xfs_inode.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  4. * All Rights Reserved.
  5. */
  6. #include <linux/log2.h>
  7. #include <linux/iversion.h>
  8. #include "xfs.h"
  9. #include "xfs_fs.h"
  10. #include "xfs_shared.h"
  11. #include "xfs_format.h"
  12. #include "xfs_log_format.h"
  13. #include "xfs_trans_resv.h"
  14. #include "xfs_sb.h"
  15. #include "xfs_mount.h"
  16. #include "xfs_defer.h"
  17. #include "xfs_inode.h"
  18. #include "xfs_da_format.h"
  19. #include "xfs_da_btree.h"
  20. #include "xfs_dir2.h"
  21. #include "xfs_attr_sf.h"
  22. #include "xfs_attr.h"
  23. #include "xfs_trans_space.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_buf_item.h"
  26. #include "xfs_inode_item.h"
  27. #include "xfs_ialloc.h"
  28. #include "xfs_bmap.h"
  29. #include "xfs_bmap_util.h"
  30. #include "xfs_errortag.h"
  31. #include "xfs_error.h"
  32. #include "xfs_quota.h"
  33. #include "xfs_filestream.h"
  34. #include "xfs_cksum.h"
  35. #include "xfs_trace.h"
  36. #include "xfs_icache.h"
  37. #include "xfs_symlink.h"
  38. #include "xfs_trans_priv.h"
  39. #include "xfs_log.h"
  40. #include "xfs_bmap_btree.h"
  41. #include "xfs_reflink.h"
  42. #include "xfs_dir2_priv.h"
  43. kmem_zone_t *xfs_inode_zone;
  44. /*
  45. * Used in xfs_itruncate_extents(). This is the maximum number of extents
  46. * freed from a file in a single transaction.
  47. */
  48. #define XFS_ITRUNC_MAX_EXTENTS 2
  49. STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  50. STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  51. STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  52. /*
  53. * helper function to extract extent size hint from inode
  54. */
  55. xfs_extlen_t
  56. xfs_get_extsz_hint(
  57. struct xfs_inode *ip)
  58. {
  59. if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  60. return ip->i_d.di_extsize;
  61. if (XFS_IS_REALTIME_INODE(ip))
  62. return ip->i_mount->m_sb.sb_rextsize;
  63. return 0;
  64. }
  65. /*
  66. * Helper function to extract CoW extent size hint from inode.
  67. * Between the extent size hint and the CoW extent size hint, we
  68. * return the greater of the two. If the value is zero (automatic),
  69. * use the default size.
  70. */
  71. xfs_extlen_t
  72. xfs_get_cowextsz_hint(
  73. struct xfs_inode *ip)
  74. {
  75. xfs_extlen_t a, b;
  76. a = 0;
  77. if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  78. a = ip->i_d.di_cowextsize;
  79. b = xfs_get_extsz_hint(ip);
  80. a = max(a, b);
  81. if (a == 0)
  82. return XFS_DEFAULT_COWEXTSZ_HINT;
  83. return a;
  84. }
  85. /*
  86. * These two are wrapper routines around the xfs_ilock() routine used to
  87. * centralize some grungy code. They are used in places that wish to lock the
  88. * inode solely for reading the extents. The reason these places can't just
  89. * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  90. * bringing in of the extents from disk for a file in b-tree format. If the
  91. * inode is in b-tree format, then we need to lock the inode exclusively until
  92. * the extents are read in. Locking it exclusively all the time would limit
  93. * our parallelism unnecessarily, though. What we do instead is check to see
  94. * if the extents have been read in yet, and only lock the inode exclusively
  95. * if they have not.
  96. *
  97. * The functions return a value which should be given to the corresponding
  98. * xfs_iunlock() call.
  99. */
  100. uint
  101. xfs_ilock_data_map_shared(
  102. struct xfs_inode *ip)
  103. {
  104. uint lock_mode = XFS_ILOCK_SHARED;
  105. if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
  106. (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
  107. lock_mode = XFS_ILOCK_EXCL;
  108. xfs_ilock(ip, lock_mode);
  109. return lock_mode;
  110. }
  111. uint
  112. xfs_ilock_attr_map_shared(
  113. struct xfs_inode *ip)
  114. {
  115. uint lock_mode = XFS_ILOCK_SHARED;
  116. if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
  117. (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
  118. lock_mode = XFS_ILOCK_EXCL;
  119. xfs_ilock(ip, lock_mode);
  120. return lock_mode;
  121. }
  122. /*
  123. * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
  124. * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
  125. * various combinations of the locks to be obtained.
  126. *
  127. * The 3 locks should always be ordered so that the IO lock is obtained first,
  128. * the mmap lock second and the ilock last in order to prevent deadlock.
  129. *
  130. * Basic locking order:
  131. *
  132. * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
  133. *
  134. * mmap_sem locking order:
  135. *
  136. * i_rwsem -> page lock -> mmap_sem
  137. * mmap_sem -> i_mmap_lock -> page_lock
  138. *
  139. * The difference in mmap_sem locking order mean that we cannot hold the
  140. * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
  141. * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
  142. * in get_user_pages() to map the user pages into the kernel address space for
  143. * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
  144. * page faults already hold the mmap_sem.
  145. *
  146. * Hence to serialise fully against both syscall and mmap based IO, we need to
  147. * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
  148. * taken in places where we need to invalidate the page cache in a race
  149. * free manner (e.g. truncate, hole punch and other extent manipulation
  150. * functions).
  151. */
  152. void
  153. xfs_ilock(
  154. xfs_inode_t *ip,
  155. uint lock_flags)
  156. {
  157. trace_xfs_ilock(ip, lock_flags, _RET_IP_);
  158. /*
  159. * You can't set both SHARED and EXCL for the same lock,
  160. * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
  161. * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
  162. */
  163. ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
  164. (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
  165. ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
  166. (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
  167. ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
  168. (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
  169. ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
  170. if (lock_flags & XFS_IOLOCK_EXCL) {
  171. down_write_nested(&VFS_I(ip)->i_rwsem,
  172. XFS_IOLOCK_DEP(lock_flags));
  173. } else if (lock_flags & XFS_IOLOCK_SHARED) {
  174. down_read_nested(&VFS_I(ip)->i_rwsem,
  175. XFS_IOLOCK_DEP(lock_flags));
  176. }
  177. if (lock_flags & XFS_MMAPLOCK_EXCL)
  178. mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
  179. else if (lock_flags & XFS_MMAPLOCK_SHARED)
  180. mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
  181. if (lock_flags & XFS_ILOCK_EXCL)
  182. mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
  183. else if (lock_flags & XFS_ILOCK_SHARED)
  184. mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
  185. }
  186. /*
  187. * This is just like xfs_ilock(), except that the caller
  188. * is guaranteed not to sleep. It returns 1 if it gets
  189. * the requested locks and 0 otherwise. If the IO lock is
  190. * obtained but the inode lock cannot be, then the IO lock
  191. * is dropped before returning.
  192. *
  193. * ip -- the inode being locked
  194. * lock_flags -- this parameter indicates the inode's locks to be
  195. * to be locked. See the comment for xfs_ilock() for a list
  196. * of valid values.
  197. */
  198. int
  199. xfs_ilock_nowait(
  200. xfs_inode_t *ip,
  201. uint lock_flags)
  202. {
  203. trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
  204. /*
  205. * You can't set both SHARED and EXCL for the same lock,
  206. * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
  207. * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
  208. */
  209. ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
  210. (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
  211. ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
  212. (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
  213. ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
  214. (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
  215. ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
  216. if (lock_flags & XFS_IOLOCK_EXCL) {
  217. if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
  218. goto out;
  219. } else if (lock_flags & XFS_IOLOCK_SHARED) {
  220. if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
  221. goto out;
  222. }
  223. if (lock_flags & XFS_MMAPLOCK_EXCL) {
  224. if (!mrtryupdate(&ip->i_mmaplock))
  225. goto out_undo_iolock;
  226. } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
  227. if (!mrtryaccess(&ip->i_mmaplock))
  228. goto out_undo_iolock;
  229. }
  230. if (lock_flags & XFS_ILOCK_EXCL) {
  231. if (!mrtryupdate(&ip->i_lock))
  232. goto out_undo_mmaplock;
  233. } else if (lock_flags & XFS_ILOCK_SHARED) {
  234. if (!mrtryaccess(&ip->i_lock))
  235. goto out_undo_mmaplock;
  236. }
  237. return 1;
  238. out_undo_mmaplock:
  239. if (lock_flags & XFS_MMAPLOCK_EXCL)
  240. mrunlock_excl(&ip->i_mmaplock);
  241. else if (lock_flags & XFS_MMAPLOCK_SHARED)
  242. mrunlock_shared(&ip->i_mmaplock);
  243. out_undo_iolock:
  244. if (lock_flags & XFS_IOLOCK_EXCL)
  245. up_write(&VFS_I(ip)->i_rwsem);
  246. else if (lock_flags & XFS_IOLOCK_SHARED)
  247. up_read(&VFS_I(ip)->i_rwsem);
  248. out:
  249. return 0;
  250. }
  251. /*
  252. * xfs_iunlock() is used to drop the inode locks acquired with
  253. * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
  254. * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
  255. * that we know which locks to drop.
  256. *
  257. * ip -- the inode being unlocked
  258. * lock_flags -- this parameter indicates the inode's locks to be
  259. * to be unlocked. See the comment for xfs_ilock() for a list
  260. * of valid values for this parameter.
  261. *
  262. */
  263. void
  264. xfs_iunlock(
  265. xfs_inode_t *ip,
  266. uint lock_flags)
  267. {
  268. /*
  269. * You can't set both SHARED and EXCL for the same lock,
  270. * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
  271. * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
  272. */
  273. ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
  274. (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
  275. ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
  276. (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
  277. ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
  278. (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
  279. ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
  280. ASSERT(lock_flags != 0);
  281. if (lock_flags & XFS_IOLOCK_EXCL)
  282. up_write(&VFS_I(ip)->i_rwsem);
  283. else if (lock_flags & XFS_IOLOCK_SHARED)
  284. up_read(&VFS_I(ip)->i_rwsem);
  285. if (lock_flags & XFS_MMAPLOCK_EXCL)
  286. mrunlock_excl(&ip->i_mmaplock);
  287. else if (lock_flags & XFS_MMAPLOCK_SHARED)
  288. mrunlock_shared(&ip->i_mmaplock);
  289. if (lock_flags & XFS_ILOCK_EXCL)
  290. mrunlock_excl(&ip->i_lock);
  291. else if (lock_flags & XFS_ILOCK_SHARED)
  292. mrunlock_shared(&ip->i_lock);
  293. trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
  294. }
  295. /*
  296. * give up write locks. the i/o lock cannot be held nested
  297. * if it is being demoted.
  298. */
  299. void
  300. xfs_ilock_demote(
  301. xfs_inode_t *ip,
  302. uint lock_flags)
  303. {
  304. ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
  305. ASSERT((lock_flags &
  306. ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
  307. if (lock_flags & XFS_ILOCK_EXCL)
  308. mrdemote(&ip->i_lock);
  309. if (lock_flags & XFS_MMAPLOCK_EXCL)
  310. mrdemote(&ip->i_mmaplock);
  311. if (lock_flags & XFS_IOLOCK_EXCL)
  312. downgrade_write(&VFS_I(ip)->i_rwsem);
  313. trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
  314. }
  315. #if defined(DEBUG) || defined(XFS_WARN)
  316. int
  317. xfs_isilocked(
  318. xfs_inode_t *ip,
  319. uint lock_flags)
  320. {
  321. if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
  322. if (!(lock_flags & XFS_ILOCK_SHARED))
  323. return !!ip->i_lock.mr_writer;
  324. return rwsem_is_locked(&ip->i_lock.mr_lock);
  325. }
  326. if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
  327. if (!(lock_flags & XFS_MMAPLOCK_SHARED))
  328. return !!ip->i_mmaplock.mr_writer;
  329. return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
  330. }
  331. if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
  332. if (!(lock_flags & XFS_IOLOCK_SHARED))
  333. return !debug_locks ||
  334. lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
  335. return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
  336. }
  337. ASSERT(0);
  338. return 0;
  339. }
  340. #endif
  341. /*
  342. * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
  343. * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
  344. * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
  345. * errors and warnings.
  346. */
  347. #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
  348. static bool
  349. xfs_lockdep_subclass_ok(
  350. int subclass)
  351. {
  352. return subclass < MAX_LOCKDEP_SUBCLASSES;
  353. }
  354. #else
  355. #define xfs_lockdep_subclass_ok(subclass) (true)
  356. #endif
  357. /*
  358. * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
  359. * value. This can be called for any type of inode lock combination, including
  360. * parent locking. Care must be taken to ensure we don't overrun the subclass
  361. * storage fields in the class mask we build.
  362. */
  363. static inline int
  364. xfs_lock_inumorder(int lock_mode, int subclass)
  365. {
  366. int class = 0;
  367. ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
  368. XFS_ILOCK_RTSUM)));
  369. ASSERT(xfs_lockdep_subclass_ok(subclass));
  370. if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
  371. ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
  372. class += subclass << XFS_IOLOCK_SHIFT;
  373. }
  374. if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
  375. ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
  376. class += subclass << XFS_MMAPLOCK_SHIFT;
  377. }
  378. if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
  379. ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
  380. class += subclass << XFS_ILOCK_SHIFT;
  381. }
  382. return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
  383. }
  384. /*
  385. * The following routine will lock n inodes in exclusive mode. We assume the
  386. * caller calls us with the inodes in i_ino order.
  387. *
  388. * We need to detect deadlock where an inode that we lock is in the AIL and we
  389. * start waiting for another inode that is locked by a thread in a long running
  390. * transaction (such as truncate). This can result in deadlock since the long
  391. * running trans might need to wait for the inode we just locked in order to
  392. * push the tail and free space in the log.
  393. *
  394. * xfs_lock_inodes() can only be used to lock one type of lock at a time -
  395. * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
  396. * lock more than one at a time, lockdep will report false positives saying we
  397. * have violated locking orders.
  398. */
  399. static void
  400. xfs_lock_inodes(
  401. xfs_inode_t **ips,
  402. int inodes,
  403. uint lock_mode)
  404. {
  405. int attempts = 0, i, j, try_lock;
  406. xfs_log_item_t *lp;
  407. /*
  408. * Currently supports between 2 and 5 inodes with exclusive locking. We
  409. * support an arbitrary depth of locking here, but absolute limits on
  410. * inodes depend on the the type of locking and the limits placed by
  411. * lockdep annotations in xfs_lock_inumorder. These are all checked by
  412. * the asserts.
