int finish_fault(struct vm_fault *vmf);
  581. int finish_mkwrite_fault(struct vm_fault *vmf);
  582. #endif
  583. /*
  584. * Multiple processes may "see" the same page. E.g. for untouched
  585. * mappings of /dev/null, all processes see the same page full of
  586. * zeroes, and text pages of executables and shared libraries have
  587. * only one copy in memory, at most, normally.
  588. *
  589. * For the non-reserved pages, page_count(page) denotes a reference count.
  590. * page_count() == 0 means the page is free. page->lru is then used for
  591. * freelist management in the buddy allocator.
  592. * page_count() > 0 means the page has been allocated.
  593. *
  594. * Pages are allocated by the slab allocator in order to provide memory
  595. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  596. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  597. * unless a particular usage is carefully commented. (the responsibility of
  598. * freeing the kmalloc memory is the caller's, of course).
  599. *
  600. * A page may be used by anyone else who does a __get_free_page().
  601. * In this case, page_count still tracks the references, and should only
  602. * be used through the normal accessor functions. The top bits of page->flags
  603. * and page->virtual store page management information, but all other fields
  604. * are unused and could be used privately, carefully. The management of this
  605. * page is the responsibility of the one who allocated it, and those who have
  606. * subsequently been given references to it.
  607. *
  608. * The other pages (we may call them "pagecache pages") are completely
  609. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  610. * The following discussion applies only to them.
  611. *
  612. * A pagecache page contains an opaque `private' member, which belongs to the
  613. * page's address_space. Usually, this is the address of a circular list of
  614. * the page's disk buffers. PG_private must be set to tell the VM to call
  615. * into the filesystem to release these pages.
  616. *
  617. * A page may belong to an inode's memory mapping. In this case, page->mapping
  618. * is the pointer to the inode, and page->index is the file offset of the page,
  619. * in units of PAGE_SIZE.
  620. *
  621. * If pagecache pages are not associated with an inode, they are said to be
  622. * anonymous pages. These may become associated with the swapcache, and in that
  623. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  624. *
  625. * In either case (swapcache or inode backed), the pagecache itself holds one
  626. * reference to the page. Setting PG_private should also increment the
  627. * refcount. The each user mapping also has a reference to the page.
  628. *
  629. * The pagecache pages are stored in a per-mapping radix tree, which is
  630. * rooted at mapping->page_tree, and indexed by offset.
  631. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  632. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  633. *
  634. * All pagecache pages may be subject to I/O:
  635. * - inode pages may need to be read from disk,
  636. * - inode pages which have been modified and are MAP_SHARED may need
  637. * to be written back to the inode on disk,
  638. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  639. * modified may need to be swapped out to swap space and (later) to be read
  640. * back into memory.
  641. */
  642. /*
  643. * The zone field is never updated after free_area_init_core()
  644. * sets it, so none of the operations on it need to be atomic.
  645. */
  646. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  647. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  648. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  649. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  650. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  651. /*
  652. * Define the bit shifts to access each section. For non-existent
  653. * sections we define the shift as 0; that plus a 0 mask ensures
  654. * the compiler will optimise away reference to them.
  655. */
  656. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  657. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  658. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  659. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  660. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  661. #ifdef NODE_NOT_IN_PAGE_FLAGS
  662. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  663. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  664. SECTIONS_PGOFF : ZONES_PGOFF)
  665. #else
  666. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  667. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  668. NODES_PGOFF : ZONES_PGOFF)
  669. #endif
  670. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  671. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  672. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  673. #endif
  674. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  675. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  676. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  677. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  678. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  679. static inline enum zone_type page_zonenum(const struct page *page)
  680. {
  681. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  682. }
  683. #ifdef CONFIG_ZONE_DEVICE
  684. static inline bool is_zone_device_page(const struct page *page)
  685. {
  686. return page_zonenum(page) == ZONE_DEVICE;
  687. }
  688. #else
  689. static inline bool is_zone_device_page(const struct page *page)
  690. {
  691. return false;
  692. }
  693. #endif
  694. #ifdef CONFIG_DEVICE_PRIVATE
  695. void put_zone_device_private_page(struct page *page);
  696. #else
  697. static inline void put_zone_device_private_page(struct page *page)
  698. {
  699. }
  700. #endif
  701. static inline bool is_device_private_page(const struct page *page);
  702. DECLARE_STATIC_KEY_FALSE(device_private_key);
  703. static inline void get_page(struct page *page)
  704. {
  705. page = compound_head(page);
  706. /*
  707. * Getting a normal page or the head of a compound page
  708. * requires to already have an elevated page->_refcount.
  709. */
  710. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  711. page_ref_inc(page);
  712. }
  713. static inline void put_page(struct page *page)
  714. {
  715. page = compound_head(page);
  716. /*
  717. * For private device pages we need to catch refcount transition from
  718. * 2 to 1, when refcount reach one it means the private device page is
  719. * free and we need to inform the device driver through callback. See
  720. * include/linux/memremap.h and HMM for details.
  721. */
  722. if (static_branch_unlikely(&device_private_key) &&
  723. unlikely(is_device_private_page(page))) {
  724. put_zone_device_private_page(page);
  725. return;
  726. }
  727. if (put_page_testzero(page))
  728. __put_page(page);
  729. }
  730. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  731. #define SECTION_IN_PAGE_FLAGS
  732. #endif
  733. /*
  734. * The identification function is mainly used by the buddy allocator for
  735. * determining if two pages could be buddies. We are not really identifying
  736. * the zone since we could be using the section number id if we do not have
  737. * node id available in page flags.
  738. * We only guarantee that it will return the same value for two combinable
  739. * pages in a zone.
