net_namespace.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/workqueue.h>
  3. #include <linux/rtnetlink.h>
  4. #include <linux/cache.h>
  5. #include <linux/slab.h>
  6. #include <linux/list.h>
  7. #include <linux/delay.h>
  8. #include <linux/sched.h>
  9. #include <linux/idr.h>
  10. #include <linux/rculist.h>
  11. #include <linux/nsproxy.h>
  12. #include <linux/fs.h>
  13. #include <linux/proc_ns.h>
  14. #include <linux/file.h>
  15. #include <linux/export.h>
  16. #include <linux/user_namespace.h>
  17. #include <linux/net_namespace.h>
  18. #include <net/sock.h>
  19. #include <net/netlink.h>
  20. #include <net/net_namespace.h>
  21. #include <net/netns/generic.h>
  22. /*
  23. * Our network namespace constructor/destructor lists
  24. */
  25. static LIST_HEAD(pernet_list);
  26. static struct list_head *first_device = &pernet_list;
  27. DEFINE_MUTEX(net_mutex);
  28. LIST_HEAD(net_namespace_list);
  29. EXPORT_SYMBOL_GPL(net_namespace_list);
  30. struct net init_net = {
  31. .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
  32. };
  33. EXPORT_SYMBOL(init_net);
  34. #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
  35. static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
  36. static struct net_generic *net_alloc_generic(void)
  37. {
  38. struct net_generic *ng;
  39. size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
  40. ng = kzalloc(generic_size, GFP_KERNEL);
  41. if (ng)
  42. ng->len = max_gen_ptrs;
  43. return ng;
  44. }
  45. static int net_assign_generic(struct net *net, int id, void *data)
  46. {
  47. struct net_generic *ng, *old_ng;
  48. BUG_ON(!mutex_is_locked(&net_mutex));
  49. BUG_ON(id == 0);
  50. old_ng = rcu_dereference_protected(net->gen,
  51. lockdep_is_held(&net_mutex));
  52. ng = old_ng;
  53. if (old_ng->len >= id)
  54. goto assign;
  55. ng = net_alloc_generic();
  56. if (ng == NULL)
  57. return -ENOMEM;
  58. /*
  59. * Some synchronisation notes:
  60. *
  61. * The net_generic explores the net->gen array inside rcu
  62. * read section. Besides once set the net->gen->ptr[x]
  63. * pointer never changes (see rules in netns/generic.h).
  64. *
  65. * That said, we simply duplicate this array and schedule
  66. * the old copy for kfree after a grace period.
  67. */
  68. memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
  69. rcu_assign_pointer(net->gen, ng);
  70. kfree_rcu(old_ng, rcu);
  71. assign:
  72. ng->ptr[id - 1] = data;
  73. return 0;
  74. }
  75. static int ops_init(const struct pernet_operations *ops, struct net *net)
  76. {
  77. int err = -ENOMEM;
  78. void *data = NULL;
  79. if (ops->id && ops->size) {
  80. data = kzalloc(ops->size, GFP_KERNEL);
  81. if (!data)
  82. goto out;
  83. err = net_assign_generic(net, *ops->id, data);
  84. if (err)
  85. goto cleanup;
  86. }
  87. err = 0;
  88. if (ops->init)
  89. err = ops->init(net);
  90. if (!err)
  91. return 0;
  92. cleanup:
  93. kfree(data);
  94. out:
  95. return err;
  96. }
  97. static void ops_free(const struct pernet_operations *ops, struct net *net)
  98. {
  99. if (ops->id && ops->size) {
  100. int id = *ops->id;
  101. kfree(net_generic(net, id));
  102. }
  103. }
  104. static void ops_exit_list(const struct pernet_operations *ops,
  105. struct list_head *net_exit_list)
  106. {
  107. struct net *net;
  108. if (ops->exit) {
  109. list_for_each_entry(net, net_exit_list, exit_list)
  110. ops->exit(net);
  111. }
  112. if (ops->exit_batch)
  113. ops->exit_batch(net_exit_list);
  114. }
  115. static void ops_free_list(const struct pernet_operations *ops,
  116. struct list_head *net_exit_list)
  117. {
  118. struct net *net;
  119. if (ops->size && ops->id) {
  120. list_for_each_entry(net, net_exit_list, exit_list)
  121. ops_free(ops, net);
  122. }
  123. }
  124. /* should be called with nsid_lock held */
  125. static int alloc_netid(struct net *net, struct net *peer, int reqid)
  126. {
  127. int min = 0, max = 0;
  128. if (reqid >= 0) {
  129. min = reqid;
  130. max = reqid + 1;
  131. }
  132. return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
  133. }
  134. /* This function is used by idr_for_each(). If net is equal to peer, the
  135. * function returns the id so that idr_for_each() stops. Because we cannot
  136. * returns the id 0 (idr_for_each() will not stop), we return the magic value
  137. * NET_ID_ZERO (-1) for it.