  413. */
  414. ASSERT(ips && inodes >= 2 && inodes <= 5);
  415. ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
  416. XFS_ILOCK_EXCL));
  417. ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
  418. XFS_ILOCK_SHARED)));
  419. ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
  420. inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
  421. ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
  422. inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
  423. if (lock_mode & XFS_IOLOCK_EXCL) {
  424. ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
  425. } else if (lock_mode & XFS_MMAPLOCK_EXCL)
  426. ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
  427. try_lock = 0;
  428. i = 0;
  429. again:
  430. for (; i < inodes; i++) {
  431. ASSERT(ips[i]);
  432. if (i && (ips[i] == ips[i - 1])) /* Already locked */
  433. continue;
  434. /*
  435. * If try_lock is not set yet, make sure all locked inodes are
  436. * not in the AIL. If any are, set try_lock to be used later.
  437. */
  438. if (!try_lock) {
  439. for (j = (i - 1); j >= 0 && !try_lock; j--) {
  440. lp = (xfs_log_item_t *)ips[j]->i_itemp;
  441. if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
  442. try_lock++;
  443. }
  444. }
  445. /*
  446. * If any of the previous locks we have locked is in the AIL,
  447. * we must TRY to get the second and subsequent locks. If
  448. * we can't get any, we must release all we have
  449. * and try again.
  450. */
  451. if (!try_lock) {
  452. xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
  453. continue;
  454. }
  455. /* try_lock means we have an inode locked that is in the AIL. */
  456. ASSERT(i != 0);
  457. if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
  458. continue;
  459. /*
  460. * Unlock all previous guys and try again. xfs_iunlock will try
  461. * to push the tail if the inode is in the AIL.
  462. */
  463. attempts++;
  464. for (j = i - 1; j >= 0; j--) {
  465. /*
  466. * Check to see if we've already unlocked this one. Not
  467. * the first one going back, and the inode ptr is the
  468. * same.
  469. */
  470. if (j != (i - 1) && ips[j] == ips[j + 1])
  471. continue;
  472. xfs_iunlock(ips[j], lock_mode);
  473. }
  474. if ((attempts % 5) == 0) {
  475. delay(1); /* Don't just spin the CPU */
  476. }
  477. i = 0;
  478. try_lock = 0;
  479. goto again;
  480. }
  481. }
  482. /*
  483. * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
  484. * the mmaplock or the ilock, but not more than one type at a time. If we lock
  485. * more than one at a time, lockdep will report false positives saying we have
  486. * violated locking orders. The iolock must be double-locked separately since
  487. * we use i_rwsem for that. We now support taking one lock EXCL and the other
  488. * SHARED.
  489. */
  490. void
  491. xfs_lock_two_inodes(
  492. struct xfs_inode *ip0,
  493. uint ip0_mode,
  494. struct xfs_inode *ip1,
  495. uint ip1_mode)
  496. {
  497. struct xfs_inode *temp;
  498. uint mode_temp;
  499. int attempts = 0;
  500. xfs_log_item_t *lp;
  501. ASSERT(hweight32(ip0_mode) == 1);
  502. ASSERT(hweight32(ip1_mode) == 1);
  503. ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
  504. ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
  505. ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
  506. !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
  507. ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
  508. !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
  509. ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
  510. !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
  511. ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
  512. !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
  513. ASSERT(ip0->i_ino != ip1->i_ino);
  514. if (ip0->i_ino > ip1->i_ino) {
  515. temp = ip0;
  516. ip0 = ip1;
  517. ip1 = temp;
  518. mode_temp = ip0_mode;
  519. ip0_mode = ip1_mode;
  520. ip1_mode = mode_temp;
  521. }
  522. again:
  523. xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
  524. /*
  525. * If the first lock we have locked is in the AIL, we must TRY to get
  526. * the second lock. If we can't get it, we must release the first one
  527. * and try again.
  528. */
  529. lp = (xfs_log_item_t *)ip0->i_itemp;
  530. if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
  531. if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
  532. xfs_iunlock(ip0, ip0_mode);
  533. if ((++attempts % 5) == 0)
  534. delay(1); /* Don't just spin the CPU */
  535. goto again;
  536. }
  537. } else {
  538. xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
  539. }
  540. }
  541. void
  542. __xfs_iflock(
  543. struct xfs_inode *ip)
  544. {
  545. wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
  546. DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
  547. do {
  548. prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
  549. if (xfs_isiflocked(ip))
  550. io_schedule();
  551. } while (!xfs_iflock_nowait(ip));
  552. finish_wait(wq, &wait.wq_entry);
  553. }
  554. STATIC uint
  555. _xfs_dic2xflags(
  556. uint16_t di_flags,
  557. uint64_t di_flags2,
  558. bool has_attr)
  559. {
  560. uint flags = 0;
  561. if (di_flags & XFS_DIFLAG_ANY) {
  562. if (di_flags & XFS_DIFLAG_REALTIME)
  563. flags |= FS_XFLAG_REALTIME;
  564. if (di_flags & XFS_DIFLAG_PREALLOC)
  565. flags |= FS_XFLAG_PREALLOC;
  566. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  567. flags |= FS_XFLAG_IMMUTABLE;
  568. if (di_flags & XFS_DIFLAG_APPEND)
  569. flags |= FS_XFLAG_APPEND;
  570. if (di_flags & XFS_DIFLAG_SYNC)
  571. flags |= FS_XFLAG_SYNC;
  572. if (di_flags & XFS_DIFLAG_NOATIME)
  573. flags |= FS_XFLAG_NOATIME;
  574. if (di_flags & XFS_DIFLAG_NODUMP)
  575. flags |= FS_XFLAG_NODUMP;
  576. if (di_flags & XFS_DIFLAG_RTINHERIT)
  577. flags |= FS_XFLAG_RTINHERIT;
  578. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  579. flags |= FS_XFLAG_PROJINHERIT;
  580. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  581. flags |= FS_XFLAG_NOSYMLINKS;
  582. if (di_flags & XFS_DIFLAG_EXTSIZE)
  583. flags |= FS_XFLAG_EXTSIZE;
  584. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  585. flags |= FS_XFLAG_EXTSZINHERIT;
  586. if (di_flags & XFS_DIFLAG_NODEFRAG)
  587. flags |= FS_XFLAG_NODEFRAG;
  588. if (di_flags & XFS_DIFLAG_FILESTREAM)
  589. flags |= FS_XFLAG_FILESTREAM;
  590. }
  591. if (di_flags2 & XFS_DIFLAG2_ANY) {
  592. if (di_flags2 & XFS_DIFLAG2_DAX)
  593. flags |= FS_XFLAG_DAX;
  594. if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  595. flags |= FS_XFLAG_COWEXTSIZE;
  596. }
  597. if (has_attr)
  598. flags |= FS_XFLAG_HASATTR;
  599. return flags;
  600. }
  601. uint
  602. xfs_ip2xflags(
  603. struct xfs_inode *ip)
  604. {
  605. struct xfs_icdinode *dic = &ip->i_d;
  606. return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
  607. }
  608. /*
  609. * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
  610. * is allowed, otherwise it has to be an exact match. If a CI match is found,
  611. * ci_name->name will point to a the actual name (caller must free) or
  612. * will be set to NULL if an exact match is found.
  613. */
  614. int
  615. xfs_lookup(
  616. xfs_inode_t *dp,
  617. struct xfs_name *name,
  618. xfs_inode_t **ipp,
  619. struct xfs_name *ci_name)
  620. {
  621. xfs_ino_t inum;
  622. int error;
  623. trace_xfs_lookup(dp, name);
  624. if (XFS_FORCED_SHUTDOWN(dp->i_mount))
  625. return -EIO;
  626. error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
  627. if (error)
  628. goto out_unlock;
  629. error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
  630. if (error)
  631. goto out_free_name;
  632. return 0;
  633. out_free_name:
  634. if (ci_name)
  635. kmem_free(ci_name->name);
  636. out_unlock:
  637. *ipp = NULL;
  638. return error;
  639. }
  640. /*
  641. * Allocate an inode on disk and return a copy of its in-core version.
  642. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  643. * appropriately within the inode. The uid and gid for the inode are
  644. * set according to the contents of the given cred structure.
  645. *
  646. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  647. * has a free inode available, call xfs_iget() to obtain the in-core
  648. * version of the allocated inode. Finally, fill in the inode and
  649. * log its initial contents. In this case, ialloc_context would be
  650. * set to NULL.
  651. *
  652. * If xfs_dialloc() does not have an available inode, it will replenish
  653. * its supply by doing an allocation. Since we can only do one
  654. * allocation within a transaction without deadlocks, we must commit
  655. * the current transaction before returning the inode itself.
  656. * In this case, therefore, we will set ialloc_context and return.
  657. * The caller should then commit the current transaction, start a new
  658. * transaction, and call xfs_ialloc() again to actually get the inode.
  659. *
  660. * To ensure that some other process does not grab the inode that
  661. * was allocated during the first call to xfs_ialloc(), this routine
  662. * also returns the [locked] bp pointing to the head of the freelist
  663. * as ialloc_context. The caller should hold this buffer across
  664. * the commit and pass it back into this routine on the second call.
  665. *
  666. * If we are allocating quota inodes, we do not have a parent inode
  667. * to attach to or associate with (i.e. pip == NULL) because they
  668. * are not linked into the directory structure - they are attached
  669. * directly to the superblock - and so have no parent.
  670. */
  671. static int
  672. xfs_ialloc(
  673. xfs_trans_t *tp,
  674. xfs_inode_t *pip,
  675. umode_t mode,
  676. xfs_nlink_t nlink,
  677. dev_t rdev,
  678. prid_t prid,
  679. xfs_buf_t **ialloc_context,
  680. xfs_inode_t **ipp)
  681. {
  682. struct xfs_mount *mp = tp->t_mountp;
  683. xfs_ino_t ino;
  684. xfs_inode_t *ip;
  685. uint flags;
  686. int error;
  687. struct timespec64 tv;
  688. struct inode *inode;
  689. /*
  690. * Call the space management code to pick
  691. * the on-disk inode to be allocated.
  692. */
  693. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
  694. ialloc_context, &ino);
  695. if (error)
  696. return error;
  697. if (*ialloc_context || ino == NULLFSINO) {
  698. *ipp = NULL;
  699. return 0;
  700. }
  701. ASSERT(*ialloc_context == NULL);
  702. /*
  703. * Protect against obviously corrupt allocation btree records. Later
  704. * xfs_iget checks will catch re-allocation of other active in-memory
  705. * and on-disk inodes. If we don't catch reallocating the parent inode
  706. * here we will deadlock in xfs_iget() so we have to do these checks
  707. * first.
  708. */
  709. if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
  710. xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
  711. return -EFSCORRUPTED;
  712. }
  713. /*
  714. * Get the in-core inode with the lock held exclusively.
  715. * This is because we're setting fields here we need
  716. * to prevent others from looking at until we're done.
  717. */
  718. error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
  719. XFS_ILOCK_EXCL, &ip);
  720. if (error)
  721. return error;
  722. ASSERT(ip != NULL);
  723. inode = VFS_I(ip);
  724. /*
  725. * We always convert v1 inodes to v2 now - we only support filesystems
  726. * with >= v2 inode capability, so there is no reason for ever leaving
  727. * an inode in v1 format.
  728. */
  729. if (ip->i_d.di_version == 1)
  730. ip->i_d.di_version = 2;
  731. inode->i_mode = mode;
  732. set_nlink(inode, nlink);
  733. ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
  734. ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
  735. inode->i_rdev = rdev;
  736. xfs_set_projid(ip, prid);
  737. if (pip && XFS_INHERIT_GID(pip)) {
  738. ip->i_d.di_gid = pip->i_d.di_gid;
  739. if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
  740. inode->i_mode |= S_ISGID;
  741. }
  742. /*
  743. * If the group ID of the new file does not match the effective group
  744. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  745. * (and only if the irix_sgid_inherit compatibility variable is set).
  746. */
  747. if ((irix_sgid_inherit) &&
  748. (inode->i_mode & S_ISGID) &&
  749. (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
  750. inode->i_mode &= ~S_ISGID;
  751. ip->i_d.di_size = 0;
  752. ip->i_d.di_nextents = 0;
  753. ASSERT(ip->i_d.di_nblocks == 0);
  754. tv = current_time(inode);
  755. inode->i_mtime = tv;
  756. inode->i_atime = tv;
  757. inode->i_ctime = tv;
  758. ip->i_d.di_extsize = 0;
  759. ip->i_d.di_dmevmask = 0;
  760. ip->i_d.di_dmstate = 0;
  761. ip->i_d.di_flags = 0;
  762. if (ip->i_d.di_version == 3) {
  763. inode_set_iversion(inode, 1);
  764. ip->i_d.di_flags2 = 0;
  765. ip->i_d.di_cowextsize = 0;
  766. ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
  767. ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
  768. }
  769. flags = XFS_ILOG_CORE;
  770. switch (mode & S_IFMT) {
  771. case S_IFIFO:
  772. case S_IFCHR:
  773. case S_IFBLK:
  774. case S_IFSOCK:
  775. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  776. ip->i_df.if_flags = 0;
  777. flags |= XFS_ILOG_DEV;
  778. break;
  779. case S_IFREG:
  780. case S_IFDIR:
  781. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  782. uint di_flags = 0;
  783. if (S_ISDIR(mode)) {
  784. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  785. di_flags |= XFS_DIFLAG_RTINHERIT;
  786. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  787. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  788. ip->i_d.di_extsize = pip->i_d.di_extsize;
  789. }
  790. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  791. di_flags |= XFS_DIFLAG_PROJINHERIT;
  792. } else if (S_ISREG(mode)) {
  793. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  794. di_flags |= XFS_DIFLAG_REALTIME;
  795. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  796. di_flags |= XFS_DIFLAG_EXTSIZE;
  797. ip->i_d.di_extsize = pip->i_d.di_extsize;
  798. }
  799. }
  800. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  801. xfs_inherit_noatime)
  802. di_flags |= XFS_DIFLAG_NOATIME;
  803. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  804. xfs_inherit_nodump)
  805. di_flags |= XFS_DIFLAG_NODUMP;
  806. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  807. xfs_inherit_sync)
  808. di_flags |= XFS_DIFLAG_SYNC;
  809. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  810. xfs_inherit_nosymlinks)
  811. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  812. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  813. xfs_inherit_nodefrag)
  814. di_flags |= XFS_DIFLAG_NODEFRAG;
  815. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  816. di_flags |= XFS_DIFLAG_FILESTREAM;
  817. ip->i_d.di_flags |= di_flags;
  818. }
  819. if (pip &&
  820. (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
  821. pip->i_d.di_version == 3 &&
  822. ip->i_d.di_version == 3) {
  823. uint64_t di_flags2 = 0;
  824. if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
  825. di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
  826. ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
  827. }
  828. if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
  829. di_flags2 |= XFS_DIFLAG2_DAX;
  830. ip->i_d.di_flags2 |= di_flags2;
  831. }
  832. /* FALLTHROUGH */
  833. case S_IFLNK:
  834. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  835. ip->i_df.if_flags = XFS_IFEXTENTS;
  836. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  837. ip->i_df.if_u1.if_root = NULL;
  838. break;
  839. default:
  840. ASSERT(0);
  841. }
  842. /*
  843. * Attribute fork settings for new inode.