  740. */
  741. static inline int page_zone_id(struct page *page)
  742. {
  743. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  744. }
  745. static inline int zone_to_nid(struct zone *zone)
  746. {
  747. #ifdef CONFIG_NUMA
  748. return zone->node;
  749. #else
  750. return 0;
  751. #endif
  752. }
  753. #ifdef NODE_NOT_IN_PAGE_FLAGS
  754. extern int page_to_nid(const struct page *page);
  755. #else
  756. static inline int page_to_nid(const struct page *page)
  757. {
  758. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  759. }
  760. #endif
  761. #ifdef CONFIG_NUMA_BALANCING
  762. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  763. {
  764. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  765. }
  766. static inline int cpupid_to_pid(int cpupid)
  767. {
  768. return cpupid & LAST__PID_MASK;
  769. }
  770. static inline int cpupid_to_cpu(int cpupid)
  771. {
  772. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  773. }
  774. static inline int cpupid_to_nid(int cpupid)
  775. {
  776. return cpu_to_node(cpupid_to_cpu(cpupid));
  777. }
  778. static inline bool cpupid_pid_unset(int cpupid)
  779. {
  780. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  781. }
  782. static inline bool cpupid_cpu_unset(int cpupid)
  783. {
  784. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  785. }
  786. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  787. {
  788. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  789. }
  790. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  791. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  792. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  793. {
  794. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  795. }
  796. static inline int page_cpupid_last(struct page *page)
  797. {
  798. return page->_last_cpupid;
  799. }
  800. static inline void page_cpupid_reset_last(struct page *page)
  801. {
  802. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  803. }
  804. #else
  805. static inline int page_cpupid_last(struct page *page)
  806. {
  807. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  808. }
  809. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  810. static inline void page_cpupid_reset_last(struct page *page)
  811. {
  812. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  813. }
  814. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  815. #else /* !CONFIG_NUMA_BALANCING */
  816. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  817. {
  818. return page_to_nid(page); /* XXX */
  819. }
  820. static inline int page_cpupid_last(struct page *page)
  821. {
  822. return page_to_nid(page); /* XXX */
  823. }
  824. static inline int cpupid_to_nid(int cpupid)
  825. {
  826. return -1;
  827. }
  828. static inline int cpupid_to_pid(int cpupid)
  829. {
  830. return -1;
  831. }
  832. static inline int cpupid_to_cpu(int cpupid)
  833. {
  834. return -1;
  835. }
  836. static inline int cpu_pid_to_cpupid(int nid, int pid)
  837. {
  838. return -1;
  839. }
  840. static inline bool cpupid_pid_unset(int cpupid)
  841. {
  842. return 1;
  843. }
  844. static inline void page_cpupid_reset_last(struct page *page)
  845. {
  846. }
  847. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  848. {
  849. return false;
  850. }
  851. #endif /* CONFIG_NUMA_BALANCING */
  852. static inline struct zone *page_zone(const struct page *page)
  853. {
  854. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  855. }
  856. static inline pg_data_t *page_pgdat(const struct page *page)
  857. {
  858. return NODE_DATA(page_to_nid(page));
  859. }
  860. #ifdef SECTION_IN_PAGE_FLAGS
  861. static inline void set_page_section(struct page *page, unsigned long section)
  862. {
  863. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  864. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  865. }
  866. static inline unsigned long page_to_section(const struct page *page)
  867. {
  868. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  869. }
  870. #endif
  871. static inline void set_page_zone(struct page *page, enum zone_type zone)
  872. {
  873. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  874. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  875. }
  876. static inline void set_page_node(struct page *page, unsigned long node)
  877. {
  878. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  879. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  880. }
  881. static inline void set_page_links(struct page *page, enum zone_type zone,
  882. unsigned long node, unsigned long pfn)
  883. {
  884. set_page_zone(page, zone);
  885. set_page_node(page, node);
  886. #ifdef SECTION_IN_PAGE_FLAGS
  887. set_page_section(page, pfn_to_section_nr(pfn));
  888. #endif
  889. }
  890. #ifdef CONFIG_MEMCG
  891. static inline struct mem_cgroup *page_memcg(struct page *page)
  892. {
  893. return page->mem_cgroup;
  894. }
  895. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  896. {
  897. WARN_ON_ONCE(!rcu_read_lock_held());
  898. return READ_ONCE(page->mem_cgroup);
  899. }
  900. #else
  901. static inline struct mem_cgroup *page_memcg(struct page *page)
  902. {
  903. return NULL;
  904. }
  905. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  906. {
  907. WARN_ON_ONCE(!rcu_read_lock_held());
  908. return NULL;
  909. }
  910. #endif
  911. /*
  912. * Some inline functions in vmstat.h depend on page_zone()
  913. */
  914. #include <linux/vmstat.h>
  915. static __always_inline void *lowmem_page_address(const struct page *page)
  916. {
  917. return page_to_virt(page);
  918. }
  919. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  920. #define HASHED_PAGE_VIRTUAL
  921. #endif
  922. #if defined(WANT_PAGE_VIRTUAL)
  923. static inline void *page_address(const struct page *page)
  924. {
  925. return page->virtual;
  926. }
  927. static inline void set_page_address(struct page *page, void *address)
  928. {
  929. page->virtual = address;
  930. }
  931. #define page_address_init() do { } while(0)
  932. #endif
  933. #if defined(HASHED_PAGE_VIRTUAL)
  934. void *page_address(const struct page *page);
  935. void set_page_address(struct page *page, void *virtual);
  936. void page_address_init(void);
  937. #endif
  938. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  939. #define page_address(page) lowmem_page_address(page)
  940. #define set_page_address(page, address) do { } while(0)
  941. #define page_address_init() do { } while(0)
  942. #endif
  943. extern void *page_rmapping(struct page *page);
  944. extern struct anon_vma *page_anon_vma(struct page *page);
  945. extern struct address_space *page_mapping(struct page *page);
  946. extern struct address_space *__page_file_mapping(struct page *);
  947. static inline
  948. struct address_space *page_file_mapping(struct page *page)
  949. {
  950. if (unlikely(PageSwapCache(page)))
  951. return __page_file_mapping(page);
  952. return page->mapping;
  953. }
  954. extern pgoff_t __page_file_index(struct page *page);
  955. /*
  956. * Return the pagecache index of the passed page. Regular pagecache pages
  957. * use ->index whereas swapcache pages use swp_offset(->private)
  958. */
  959. static inline pgoff_t page_index(struct page *page)
  960. {
  961. if (unlikely(PageSwapCache(page)))
  962. return __page_file_index(page);
  963. return page->index;
  964. }
  965. bool page_mapped(struct page *page);
  966. struct address_space *page_mapping(struct page *page);
  967. /*
  968. * Return true only if the page has been allocated with
  969. * ALLOC_NO_WATERMARKS and the low watermark was not
  970. * met implying that the system is under some pressure.
  971. */
  972. static inline bool page_is_pfmemalloc(struct page *page)
  973. {
  974. /*
  975. * Page index cannot be this large so this must be
  976. * a pfmemalloc page.
  977. */
  978. return page->index == -1UL;
  979. }
  980. /*
  981. * Only to be called by the page allocator on a freshly allocated
  982. * page.
  983. */
  984. static inline void set_page_pfmemalloc(struct page *page)
  985. {
  986. page->index = -1UL;
  987. }
  988. static inline void clear_page_pfmemalloc(struct page *page)
  989. {
  990. page->index = 0;
  991. }
  992. /*
  993. * Different kinds of faults, as returned by handle_mm_fault().
  994. * Used to decide whether a process gets delivered SIGBUS or
  995. * just gets major/minor fault counters bumped up.