  138. */
  139. #define NET_ID_ZERO -1
  140. static int net_eq_idr(int id, void *net, void *peer)
  141. {
  142. if (net_eq(net, peer))
  143. return id ? : NET_ID_ZERO;
  144. return 0;
  145. }
  146. /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
  147. * is set to true, thus the caller knows that the new id must be notified via
  148. * rtnl.
  149. */
  150. static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
  151. {
  152. int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
  153. bool alloc_it = *alloc;
  154. *alloc = false;
  155. /* Magic value for id 0. */
  156. if (id == NET_ID_ZERO)
  157. return 0;
  158. if (id > 0)
  159. return id;
  160. if (alloc_it) {
  161. id = alloc_netid(net, peer, -1);
  162. *alloc = true;
  163. return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
  164. }
  165. return NETNSA_NSID_NOT_ASSIGNED;
  166. }
  167. /* should be called with nsid_lock held */
  168. static int __peernet2id(struct net *net, struct net *peer)
  169. {
  170. bool no = false;
  171. return __peernet2id_alloc(net, peer, &no);
  172. }
  173. static void rtnl_net_notifyid(struct net *net, int cmd, int id);
  174. /* This function returns the id of a peer netns. If no id is assigned, one will
  175. * be allocated and returned.
  176. */
  177. int peernet2id_alloc(struct net *net, struct net *peer)
  178. {
  179. unsigned long flags;
  180. bool alloc;
  181. int id;
  182. spin_lock_irqsave(&net->nsid_lock, flags);
  183. alloc = atomic_read(&peer->count) == 0 ? false : true;
  184. id = __peernet2id_alloc(net, peer, &alloc);
  185. spin_unlock_irqrestore(&net->nsid_lock, flags);
  186. if (alloc && id >= 0)
  187. rtnl_net_notifyid(net, RTM_NEWNSID, id);
  188. return id;
  189. }
  190. EXPORT_SYMBOL(peernet2id_alloc);
  191. /* This function returns, if assigned, the id of a peer netns. */
  192. int peernet2id(struct net *net, struct net *peer)
  193. {
  194. unsigned long flags;
  195. int id;
  196. spin_lock_irqsave(&net->nsid_lock, flags);
  197. id = __peernet2id(net, peer);
  198. spin_unlock_irqrestore(&net->nsid_lock, flags);
  199. return id;
  200. }
  201. /* This function returns true is the peer netns has an id assigned into the
  202. * current netns.