  844. */
  845. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  846. ip->i_d.di_anextents = 0;
  847. /*
  848. * Log the new values stuffed into the inode.
  849. */
  850. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  851. xfs_trans_log_inode(tp, ip, flags);
  852. /* now that we have an i_mode we can setup the inode structure */
  853. xfs_setup_inode(ip);
  854. *ipp = ip;
  855. return 0;
  856. }
  857. /*
  858. * Allocates a new inode from disk and return a pointer to the
  859. * incore copy. This routine will internally commit the current
  860. * transaction and allocate a new one if the Space Manager needed
  861. * to do an allocation to replenish the inode free-list.
  862. *
  863. * This routine is designed to be called from xfs_create and
  864. * xfs_create_dir.
  865. *
  866. */
  867. int
  868. xfs_dir_ialloc(
  869. xfs_trans_t **tpp, /* input: current transaction;
  870. output: may be a new transaction. */
  871. xfs_inode_t *dp, /* directory within whose allocate
  872. the inode. */
  873. umode_t mode,
  874. xfs_nlink_t nlink,
  875. dev_t rdev,
  876. prid_t prid, /* project id */
  877. xfs_inode_t **ipp) /* pointer to inode; it will be
  878. locked. */
  879. {
  880. xfs_trans_t *tp;
  881. xfs_inode_t *ip;
  882. xfs_buf_t *ialloc_context = NULL;
  883. int code;
  884. void *dqinfo;
  885. uint tflags;
  886. tp = *tpp;
  887. ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
  888. /*
  889. * xfs_ialloc will return a pointer to an incore inode if
  890. * the Space Manager has an available inode on the free
  891. * list. Otherwise, it will do an allocation and replenish
  892. * the freelist. Since we can only do one allocation per
  893. * transaction without deadlocks, we will need to commit the
  894. * current transaction and start a new one. We will then
  895. * need to call xfs_ialloc again to get the inode.
  896. *
  897. * If xfs_ialloc did an allocation to replenish the freelist,
  898. * it returns the bp containing the head of the freelist as
  899. * ialloc_context. We will hold a lock on it across the
  900. * transaction commit so that no other process can steal
  901. * the inode(s) that we've just allocated.
  902. */
  903. code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
  904. &ip);
  905. /*
  906. * Return an error if we were unable to allocate a new inode.
  907. * This should only happen if we run out of space on disk or
  908. * encounter a disk error.
  909. */
  910. if (code) {
  911. *ipp = NULL;
  912. return code;
  913. }
  914. if (!ialloc_context && !ip) {
  915. *ipp = NULL;
  916. return -ENOSPC;
  917. }
  918. /*
  919. * If the AGI buffer is non-NULL, then we were unable to get an
  920. * inode in one operation. We need to commit the current
  921. * transaction and call xfs_ialloc() again. It is guaranteed
  922. * to succeed the second time.
  923. */
  924. if (ialloc_context) {
  925. /*
  926. * Normally, xfs_trans_commit releases all the locks.
  927. * We call bhold to hang on to the ialloc_context across
  928. * the commit. Holding this buffer prevents any other
  929. * processes from doing any allocations in this
  930. * allocation group.
  931. */
  932. xfs_trans_bhold(tp, ialloc_context);
  933. /*
  934. * We want the quota changes to be associated with the next
  935. * transaction, NOT this one. So, detach the dqinfo from this
  936. * and attach it to the next transaction.
  937. */
  938. dqinfo = NULL;
  939. tflags = 0;
  940. if (tp->t_dqinfo) {
  941. dqinfo = (void *)tp->t_dqinfo;
  942. tp->t_dqinfo = NULL;
  943. tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
  944. tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
  945. }
  946. code = xfs_trans_roll(&tp);
  947. /*
  948. * Re-attach the quota info that we detached from prev trx.
  949. */
  950. if (dqinfo) {
  951. tp->t_dqinfo = dqinfo;
  952. tp->t_flags |= tflags;
  953. }
  954. if (code) {
  955. xfs_buf_relse(ialloc_context);
  956. *tpp = tp;
  957. *ipp = NULL;
  958. return code;
  959. }
  960. xfs_trans_bjoin(tp, ialloc_context);
  961. /*
  962. * Call ialloc again. Since we've locked out all
  963. * other allocations in this allocation group,
  964. * this call should always succeed.
  965. */
  966. code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
  967. &ialloc_context, &ip);
  968. /*
  969. * If we get an error at this point, return to the caller
  970. * so that the current transaction can be aborted.
  971. */
  972. if (code) {
  973. *tpp = tp;
  974. *ipp = NULL;
  975. return code;
  976. }
  977. ASSERT(!ialloc_context && ip);
  978. }
  979. *ipp = ip;
  980. *tpp = tp;
  981. return 0;
  982. }
  983. /*
  984. * Decrement the link count on an inode & log the change. If this causes the
  985. * link count to go to zero, move the inode to AGI unlinked list so that it can
  986. * be freed when the last active reference goes away via xfs_inactive().
  987. */
  988. static int /* error */
  989. xfs_droplink(
  990. xfs_trans_t *tp,
  991. xfs_inode_t *ip)
  992. {
  993. xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
  994. drop_nlink(VFS_I(ip));
  995. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  996. if (VFS_I(ip)->i_nlink)
  997. return 0;
  998. return xfs_iunlink(tp, ip);
  999. }
  1000. /*
  1001. * Increment the link count on an inode & log the change.
  1002. */
  1003. static int
  1004. xfs_bumplink(
  1005. xfs_trans_t *tp,
  1006. xfs_inode_t *ip)
  1007. {
  1008. xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
  1009. ASSERT(ip->i_d.di_version > 1);
  1010. inc_nlink(VFS_I(ip));
  1011. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1012. return 0;
  1013. }
  1014. int
  1015. xfs_create(
  1016. xfs_inode_t *dp,
  1017. struct xfs_name *name,
  1018. umode_t mode,
  1019. dev_t rdev,
  1020. xfs_inode_t **ipp)
  1021. {
  1022. int is_dir = S_ISDIR(mode);
  1023. struct xfs_mount *mp = dp->i_mount;
  1024. struct xfs_inode *ip = NULL;
  1025. struct xfs_trans *tp = NULL;
  1026. int error;
  1027. struct xfs_defer_ops dfops;
  1028. xfs_fsblock_t first_block;
  1029. bool unlock_dp_on_error = false;
  1030. prid_t prid;
  1031. struct xfs_dquot *udqp = NULL;
  1032. struct xfs_dquot *gdqp = NULL;
  1033. struct xfs_dquot *pdqp = NULL;
  1034. struct xfs_trans_res *tres;
  1035. uint resblks;
  1036. trace_xfs_create(dp, name);
  1037. if (XFS_FORCED_SHUTDOWN(mp))
  1038. return -EIO;
  1039. prid = xfs_get_initial_prid(dp);
  1040. /*
  1041. * Make sure that we have allocated dquot(s) on disk.
  1042. */
  1043. error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
  1044. xfs_kgid_to_gid(current_fsgid()), prid,
  1045. XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
  1046. &udqp, &gdqp, &pdqp);
  1047. if (error)
  1048. return error;
  1049. if (is_dir) {
  1050. resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
  1051. tres = &M_RES(mp)->tr_mkdir;
  1052. } else {
  1053. resblks = XFS_CREATE_SPACE_RES(mp, name->len);
  1054. tres = &M_RES(mp)->tr_create;
  1055. }
  1056. /*
  1057. * Initially assume that the file does not exist and
  1058. * reserve the resources for that case. If that is not
  1059. * the case we'll drop the one we have and get a more
  1060. * appropriate transaction later.
  1061. */
  1062. error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
  1063. if (error == -ENOSPC) {
  1064. /* flush outstanding delalloc blocks and retry */
  1065. xfs_flush_inodes(mp);
  1066. error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
  1067. }
  1068. if (error)
  1069. goto out_release_inode;
  1070. xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
  1071. unlock_dp_on_error = true;
  1072. xfs_defer_init(&dfops, &first_block);
  1073. tp->t_agfl_dfops = &dfops;
  1074. /*
  1075. * Reserve disk quota and the inode.
  1076. */
  1077. error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
  1078. pdqp, resblks, 1, 0);
  1079. if (error)
  1080. goto out_trans_cancel;
  1081. /*
  1082. * A newly created regular or special file just has one directory
  1083. * entry pointing to them, but a directory also the "." entry
  1084. * pointing to itself.
  1085. */
  1086. error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
  1087. if (error)
  1088. goto out_trans_cancel;
  1089. /*
  1090. * Now we join the directory inode to the transaction. We do not do it
  1091. * earlier because xfs_dir_ialloc might commit the previous transaction
  1092. * (and release all the locks). An error from here on will result in
  1093. * the transaction cancel unlocking dp so don't do it explicitly in the
  1094. * error path.
  1095. */
  1096. xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
  1097. unlock_dp_on_error = false;
  1098. error = xfs_dir_createname(tp, dp, name, ip->i_ino,
  1099. &first_block, &dfops, resblks ?
  1100. resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
  1101. if (error) {
  1102. ASSERT(error != -ENOSPC);
  1103. goto out_trans_cancel;
  1104. }
  1105. xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  1106. xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
  1107. if (is_dir) {
  1108. error = xfs_dir_init(tp, ip, dp);
  1109. if (error)
  1110. goto out_bmap_cancel;
  1111. error = xfs_bumplink(tp, dp);
  1112. if (error)
  1113. goto out_bmap_cancel;
  1114. }
  1115. /*
  1116. * If this is a synchronous mount, make sure that the
  1117. * create transaction goes to disk before returning to
  1118. * the user.
  1119. */
  1120. if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
  1121. xfs_trans_set_sync(tp);
  1122. /*
  1123. * Attach the dquot(s) to the inodes and modify them incore.
  1124. * These ids of the inode couldn't have changed since the new
  1125. * inode has been locked ever since it was created.
  1126. */
  1127. xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
  1128. error = xfs_defer_finish(&tp, &dfops);
  1129. if (error)
  1130. goto out_bmap_cancel;
  1131. error = xfs_trans_commit(tp);
  1132. if (error)
  1133. goto out_release_inode;
  1134. xfs_qm_dqrele(udqp);
  1135. xfs_qm_dqrele(gdqp);
  1136. xfs_qm_dqrele(pdqp);
  1137. *ipp = ip;
  1138. return 0;
  1139. out_bmap_cancel:
  1140. xfs_defer_cancel(&dfops);
  1141. out_trans_cancel:
  1142. xfs_trans_cancel(tp);
  1143. out_release_inode:
  1144. /*
  1145. * Wait until after the current transaction is aborted to finish the
  1146. * setup of the inode and release the inode. This prevents recursive
  1147. * transactions and deadlocks from xfs_inactive.
  1148. */
  1149. if (ip) {
  1150. xfs_finish_inode_setup(ip);
  1151. IRELE(ip);
  1152. }
  1153. xfs_qm_dqrele(udqp);
  1154. xfs_qm_dqrele(gdqp);
  1155. xfs_qm_dqrele(pdqp);
  1156. if (unlock_dp_on_error)
  1157. xfs_iunlock(dp, XFS_ILOCK_EXCL);
  1158. return error;
  1159. }
  1160. int
  1161. xfs_create_tmpfile(
  1162. struct xfs_inode *dp,
  1163. umode_t mode,
  1164. struct xfs_inode **ipp)
  1165. {
  1166. struct xfs_mount *mp = dp->i_mount;
  1167. struct xfs_inode *ip = NULL;
  1168. struct xfs_trans *tp = NULL;
  1169. int error;
  1170. prid_t prid;
  1171. struct xfs_dquot *udqp = NULL;
  1172. struct xfs_dquot *gdqp = NULL;
  1173. struct xfs_dquot *pdqp = NULL;
  1174. struct xfs_trans_res *tres;
  1175. uint resblks;
  1176. if (XFS_FORCED_SHUTDOWN(mp))
  1177. return -EIO;
  1178. prid = xfs_get_initial_prid(dp);
  1179. /*
  1180. * Make sure that we have allocated dquot(s) on disk.
  1181. */
  1182. error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
  1183. xfs_kgid_to_gid(current_fsgid()), prid,
  1184. XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
  1185. &udqp, &gdqp, &pdqp);
  1186. if (error)
  1187. return error;
  1188. resblks = XFS_IALLOC_SPACE_RES(mp);
  1189. tres = &M_RES(mp)->tr_create_tmpfile;
  1190. error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
  1191. if (error)
  1192. goto out_release_inode;
  1193. error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
  1194. pdqp, resblks, 1, 0);
  1195. if (error)
  1196. goto out_trans_cancel;
  1197. error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
  1198. if (error)
  1199. goto out_trans_cancel;
  1200. if (mp->m_flags & XFS_MOUNT_WSYNC)
  1201. xfs_trans_set_sync(tp);
  1202. /*
  1203. * Attach the dquot(s) to the inodes and modify them incore.
  1204. * These ids of the inode couldn't have changed since the new
  1205. * inode has been locked ever since it was created.
  1206. */
  1207. xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
  1208. error = xfs_iunlink(tp, ip);
  1209. if (error)
  1210. goto out_trans_cancel;
  1211. error = xfs_trans_commit(tp);
  1212. if (error)
  1213. goto out_release_inode;
  1214. xfs_qm_dqrele(udqp);
  1215. xfs_qm_dqrele(gdqp);
  1216. xfs_qm_dqrele(pdqp);
  1217. *ipp = ip;
  1218. return 0;
  1219. out_trans_cancel:
  1220. xfs_trans_cancel(tp);
  1221. out_release_inode:
  1222. /*
  1223. * Wait until after the current transaction is aborted to finish the
  1224. * setup of the inode and release the inode. This prevents recursive
  1225. * transactions and deadlocks from xfs_inactive.
  1226. */
  1227. if (ip) {
  1228. xfs_finish_inode_setup(ip);
  1229. IRELE(ip);
  1230. }
  1231. xfs_qm_dqrele(udqp);
  1232. xfs_qm_dqrele(gdqp);
  1233. xfs_qm_dqrele(pdqp);
  1234. return error;
  1235. }
  1236. int
  1237. xfs_link(
  1238. xfs_inode_t *tdp,
  1239. xfs_inode_t *sip,
  1240. struct xfs_name *target_name)
  1241. {
  1242. xfs_mount_t *mp = tdp->i_mount;
  1243. xfs_trans_t *tp;
  1244. int error;
  1245. struct xfs_defer_ops dfops;
  1246. xfs_fsblock_t first_block;
  1247. int resblks;
  1248. trace_xfs_link(tdp, target_name);
  1249. ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
  1250. if (XFS_FORCED_SHUTDOWN(mp))
  1251. return -EIO;
  1252. error = xfs_qm_dqattach(sip);
  1253. if (error)
  1254. goto std_return;
  1255. error = xfs_qm_dqattach(tdp);
  1256. if (error)
  1257. goto std_return;
  1258. resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
  1259. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
  1260. if (error == -ENOSPC) {
  1261. resblks = 0;
  1262. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
  1263. }
  1264. if (error)
  1265. goto std_return;
  1266. xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
  1267. xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
  1268. xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
  1269. /*
  1270. * If we are using project inheritance, we only allow hard link
  1271. * creation in our tree when the project IDs are the same; else
  1272. * the tree quota mechanism could be circumvented.