  996. */
  997. #define VM_FAULT_OOM 0x0001
  998. #define VM_FAULT_SIGBUS 0x0002
  999. #define VM_FAULT_MAJOR 0x0004
  1000. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  1001. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  1002. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  1003. #define VM_FAULT_SIGSEGV 0x0040
  1004. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  1005. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  1006. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  1007. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  1008. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  1009. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  1010. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  1011. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  1012. VM_FAULT_FALLBACK)
  1013. #define VM_FAULT_RESULT_TRACE \
  1014. { VM_FAULT_OOM, "OOM" }, \
  1015. { VM_FAULT_SIGBUS, "SIGBUS" }, \
  1016. { VM_FAULT_MAJOR, "MAJOR" }, \
  1017. { VM_FAULT_WRITE, "WRITE" }, \
  1018. { VM_FAULT_HWPOISON, "HWPOISON" }, \
  1019. { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
  1020. { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
  1021. { VM_FAULT_NOPAGE, "NOPAGE" }, \
  1022. { VM_FAULT_LOCKED, "LOCKED" }, \
  1023. { VM_FAULT_RETRY, "RETRY" }, \
  1024. { VM_FAULT_FALLBACK, "FALLBACK" }, \
  1025. { VM_FAULT_DONE_COW, "DONE_COW" }
  1026. /* Encode hstate index for a hwpoisoned large page */
  1027. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  1028. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  1029. /*
  1030. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  1031. */
  1032. extern void pagefault_out_of_memory(void);
  1033. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  1034. /*
  1035. * Flags passed to show_mem() and show_free_areas() to suppress output in
  1036. * various contexts.
  1037. */
  1038. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  1039. extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
  1040. extern bool can_do_mlock(void);
  1041. extern int user_shm_lock(size_t, struct user_struct *);
  1042. extern void user_shm_unlock(size_t, struct user_struct *);
  1043. /*
  1044. * Parameter block passed down to zap_pte_range in exceptional cases.
  1045. */
  1046. struct zap_details {
  1047. struct address_space *check_mapping; /* Check page->mapping if set */
  1048. pgoff_t first_index; /* Lowest page->index to unmap */
  1049. pgoff_t last_index; /* Highest page->index to unmap */
  1050. };
  1051. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  1052. pte_t pte);
  1053. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1054. pmd_t pmd);
  1055. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1056. unsigned long size);
  1057. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1058. unsigned long size);
  1059. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1060. unsigned long start, unsigned long end);
  1061. /**
  1062. * mm_walk - callbacks for walk_page_range
  1063. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  1064. * this handler should only handle pud_trans_huge() puds.
  1065. * the pmd_entry or pte_entry callbacks will be used for
  1066. * regular PUDs.
  1067. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1068. * this handler is required to be able to handle
  1069. * pmd_trans_huge() pmds. They may simply choose to
  1070. * split_huge_page() instead of handling it explicitly.
  1071. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1072. * @pte_hole: if set, called for each hole at all levels
  1073. * @hugetlb_entry: if set, called for each hugetlb entry
  1074. * @test_walk: caller specific callback function to determine whether
  1075. * we walk over the current vma or not. Returning 0
  1076. * value means "do page table walk over the current vma,"
  1077. * and a negative one means "abort current page table walk
  1078. * right now." 1 means "skip the current vma."
  1079. * @mm: mm_struct representing the target process of page table walk
  1080. * @vma: vma currently walked (NULL if walking outside vmas)
  1081. * @private: private data for callbacks' usage
  1082. *
  1083. * (see the comment on walk_page_range() for more details)
  1084. */
  1085. struct mm_walk {
  1086. int (*pud_entry)(pud_t *pud, unsigned long addr,
  1087. unsigned long next, struct mm_walk *walk);
  1088. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1089. unsigned long next, struct mm_walk *walk);
  1090. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1091. unsigned long next, struct mm_walk *walk);
  1092. int (*pte_hole)(unsigned long addr, unsigned long next,
  1093. struct mm_walk *walk);
  1094. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1095. unsigned long addr, unsigned long next,
  1096. struct mm_walk *walk);
  1097. int (*test_walk)(unsigned long addr, unsigned long next,
  1098. struct mm_walk *walk);
  1099. struct mm_struct *mm;
  1100. struct vm_area_struct *vma;
  1101. void *private;
  1102. };
  1103. int walk_page_range(unsigned long addr, unsigned long end,
  1104. struct mm_walk *walk);
  1105. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1106. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1107. unsigned long end, unsigned long floor, unsigned long ceiling);
  1108. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1109. struct vm_area_struct *vma);
  1110. void unmap_mapping_range(struct address_space *mapping,
  1111. loff_t const holebegin, loff_t const holelen, int even_cows);
  1112. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1113. unsigned long *start, unsigned long *end,
  1114. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1115. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1116. unsigned long *pfn);
  1117. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1118. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1119. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1120. void *buf, int len, int write);
  1121. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1122. loff_t const holebegin, loff_t const holelen)
  1123. {
  1124. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1125. }
  1126. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1127. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1128. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1129. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1130. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1131. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1132. int invalidate_inode_page(struct page *page);
  1133. #ifdef CONFIG_MMU
  1134. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1135. unsigned int flags);
  1136. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1137. unsigned long address, unsigned int fault_flags,
  1138. bool *unlocked);
  1139. #else
  1140. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1141. unsigned long address, unsigned int flags)
  1142. {
  1143. /* should never happen if there's no MMU */
  1144. BUG();
  1145. return VM_FAULT_SIGBUS;
  1146. }
  1147. static inline int fixup_user_fault(struct task_struct *tsk,
  1148. struct mm_struct *mm, unsigned long address,
  1149. unsigned int fault_flags, bool *unlocked)
  1150. {
  1151. /* should never happen if there's no MMU */
  1152. BUG();
  1153. return -EFAULT;
  1154. }
  1155. #endif
  1156. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
  1157. unsigned int gup_flags);
  1158. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1159. void *buf, int len, unsigned int gup_flags);
  1160. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1161. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1162. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1163. unsigned long start, unsigned long nr_pages,
  1164. unsigned int gup_flags, struct page **pages,
  1165. struct vm_area_struct **vmas, int *locked);
  1166. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1167. unsigned int gup_flags, struct page **pages,
  1168. struct vm_area_struct **vmas);
  1169. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1170. unsigned int gup_flags, struct page **pages, int *locked);
  1171. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1172. struct page **pages, unsigned int gup_flags);
  1173. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1174. struct page **pages);
  1175. /* Container for pinned pfns / pages */
  1176. struct frame_vector {
  1177. unsigned int nr_allocated; /* Number of frames we have space for */
  1178. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1179. bool got_ref; /* Did we pin pages by getting page ref? */
  1180. bool is_pfns; /* Does array contain pages or pfns? */
  1181. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1182. * pfns_vector_pages() or pfns_vector_pfns()
  1183. * for access */
  1184. };
  1185. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1186. void frame_vector_destroy(struct frame_vector *vec);
  1187. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1188. unsigned int gup_flags, struct frame_vector *vec);
  1189. void put_vaddr_frames(struct frame_vector *vec);
  1190. int frame_vector_to_pages(struct frame_vector *vec);
  1191. void frame_vector_to_pfns(struct frame_vector *vec);
  1192. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1193. {
  1194. return vec->nr_frames;
  1195. }
  1196. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1197. {
  1198. if (vec->is_pfns) {
  1199. int err = frame_vector_to_pages(vec);
  1200. if (err)
  1201. return ERR_PTR(err);
  1202. }
  1203. return (struct page **)(vec->ptrs);
  1204. }
  1205. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1206. {
  1207. if (!vec->is_pfns)
  1208. frame_vector_to_pfns(vec);
  1209. return (unsigned long *)(vec->ptrs);
  1210. }
  1211. struct kvec;
  1212. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1213. struct page **pages);
  1214. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1215. struct page *get_dump_page(unsigned long addr);
  1216. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1217. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1218. unsigned int length);
  1219. int __set_page_dirty_nobuffers(struct page *page);
  1220. int __set_page_dirty_no_writeback(struct page *page);
  1221. int redirty_page_for_writepage(struct writeback_control *wbc,
  1222. struct page *page);
  1223. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1224. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1225. struct bdi_writeback *wb);
  1226. int set_page_dirty(struct page *page);
  1227. int set_page_dirty_lock(struct page *page);
  1228. void cancel_dirty_page(struct page *page);
  1229. int clear_page_dirty_for_io(struct page *page);
  1230. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1231. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1232. {
  1233. return !vma->vm_ops;
  1234. }
  1235. #ifdef CONFIG_SHMEM
  1236. /*
  1237. * The vma_is_shmem is not inline because it is used only by slow
  1238. * paths in userfault.