  203. */
  204. bool peernet_has_id(struct net *net, struct net *peer)
  205. {
  206. return peernet2id(net, peer) >= 0;
  207. }
  208. struct net *get_net_ns_by_id(struct net *net, int id)
  209. {
  210. unsigned long flags;
  211. struct net *peer;
  212. if (id < 0)
  213. return NULL;
  214. rcu_read_lock();
  215. spin_lock_irqsave(&net->nsid_lock, flags);
  216. peer = idr_find(&net->netns_ids, id);
  217. if (peer)
  218. get_net(peer);
  219. spin_unlock_irqrestore(&net->nsid_lock, flags);
  220. rcu_read_unlock();
  221. return peer;
  222. }
  223. static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
  224. {
  225. return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
  226. }
  227. static void dec_net_namespaces(struct ucounts *ucounts)
  228. {
  229. dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
  230. }
  231. /*
  232. * setup_net runs the initializers for the network namespace object.
  233. */
  234. static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
  235. {
  236. /* Must be called with net_mutex held */
  237. const struct pernet_operations *ops, *saved_ops;
  238. int error = 0;
  239. LIST_HEAD(net_exit_list);
  240. atomic_set(&net->count, 1);
  241. atomic_set(&net->passive, 1);
  242. net->dev_base_seq = 1;
  243. net->user_ns = user_ns;
  244. idr_init(&net->netns_ids);
  245. spin_lock_init(&net->nsid_lock);
  246. list_for_each_entry(ops, &pernet_list, list) {
  247. error = ops_init(ops, net);
  248. if (error < 0)
  249. goto out_undo;
  250. }
  251. out:
  252. return error;
  253. out_undo:
  254. /* Walk through the list backwards calling the exit functions
  255. * for the pernet modules whose init functions did not fail.
  256. */
  257. list_add(&net->exit_list, &net_exit_list);
  258. saved_ops = ops;
  259. list_for_each_entry_continue_reverse(ops, &pernet_list, list)
  260. ops_exit_list(ops, &net_exit_list);
  261. ops = saved_ops;
  262. list_for_each_entry_continue_reverse(ops, &pernet_list, list)
  263. ops_free_list(ops, &net_exit_list);
  264. rcu_barrier();
  265. goto out;
  266. }
  267. #ifdef CONFIG_NET_NS
  268. static struct kmem_cache *net_cachep;
  269. static struct workqueue_struct *netns_wq;
  270. static struct net *net_alloc(void)
  271. {
  272. struct net *net = NULL;
  273. struct net_generic *ng;
  274. ng = net_alloc_generic();
  275. if (!ng)
  276. goto out;
  277. net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
  278. if (!net)
  279. goto out_free;
  280. rcu_assign_pointer(net->gen, ng);
  281. out:
  282. return net;
  283. out_free:
  284. kfree(ng);
  285. goto out;
  286. }
  287. static void net_free(struct net *net)
  288. {
  289. kfree(rcu_access_pointer(net->gen));
  290. kmem_cache_free(net_cachep, net);
  291. }
  292. void net_drop_ns(void *p)
  293. {
  294. struct net *ns = p;
  295. if (ns && atomic_dec_and_test(&ns->passive))
  296. net_free(ns);
  297. }
  298. struct net *copy_net_ns(unsigned long flags,
  299. struct user_namespace *user_ns, struct net *old_net)
  300. {
  301. struct ucounts *ucounts;
  302. struct net *net;
  303. int rv;
  304. if (!(flags & CLONE_NEWNET))
  305. return get_net(old_net);
  306. ucounts = inc_net_namespaces(user_ns);
  307. if (!ucounts)
  308. return ERR_PTR(-ENOSPC);
  309. net = net_alloc();
  310. if (!net) {
  311. dec_net_namespaces(ucounts);
  312. return ERR_PTR(-ENOMEM);
  313. }
  314. get_user_ns(user_ns);
  315. mutex_lock(&net_mutex);
  316. net->ucounts = ucounts;
  317. rv = setup_net(net, user_ns);
  318. if (rv == 0) {
  319. rtnl_lock();