  1273. */
  1274. if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
  1275. (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
  1276. error = -EXDEV;
  1277. goto error_return;
  1278. }
  1279. if (!resblks) {
  1280. error = xfs_dir_canenter(tp, tdp, target_name);
  1281. if (error)
  1282. goto error_return;
  1283. }
  1284. xfs_defer_init(&dfops, &first_block);
  1285. tp->t_agfl_dfops = &dfops;
  1286. /*
  1287. * Handle initial link state of O_TMPFILE inode
  1288. */
  1289. if (VFS_I(sip)->i_nlink == 0) {
  1290. error = xfs_iunlink_remove(tp, sip);
  1291. if (error)
  1292. goto error_return;
  1293. }
  1294. error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
  1295. &first_block, &dfops, resblks);
  1296. if (error)
  1297. goto error_return;
  1298. xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  1299. xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
  1300. error = xfs_bumplink(tp, sip);
  1301. if (error)
  1302. goto error_return;
  1303. /*
  1304. * If this is a synchronous mount, make sure that the
  1305. * link transaction goes to disk before returning to
  1306. * the user.
  1307. */
  1308. if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
  1309. xfs_trans_set_sync(tp);
  1310. error = xfs_defer_finish(&tp, &dfops);
  1311. if (error) {
  1312. xfs_defer_cancel(&dfops);
  1313. goto error_return;
  1314. }
  1315. return xfs_trans_commit(tp);
  1316. error_return:
  1317. xfs_trans_cancel(tp);
  1318. std_return:
  1319. return error;
  1320. }
  1321. /* Clear the reflink flag and the cowblocks tag if possible. */
  1322. static void
  1323. xfs_itruncate_clear_reflink_flags(
  1324. struct xfs_inode *ip)
  1325. {
  1326. struct xfs_ifork *dfork;
  1327. struct xfs_ifork *cfork;
  1328. if (!xfs_is_reflink_inode(ip))
  1329. return;
  1330. dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
  1331. cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
  1332. if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
  1333. ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
  1334. if (cfork->if_bytes == 0)
  1335. xfs_inode_clear_cowblocks_tag(ip);
  1336. }
  1337. /*
  1338. * Free up the underlying blocks past new_size. The new size must be smaller
  1339. * than the current size. This routine can be used both for the attribute and
  1340. * data fork, and does not modify the inode size, which is left to the caller.
  1341. *
  1342. * The transaction passed to this routine must have made a permanent log
  1343. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1344. * given transaction and start new ones, so make sure everything involved in
  1345. * the transaction is tidy before calling here. Some transaction will be
  1346. * returned to the caller to be committed. The incoming transaction must
  1347. * already include the inode, and both inode locks must be held exclusively.
  1348. * The inode must also be "held" within the transaction. On return the inode
  1349. * will be "held" within the returned transaction. This routine does NOT
  1350. * require any disk space to be reserved for it within the transaction.
  1351. *
  1352. * If we get an error, we must return with the inode locked and linked into the
  1353. * current transaction. This keeps things simple for the higher level code,
  1354. * because it always knows that the inode is locked and held in the transaction
  1355. * that returns to it whether errors occur or not. We don't mark the inode
  1356. * dirty on error so that transactions can be easily aborted if possible.
  1357. */
  1358. int
  1359. xfs_itruncate_extents_flags(
  1360. struct xfs_trans **tpp,
  1361. struct xfs_inode *ip,
  1362. int whichfork,
  1363. xfs_fsize_t new_size,
  1364. int flags)
  1365. {
  1366. struct xfs_mount *mp = ip->i_mount;
  1367. struct xfs_trans *tp = *tpp;
  1368. struct xfs_defer_ops dfops;
  1369. xfs_fsblock_t first_block;
  1370. xfs_fileoff_t first_unmap_block;
  1371. xfs_fileoff_t last_block;
  1372. xfs_filblks_t unmap_len;
  1373. int error = 0;
  1374. int done = 0;
  1375. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1376. ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
  1377. xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1378. ASSERT(new_size <= XFS_ISIZE(ip));
  1379. ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
  1380. ASSERT(ip->i_itemp != NULL);
  1381. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1382. ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
  1383. trace_xfs_itruncate_extents_start(ip, new_size);
  1384. flags |= xfs_bmapi_aflag(whichfork);
  1385. /*
  1386. * Since it is possible for space to become allocated beyond
  1387. * the end of the file (in a crash where the space is allocated
  1388. * but the inode size is not yet updated), simply remove any
  1389. * blocks which show up between the new EOF and the maximum
  1390. * possible file size. If the first block to be removed is
  1391. * beyond the maximum file size (ie it is the same as last_block),
  1392. * then there is nothing to do.
  1393. */
  1394. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1395. last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
  1396. if (first_unmap_block == last_block)
  1397. return 0;
  1398. ASSERT(first_unmap_block < last_block);
  1399. unmap_len = last_block - first_unmap_block + 1;
  1400. while (!done) {
  1401. xfs_defer_init(&dfops, &first_block);
  1402. error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
  1403. XFS_ITRUNC_MAX_EXTENTS, &first_block,
  1404. &dfops, &done);
  1405. if (error)
  1406. goto out_bmap_cancel;
  1407. /*
  1408. * Duplicate the transaction that has the permanent
  1409. * reservation and commit the old transaction.
  1410. */
  1411. xfs_defer_ijoin(&dfops, ip);
  1412. error = xfs_defer_finish(&tp, &dfops);
  1413. if (error)
  1414. goto out_bmap_cancel;
  1415. error = xfs_trans_roll_inode(&tp, ip);
  1416. if (error)
  1417. goto out;
  1418. }
  1419. if (whichfork == XFS_DATA_FORK) {
  1420. /* Remove all pending CoW reservations. */
  1421. error = xfs_reflink_cancel_cow_blocks(ip, &tp,
  1422. first_unmap_block, last_block, true);
  1423. if (error)
  1424. goto out;
  1425. xfs_itruncate_clear_reflink_flags(ip);
  1426. }
  1427. /*
  1428. * Always re-log the inode so that our permanent transaction can keep
  1429. * on rolling it forward in the log.
  1430. */
  1431. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1432. trace_xfs_itruncate_extents_end(ip, new_size);
  1433. out:
  1434. *tpp = tp;
  1435. return error;
  1436. out_bmap_cancel:
  1437. /*
  1438. * If the bunmapi call encounters an error, return to the caller where
  1439. * the transaction can be properly aborted. We just need to make sure
  1440. * we're not holding any resources that we were not when we came in.
  1441. */
  1442. xfs_defer_cancel(&dfops);
  1443. goto out;
  1444. }
  1445. int
  1446. xfs_release(
  1447. xfs_inode_t *ip)
  1448. {
  1449. xfs_mount_t *mp = ip->i_mount;
  1450. int error;
  1451. if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
  1452. return 0;
  1453. /* If this is a read-only mount, don't do this (would generate I/O) */
  1454. if (mp->m_flags & XFS_MOUNT_RDONLY)
  1455. return 0;
  1456. if (!XFS_FORCED_SHUTDOWN(mp)) {
  1457. int truncated;
  1458. /*
  1459. * If we previously truncated this file and removed old data
  1460. * in the process, we want to initiate "early" writeout on
  1461. * the last close. This is an attempt to combat the notorious
  1462. * NULL files problem which is particularly noticeable from a
  1463. * truncate down, buffered (re-)write (delalloc), followed by
  1464. * a crash. What we are effectively doing here is
  1465. * significantly reducing the time window where we'd otherwise
  1466. * be exposed to that problem.
  1467. */
  1468. truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
  1469. if (truncated) {
  1470. xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
  1471. if (ip->i_delayed_blks > 0) {
  1472. error = filemap_flush(VFS_I(ip)->i_mapping);
  1473. if (error)
  1474. return error;
  1475. }
  1476. }
  1477. }
  1478. if (VFS_I(ip)->i_nlink == 0)
  1479. return 0;
  1480. if (xfs_can_free_eofblocks(ip, false)) {
  1481. /*
  1482. * Check if the inode is being opened, written and closed
  1483. * frequently and we have delayed allocation blocks outstanding
  1484. * (e.g. streaming writes from the NFS server), truncating the
  1485. * blocks past EOF will cause fragmentation to occur.
  1486. *
  1487. * In this case don't do the truncation, but we have to be
  1488. * careful how we detect this case. Blocks beyond EOF show up as
  1489. * i_delayed_blks even when the inode is clean, so we need to
  1490. * truncate them away first before checking for a dirty release.
  1491. * Hence on the first dirty close we will still remove the
  1492. * speculative allocation, but after that we will leave it in
  1493. * place.
  1494. */
  1495. if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
  1496. return 0;
  1497. /*
  1498. * If we can't get the iolock just skip truncating the blocks
  1499. * past EOF because we could deadlock with the mmap_sem
  1500. * otherwise. We'll get another chance to drop them once the
  1501. * last reference to the inode is dropped, so we'll never leak
  1502. * blocks permanently.
  1503. */
  1504. if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
  1505. error = xfs_free_eofblocks(ip);
  1506. xfs_iunlock(ip, XFS_IOLOCK_EXCL);
  1507. if (error)
  1508. return error;
  1509. }
  1510. /* delalloc blocks after truncation means it really is dirty */
  1511. if (ip->i_delayed_blks)
  1512. xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
  1513. }
  1514. return 0;
  1515. }
  1516. /*
  1517. * xfs_inactive_truncate
  1518. *
  1519. * Called to perform a truncate when an inode becomes unlinked.
  1520. */
  1521. STATIC int
  1522. xfs_inactive_truncate(
  1523. struct xfs_inode *ip)
  1524. {
  1525. struct xfs_mount *mp = ip->i_mount;
  1526. struct xfs_trans *tp;
  1527. int error;
  1528. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
  1529. if (error) {
  1530. ASSERT(XFS_FORCED_SHUTDOWN(mp));
  1531. return error;
  1532. }
  1533. xfs_ilock(ip, XFS_ILOCK_EXCL);
  1534. xfs_trans_ijoin(tp, ip, 0);
  1535. /*
  1536. * Log the inode size first to prevent stale data exposure in the event
  1537. * of a system crash before the truncate completes. See the related
  1538. * comment in xfs_vn_setattr_size() for details.
  1539. */
  1540. ip->i_d.di_size = 0;
  1541. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1542. error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
  1543. if (error)
  1544. goto error_trans_cancel;
  1545. ASSERT(ip->i_d.di_nextents == 0);
  1546. error = xfs_trans_commit(tp);
  1547. if (error)
  1548. goto error_unlock;
  1549. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1550. return 0;
  1551. error_trans_cancel:
  1552. xfs_trans_cancel(tp);
  1553. error_unlock:
  1554. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1555. return error;
  1556. }
  1557. /*
  1558. * xfs_inactive_ifree()
  1559. *
  1560. * Perform the inode free when an inode is unlinked.
  1561. */
  1562. STATIC int
  1563. xfs_inactive_ifree(
  1564. struct xfs_inode *ip)
  1565. {
  1566. struct xfs_defer_ops dfops;
  1567. xfs_fsblock_t first_block;
  1568. struct xfs_mount *mp = ip->i_mount;
  1569. struct xfs_trans *tp;
  1570. int error;
  1571. /*
  1572. * We try to use a per-AG reservation for any block needed by the finobt
  1573. * tree, but as the finobt feature predates the per-AG reservation
  1574. * support a degraded file system might not have enough space for the
  1575. * reservation at mount time. In that case try to dip into the reserved
  1576. * pool and pray.
  1577. *
  1578. * Send a warning if the reservation does happen to fail, as the inode
  1579. * now remains allocated and sits on the unlinked list until the fs is
  1580. * repaired.
  1581. */
  1582. if (unlikely(mp->m_inotbt_nores)) {
  1583. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
  1584. XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
  1585. &tp);
  1586. } else {
  1587. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
  1588. }
  1589. if (error) {
  1590. if (error == -ENOSPC) {
  1591. xfs_warn_ratelimited(mp,
  1592. "Failed to remove inode(s) from unlinked list. "
  1593. "Please free space, unmount and run xfs_repair.");
  1594. } else {
  1595. ASSERT(XFS_FORCED_SHUTDOWN(mp));
  1596. }
  1597. return error;
  1598. }
  1599. xfs_ilock(ip, XFS_ILOCK_EXCL);
  1600. xfs_trans_ijoin(tp, ip, 0);
  1601. xfs_defer_init(&dfops, &first_block);
  1602. tp->t_agfl_dfops = &dfops;
  1603. error = xfs_ifree(tp, ip, &dfops);
  1604. if (error) {
  1605. /*
  1606. * If we fail to free the inode, shut down. The cancel
  1607. * might do that, we need to make sure. Otherwise the
  1608. * inode might be lost for a long time or forever.
  1609. */
  1610. if (!XFS_FORCED_SHUTDOWN(mp)) {
  1611. xfs_notice(mp, "%s: xfs_ifree returned error %d",
  1612. __func__, error);
  1613. xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
  1614. }
  1615. xfs_trans_cancel(tp);
  1616. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1617. return error;
  1618. }
  1619. /*
  1620. * Credit the quota account(s). The inode is gone.
  1621. */
  1622. xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
  1623. /*
  1624. * Just ignore errors at this point. There is nothing we can do except
  1625. * to try to keep going. Make sure it's not a silent error.
  1626. */
  1627. error = xfs_defer_finish(&tp, &dfops);
  1628. if (error) {
  1629. xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
  1630. __func__, error);
  1631. xfs_defer_cancel(&dfops);
  1632. }
  1633. error = xfs_trans_commit(tp);
  1634. if (error)
  1635. xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
  1636. __func__, error);
  1637. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1638. return 0;
  1639. }
  1640. /*
  1641. * xfs_inactive
  1642. *
  1643. * This is called when the vnode reference count for the vnode
  1644. * goes to zero. If the file has been unlinked, then it must
  1645. * now be truncated. Also, we clear all of the read-ahead state
  1646. * kept for the inode here since the file is now closed.
  1647. */
  1648. void
  1649. xfs_inactive(
  1650. xfs_inode_t *ip)
  1651. {
  1652. struct xfs_mount *mp;
  1653. struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
  1654. int error;
  1655. int truncate = 0;
  1656. /*
  1657. * If the inode is already free, then there can be nothing
  1658. * to clean up here.