  1239. */
  1240. bool vma_is_shmem(struct vm_area_struct *vma);
  1241. #else
  1242. static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
  1243. #endif
  1244. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1245. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1246. unsigned long old_addr, struct vm_area_struct *new_vma,
  1247. unsigned long new_addr, unsigned long len,
  1248. bool need_rmap_locks);
  1249. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1250. unsigned long end, pgprot_t newprot,
  1251. int dirty_accountable, int prot_numa);
  1252. extern int mprotect_fixup(struct vm_area_struct *vma,
  1253. struct vm_area_struct **pprev, unsigned long start,
  1254. unsigned long end, unsigned long newflags);
  1255. /*
  1256. * doesn't attempt to fault and will return short.
  1257. */
  1258. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1259. struct page **pages);
  1260. /*
  1261. * per-process(per-mm_struct) statistics.
  1262. */
  1263. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1264. {
  1265. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1266. #ifdef SPLIT_RSS_COUNTING
  1267. /*
  1268. * counter is updated in asynchronous manner and may go to minus.
  1269. * But it's never be expected number for users.
  1270. */
  1271. if (val < 0)
  1272. val = 0;
  1273. #endif
  1274. return (unsigned long)val;
  1275. }
  1276. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1277. {
  1278. atomic_long_add(value, &mm->rss_stat.count[member]);
  1279. }
  1280. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1281. {
  1282. atomic_long_inc(&mm->rss_stat.count[member]);
  1283. }
  1284. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1285. {
  1286. atomic_long_dec(&mm->rss_stat.count[member]);
  1287. }
  1288. /* Optimized variant when page is already known not to be PageAnon */
  1289. static inline int mm_counter_file(struct page *page)
  1290. {
  1291. if (PageSwapBacked(page))
  1292. return MM_SHMEMPAGES;
  1293. return MM_FILEPAGES;
  1294. }
  1295. static inline int mm_counter(struct page *page)
  1296. {
  1297. if (PageAnon(page))
  1298. return MM_ANONPAGES;
  1299. return mm_counter_file(page);
  1300. }
  1301. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1302. {
  1303. return get_mm_counter(mm, MM_FILEPAGES) +
  1304. get_mm_counter(mm, MM_ANONPAGES) +
  1305. get_mm_counter(mm, MM_SHMEMPAGES);
  1306. }
  1307. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1308. {
  1309. return max(mm->hiwater_rss, get_mm_rss(mm));
  1310. }
  1311. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1312. {
  1313. return max(mm->hiwater_vm, mm->total_vm);
  1314. }
  1315. static inline void update_hiwater_rss(struct mm_struct *mm)
  1316. {
  1317. unsigned long _rss = get_mm_rss(mm);
  1318. if ((mm)->hiwater_rss < _rss)
  1319. (mm)->hiwater_rss = _rss;
  1320. }
  1321. static inline void update_hiwater_vm(struct mm_struct *mm)
  1322. {
  1323. if (mm->hiwater_vm < mm->total_vm)
  1324. mm->hiwater_vm = mm->total_vm;
  1325. }
  1326. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1327. {
  1328. mm->hiwater_rss = get_mm_rss(mm);
  1329. }
  1330. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1331. struct mm_struct *mm)
  1332. {
  1333. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1334. if (*maxrss < hiwater_rss)
  1335. *maxrss = hiwater_rss;
  1336. }
  1337. #if defined(SPLIT_RSS_COUNTING)
  1338. void sync_mm_rss(struct mm_struct *mm);
  1339. #else
  1340. static inline void sync_mm_rss(struct mm_struct *mm)
  1341. {
  1342. }
  1343. #endif
  1344. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1345. static inline int pte_devmap(pte_t pte)
  1346. {
  1347. return 0;
  1348. }
  1349. #endif
  1350. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1351. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1352. spinlock_t **ptl);
  1353. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1354. spinlock_t **ptl)
  1355. {
  1356. pte_t *ptep;
  1357. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1358. return ptep;
  1359. }
  1360. #ifdef __PAGETABLE_P4D_FOLDED
  1361. static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1362. unsigned long address)
  1363. {
  1364. return 0;
  1365. }
  1366. #else
  1367. int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1368. #endif
  1369. #ifdef __PAGETABLE_PUD_FOLDED
  1370. static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1371. unsigned long address)
  1372. {
  1373. return 0;
  1374. }
  1375. #else
  1376. int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
  1377. #endif
  1378. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1379. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1380. unsigned long address)
  1381. {
  1382. return 0;
  1383. }
  1384. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1385. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1386. {
  1387. return 0;
  1388. }
  1389. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1390. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1391. #else
  1392. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1393. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1394. {
  1395. atomic_long_set(&mm->nr_pmds, 0);
  1396. }
  1397. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1398. {
  1399. return atomic_long_read(&mm->nr_pmds);
  1400. }
  1401. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1402. {
  1403. atomic_long_inc(&mm->nr_pmds);
  1404. }
  1405. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1406. {
  1407. atomic_long_dec(&mm->nr_pmds);
  1408. }
  1409. #endif
  1410. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1411. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1412. /*
  1413. * The following ifdef needed to get the 4level-fixup.h header to work.
  1414. * Remove it when 4level-fixup.h has been removed.