  320. list_add_tail_rcu(&net->list, &net_namespace_list);
  321. rtnl_unlock();
  322. }
  323. mutex_unlock(&net_mutex);
  324. if (rv < 0) {
  325. dec_net_namespaces(ucounts);
  326. put_user_ns(user_ns);
  327. net_drop_ns(net);
  328. return ERR_PTR(rv);
  329. }
  330. return net;
  331. }
  332. static DEFINE_SPINLOCK(cleanup_list_lock);
  333. static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
  334. static void cleanup_net(struct work_struct *work)
  335. {
  336. const struct pernet_operations *ops;
  337. struct net *net, *tmp;
  338. struct list_head net_kill_list;
  339. LIST_HEAD(net_exit_list);
  340. /* Atomically snapshot the list of namespaces to cleanup */
  341. spin_lock_irq(&cleanup_list_lock);
  342. list_replace_init(&cleanup_list, &net_kill_list);
  343. spin_unlock_irq(&cleanup_list_lock);
  344. mutex_lock(&net_mutex);
  345. /* Don't let anyone else find us. */
  346. rtnl_lock();
  347. list_for_each_entry(net, &net_kill_list, cleanup_list) {
  348. list_del_rcu(&net->list);
  349. list_add_tail(&net->exit_list, &net_exit_list);
  350. for_each_net(tmp) {
  351. int id;
  352. spin_lock_irq(&tmp->nsid_lock);
  353. id = __peernet2id(tmp, net);
  354. if (id >= 0)
  355. idr_remove(&tmp->netns_ids, id);
  356. spin_unlock_irq(&tmp->nsid_lock);
  357. if (id >= 0)
  358. rtnl_net_notifyid(tmp, RTM_DELNSID, id);
  359. }
  360. spin_lock_irq(&net->nsid_lock);
  361. idr_destroy(&net->netns_ids);
  362. spin_unlock_irq(&net->nsid_lock);
  363. }
  364. rtnl_unlock();
  365. /*
  366. * Another CPU might be rcu-iterating the list, wait for it.
  367. * This needs to be before calling the exit() notifiers, so
  368. * the rcu_barrier() below isn't sufficient alone.
  369. */
  370. synchronize_rcu();
  371. /* Run all of the network namespace exit methods */
  372. list_for_each_entry_reverse(ops, &pernet_list, list)
  373. ops_exit_list(ops, &net_exit_list);
  374. /* Free the net generic variables */
  375. list_for_each_entry_reverse(ops, &pernet_list, list)
  376. ops_free_list(ops, &net_exit_list);
  377. mutex_unlock(&net_mutex);
  378. /* Ensure there are no outstanding rcu callbacks using this
  379. * network namespace.
  380. */
  381. rcu_barrier();
  382. /* Finally it is safe to free my network namespace structure */
  383. list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
  384. list_del_init(&net->exit_list);
  385. dec_net_namespaces(net->ucounts);
  386. put_user_ns(net->user_ns);
  387. net_drop_ns(net);
  388. }
  389. }
  390. static DECLARE_WORK(net_cleanup_work, cleanup_net);
  391. void __put_net(struct net *net)
  392. {
  393. /* Cleanup the network namespace in process context */
  394. unsigned long flags;
  395. spin_lock_irqsave(&cleanup_list_lock, flags);
  396. list_add(&net->cleanup_list, &cleanup_list);
  397. spin_unlock_irqrestore(&cleanup_list_lock, flags);
  398. queue_work(netns_wq, &net_cleanup_work);
  399. }
  400. EXPORT_SYMBOL_GPL(__put_net);
  401. struct net *get_net_ns_by_fd(int fd)
  402. {
  403. struct file *file;
  404. struct ns_common *ns;
  405. struct net *net;
  406. file = proc_ns_fget(fd);
  407. if (IS_ERR(file))
  408. return ERR_CAST(file);
  409. ns = get_proc_ns(file_inode(file));
  410. if (ns->ops == &netns_operations)
  411. net = get_net(container_of(ns, struct net, ns));
  412. else
  413. net = ERR_PTR(-EINVAL);
  414. fput(file);
  415. return net;
  416. }
  417. #else
  418. struct net *get_net_ns_by_fd(int fd)
  419. {
  420. return ERR_PTR(-EINVAL);
  421. }
  422. #endif
  423. EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