  1659. */
  1660. if (VFS_I(ip)->i_mode == 0) {
  1661. ASSERT(ip->i_df.if_real_bytes == 0);
  1662. ASSERT(ip->i_df.if_broot_bytes == 0);
  1663. return;
  1664. }
  1665. mp = ip->i_mount;
  1666. ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
  1667. /* If this is a read-only mount, don't do this (would generate I/O) */
  1668. if (mp->m_flags & XFS_MOUNT_RDONLY)
  1669. return;
  1670. /* Try to clean out the cow blocks if there are any. */
  1671. if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
  1672. xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
  1673. if (VFS_I(ip)->i_nlink != 0) {
  1674. /*
  1675. * force is true because we are evicting an inode from the
  1676. * cache. Post-eof blocks must be freed, lest we end up with
  1677. * broken free space accounting.
  1678. *
  1679. * Note: don't bother with iolock here since lockdep complains
  1680. * about acquiring it in reclaim context. We have the only
  1681. * reference to the inode at this point anyways.
  1682. */
  1683. if (xfs_can_free_eofblocks(ip, true))
  1684. xfs_free_eofblocks(ip);
  1685. return;
  1686. }
  1687. if (S_ISREG(VFS_I(ip)->i_mode) &&
  1688. (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
  1689. ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
  1690. truncate = 1;
  1691. error = xfs_qm_dqattach(ip);
  1692. if (error)
  1693. return;
  1694. if (S_ISLNK(VFS_I(ip)->i_mode))
  1695. error = xfs_inactive_symlink(ip);
  1696. else if (truncate)
  1697. error = xfs_inactive_truncate(ip);
  1698. if (error)
  1699. return;
  1700. /*
  1701. * If there are attributes associated with the file then blow them away
  1702. * now. The code calls a routine that recursively deconstructs the
  1703. * attribute fork. If also blows away the in-core attribute fork.
  1704. */
  1705. if (XFS_IFORK_Q(ip)) {
  1706. error = xfs_attr_inactive(ip);
  1707. if (error)
  1708. return;
  1709. }
  1710. ASSERT(!ip->i_afp);
  1711. ASSERT(ip->i_d.di_anextents == 0);
  1712. ASSERT(ip->i_d.di_forkoff == 0);
  1713. /*
  1714. * Free the inode.
  1715. */
  1716. error = xfs_inactive_ifree(ip);
  1717. if (error)
  1718. return;
  1719. /*
  1720. * Release the dquots held by inode, if any.
  1721. */
  1722. xfs_qm_dqdetach(ip);
  1723. }
  1724. /*
  1725. * This is called when the inode's link count goes to 0 or we are creating a
  1726. * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
  1727. * set to true as the link count is dropped to zero by the VFS after we've
  1728. * created the file successfully, so we have to add it to the unlinked list
  1729. * while the link count is non-zero.
  1730. *
  1731. * We place the on-disk inode on a list in the AGI. It will be pulled from this
  1732. * list when the inode is freed.
  1733. */
  1734. STATIC int
  1735. xfs_iunlink(
  1736. struct xfs_trans *tp,
  1737. struct xfs_inode *ip)
  1738. {
  1739. xfs_mount_t *mp = tp->t_mountp;
  1740. xfs_agi_t *agi;
  1741. xfs_dinode_t *dip;
  1742. xfs_buf_t *agibp;
  1743. xfs_buf_t *ibp;
  1744. xfs_agino_t agino;
  1745. short bucket_index;
  1746. int offset;
  1747. int error;
  1748. ASSERT(VFS_I(ip)->i_mode != 0);
  1749. /*
  1750. * Get the agi buffer first. It ensures lock ordering
  1751. * on the list.
  1752. */
  1753. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1754. if (error)
  1755. return error;
  1756. agi = XFS_BUF_TO_AGI(agibp);
  1757. /*
  1758. * Get the index into the agi hash table for the
  1759. * list this inode will go on.
  1760. */
  1761. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1762. ASSERT(agino != 0);
  1763. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1764. ASSERT(agi->agi_unlinked[bucket_index]);
  1765. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1766. if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
  1767. /*
  1768. * There is already another inode in the bucket we need
  1769. * to add ourselves to. Add us at the front of the list.
  1770. * Here we put the head pointer into our next pointer,
  1771. * and then we fall through to point the head at us.
  1772. */
  1773. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1774. 0, 0);
  1775. if (error)
  1776. return error;
  1777. ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
  1778. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1779. offset = ip->i_imap.im_boffset +
  1780. offsetof(xfs_dinode_t, di_next_unlinked);
  1781. /* need to recalc the inode CRC if appropriate */
  1782. xfs_dinode_calc_crc(mp, dip);
  1783. xfs_trans_inode_buf(tp, ibp);
  1784. xfs_trans_log_buf(tp, ibp, offset,
  1785. (offset + sizeof(xfs_agino_t) - 1));
  1786. xfs_inobp_check(mp, ibp);
  1787. }
  1788. /*
  1789. * Point the bucket head pointer at the inode being inserted.
  1790. */
  1791. ASSERT(agino != 0);
  1792. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1793. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1794. (sizeof(xfs_agino_t) * bucket_index);
  1795. xfs_trans_log_buf(tp, agibp, offset,
  1796. (offset + sizeof(xfs_agino_t) - 1));
  1797. return 0;
  1798. }
  1799. /*
  1800. * Pull the on-disk inode from the AGI unlinked list.
  1801. */
  1802. STATIC int
  1803. xfs_iunlink_remove(
  1804. xfs_trans_t *tp,
  1805. xfs_inode_t *ip)
  1806. {
  1807. xfs_ino_t next_ino;
  1808. xfs_mount_t *mp;
  1809. xfs_agi_t *agi;
  1810. xfs_dinode_t *dip;
  1811. xfs_buf_t *agibp;
  1812. xfs_buf_t *ibp;
  1813. xfs_agnumber_t agno;
  1814. xfs_agino_t agino;
  1815. xfs_agino_t next_agino;
  1816. xfs_buf_t *last_ibp;
  1817. xfs_dinode_t *last_dip = NULL;
  1818. short bucket_index;
  1819. int offset, last_offset = 0;
  1820. int error;
  1821. mp = tp->t_mountp;
  1822. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1823. /*
  1824. * Get the agi buffer first. It ensures lock ordering
  1825. * on the list.
  1826. */
  1827. error = xfs_read_agi(mp, tp, agno, &agibp);
  1828. if (error)
  1829. return error;
  1830. agi = XFS_BUF_TO_AGI(agibp);
  1831. /*
  1832. * Get the index into the agi hash table for the
  1833. * list this inode will go on.
  1834. */
  1835. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1836. if (!xfs_verify_agino(mp, agno, agino))
  1837. return -EFSCORRUPTED;
  1838. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1839. if (!xfs_verify_agino(mp, agno,
  1840. be32_to_cpu(agi->agi_unlinked[bucket_index]))) {
  1841. XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
  1842. agi, sizeof(*agi));
  1843. return -EFSCORRUPTED;
  1844. }
  1845. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1846. /*
  1847. * We're at the head of the list. Get the inode's on-disk
  1848. * buffer to see if there is anyone after us on the list.
  1849. * Only modify our next pointer if it is not already NULLAGINO.
  1850. * This saves us the overhead of dealing with the buffer when
  1851. * there is no need to change it.
  1852. */
  1853. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1854. 0, 0);
  1855. if (error) {
  1856. xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
  1857. __func__, error);
  1858. return error;
  1859. }
  1860. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1861. ASSERT(next_agino != 0);
  1862. if (next_agino != NULLAGINO) {
  1863. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1864. offset = ip->i_imap.im_boffset +
  1865. offsetof(xfs_dinode_t, di_next_unlinked);
  1866. /* need to recalc the inode CRC if appropriate */
  1867. xfs_dinode_calc_crc(mp, dip);
  1868. xfs_trans_inode_buf(tp, ibp);
  1869. xfs_trans_log_buf(tp, ibp, offset,
  1870. (offset + sizeof(xfs_agino_t) - 1));
  1871. xfs_inobp_check(mp, ibp);
  1872. } else {
  1873. xfs_trans_brelse(tp, ibp);
  1874. }
  1875. /*
  1876. * Point the bucket head pointer at the next inode.
  1877. */
  1878. ASSERT(next_agino != 0);
  1879. ASSERT(next_agino != agino);
  1880. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1881. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1882. (sizeof(xfs_agino_t) * bucket_index);
  1883. xfs_trans_log_buf(tp, agibp, offset,
  1884. (offset + sizeof(xfs_agino_t) - 1));
  1885. } else {
  1886. /*
  1887. * We need to search the list for the inode being freed.
  1888. */
  1889. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1890. last_ibp = NULL;
  1891. while (next_agino != agino) {
  1892. struct xfs_imap imap;
  1893. if (last_ibp)
  1894. xfs_trans_brelse(tp, last_ibp);
  1895. imap.im_blkno = 0;
  1896. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1897. error = xfs_imap(mp, tp, next_ino, &imap, 0);
  1898. if (error) {
  1899. xfs_warn(mp,
  1900. "%s: xfs_imap returned error %d.",
  1901. __func__, error);
  1902. return error;
  1903. }
  1904. error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
  1905. &last_ibp, 0, 0);
  1906. if (error) {
  1907. xfs_warn(mp,
  1908. "%s: xfs_imap_to_bp returned error %d.",
  1909. __func__, error);
  1910. return error;
  1911. }
  1912. last_offset = imap.im_boffset;
  1913. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1914. if (!xfs_verify_agino(mp, agno, next_agino)) {
  1915. XFS_CORRUPTION_ERROR(__func__,
  1916. XFS_ERRLEVEL_LOW, mp,
  1917. last_dip, sizeof(*last_dip));
  1918. return -EFSCORRUPTED;
  1919. }
  1920. }
  1921. /*
  1922. * Now last_ibp points to the buffer previous to us on the
  1923. * unlinked list. Pull us from the list.
  1924. */
  1925. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1926. 0, 0);
  1927. if (error) {
  1928. xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
  1929. __func__, error);
  1930. return error;
  1931. }
  1932. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1933. ASSERT(next_agino != 0);
  1934. ASSERT(next_agino != agino);
  1935. if (next_agino != NULLAGINO) {
  1936. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1937. offset = ip->i_imap.im_boffset +
  1938. offsetof(xfs_dinode_t, di_next_unlinked);
  1939. /* need to recalc the inode CRC if appropriate */
  1940. xfs_dinode_calc_crc(mp, dip);
  1941. xfs_trans_inode_buf(tp, ibp);
  1942. xfs_trans_log_buf(tp, ibp, offset,
  1943. (offset + sizeof(xfs_agino_t) - 1));
  1944. xfs_inobp_check(mp, ibp);
  1945. } else {
  1946. xfs_trans_brelse(tp, ibp);
  1947. }
  1948. /*
  1949. * Point the previous inode on the list to the next inode.
  1950. */
  1951. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1952. ASSERT(next_agino != 0);
  1953. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1954. /* need to recalc the inode CRC if appropriate */
  1955. xfs_dinode_calc_crc(mp, last_dip);
  1956. xfs_trans_inode_buf(tp, last_ibp);
  1957. xfs_trans_log_buf(tp, last_ibp, offset,
  1958. (offset + sizeof(xfs_agino_t) - 1));
  1959. xfs_inobp_check(mp, last_ibp);
  1960. }
  1961. return 0;
  1962. }
  1963. /*
  1964. * A big issue when freeing the inode cluster is that we _cannot_ skip any
  1965. * inodes that are in memory - they all must be marked stale and attached to
  1966. * the cluster buffer.
  1967. */
  1968. STATIC int
  1969. xfs_ifree_cluster(
  1970. xfs_inode_t *free_ip,
  1971. xfs_trans_t *tp,
  1972. struct xfs_icluster *xic)
  1973. {
  1974. xfs_mount_t *mp = free_ip->i_mount;
  1975. int blks_per_cluster;
  1976. int inodes_per_cluster;
  1977. int nbufs;
  1978. int i, j;
  1979. int ioffset;
  1980. xfs_daddr_t blkno;
  1981. xfs_buf_t *bp;
  1982. xfs_inode_t *ip;
  1983. xfs_inode_log_item_t *iip;
  1984. struct xfs_log_item *lip;
  1985. struct xfs_perag *pag;
  1986. xfs_ino_t inum;
  1987. inum = xic->first_ino;
  1988. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1989. blks_per_cluster = xfs_icluster_size_fsb(mp);
  1990. inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
  1991. nbufs = mp->m_ialloc_blks / blks_per_cluster;
  1992. for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
  1993. /*
  1994. * The allocation bitmap tells us which inodes of the chunk were
  1995. * physically allocated. Skip the cluster if an inode falls into
  1996. * a sparse region.
  1997. */
  1998. ioffset = inum - xic->first_ino;
  1999. if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
  2000. ASSERT(ioffset % inodes_per_cluster == 0);
  2001. continue;
  2002. }
  2003. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2004. XFS_INO_TO_AGBNO(mp, inum));
  2005. /*
  2006. * We obtain and lock the backing buffer first in the process
  2007. * here, as we have to ensure that any dirty inode that we
  2008. * can't get the flush lock on is attached to the buffer.
  2009. * If we scan the in-memory inodes first, then buffer IO can
  2010. * complete before we get a lock on it, and hence we may fail
  2011. * to mark all the active inodes on the buffer stale.
  2012. */
  2013. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2014. mp->m_bsize * blks_per_cluster,
  2015. XBF_UNMAPPED);
  2016. if (!bp)
  2017. return -ENOMEM;
  2018. /*
  2019. * This buffer may not have been correctly initialised as we
  2020. * didn't read it from disk. That's not important because we are
  2021. * only using to mark the buffer as stale in the log, and to
  2022. * attach stale cached inodes on it. That means it will never be
  2023. * dispatched for IO. If it is, we want to know about it, and we
  2024. * want it to fail. We can acheive this by adding a write
  2025. * verifier to the buffer.
  2026. */
  2027. bp->b_ops = &xfs_inode_buf_ops;
  2028. /*
  2029. * Walk the inodes already attached to the buffer and mark them
  2030. * stale. These will all have the flush locks held, so an
  2031. * in-memory inode walk can't lock them. By marking them all
  2032. * stale first, we will not attempt to lock them in the loop
  2033. * below as the XFS_ISTALE flag will be set.
  2034. */
  2035. list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
  2036. if (lip->li_type == XFS_LI_INODE) {
  2037. iip = (xfs_inode_log_item_t *)lip;
  2038. ASSERT(iip->ili_logged == 1);
  2039. lip->li_cb = xfs_istale_done;
  2040. xfs_trans_ail_copy_lsn(mp->m_ail,
  2041. &iip->ili_flush_lsn,
  2042. &iip->ili_item.li_lsn);
  2043. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2044. }
  2045. }
  2046. /*
  2047. * For each inode in memory attempt to add it to the inode
  2048. * buffer and set it up for being staled on buffer IO
  2049. * completion. This is safe as we've locked out tail pushing
  2050. * and flushing by locking the buffer.
  2051. *
  2052. * We have already marked every inode that was part of a
  2053. * transaction stale above, which means there is no point in
  2054. * even trying to lock them.