  1415. */
  1416. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1417. #ifndef __ARCH_HAS_5LEVEL_HACK
  1418. static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1419. unsigned long address)
  1420. {
  1421. return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
  1422. NULL : p4d_offset(pgd, address);
  1423. }
  1424. static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1425. unsigned long address)
  1426. {
  1427. return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
  1428. NULL : pud_offset(p4d, address);
  1429. }
  1430. #endif /* !__ARCH_HAS_5LEVEL_HACK */
  1431. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1432. {
  1433. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1434. NULL: pmd_offset(pud, address);
  1435. }
  1436. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1437. #if USE_SPLIT_PTE_PTLOCKS
  1438. #if ALLOC_SPLIT_PTLOCKS
  1439. void __init ptlock_cache_init(void);
  1440. extern bool ptlock_alloc(struct page *page);
  1441. extern void ptlock_free(struct page *page);
  1442. static inline spinlock_t *ptlock_ptr(struct page *page)
  1443. {
  1444. return page->ptl;
  1445. }
  1446. #else /* ALLOC_SPLIT_PTLOCKS */
  1447. static inline void ptlock_cache_init(void)
  1448. {
  1449. }
  1450. static inline bool ptlock_alloc(struct page *page)
  1451. {
  1452. return true;
  1453. }
  1454. static inline void ptlock_free(struct page *page)
  1455. {
  1456. }
  1457. static inline spinlock_t *ptlock_ptr(struct page *page)
  1458. {
  1459. return &page->ptl;
  1460. }
  1461. #endif /* ALLOC_SPLIT_PTLOCKS */
  1462. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1463. {
  1464. return ptlock_ptr(pmd_page(*pmd));
  1465. }
  1466. static inline bool ptlock_init(struct page *page)
  1467. {
  1468. /*
  1469. * prep_new_page() initialize page->private (and therefore page->ptl)
  1470. * with 0. Make sure nobody took it in use in between.
  1471. *
  1472. * It can happen if arch try to use slab for page table allocation:
  1473. * slab code uses page->slab_cache, which share storage with page->ptl.
  1474. */
  1475. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1476. if (!ptlock_alloc(page))
  1477. return false;
  1478. spin_lock_init(ptlock_ptr(page));
  1479. return true;
  1480. }
  1481. /* Reset page->mapping so free_pages_check won't complain. */
  1482. static inline void pte_lock_deinit(struct page *page)
  1483. {
  1484. page->mapping = NULL;
  1485. ptlock_free(page);
  1486. }
  1487. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1488. /*
  1489. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1490. */
  1491. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1492. {
  1493. return &mm->page_table_lock;
  1494. }
  1495. static inline void ptlock_cache_init(void) {}
  1496. static inline bool ptlock_init(struct page *page) { return true; }
  1497. static inline void pte_lock_deinit(struct page *page) {}
  1498. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1499. static inline void pgtable_init(void)
  1500. {
  1501. ptlock_cache_init();
  1502. pgtable_cache_init();
  1503. }
  1504. static inline bool pgtable_page_ctor(struct page *page)
  1505. {
  1506. if (!ptlock_init(page))
  1507. return false;
  1508. inc_zone_page_state(page, NR_PAGETABLE);
  1509. return true;
  1510. }
  1511. static inline void pgtable_page_dtor(struct page *page)
  1512. {
  1513. pte_lock_deinit(page);
  1514. dec_zone_page_state(page, NR_PAGETABLE);
  1515. }
  1516. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1517. ({ \
  1518. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1519. pte_t *__pte = pte_offset_map(pmd, address); \
  1520. *(ptlp) = __ptl; \
  1521. spin_lock(__ptl); \
  1522. __pte; \
  1523. })
  1524. #define pte_unmap_unlock(pte, ptl) do { \
  1525. spin_unlock(ptl); \
  1526. pte_unmap(pte); \
  1527. } while (0)
  1528. #define pte_alloc(mm, pmd, address) \
  1529. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1530. #define pte_alloc_map(mm, pmd, address) \
  1531. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1532. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1533. (pte_alloc(mm, pmd, address) ? \
  1534. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1535. #define pte_alloc_kernel(pmd, address) \
  1536. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1537. NULL: pte_offset_kernel(pmd, address))
  1538. #if USE_SPLIT_PMD_PTLOCKS
  1539. static struct page *pmd_to_page(pmd_t *pmd)
  1540. {
  1541. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1542. return virt_to_page((void *)((unsigned long) pmd & mask));
  1543. }
  1544. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1545. {
  1546. return ptlock_ptr(pmd_to_page(pmd));
  1547. }
  1548. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1549. {
  1550. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1551. page->pmd_huge_pte = NULL;
  1552. #endif
  1553. return ptlock_init(page);
  1554. }
  1555. static inline void pgtable_pmd_page_dtor(struct page *page)
  1556. {
  1557. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1558. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1559. #endif
  1560. ptlock_free(page);
  1561. }
  1562. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1563. #else
  1564. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1565. {
  1566. return &mm->page_table_lock;
  1567. }
  1568. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1569. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1570. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1571. #endif
  1572. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1573. {
  1574. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1575. spin_lock(ptl);
  1576. return ptl;
  1577. }
  1578. /*
  1579. * No scalability reason to split PUD locks yet, but follow the same pattern
  1580. * as the PMD locks to make it easier if we decide to. The VM should not be
  1581. * considered ready to switch to split PUD locks yet; there may be places
  1582. * which need to be converted from page_table_lock.
  1583. */
  1584. static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
  1585. {
  1586. return &mm->page_table_lock;
  1587. }
  1588. static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
  1589. {
  1590. spinlock_t *ptl = pud_lockptr(mm, pud);
  1591. spin_lock(ptl);
  1592. return ptl;
  1593. }
  1594. extern void __init pagecache_init(void);
  1595. extern void free_area_init(unsigned long * zones_size);
  1596. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1597. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1598. extern void free_initmem(void);
  1599. /*
  1600. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1601. * into the buddy system. The freed pages will be poisoned with pattern
  1602. * "poison" if it's within range [0, UCHAR_MAX].
  1603. * Return pages freed into the buddy system.
  1604. */
  1605. extern unsigned long free_reserved_area(void *start, void *end,
  1606. int poison, char *s);
  1607. #ifdef CONFIG_HIGHMEM
  1608. /*
  1609. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1610. * and totalram_pages.
  1611. */
  1612. extern void free_highmem_page(struct page *page);
  1613. #endif
  1614. extern void adjust_managed_page_count(struct page *page, long count);
  1615. extern void mem_init_print_info(const char *str);
  1616. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1617. /* Free the reserved page into the buddy system, so it gets managed. */
  1618. static inline void __free_reserved_page(struct page *page)
  1619. {
  1620. ClearPageReserved(page);
  1621. init_page_count(page);
  1622. __free_page(page);
  1623. }
  1624. static inline void free_reserved_page(struct page *page)
  1625. {
  1626. __free_reserved_page(page);
  1627. adjust_managed_page_count(page, 1);
  1628. }
  1629. static inline void mark_page_reserved(struct page *page)
  1630. {
  1631. SetPageReserved(page);
  1632. adjust_managed_page_count(page, -1);
  1633. }
  1634. /*
  1635. * Default method to free all the __init memory into the buddy system.
  1636. * The freed pages will be poisoned with pattern "poison" if it's within
  1637. * range [0, UCHAR_MAX].
  1638. * Return pages freed into the buddy system.