  424. struct net *get_net_ns_by_pid(pid_t pid)
  425. {
  426. struct task_struct *tsk;
  427. struct net *net;
  428. /* Lookup the network namespace */
  429. net = ERR_PTR(-ESRCH);
  430. rcu_read_lock();
  431. tsk = find_task_by_vpid(pid);
  432. if (tsk) {
  433. struct nsproxy *nsproxy;
  434. task_lock(tsk);
  435. nsproxy = tsk->nsproxy;
  436. if (nsproxy)
  437. net = get_net(nsproxy->net_ns);
  438. task_unlock(tsk);
  439. }
  440. rcu_read_unlock();
  441. return net;
  442. }
  443. EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
  444. static __net_init int net_ns_net_init(struct net *net)
  445. {
  446. #ifdef CONFIG_NET_NS
  447. net->ns.ops = &netns_operations;
  448. #endif
  449. return ns_alloc_inum(&net->ns);
  450. }
  451. static __net_exit void net_ns_net_exit(struct net *net)
  452. {
  453. ns_free_inum(&net->ns);
  454. }
  455. static struct pernet_operations __net_initdata net_ns_ops = {
  456. .init = net_ns_net_init,
  457. .exit = net_ns_net_exit,
  458. };
  459. static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
  460. [NETNSA_NONE] = { .type = NLA_UNSPEC },
  461. [NETNSA_NSID] = { .type = NLA_S32 },
  462. [NETNSA_PID] = { .type = NLA_U32 },
  463. [NETNSA_FD] = { .type = NLA_U32 },
  464. };
  465. static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
  466. {
  467. struct net *net = sock_net(skb->sk);
  468. struct nlattr *tb[NETNSA_MAX + 1];
  469. unsigned long flags;
  470. struct net *peer;
  471. int nsid, err;
  472. err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
  473. rtnl_net_policy);
  474. if (err < 0)
  475. return err;
  476. if (!tb[NETNSA_NSID])
  477. return -EINVAL;
  478. nsid = nla_get_s32(tb[NETNSA_NSID]);
  479. if (tb[NETNSA_PID])
  480. peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
  481. else if (tb[NETNSA_FD])
  482. peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
  483. else
  484. return -EINVAL;
  485. if (IS_ERR(peer))
  486. return PTR_ERR(peer);
  487. spin_lock_irqsave(&net->nsid_lock, flags);
  488. if (__peernet2id(net, peer) >= 0) {
  489. spin_unlock_irqrestore(&net->nsid_lock, flags);
  490. err = -EEXIST;
  491. goto out;
  492. }
  493. err = alloc_netid(net, peer, nsid);
  494. spin_unlock_irqrestore(&net->nsid_lock, flags);
  495. if (err >= 0) {
  496. rtnl_net_notifyid(net, RTM_NEWNSID, err);
  497. err = 0;
  498. }
  499. out:
  500. put_net(peer);
  501. return err;
  502. }
  503. static int rtnl_net_get_size(void)
  504. {
  505. return NLMSG_ALIGN(sizeof(struct rtgenmsg))
  506. + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
  507. ;
  508. }
  509. static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
  510. int cmd, struct net *net, int nsid)
  511. {
  512. struct nlmsghdr *nlh;
  513. struct rtgenmsg *rth;
  514. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
  515. if (!nlh)
  516. return -EMSGSIZE;
  517. rth = nlmsg_data(nlh);
  518. rth->rtgen_family = AF_UNSPEC;
  519. if (nla_put_s32(skb, NETNSA_NSID, nsid))
  520. goto nla_put_failure;
  521. nlmsg_end(skb, nlh);
  522. return 0;
  523. nla_put_failure:
  524. nlmsg_cancel(skb, nlh);
  525. return -EMSGSIZE;
  526. }
  527. static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
  528. {
  529. struct net *net = sock_net(skb->sk);
  530. struct nlattr *tb[NETNSA_MAX + 1];
  531. struct sk_buff *msg;
  532. struct net *peer;
  533. int err, id;
  534. err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
  535. rtnl_net_policy);
  536. if (err < 0)
  537. return err;
  538. if (tb[NETNSA_PID])