  2055. */
  2056. for (i = 0; i < inodes_per_cluster; i++) {
  2057. retry:
  2058. rcu_read_lock();
  2059. ip = radix_tree_lookup(&pag->pag_ici_root,
  2060. XFS_INO_TO_AGINO(mp, (inum + i)));
  2061. /* Inode not in memory, nothing to do */
  2062. if (!ip) {
  2063. rcu_read_unlock();
  2064. continue;
  2065. }
  2066. /*
  2067. * because this is an RCU protected lookup, we could
  2068. * find a recently freed or even reallocated inode
  2069. * during the lookup. We need to check under the
  2070. * i_flags_lock for a valid inode here. Skip it if it
  2071. * is not valid, the wrong inode or stale.
  2072. */
  2073. spin_lock(&ip->i_flags_lock);
  2074. if (ip->i_ino != inum + i ||
  2075. __xfs_iflags_test(ip, XFS_ISTALE)) {
  2076. spin_unlock(&ip->i_flags_lock);
  2077. rcu_read_unlock();
  2078. continue;
  2079. }
  2080. spin_unlock(&ip->i_flags_lock);
  2081. /*
  2082. * Don't try to lock/unlock the current inode, but we
  2083. * _cannot_ skip the other inodes that we did not find
  2084. * in the list attached to the buffer and are not
  2085. * already marked stale. If we can't lock it, back off
  2086. * and retry.
  2087. */
  2088. if (ip != free_ip) {
  2089. if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2090. rcu_read_unlock();
  2091. delay(1);
  2092. goto retry;
  2093. }
  2094. /*
  2095. * Check the inode number again in case we're
  2096. * racing with freeing in xfs_reclaim_inode().
  2097. * See the comments in that function for more
  2098. * information as to why the initial check is
  2099. * not sufficient.
  2100. */
  2101. if (ip->i_ino != inum + i) {
  2102. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2103. rcu_read_unlock();
  2104. continue;
  2105. }
  2106. }
  2107. rcu_read_unlock();
  2108. xfs_iflock(ip);
  2109. xfs_iflags_set(ip, XFS_ISTALE);
  2110. /*
  2111. * we don't need to attach clean inodes or those only
  2112. * with unlogged changes (which we throw away, anyway).
  2113. */
  2114. iip = ip->i_itemp;
  2115. if (!iip || xfs_inode_clean(ip)) {
  2116. ASSERT(ip != free_ip);
  2117. xfs_ifunlock(ip);
  2118. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2119. continue;
  2120. }
  2121. iip->ili_last_fields = iip->ili_fields;
  2122. iip->ili_fields = 0;
  2123. iip->ili_fsync_fields = 0;
  2124. iip->ili_logged = 1;
  2125. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2126. &iip->ili_item.li_lsn);
  2127. xfs_buf_attach_iodone(bp, xfs_istale_done,
  2128. &iip->ili_item);
  2129. if (ip != free_ip)
  2130. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2131. }
  2132. xfs_trans_stale_inode_buf(tp, bp);
  2133. xfs_trans_binval(tp, bp);
  2134. }
  2135. xfs_perag_put(pag);
  2136. return 0;
  2137. }
  2138. /*
  2139. * Free any local-format buffers sitting around before we reset to
  2140. * extents format.
  2141. */
  2142. static inline void
  2143. xfs_ifree_local_data(
  2144. struct xfs_inode *ip,
  2145. int whichfork)
  2146. {
  2147. struct xfs_ifork *ifp;
  2148. if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
  2149. return;
  2150. ifp = XFS_IFORK_PTR(ip, whichfork);
  2151. xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
  2152. }
  2153. /*
  2154. * This is called to return an inode to the inode free list.
  2155. * The inode should already be truncated to 0 length and have
  2156. * no pages associated with it. This routine also assumes that
  2157. * the inode is already a part of the transaction.
  2158. *
  2159. * The on-disk copy of the inode will have been added to the list
  2160. * of unlinked inodes in the AGI. We need to remove the inode from
  2161. * that list atomically with respect to freeing it here.
  2162. */
  2163. int
  2164. xfs_ifree(
  2165. xfs_trans_t *tp,
  2166. xfs_inode_t *ip,
  2167. struct xfs_defer_ops *dfops)
  2168. {
  2169. int error;
  2170. struct xfs_icluster xic = { 0 };
  2171. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2172. ASSERT(VFS_I(ip)->i_nlink == 0);
  2173. ASSERT(ip->i_d.di_nextents == 0);
  2174. ASSERT(ip->i_d.di_anextents == 0);
  2175. ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
  2176. ASSERT(ip->i_d.di_nblocks == 0);
  2177. /*
  2178. * Pull the on-disk inode from the AGI unlinked list.
  2179. */
  2180. error = xfs_iunlink_remove(tp, ip);
  2181. if (error)
  2182. return error;
  2183. error = xfs_difree(tp, ip->i_ino, dfops, &xic);
  2184. if (error)
  2185. return error;
  2186. xfs_ifree_local_data(ip, XFS_DATA_FORK);
  2187. xfs_ifree_local_data(ip, XFS_ATTR_FORK);
  2188. VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
  2189. ip->i_d.di_flags = 0;
  2190. ip->i_d.di_flags2 = 0;
  2191. ip->i_d.di_dmevmask = 0;
  2192. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2193. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2194. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2195. /* Don't attempt to replay owner changes for a deleted inode */
  2196. ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
  2197. /*
  2198. * Bump the generation count so no one will be confused
  2199. * by reincarnations of this inode.
  2200. */
  2201. VFS_I(ip)->i_generation++;
  2202. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2203. if (xic.deleted)
  2204. error = xfs_ifree_cluster(ip, tp, &xic);
  2205. return error;
  2206. }
  2207. /*
  2208. * This is called to unpin an inode. The caller must have the inode locked
  2209. * in at least shared mode so that the buffer cannot be subsequently pinned
  2210. * once someone is waiting for it to be unpinned.
  2211. */
  2212. static void
  2213. xfs_iunpin(
  2214. struct xfs_inode *ip)
  2215. {
  2216. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2217. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2218. /* Give the log a push to start the unpinning I/O */
  2219. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
  2220. }
  2221. static void
  2222. __xfs_iunpin_wait(
  2223. struct xfs_inode *ip)
  2224. {
  2225. wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
  2226. DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
  2227. xfs_iunpin(ip);
  2228. do {
  2229. prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
  2230. if (xfs_ipincount(ip))
  2231. io_schedule();
  2232. } while (xfs_ipincount(ip));
  2233. finish_wait(wq, &wait.wq_entry);
  2234. }
  2235. void
  2236. xfs_iunpin_wait(
  2237. struct xfs_inode *ip)
  2238. {
  2239. if (xfs_ipincount(ip))
  2240. __xfs_iunpin_wait(ip);
  2241. }
  2242. /*
  2243. * Removing an inode from the namespace involves removing the directory entry
  2244. * and dropping the link count on the inode. Removing the directory entry can
  2245. * result in locking an AGF (directory blocks were freed) and removing a link
  2246. * count can result in placing the inode on an unlinked list which results in
  2247. * locking an AGI.
  2248. *
  2249. * The big problem here is that we have an ordering constraint on AGF and AGI
  2250. * locking - inode allocation locks the AGI, then can allocate a new extent for
  2251. * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
  2252. * removes the inode from the unlinked list, requiring that we lock the AGI
  2253. * first, and then freeing the inode can result in an inode chunk being freed
  2254. * and hence freeing disk space requiring that we lock an AGF.
  2255. *
  2256. * Hence the ordering that is imposed by other parts of the code is AGI before
  2257. * AGF. This means we cannot remove the directory entry before we drop the inode
  2258. * reference count and put it on the unlinked list as this results in a lock
  2259. * order of AGF then AGI, and this can deadlock against inode allocation and
  2260. * freeing. Therefore we must drop the link counts before we remove the
  2261. * directory entry.
  2262. *
  2263. * This is still safe from a transactional point of view - it is not until we
  2264. * get to xfs_defer_finish() that we have the possibility of multiple
  2265. * transactions in this operation. Hence as long as we remove the directory
  2266. * entry and drop the link count in the first transaction of the remove
  2267. * operation, there are no transactional constraints on the ordering here.
  2268. */
  2269. int
  2270. xfs_remove(
  2271. xfs_inode_t *dp,
  2272. struct xfs_name *name,
  2273. xfs_inode_t *ip)
  2274. {
  2275. xfs_mount_t *mp = dp->i_mount;
  2276. xfs_trans_t *tp = NULL;
  2277. int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
  2278. int error = 0;
  2279. struct xfs_defer_ops dfops;
  2280. xfs_fsblock_t first_block;
  2281. uint resblks;
  2282. trace_xfs_remove(dp, name);
  2283. if (XFS_FORCED_SHUTDOWN(mp))
  2284. return -EIO;
  2285. error = xfs_qm_dqattach(dp);
  2286. if (error)
  2287. goto std_return;
  2288. error = xfs_qm_dqattach(ip);
  2289. if (error)
  2290. goto std_return;
  2291. /*
  2292. * We try to get the real space reservation first,
  2293. * allowing for directory btree deletion(s) implying
  2294. * possible bmap insert(s). If we can't get the space
  2295. * reservation then we use 0 instead, and avoid the bmap
  2296. * btree insert(s) in the directory code by, if the bmap
  2297. * insert tries to happen, instead trimming the LAST
  2298. * block from the directory.
  2299. */
  2300. resblks = XFS_REMOVE_SPACE_RES(mp);
  2301. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
  2302. if (error == -ENOSPC) {
  2303. resblks = 0;
  2304. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
  2305. &tp);
  2306. }
  2307. if (error) {
  2308. ASSERT(error != -ENOSPC);
  2309. goto std_return;
  2310. }
  2311. xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
  2312. xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
  2313. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  2314. /*
  2315. * If we're removing a directory perform some additional validation.
  2316. */
  2317. if (is_dir) {
  2318. ASSERT(VFS_I(ip)->i_nlink >= 2);
  2319. if (VFS_I(ip)->i_nlink != 2) {
  2320. error = -ENOTEMPTY;
  2321. goto out_trans_cancel;
  2322. }
  2323. if (!xfs_dir_isempty(ip)) {
  2324. error = -ENOTEMPTY;
  2325. goto out_trans_cancel;
  2326. }
  2327. /* Drop the link from ip's "..". */
  2328. error = xfs_droplink(tp, dp);
  2329. if (error)
  2330. goto out_trans_cancel;
  2331. /* Drop the "." link from ip to self. */
  2332. error = xfs_droplink(tp, ip);
  2333. if (error)
  2334. goto out_trans_cancel;
  2335. } else {
  2336. /*
  2337. * When removing a non-directory we need to log the parent
  2338. * inode here. For a directory this is done implicitly
  2339. * by the xfs_droplink call for the ".." entry.
  2340. */
  2341. xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
  2342. }
  2343. xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  2344. /* Drop the link from dp to ip. */
  2345. error = xfs_droplink(tp, ip);
  2346. if (error)
  2347. goto out_trans_cancel;
  2348. xfs_defer_init(&dfops, &first_block);
  2349. tp->t_agfl_dfops = &dfops;
  2350. error = xfs_dir_removename(tp, dp, name, ip->i_ino,
  2351. &first_block, &dfops, resblks);
  2352. if (error) {
  2353. ASSERT(error != -ENOENT);
  2354. goto out_bmap_cancel;
  2355. }
  2356. /*
  2357. * If this is a synchronous mount, make sure that the
  2358. * remove transaction goes to disk before returning to
  2359. * the user.
  2360. */
  2361. if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
  2362. xfs_trans_set_sync(tp);
  2363. error = xfs_defer_finish(&tp, &dfops);
  2364. if (error)
  2365. goto out_bmap_cancel;
  2366. error = xfs_trans_commit(tp);
  2367. if (error)
  2368. goto std_return;
  2369. if (is_dir && xfs_inode_is_filestream(ip))
  2370. xfs_filestream_deassociate(ip);
  2371. return 0;
  2372. out_bmap_cancel:
  2373. xfs_defer_cancel(&dfops);
  2374. out_trans_cancel:
  2375. xfs_trans_cancel(tp);
  2376. std_return:
  2377. return error;
  2378. }
  2379. /*
  2380. * Enter all inodes for a rename transaction into a sorted array.
  2381. */
  2382. #define __XFS_SORT_INODES 5
  2383. STATIC void
  2384. xfs_sort_for_rename(
  2385. struct xfs_inode *dp1, /* in: old (source) directory inode */
  2386. struct xfs_inode *dp2, /* in: new (target) directory inode */
  2387. struct xfs_inode *ip1, /* in: inode of old entry */
  2388. struct xfs_inode *ip2, /* in: inode of new entry */
  2389. struct xfs_inode *wip, /* in: whiteout inode */
  2390. struct xfs_inode **i_tab,/* out: sorted array of inodes */
  2391. int *num_inodes) /* in/out: inodes in array */
  2392. {
  2393. int i, j;
  2394. ASSERT(*num_inodes == __XFS_SORT_INODES);
  2395. memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
  2396. /*
  2397. * i_tab contains a list of pointers to inodes. We initialize
  2398. * the table here & we'll sort it. We will then use it to
  2399. * order the acquisition of the inode locks.
  2400. *
  2401. * Note that the table may contain duplicates. e.g., dp1 == dp2.
  2402. */
  2403. i = 0;
  2404. i_tab[i++] = dp1;
  2405. i_tab[i++] = dp2;
  2406. i_tab[i++] = ip1;
  2407. if (ip2)
  2408. i_tab[i++] = ip2;
  2409. if (wip)
  2410. i_tab[i++] = wip;
  2411. *num_inodes = i;
  2412. /*
  2413. * Sort the elements via bubble sort. (Remember, there are at
  2414. * most 5 elements to sort, so this is adequate.)
  2415. */
  2416. for (i = 0; i < *num_inodes; i++) {
  2417. for (j = 1; j < *num_inodes; j++) {
  2418. if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
  2419. struct xfs_inode *temp = i_tab[j];
  2420. i_tab[j] = i_tab[j-1];
  2421. i_tab[j-1] = temp;
  2422. }
  2423. }
  2424. }
  2425. }
  2426. static int
  2427. xfs_finish_rename(
  2428. struct xfs_trans *tp,
  2429. struct xfs_defer_ops *dfops)
  2430. {
  2431. int error;
  2432. /*
  2433. * If this is a synchronous mount, make sure that the rename transaction
  2434. * goes to disk before returning to the user.