  1639. */
  1640. static inline unsigned long free_initmem_default(int poison)
  1641. {
  1642. extern char __init_begin[], __init_end[];
  1643. return free_reserved_area(&__init_begin, &__init_end,
  1644. poison, "unused kernel");
  1645. }
  1646. static inline unsigned long get_num_physpages(void)
  1647. {
  1648. int nid;
  1649. unsigned long phys_pages = 0;
  1650. for_each_online_node(nid)
  1651. phys_pages += node_present_pages(nid);
  1652. return phys_pages;
  1653. }
  1654. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1655. /*
  1656. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1657. * zones, allocate the backing mem_map and account for memory holes in a more
  1658. * architecture independent manner. This is a substitute for creating the
  1659. * zone_sizes[] and zholes_size[] arrays and passing them to
  1660. * free_area_init_node()
  1661. *
  1662. * An architecture is expected to register range of page frames backed by
  1663. * physical memory with memblock_add[_node]() before calling
  1664. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1665. * usage, an architecture is expected to do something like
  1666. *
  1667. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1668. * max_highmem_pfn};
  1669. * for_each_valid_physical_page_range()
  1670. * memblock_add_node(base, size, nid)
  1671. * free_area_init_nodes(max_zone_pfns);
  1672. *
  1673. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1674. * registered physical page range. Similarly
  1675. * sparse_memory_present_with_active_regions() calls memory_present() for
  1676. * each range when SPARSEMEM is enabled.
  1677. *
  1678. * See mm/page_alloc.c for more information on each function exposed by
  1679. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1680. */
  1681. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1682. unsigned long node_map_pfn_alignment(void);
  1683. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1684. unsigned long end_pfn);
  1685. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1686. unsigned long end_pfn);
  1687. extern void get_pfn_range_for_nid(unsigned int nid,
  1688. unsigned long *start_pfn, unsigned long *end_pfn);
  1689. extern unsigned long find_min_pfn_with_active_regions(void);
  1690. extern void free_bootmem_with_active_regions(int nid,
  1691. unsigned long max_low_pfn);
  1692. extern void sparse_memory_present_with_active_regions(int nid);
  1693. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1694. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1695. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1696. static inline int __early_pfn_to_nid(unsigned long pfn,
  1697. struct mminit_pfnnid_cache *state)
  1698. {
  1699. return 0;
  1700. }
  1701. #else
  1702. /* please see mm/page_alloc.c */
  1703. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1704. /* there is a per-arch backend function. */
  1705. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1706. struct mminit_pfnnid_cache *state);
  1707. #endif
  1708. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1709. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1710. unsigned long, enum memmap_context);
  1711. extern void setup_per_zone_wmarks(void);
  1712. extern int __meminit init_per_zone_wmark_min(void);
  1713. extern void mem_init(void);
  1714. extern void __init mmap_init(void);
  1715. extern void show_mem(unsigned int flags, nodemask_t *nodemask);
  1716. extern long si_mem_available(void);
  1717. extern void si_meminfo(struct sysinfo * val);
  1718. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1719. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1720. extern unsigned long arch_reserved_kernel_pages(void);
  1721. #endif
  1722. extern __printf(3, 4)
  1723. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
  1724. extern void setup_per_cpu_pageset(void);
  1725. extern void zone_pcp_update(struct zone *zone);
  1726. extern void zone_pcp_reset(struct zone *zone);
  1727. /* page_alloc.c */
  1728. extern int min_free_kbytes;
  1729. extern int watermark_scale_factor;
  1730. /* nommu.c */
  1731. extern atomic_long_t mmap_pages_allocated;
  1732. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1733. /* interval_tree.c */
  1734. void vma_interval_tree_insert(struct vm_area_struct *node,
  1735. struct rb_root *root);
  1736. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1737. struct vm_area_struct *prev,
  1738. struct rb_root *root);
  1739. void vma_interval_tree_remove(struct vm_area_struct *node,
  1740. struct rb_root *root);
  1741. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1742. unsigned long start, unsigned long last);
  1743. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1744. unsigned long start, unsigned long last);
  1745. #define vma_interval_tree_foreach(vma, root, start, last) \
  1746. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1747. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1748. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1749. struct rb_root *root);
  1750. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1751. struct rb_root *root);
  1752. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1753. struct rb_root *root, unsigned long start, unsigned long last);
  1754. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1755. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1756. #ifdef CONFIG_DEBUG_VM_RB
  1757. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1758. #endif
  1759. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1760. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1761. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1762. /* mmap.c */
  1763. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1764. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1765. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1766. struct vm_area_struct *expand);
  1767. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1768. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1769. {
  1770. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1771. }
  1772. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1773. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1774. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1775. struct mempolicy *, struct vm_userfaultfd_ctx);
  1776. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1777. extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
  1778. unsigned long addr, int new_below);
  1779. extern int split_vma(struct mm_struct *, struct vm_area_struct *,
  1780. unsigned long addr, int new_below);
  1781. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1782. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1783. struct rb_node **, struct rb_node *);
  1784. extern void unlink_file_vma(struct vm_area_struct *);
  1785. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1786. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1787. bool *need_rmap_locks);
  1788. extern void exit_mmap(struct mm_struct *);
  1789. static inline int check_data_rlimit(unsigned long rlim,
  1790. unsigned long new,
  1791. unsigned long start,
  1792. unsigned long end_data,
  1793. unsigned long start_data)
  1794. {
  1795. if (rlim < RLIM_INFINITY) {
  1796. if (((new - start) + (end_data - start_data)) > rlim)
  1797. return -ENOSPC;
  1798. }
  1799. return 0;
  1800. }
  1801. extern int mm_take_all_locks(struct mm_struct *mm);
  1802. extern void mm_drop_all_locks(struct mm_struct *mm);
  1803. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1804. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1805. extern struct file *get_task_exe_file(struct task_struct *task);
  1806. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1807. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1808. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1809. const struct vm_special_mapping *sm);
  1810. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1811. unsigned long addr, unsigned long len,
  1812. unsigned long flags,
  1813. const struct vm_special_mapping *spec);
  1814. /* This is an obsolete alternative to _install_special_mapping. */
  1815. extern int install_special_mapping(struct mm_struct *mm,
  1816. unsigned long addr, unsigned long len,
  1817. unsigned long flags, struct page **pages);
  1818. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1819. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1820. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
  1821. struct list_head *uf);
  1822. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1823. unsigned long len, unsigned long prot, unsigned long flags,
  1824. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
  1825. struct list_head *uf);
  1826. extern int do_munmap(struct mm_struct *, unsigned long, size_t,
  1827. struct list_head *uf);
  1828. static inline unsigned long
  1829. do_mmap_pgoff(struct file *file, unsigned long addr,
  1830. unsigned long len, unsigned long prot, unsigned long flags,
  1831. unsigned long pgoff, unsigned long *populate,
  1832. struct list_head *uf)
  1833. {
  1834. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
  1835. }
  1836. #ifdef CONFIG_MMU
  1837. extern int __mm_populate(unsigned long addr, unsigned long len,
  1838. int ignore_errors);
  1839. static inline void mm_populate(unsigned long addr, unsigned long len)
  1840. {
  1841. /* Ignore errors */
  1842. (void) __mm_populate(addr, len, 1);
  1843. }
  1844. #else
  1845. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1846. #endif
  1847. /* These take the mm semaphore themselves */
  1848. extern int __must_check vm_brk(unsigned long, unsigned long);
  1849. extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
  1850. extern int vm_munmap(unsigned long, size_t);
  1851. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1852. unsigned long, unsigned long,
  1853. unsigned long, unsigned long);
  1854. struct vm_unmapped_area_info {
  1855. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1856. unsigned long flags;
  1857. unsigned long length;
  1858. unsigned long low_limit;
  1859. unsigned long high_limit;
  1860. unsigned long align_mask;
  1861. unsigned long align_offset;
  1862. };
  1863. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1864. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1865. /*
  1866. * Search for an unmapped address range.