  539. peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
  540. else if (tb[NETNSA_FD])
  541. peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
  542. else
  543. return -EINVAL;
  544. if (IS_ERR(peer))
  545. return PTR_ERR(peer);
  546. msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
  547. if (!msg) {
  548. err = -ENOMEM;
  549. goto out;
  550. }
  551. id = peernet2id(net, peer);
  552. err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
  553. RTM_NEWNSID, net, id);
  554. if (err < 0)
  555. goto err_out;
  556. err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
  557. goto out;
  558. err_out:
  559. nlmsg_free(msg);
  560. out:
  561. put_net(peer);
  562. return err;
  563. }
  564. struct rtnl_net_dump_cb {
  565. struct net *net;
  566. struct sk_buff *skb;
  567. struct netlink_callback *cb;
  568. int idx;
  569. int s_idx;
  570. };
  571. static int rtnl_net_dumpid_one(int id, void *peer, void *data)
  572. {
  573. struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
  574. int ret;
  575. if (net_cb->idx < net_cb->s_idx)
  576. goto cont;
  577. ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
  578. net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
  579. RTM_NEWNSID, net_cb->net, id);
  580. if (ret < 0)
  581. return ret;
  582. cont:
  583. net_cb->idx++;
  584. return 0;
  585. }
  586. static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
  587. {
  588. struct net *net = sock_net(skb->sk);
  589. struct rtnl_net_dump_cb net_cb = {
  590. .net = net,
  591. .skb = skb,
  592. .cb = cb,
  593. .idx = 0,
  594. .s_idx = cb->args[0],
  595. };
  596. unsigned long flags;
  597. spin_lock_irqsave(&net->nsid_lock, flags);
  598. idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
  599. spin_unlock_irqrestore(&net->nsid_lock, flags);
  600. cb->args[0] = net_cb.idx;
  601. return skb->len;
  602. }
  603. static void rtnl_net_notifyid(struct net *net, int cmd, int id)
  604. {
  605. struct sk_buff *msg;
  606. int err = -ENOMEM;
  607. msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
  608. if (!msg)
  609. goto out;
  610. err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
  611. if (err < 0)
  612. goto err_out;
  613. rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
  614. return;
  615. err_out:
  616. nlmsg_free(msg);
  617. out:
  618. rtnl_set_sk_err(net, RTNLGRP_NSID, err);
  619. }
  620. static int __init net_ns_init(void)
  621. {
  622. struct net_generic *ng;
  623. #ifdef CONFIG_NET_NS
  624. net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
  625. SMP_CACHE_BYTES,
  626. SLAB_PANIC, NULL);
  627. /* Create workqueue for cleanup */
  628. netns_wq = create_singlethread_workqueue("netns");
  629. if (!netns_wq)
  630. panic("Could not create netns workq");
  631. #endif
  632. ng = net_alloc_generic();
  633. if (!ng)
  634. panic("Could not allocate generic netns");
  635. rcu_assign_pointer(init_net.gen, ng);
  636. mutex_lock(&net_mutex);
  637. if (setup_net(&init_net, &init_user_ns))
  638. panic("Could not setup the initial network namespace");
  639. rtnl_lock();
  640. list_add_tail_rcu(&init_net.list, &net_namespace_list);
  641. rtnl_unlock();
  642. mutex_unlock(&net_mutex);
  643. register_pernet_subsys(&net_ns_ops);
  644. rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
  645. rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
  646. NULL);
  647. return 0;
  648. }
  649. pure_initcall(net_ns_init);
  650. #ifdef CONFIG_NET_NS
  651. static int __register_pernet_operations(struct list_head *list,