  2435. */
  2436. if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
  2437. xfs_trans_set_sync(tp);
  2438. error = xfs_defer_finish(&tp, dfops);
  2439. if (error) {
  2440. xfs_defer_cancel(dfops);
  2441. xfs_trans_cancel(tp);
  2442. return error;
  2443. }
  2444. return xfs_trans_commit(tp);
  2445. }
  2446. /*
  2447. * xfs_cross_rename()
  2448. *
  2449. * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
  2450. */
  2451. STATIC int
  2452. xfs_cross_rename(
  2453. struct xfs_trans *tp,
  2454. struct xfs_inode *dp1,
  2455. struct xfs_name *name1,
  2456. struct xfs_inode *ip1,
  2457. struct xfs_inode *dp2,
  2458. struct xfs_name *name2,
  2459. struct xfs_inode *ip2,
  2460. struct xfs_defer_ops *dfops,
  2461. xfs_fsblock_t *first_block,
  2462. int spaceres)
  2463. {
  2464. int error = 0;
  2465. int ip1_flags = 0;
  2466. int ip2_flags = 0;
  2467. int dp2_flags = 0;
  2468. /* Swap inode number for dirent in first parent */
  2469. error = xfs_dir_replace(tp, dp1, name1,
  2470. ip2->i_ino,
  2471. first_block, dfops, spaceres);
  2472. if (error)
  2473. goto out_trans_abort;
  2474. /* Swap inode number for dirent in second parent */
  2475. error = xfs_dir_replace(tp, dp2, name2,
  2476. ip1->i_ino,
  2477. first_block, dfops, spaceres);
  2478. if (error)
  2479. goto out_trans_abort;
  2480. /*
  2481. * If we're renaming one or more directories across different parents,
  2482. * update the respective ".." entries (and link counts) to match the new
  2483. * parents.
  2484. */
  2485. if (dp1 != dp2) {
  2486. dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
  2487. if (S_ISDIR(VFS_I(ip2)->i_mode)) {
  2488. error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
  2489. dp1->i_ino, first_block,
  2490. dfops, spaceres);
  2491. if (error)
  2492. goto out_trans_abort;
  2493. /* transfer ip2 ".." reference to dp1 */
  2494. if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
  2495. error = xfs_droplink(tp, dp2);
  2496. if (error)
  2497. goto out_trans_abort;
  2498. error = xfs_bumplink(tp, dp1);
  2499. if (error)
  2500. goto out_trans_abort;
  2501. }
  2502. /*
  2503. * Although ip1 isn't changed here, userspace needs
  2504. * to be warned about the change, so that applications
  2505. * relying on it (like backup ones), will properly
  2506. * notify the change
  2507. */
  2508. ip1_flags |= XFS_ICHGTIME_CHG;
  2509. ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
  2510. }
  2511. if (S_ISDIR(VFS_I(ip1)->i_mode)) {
  2512. error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
  2513. dp2->i_ino, first_block,
  2514. dfops, spaceres);
  2515. if (error)
  2516. goto out_trans_abort;
  2517. /* transfer ip1 ".." reference to dp2 */
  2518. if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
  2519. error = xfs_droplink(tp, dp1);
  2520. if (error)
  2521. goto out_trans_abort;
  2522. error = xfs_bumplink(tp, dp2);
  2523. if (error)
  2524. goto out_trans_abort;
  2525. }
  2526. /*
  2527. * Although ip2 isn't changed here, userspace needs
  2528. * to be warned about the change, so that applications
  2529. * relying on it (like backup ones), will properly
  2530. * notify the change
  2531. */
  2532. ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
  2533. ip2_flags |= XFS_ICHGTIME_CHG;
  2534. }
  2535. }
  2536. if (ip1_flags) {
  2537. xfs_trans_ichgtime(tp, ip1, ip1_flags);
  2538. xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
  2539. }
  2540. if (ip2_flags) {
  2541. xfs_trans_ichgtime(tp, ip2, ip2_flags);
  2542. xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
  2543. }
  2544. if (dp2_flags) {
  2545. xfs_trans_ichgtime(tp, dp2, dp2_flags);
  2546. xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
  2547. }
  2548. xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  2549. xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
  2550. return xfs_finish_rename(tp, dfops);
  2551. out_trans_abort:
  2552. xfs_defer_cancel(dfops);
  2553. xfs_trans_cancel(tp);
  2554. return error;
  2555. }
  2556. /*
  2557. * xfs_rename_alloc_whiteout()
  2558. *
  2559. * Return a referenced, unlinked, unlocked inode that that can be used as a
  2560. * whiteout in a rename transaction. We use a tmpfile inode here so that if we
  2561. * crash between allocating the inode and linking it into the rename transaction
  2562. * recovery will free the inode and we won't leak it.
  2563. */
  2564. static int
  2565. xfs_rename_alloc_whiteout(
  2566. struct xfs_inode *dp,
  2567. struct xfs_inode **wip)
  2568. {
  2569. struct xfs_inode *tmpfile;
  2570. int error;
  2571. error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
  2572. if (error)
  2573. return error;
  2574. /*
  2575. * Prepare the tmpfile inode as if it were created through the VFS.
  2576. * Otherwise, the link increment paths will complain about nlink 0->1.
  2577. * Drop the link count as done by d_tmpfile(), complete the inode setup
  2578. * and flag it as linkable.
  2579. */
  2580. drop_nlink(VFS_I(tmpfile));
  2581. xfs_setup_iops(tmpfile);
  2582. xfs_finish_inode_setup(tmpfile);
  2583. VFS_I(tmpfile)->i_state |= I_LINKABLE;
  2584. *wip = tmpfile;
  2585. return 0;
  2586. }
  2587. /*
  2588. * xfs_rename
  2589. */
  2590. int
  2591. xfs_rename(
  2592. struct xfs_inode *src_dp,
  2593. struct xfs_name *src_name,
  2594. struct xfs_inode *src_ip,
  2595. struct xfs_inode *target_dp,
  2596. struct xfs_name *target_name,
  2597. struct xfs_inode *target_ip,
  2598. unsigned int flags)
  2599. {
  2600. struct xfs_mount *mp = src_dp->i_mount;
  2601. struct xfs_trans *tp;
  2602. struct xfs_defer_ops dfops;
  2603. xfs_fsblock_t first_block;
  2604. struct xfs_inode *wip = NULL; /* whiteout inode */
  2605. struct xfs_inode *inodes[__XFS_SORT_INODES];
  2606. int num_inodes = __XFS_SORT_INODES;
  2607. bool new_parent = (src_dp != target_dp);
  2608. bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
  2609. int spaceres;
  2610. int error;
  2611. trace_xfs_rename(src_dp, target_dp, src_name, target_name);
  2612. if ((flags & RENAME_EXCHANGE) && !target_ip)
  2613. return -EINVAL;
  2614. /*
  2615. * If we are doing a whiteout operation, allocate the whiteout inode
  2616. * we will be placing at the target and ensure the type is set
  2617. * appropriately.
  2618. */
  2619. if (flags & RENAME_WHITEOUT) {
  2620. ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
  2621. error = xfs_rename_alloc_whiteout(target_dp, &wip);
  2622. if (error)
  2623. return error;
  2624. /* setup target dirent info as whiteout */
  2625. src_name->type = XFS_DIR3_FT_CHRDEV;
  2626. }
  2627. xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
  2628. inodes, &num_inodes);
  2629. spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
  2630. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
  2631. if (error == -ENOSPC) {
  2632. spaceres = 0;
  2633. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
  2634. &tp);
  2635. }
  2636. if (error)
  2637. goto out_release_wip;
  2638. /*
  2639. * Attach the dquots to the inodes
  2640. */
  2641. error = xfs_qm_vop_rename_dqattach(inodes);
  2642. if (error)
  2643. goto out_trans_cancel;
  2644. /*
  2645. * Lock all the participating inodes. Depending upon whether
  2646. * the target_name exists in the target directory, and
  2647. * whether the target directory is the same as the source
  2648. * directory, we can lock from 2 to 4 inodes.
  2649. */
  2650. xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
  2651. /*
  2652. * Join all the inodes to the transaction. From this point on,
  2653. * we can rely on either trans_commit or trans_cancel to unlock
  2654. * them.
  2655. */
  2656. xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
  2657. if (new_parent)
  2658. xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
  2659. xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
  2660. if (target_ip)
  2661. xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
  2662. if (wip)
  2663. xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
  2664. /*
  2665. * If we are using project inheritance, we only allow renames
  2666. * into our tree when the project IDs are the same; else the
  2667. * tree quota mechanism would be circumvented.
  2668. */
  2669. if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
  2670. (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
  2671. error = -EXDEV;
  2672. goto out_trans_cancel;
  2673. }
  2674. xfs_defer_init(&dfops, &first_block);
  2675. tp->t_agfl_dfops = &dfops;
  2676. /* RENAME_EXCHANGE is unique from here on. */
  2677. if (flags & RENAME_EXCHANGE)
  2678. return xfs_cross_rename(tp, src_dp, src_name, src_ip,
  2679. target_dp, target_name, target_ip,
  2680. &dfops, &first_block, spaceres);
  2681. /*
  2682. * Set up the target.
  2683. */
  2684. if (target_ip == NULL) {
  2685. /*
  2686. * If there's no space reservation, check the entry will
  2687. * fit before actually inserting it.
  2688. */
  2689. if (!spaceres) {
  2690. error = xfs_dir_canenter(tp, target_dp, target_name);
  2691. if (error)
  2692. goto out_trans_cancel;
  2693. }
  2694. /*
  2695. * If target does not exist and the rename crosses
  2696. * directories, adjust the target directory link count
  2697. * to account for the ".." reference from the new entry.
  2698. */
  2699. error = xfs_dir_createname(tp, target_dp, target_name,
  2700. src_ip->i_ino, &first_block,
  2701. &dfops, spaceres);
  2702. if (error)
  2703. goto out_bmap_cancel;
  2704. xfs_trans_ichgtime(tp, target_dp,
  2705. XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  2706. if (new_parent && src_is_directory) {
  2707. error = xfs_bumplink(tp, target_dp);
  2708. if (error)
  2709. goto out_bmap_cancel;
  2710. }
  2711. } else { /* target_ip != NULL */
  2712. /*
  2713. * If target exists and it's a directory, check that both
  2714. * target and source are directories and that target can be
  2715. * destroyed, or that neither is a directory.
  2716. */
  2717. if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
  2718. /*
  2719. * Make sure target dir is empty.
  2720. */
  2721. if (!(xfs_dir_isempty(target_ip)) ||
  2722. (VFS_I(target_ip)->i_nlink > 2)) {
  2723. error = -EEXIST;
  2724. goto out_trans_cancel;
  2725. }
  2726. }
  2727. /*
  2728. * Link the source inode under the target name.
  2729. * If the source inode is a directory and we are moving
  2730. * it across directories, its ".." entry will be
  2731. * inconsistent until we replace that down below.
  2732. *
  2733. * In case there is already an entry with the same
  2734. * name at the destination directory, remove it first.
  2735. */
  2736. error = xfs_dir_replace(tp, target_dp, target_name,
  2737. src_ip->i_ino,
  2738. &first_block, &dfops, spaceres);
  2739. if (error)
  2740. goto out_bmap_cancel;
  2741. xfs_trans_ichgtime(tp, target_dp,
  2742. XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  2743. /*
  2744. * Decrement the link count on the target since the target
  2745. * dir no longer points to it.
  2746. */
  2747. error = xfs_droplink(tp, target_ip);
  2748. if (error)
  2749. goto out_bmap_cancel;
  2750. if (src_is_directory) {
  2751. /*
  2752. * Drop the link from the old "." entry.
  2753. */
  2754. error = xfs_droplink(tp, target_ip);
  2755. if (error)
  2756. goto out_bmap_cancel;
  2757. }
  2758. } /* target_ip != NULL */
  2759. /*
  2760. * Remove the source.
  2761. */
  2762. if (new_parent && src_is_directory) {
  2763. /*
  2764. * Rewrite the ".." entry to point to the new
  2765. * directory.
  2766. */
  2767. error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
  2768. target_dp->i_ino,
  2769. &first_block, &dfops, spaceres);
  2770. ASSERT(error != -EEXIST);
  2771. if (error)
  2772. goto out_bmap_cancel;
  2773. }
  2774. /*
  2775. * We always want to hit the ctime on the source inode.
  2776. *
  2777. * This isn't strictly required by the standards since the source
  2778. * inode isn't really being changed, but old unix file systems did
  2779. * it and some incremental backup programs won't work without it.
  2780. */
  2781. xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
  2782. xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
  2783. /*
  2784. * Adjust the link count on src_dp. This is necessary when
  2785. * renaming a directory, either within one parent when
  2786. * the target existed, or across two parent directories.
  2787. */
  2788. if (src_is_directory && (new_parent || target_ip != NULL)) {
  2789. /*
  2790. * Decrement link count on src_directory since the
  2791. * entry that's moved no longer points to it.
  2792. */
  2793. error = xfs_droplink(tp, src_dp);
  2794. if (error)
  2795. goto out_bmap_cancel;
  2796. }
  2797. /*
  2798. * For whiteouts, we only need to update the source dirent with the
  2799. * inode number of the whiteout inode rather than removing it
  2800. * altogether.
  2801. */
  2802. if (wip) {
  2803. error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
  2804. &first_block, &dfops, spaceres);
  2805. } else
  2806. error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
  2807. &first_block, &dfops, spaceres);
  2808. if (error)
  2809. goto out_bmap_cancel;
  2810. /*
  2811. * For whiteouts, we need to bump the link count on the whiteout inode.
  2812. * This means that failures all the way up to this point leave the inode
  2813. * on the unlinked list and so cleanup is a simple matter of dropping
  2814. * the remaining reference to it. If we fail here after bumping the link
  2815. * count, we're shutting down the filesystem so we'll never see the
  2816. * intermediate state on disk.
  2817. */
  2818. if (wip) {
  2819. ASSERT(VFS_I(wip)->i_nlink == 0);
  2820. error = xfs_bumplink(tp, wip);
  2821. if (error)
  2822. goto out_bmap_cancel;
  2823. error = xfs_iunlink_remove(tp, wip);
  2824. if (error)
  2825. goto out_bmap_cancel;
  2826. xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
  2827. /*
  2828. * Now we have a real link, clear the "I'm a tmpfile" state
  2829. * flag from the inode so it doesn't accidentally get misused in
  2830. * future.
  2831. */
  2832. VFS_I(wip)->i_state &= ~I_LINKABLE;
  2833. }
  2834. xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  2835. xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
  2836. if (new_parent)
  2837. xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
  2838. error = xfs_finish_rename(tp, &dfops);
  2839. if (wip)
  2840. IRELE(wip);
  2841. return error;
  2842. out_bmap_cancel:
  2843. xfs_defer_cancel(&dfops);
  2844. out_trans_cancel:
  2845. xfs_trans_cancel(tp);
  2846. out_release_wip:
  2847. if (wip)
  2848. IRELE(wip);
  2849. return error;
  2850. }
  2851. STATIC int
  2852. xfs_iflush_cluster(
  2853. struct xfs_inode *ip,
  2854. struct xfs_buf *bp)
  2855. {
  2856. struct xfs_mount *mp = ip->i_mount;
  2857. struct xfs_perag *pag;
  2858. unsigned long first_index, mask;
  2859. unsigned long inodes_per_cluster;
  2860. int cilist_size;
  2861. struct xfs_inode **cilist;
  2862. struct xfs_inode *cip;
  2863. int nr_found;
  2864. int clcount = 0;
  2865. int bufwasdelwri;
  2866. int i;
  2867. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2868. inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  2869. cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2870. cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
  2871. if (!cilist)
  2872. goto out_put;
  2873. mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
  2874. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2875. rcu_read_lock();
  2876. /* really need a gang lookup range call here */
  2877. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
  2878. first_index, inodes_per_cluster);
  2879. if (nr_found == 0)
  2880. goto out_free;
  2881. for (i = 0; i < nr_found; i++) {
  2882. cip = cilist[i];
  2883. if (cip == ip)
  2884. continue;
  2885. /*
  2886. * because this is an RCU protected lookup, we could find a
  2887. * recently freed or even reallocated inode during the lookup.