  1867. *
  1868. * We are looking for a range that:
  1869. * - does not intersect with any VMA;
  1870. * - is contained within the [low_limit, high_limit) interval;
  1871. * - is at least the desired size.
  1872. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1873. */
  1874. static inline unsigned long
  1875. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1876. {
  1877. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1878. return unmapped_area_topdown(info);
  1879. else
  1880. return unmapped_area(info);
  1881. }
  1882. /* truncate.c */
  1883. extern void truncate_inode_pages(struct address_space *, loff_t);
  1884. extern void truncate_inode_pages_range(struct address_space *,
  1885. loff_t lstart, loff_t lend);
  1886. extern void truncate_inode_pages_final(struct address_space *);
  1887. /* generic vm_area_ops exported for stackable file systems */
  1888. extern int filemap_fault(struct vm_fault *vmf);
  1889. extern void filemap_map_pages(struct vm_fault *vmf,
  1890. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1891. extern int filemap_page_mkwrite(struct vm_fault *vmf);
  1892. /* mm/page-writeback.c */
  1893. int __must_check write_one_page(struct page *page);
  1894. void task_dirty_inc(struct task_struct *tsk);
  1895. /* readahead.c */
  1896. #define VM_MAX_READAHEAD 128 /* kbytes */
  1897. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1898. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1899. pgoff_t offset, unsigned long nr_to_read);
  1900. void page_cache_sync_readahead(struct address_space *mapping,
  1901. struct file_ra_state *ra,
  1902. struct file *filp,
  1903. pgoff_t offset,
  1904. unsigned long size);
  1905. void page_cache_async_readahead(struct address_space *mapping,
  1906. struct file_ra_state *ra,
  1907. struct file *filp,
  1908. struct page *pg,
  1909. pgoff_t offset,
  1910. unsigned long size);
  1911. extern unsigned long stack_guard_gap;
  1912. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1913. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1914. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1915. extern int expand_downwards(struct vm_area_struct *vma,
  1916. unsigned long address);
  1917. #if VM_GROWSUP
  1918. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1919. #else
  1920. #define expand_upwards(vma, address) (0)
  1921. #endif
  1922. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1923. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1924. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1925. struct vm_area_struct **pprev);
  1926. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1927. NULL if none. Assume start_addr < end_addr. */
  1928. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1929. {
  1930. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1931. if (vma && end_addr <= vma->vm_start)
  1932. vma = NULL;
  1933. return vma;
  1934. }
  1935. static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
  1936. {
  1937. unsigned long vm_start = vma->vm_start;
  1938. if (vma->vm_flags & VM_GROWSDOWN) {
  1939. vm_start -= stack_guard_gap;
  1940. if (vm_start > vma->vm_start)
  1941. vm_start = 0;
  1942. }
  1943. return vm_start;
  1944. }
  1945. static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
  1946. {
  1947. unsigned long vm_end = vma->vm_end;
  1948. if (vma->vm_flags & VM_GROWSUP) {
  1949. vm_end += stack_guard_gap;
  1950. if (vm_end < vma->vm_end)
  1951. vm_end = -PAGE_SIZE;
  1952. }
  1953. return vm_end;
  1954. }
  1955. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1956. {
  1957. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1958. }
  1959. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1960. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1961. unsigned long vm_start, unsigned long vm_end)
  1962. {
  1963. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1964. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1965. vma = NULL;
  1966. return vma;
  1967. }
  1968. #ifdef CONFIG_MMU
  1969. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1970. void vma_set_page_prot(struct vm_area_struct *vma);
  1971. #else
  1972. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1973. {
  1974. return __pgprot(0);
  1975. }
  1976. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1977. {
  1978. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1979. }
  1980. #endif
  1981. #ifdef CONFIG_NUMA_BALANCING
  1982. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1983. unsigned long start, unsigned long end);
  1984. #endif
  1985. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1986. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1987. unsigned long pfn, unsigned long size, pgprot_t);
  1988. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1989. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1990. unsigned long pfn);
  1991. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1992. unsigned long pfn, pgprot_t pgprot);
  1993. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1994. pfn_t pfn);
  1995. int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
  1996. pfn_t pfn);
  1997. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1998. struct page *follow_page_mask(struct vm_area_struct *vma,
  1999. unsigned long address, unsigned int foll_flags,
  2000. unsigned int *page_mask);
  2001. static inline struct page *follow_page(struct vm_area_struct *vma,
  2002. unsigned long address, unsigned int foll_flags)
  2003. {
  2004. unsigned int unused_page_mask;
  2005. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  2006. }
  2007. #define FOLL_WRITE 0x01 /* check pte is writable */
  2008. #define FOLL_TOUCH 0x02 /* mark page accessed */
  2009. #define FOLL_GET 0x04 /* do get_page on page */
  2010. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  2011. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  2012. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  2013. * and return without waiting upon it */
  2014. #define FOLL_POPULATE 0x40 /* fault in page */
  2015. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  2016. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  2017. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  2018. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  2019. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  2020. #define FOLL_MLOCK 0x1000 /* lock present pages */
  2021. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  2022. #define FOLL_COW 0x4000 /* internal GUP flag */
  2023. static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
  2024. {
  2025. if (vm_fault & VM_FAULT_OOM)
  2026. return -ENOMEM;
  2027. if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  2028. return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
  2029. if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
  2030. return -EFAULT;
  2031. return 0;
  2032. }
  2033. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  2034. void *data);
  2035. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  2036. unsigned long size, pte_fn_t fn, void *data);
  2037. #ifdef CONFIG_PAGE_POISONING
  2038. extern bool page_poisoning_enabled(void);
  2039. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  2040. extern bool page_is_poisoned(struct page *page);
  2041. #else
  2042. static inline bool page_poisoning_enabled(void) { return false; }
  2043. static inline void kernel_poison_pages(struct page *page, int numpages,
  2044. int enable) { }
  2045. static inline bool page_is_poisoned(struct page *page) { return false; }
  2046. #endif
  2047. #ifdef CONFIG_DEBUG_PAGEALLOC
  2048. extern bool _debug_pagealloc_enabled;
  2049. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  2050. static inline bool debug_pagealloc_enabled(void)
  2051. {
  2052. return _debug_pagealloc_enabled;
  2053. }
  2054. static inline void
  2055. kernel_map_pages(struct page *page, int numpages, int enable)
  2056. {
  2057. if (!debug_pagealloc_enabled())
  2058. return;
  2059. __kernel_map_pages(page, numpages, enable);
  2060. }
  2061. #ifdef CONFIG_HIBERNATION
  2062. extern bool kernel_page_present(struct page *page);
  2063. #endif /* CONFIG_HIBERNATION */
  2064. #else /* CONFIG_DEBUG_PAGEALLOC */
  2065. static inline void
  2066. kernel_map_pages(struct page *page, int numpages, int enable) {}
  2067. #ifdef CONFIG_HIBERNATION
  2068. static inline bool kernel_page_present(struct page *page) { return true; }
  2069. #endif /* CONFIG_HIBERNATION */
  2070. static inline bool debug_pagealloc_enabled(void)
  2071. {
  2072. return false;
  2073. }
  2074. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2075. #ifdef __HAVE_ARCH_GATE_AREA
  2076. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  2077. extern int in_gate_area_no_mm(unsigned long addr);
  2078. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  2079. #else
  2080. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  2081. {
  2082. return NULL;
  2083. }
  2084. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  2085. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  2086. {
  2087. return 0;
  2088. }
  2089. #endif /* __HAVE_ARCH_GATE_AREA */
  2090. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  2091. #ifdef CONFIG_SYSCTL
  2092. extern int sysctl_drop_caches;
  2093. int drop_caches_sysctl_handler(struct ctl_table *, int,
  2094. void __user *, size_t *, loff_t *);
  2095. #endif
  2096. void drop_slab(void);
  2097. void drop_slab_node(int nid);
  2098. #ifndef CONFIG_MMU
  2099. #define randomize_va_space 0
  2100. #else
  2101. extern int randomize_va_space;
  2102. #endif
  2103. const char * arch_vma_name(struct vm_area_struct *vma);
  2104. void print_vma_addr(char *prefix, unsigned long rip);
  2105. void sparse_mem_maps_populate_node(struct page **map_map,
  2106. unsigned long pnum_begin,
  2107. unsigned long pnum_end,
  2108. unsigned long map_count,
  2109. int nodeid);
  2110. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  2111. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2112. p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
  2113. pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
  2114. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2115. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2116. void *vmemmap_alloc_block(unsigned long size, int node);
  2117. struct vmem_altmap;
  2118. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  2119. struct vmem_altmap *altmap);
  2120. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  2121. {
  2122. return __vmemmap_alloc_block_buf(size, node, NULL);
  2123. }
  2124. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2125. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2126. int node);
  2127. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  2128. void vmemmap_populate_print_last(void);
  2129. #ifdef CONFIG_MEMORY_HOTPLUG
  2130. void vmemmap_free(unsigned long start, unsigned long end);
  2131. #endif
  2132. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2133. unsigned long size);
  2134. enum mf_flags {
  2135. MF_COUNT_INCREASED = 1 << 0,
  2136. MF_ACTION_REQUIRED = 1 << 1,
  2137. MF_MUST_KILL = 1 << 2,
  2138. MF_SOFT_OFFLINE = 1 << 3,
  2139. };
  2140. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  2141. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  2142. extern int unpoison_memory(unsigned long pfn);
  2143. extern int get_hwpoison_page(struct page *page);
  2144. #define put_hwpoison_page(page) put_page(page)
  2145. extern int sysctl_memory_failure_early_kill;
  2146. extern int sysctl_memory_failure_recovery;
  2147. extern void shake_page(struct page *p, int access);
  2148. extern atomic_long_t num_poisoned_pages;
  2149. extern int soft_offline_page(struct page *page, int flags);
  2150. /*
  2151. * Error handlers for various types of pages.
  2152. */
  2153. enum mf_result {
  2154. MF_IGNORED, /* Error: cannot be handled */
  2155. MF_FAILED, /* Error: handling failed */
  2156. MF_DELAYED, /* Will be handled later */
  2157. MF_RECOVERED, /* Successfully recovered */
  2158. };
  2159. enum mf_action_page_type {
  2160. MF_MSG_KERNEL,
  2161. MF_MSG_KERNEL_HIGH_ORDER,
  2162. MF_MSG_SLAB,
  2163. MF_MSG_DIFFERENT_COMPOUND,
  2164. MF_MSG_POISONED_HUGE,
  2165. MF_MSG_HUGE,
  2166. MF_MSG_FREE_HUGE,
  2167. MF_MSG_UNMAP_FAILED,
  2168. MF_MSG_DIRTY_SWAPCACHE,
  2169. MF_MSG_CLEAN_SWAPCACHE,
  2170. MF_MSG_DIRTY_MLOCKED_LRU,
  2171. MF_MSG_CLEAN_MLOCKED_LRU,
  2172. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2173. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2174. MF_MSG_DIRTY_LRU,
  2175. MF_MSG_CLEAN_LRU,
  2176. MF_MSG_TRUNCATED_LRU,
  2177. MF_MSG_BUDDY,
  2178. MF_MSG_BUDDY_2ND,
  2179. MF_MSG_UNKNOWN,
  2180. };
  2181. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2182. extern void clear_huge_page(struct page *page,
  2183. unsigned long addr_hint,
  2184. unsigned int pages_per_huge_page);
  2185. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2186. unsigned long addr, struct vm_area_struct *vma,
  2187. unsigned int pages_per_huge_page);
  2188. extern long copy_huge_page_from_user(struct page *dst_page,
  2189. const void __user *usr_src,
  2190. unsigned int pages_per_huge_page,
  2191. bool allow_pagefault);
  2192. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2193. extern struct page_ext_operations debug_guardpage_ops;
  2194. #ifdef CONFIG_DEBUG_PAGEALLOC
  2195. extern unsigned int _debug_guardpage_minorder;
  2196. extern bool _debug_guardpage_enabled;
  2197. static inline unsigned int debug_guardpage_minorder(void)
  2198. {
  2199. return _debug_guardpage_minorder;
  2200. }
  2201. static inline bool debug_guardpage_enabled(void)
  2202. {
  2203. return _debug_guardpage_enabled;
  2204. }
  2205. static inline bool page_is_guard(struct page *page)
  2206. {
  2207. struct page_ext *page_ext;
  2208. if (!debug_guardpage_enabled())
  2209. return false;
  2210. page_ext = lookup_page_ext(page);
  2211. if (unlikely(!page_ext))
  2212. return false;
  2213. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2214. }
  2215. #else
  2216. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2217. static inline bool debug_guardpage_enabled(void) { return false; }
  2218. static inline bool page_is_guard(struct page *page) { return false; }
  2219. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2220. #if MAX_NUMNODES > 1
  2221. void __init setup_nr_node_ids(void);
  2222. #else
  2223. static inline void setup_nr_node_ids(void) {}
  2224. #endif
  2225. #endif /* __KERNEL__ */
  2226. #endif /* _LINUX_MM_H */