  2888. * We need to check under the i_flags_lock for a valid inode
  2889. * here. Skip it if it is not valid or the wrong inode.
  2890. */
  2891. spin_lock(&cip->i_flags_lock);
  2892. if (!cip->i_ino ||
  2893. __xfs_iflags_test(cip, XFS_ISTALE)) {
  2894. spin_unlock(&cip->i_flags_lock);
  2895. continue;
  2896. }
  2897. /*
  2898. * Once we fall off the end of the cluster, no point checking
  2899. * any more inodes in the list because they will also all be
  2900. * outside the cluster.
  2901. */
  2902. if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
  2903. spin_unlock(&cip->i_flags_lock);
  2904. break;
  2905. }
  2906. spin_unlock(&cip->i_flags_lock);
  2907. /*
  2908. * Do an un-protected check to see if the inode is dirty and
  2909. * is a candidate for flushing. These checks will be repeated
  2910. * later after the appropriate locks are acquired.
  2911. */
  2912. if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
  2913. continue;
  2914. /*
  2915. * Try to get locks. If any are unavailable or it is pinned,
  2916. * then this inode cannot be flushed and is skipped.
  2917. */
  2918. if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
  2919. continue;
  2920. if (!xfs_iflock_nowait(cip)) {
  2921. xfs_iunlock(cip, XFS_ILOCK_SHARED);
  2922. continue;
  2923. }
  2924. if (xfs_ipincount(cip)) {
  2925. xfs_ifunlock(cip);
  2926. xfs_iunlock(cip, XFS_ILOCK_SHARED);
  2927. continue;
  2928. }
  2929. /*
  2930. * Check the inode number again, just to be certain we are not
  2931. * racing with freeing in xfs_reclaim_inode(). See the comments
  2932. * in that function for more information as to why the initial
  2933. * check is not sufficient.
  2934. */
  2935. if (!cip->i_ino) {
  2936. xfs_ifunlock(cip);
  2937. xfs_iunlock(cip, XFS_ILOCK_SHARED);
  2938. continue;
  2939. }
  2940. /*
  2941. * arriving here means that this inode can be flushed. First
  2942. * re-check that it's dirty before flushing.
  2943. */
  2944. if (!xfs_inode_clean(cip)) {
  2945. int error;
  2946. error = xfs_iflush_int(cip, bp);
  2947. if (error) {
  2948. xfs_iunlock(cip, XFS_ILOCK_SHARED);
  2949. goto cluster_corrupt_out;
  2950. }
  2951. clcount++;
  2952. } else {
  2953. xfs_ifunlock(cip);
  2954. }
  2955. xfs_iunlock(cip, XFS_ILOCK_SHARED);
  2956. }
  2957. if (clcount) {
  2958. XFS_STATS_INC(mp, xs_icluster_flushcnt);
  2959. XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
  2960. }
  2961. out_free:
  2962. rcu_read_unlock();
  2963. kmem_free(cilist);
  2964. out_put:
  2965. xfs_perag_put(pag);
  2966. return 0;
  2967. cluster_corrupt_out:
  2968. /*
  2969. * Corruption detected in the clustering loop. Invalidate the
  2970. * inode buffer and shut down the filesystem.
  2971. */
  2972. rcu_read_unlock();
  2973. /*
  2974. * Clean up the buffer. If it was delwri, just release it --
  2975. * brelse can handle it with no problems. If not, shut down the
  2976. * filesystem before releasing the buffer.
  2977. */
  2978. bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
  2979. if (bufwasdelwri)
  2980. xfs_buf_relse(bp);
  2981. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2982. if (!bufwasdelwri) {
  2983. /*
  2984. * Just like incore_relse: if we have b_iodone functions,
  2985. * mark the buffer as an error and call them. Otherwise
  2986. * mark it as stale and brelse.
  2987. */
  2988. if (bp->b_iodone) {
  2989. bp->b_flags &= ~XBF_DONE;
  2990. xfs_buf_stale(bp);
  2991. xfs_buf_ioerror(bp, -EIO);
  2992. xfs_buf_ioend(bp);
  2993. } else {
  2994. xfs_buf_stale(bp);
  2995. xfs_buf_relse(bp);
  2996. }
  2997. }
  2998. /*
  2999. * Unlocks the flush lock
  3000. */
  3001. xfs_iflush_abort(cip, false);
  3002. kmem_free(cilist);
  3003. xfs_perag_put(pag);
  3004. return -EFSCORRUPTED;
  3005. }
  3006. /*
  3007. * Flush dirty inode metadata into the backing buffer.
  3008. *
  3009. * The caller must have the inode lock and the inode flush lock held. The
  3010. * inode lock will still be held upon return to the caller, and the inode
  3011. * flush lock will be released after the inode has reached the disk.
  3012. *
  3013. * The caller must write out the buffer returned in *bpp and release it.
  3014. */
  3015. int
  3016. xfs_iflush(
  3017. struct xfs_inode *ip,
  3018. struct xfs_buf **bpp)
  3019. {
  3020. struct xfs_mount *mp = ip->i_mount;
  3021. struct xfs_buf *bp = NULL;
  3022. struct xfs_dinode *dip;
  3023. int error;
  3024. XFS_STATS_INC(mp, xs_iflush_count);
  3025. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  3026. ASSERT(xfs_isiflocked(ip));
  3027. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3028. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  3029. *bpp = NULL;
  3030. xfs_iunpin_wait(ip);
  3031. /*
  3032. * For stale inodes we cannot rely on the backing buffer remaining
  3033. * stale in cache for the remaining life of the stale inode and so
  3034. * xfs_imap_to_bp() below may give us a buffer that no longer contains
  3035. * inodes below. We have to check this after ensuring the inode is
  3036. * unpinned so that it is safe to reclaim the stale inode after the
  3037. * flush call.
  3038. */
  3039. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  3040. xfs_ifunlock(ip);
  3041. return 0;
  3042. }
  3043. /*
  3044. * This may have been unpinned because the filesystem is shutting
  3045. * down forcibly. If that's the case we must not write this inode
  3046. * to disk, because the log record didn't make it to disk.
  3047. *
  3048. * We also have to remove the log item from the AIL in this case,
  3049. * as we wait for an empty AIL as part of the unmount process.
  3050. */
  3051. if (XFS_FORCED_SHUTDOWN(mp)) {
  3052. error = -EIO;
  3053. goto abort_out;
  3054. }
  3055. /*
  3056. * Get the buffer containing the on-disk inode. We are doing a try-lock
  3057. * operation here, so we may get an EAGAIN error. In that case, we
  3058. * simply want to return with the inode still dirty.
  3059. *
  3060. * If we get any other error, we effectively have a corruption situation
  3061. * and we cannot flush the inode, so we treat it the same as failing
  3062. * xfs_iflush_int().
  3063. */
  3064. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
  3065. 0);
  3066. if (error == -EAGAIN) {
  3067. xfs_ifunlock(ip);
  3068. return error;
  3069. }
  3070. if (error)
  3071. goto corrupt_out;
  3072. /*
  3073. * First flush out the inode that xfs_iflush was called with.
  3074. */
  3075. error = xfs_iflush_int(ip, bp);
  3076. if (error)
  3077. goto corrupt_out;
  3078. /*
  3079. * If the buffer is pinned then push on the log now so we won't
  3080. * get stuck waiting in the write for too long.
  3081. */
  3082. if (xfs_buf_ispinned(bp))
  3083. xfs_log_force(mp, 0);
  3084. /*
  3085. * inode clustering:
  3086. * see if other inodes can be gathered into this write
  3087. */
  3088. error = xfs_iflush_cluster(ip, bp);
  3089. if (error)
  3090. goto cluster_corrupt_out;
  3091. *bpp = bp;
  3092. return 0;
  3093. corrupt_out:
  3094. if (bp)
  3095. xfs_buf_relse(bp);
  3096. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3097. cluster_corrupt_out:
  3098. error = -EFSCORRUPTED;
  3099. abort_out:
  3100. /*
  3101. * Unlocks the flush lock
  3102. */
  3103. xfs_iflush_abort(ip, false);
  3104. return error;
  3105. }
  3106. /*
  3107. * If there are inline format data / attr forks attached to this inode,
  3108. * make sure they're not corrupt.
  3109. */
  3110. bool
  3111. xfs_inode_verify_forks(
  3112. struct xfs_inode *ip)
  3113. {
  3114. struct xfs_ifork *ifp;
  3115. xfs_failaddr_t fa;
  3116. fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
  3117. if (fa) {
  3118. ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
  3119. xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
  3120. ifp->if_u1.if_data, ifp->if_bytes, fa);
  3121. return false;
  3122. }
  3123. fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
  3124. if (fa) {
  3125. ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
  3126. xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
  3127. ifp ? ifp->if_u1.if_data : NULL,
  3128. ifp ? ifp->if_bytes : 0, fa);
  3129. return false;
  3130. }
  3131. return true;
  3132. }
  3133. STATIC int
  3134. xfs_iflush_int(
  3135. struct xfs_inode *ip,
  3136. struct xfs_buf *bp)
  3137. {
  3138. struct xfs_inode_log_item *iip = ip->i_itemp;
  3139. struct xfs_dinode *dip;
  3140. struct xfs_mount *mp = ip->i_mount;
  3141. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  3142. ASSERT(xfs_isiflocked(ip));
  3143. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3144. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  3145. ASSERT(iip != NULL && iip->ili_fields != 0);
  3146. ASSERT(ip->i_d.di_version > 1);
  3147. /* set *dip = inode's place in the buffer */
  3148. dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
  3149. if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
  3150. mp, XFS_ERRTAG_IFLUSH_1)) {
  3151. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  3152. "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
  3153. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  3154. goto corrupt_out;
  3155. }
  3156. if (S_ISREG(VFS_I(ip)->i_mode)) {
  3157. if (XFS_TEST_ERROR(
  3158. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3159. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3160. mp, XFS_ERRTAG_IFLUSH_3)) {
  3161. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  3162. "%s: Bad regular inode %Lu, ptr "PTR_FMT,
  3163. __func__, ip->i_ino, ip);
  3164. goto corrupt_out;
  3165. }
  3166. } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
  3167. if (XFS_TEST_ERROR(
  3168. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3169. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3170. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3171. mp, XFS_ERRTAG_IFLUSH_4)) {
  3172. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  3173. "%s: Bad directory inode %Lu, ptr "PTR_FMT,
  3174. __func__, ip->i_ino, ip);
  3175. goto corrupt_out;
  3176. }
  3177. }
  3178. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3179. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
  3180. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  3181. "%s: detected corrupt incore inode %Lu, "
  3182. "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
  3183. __func__, ip->i_ino,
  3184. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3185. ip->i_d.di_nblocks, ip);
  3186. goto corrupt_out;
  3187. }
  3188. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3189. mp, XFS_ERRTAG_IFLUSH_6)) {
  3190. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  3191. "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
  3192. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  3193. goto corrupt_out;
  3194. }
  3195. /*
  3196. * Inode item log recovery for v2 inodes are dependent on the
  3197. * di_flushiter count for correct sequencing. We bump the flush
  3198. * iteration count so we can detect flushes which postdate a log record
  3199. * during recovery. This is redundant as we now log every change and
  3200. * hence this can't happen but we need to still do it to ensure
  3201. * backwards compatibility with old kernels that predate logging all
  3202. * inode changes.
  3203. */
  3204. if (ip->i_d.di_version < 3)
  3205. ip->i_d.di_flushiter++;
  3206. /* Check the inline fork data before we write out. */
  3207. if (!xfs_inode_verify_forks(ip))
  3208. goto corrupt_out;
  3209. /*
  3210. * Copy the dirty parts of the inode into the on-disk inode. We always
  3211. * copy out the core of the inode, because if the inode is dirty at all
  3212. * the core must be.
  3213. */
  3214. xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
  3215. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3216. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3217. ip->i_d.di_flushiter = 0;
  3218. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
  3219. if (XFS_IFORK_Q(ip))
  3220. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
  3221. xfs_inobp_check(mp, bp);
  3222. /*
  3223. * We've recorded everything logged in the inode, so we'd like to clear
  3224. * the ili_fields bits so we don't log and flush things unnecessarily.
  3225. * However, we can't stop logging all this information until the data
  3226. * we've copied into the disk buffer is written to disk. If we did we
  3227. * might overwrite the copy of the inode in the log with all the data
  3228. * after re-logging only part of it, and in the face of a crash we
  3229. * wouldn't have all the data we need to recover.
  3230. *
  3231. * What we do is move the bits to the ili_last_fields field. When
  3232. * logging the inode, these bits are moved back to the ili_fields field.
  3233. * In the xfs_iflush_done() routine we clear ili_last_fields, since we
  3234. * know that the information those bits represent is permanently on
  3235. * disk. As long as the flush completes before the inode is logged
  3236. * again, then both ili_fields and ili_last_fields will be cleared.
  3237. *
  3238. * We can play with the ili_fields bits here, because the inode lock
  3239. * must be held exclusively in order to set bits there and the flush
  3240. * lock protects the ili_last_fields bits. Set ili_logged so the flush
  3241. * done routine can tell whether or not to look in the AIL. Also, store
  3242. * the current LSN of the inode so that we can tell whether the item has
  3243. * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
  3244. * need the AIL lock, because it is a 64 bit value that cannot be read
  3245. * atomically.
  3246. */
  3247. iip->ili_last_fields = iip->ili_fields;
  3248. iip->ili_fields = 0;
  3249. iip->ili_fsync_fields = 0;
  3250. iip->ili_logged = 1;
  3251. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  3252. &iip->ili_item.li_lsn);
  3253. /*
  3254. * Attach the function xfs_iflush_done to the inode's
  3255. * buffer. This will remove the inode from the AIL
  3256. * and unlock the inode's flush lock when the inode is
  3257. * completely written to disk.
  3258. */
  3259. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  3260. /* generate the checksum. */
  3261. xfs_dinode_calc_crc(mp, dip);
  3262. ASSERT(!list_empty(&bp->b_li_list));
  3263. ASSERT(bp->b_iodone != NULL);
  3264. return 0;
  3265. corrupt_out:
  3266. return -EFSCORRUPTED;
  3267. }