  652. struct pernet_operations *ops)
  653. {
  654. struct net *net;
  655. int error;
  656. LIST_HEAD(net_exit_list);
  657. list_add_tail(&ops->list, list);
  658. if (ops->init || (ops->id && ops->size)) {
  659. for_each_net(net) {
  660. error = ops_init(ops, net);
  661. if (error)
  662. goto out_undo;
  663. list_add_tail(&net->exit_list, &net_exit_list);
  664. }
  665. }
  666. return 0;
  667. out_undo:
  668. /* If I have an error cleanup all namespaces I initialized */
  669. list_del(&ops->list);
  670. ops_exit_list(ops, &net_exit_list);
  671. ops_free_list(ops, &net_exit_list);
  672. return error;
  673. }
  674. static void __unregister_pernet_operations(struct pernet_operations *ops)
  675. {
  676. struct net *net;
  677. LIST_HEAD(net_exit_list);
  678. list_del(&ops->list);
  679. for_each_net(net)
  680. list_add_tail(&net->exit_list, &net_exit_list);
  681. ops_exit_list(ops, &net_exit_list);
  682. ops_free_list(ops, &net_exit_list);
  683. }
  684. #else
  685. static int __register_pernet_operations(struct list_head *list,
  686. struct pernet_operations *ops)
  687. {
  688. return ops_init(ops, &init_net);
  689. }
  690. static void __unregister_pernet_operations(struct pernet_operations *ops)
  691. {
  692. LIST_HEAD(net_exit_list);
  693. list_add(&init_net.exit_list, &net_exit_list);
  694. ops_exit_list(ops, &net_exit_list);
  695. ops_free_list(ops, &net_exit_list);
  696. }
  697. #endif /* CONFIG_NET_NS */
  698. static DEFINE_IDA(net_generic_ids);
  699. static int register_pernet_operations(struct list_head *list,
  700. struct pernet_operations *ops)
  701. {
  702. int error;
  703. if (ops->id) {
  704. again:
  705. error = ida_get_new_above(&net_generic_ids, 1, ops->id);
  706. if (error < 0) {
  707. if (error == -EAGAIN) {
  708. ida_pre_get(&net_generic_ids, GFP_KERNEL);
  709. goto again;
  710. }
  711. return error;
  712. }
  713. max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
  714. }
  715. error = __register_pernet_operations(list, ops);
  716. if (error) {
  717. rcu_barrier();
  718. if (ops->id)
  719. ida_remove(&net_generic_ids, *ops->id);
  720. }
  721. return error;
  722. }
  723. static void unregister_pernet_operations(struct pernet_operations *ops)
  724. {
  725. __unregister_pernet_operations(ops);
  726. rcu_barrier();
  727. if (ops->id)
  728. ida_remove(&net_generic_ids, *ops->id);
  729. }
  730. /**
  731. * register_pernet_subsys - register a network namespace subsystem
  732. * @ops: pernet operations structure for the subsystem
  733. *
  734. * Register a subsystem which has init and exit functions
  735. * that are called when network namespaces are created and
  736. * destroyed respectively.
  737. *
  738. * When registered all network namespace init functions are
  739. * called for every existing network namespace. Allowing kernel
  740. * modules to have a race free view of the set of network namespaces.
  741. *
  742. * When a new network namespace is created all of the init
  743. * methods are called in the order in which they were registered.
  744. *
  745. * When a network namespace is destroyed all of the exit methods
  746. * are called in the reverse of the order with which they were
  747. * registered.
  748. */
  749. int register_pernet_subsys(struct pernet_operations *ops)
  750. {
  751. int error;
  752. mutex_lock(&net_mutex);
  753. error = register_pernet_operations(first_device, ops);
  754. mutex_unlock(&net_mutex);
  755. return error;
  756. }
  757. EXPORT_SYMBOL_GPL(register_pernet_subsys);
  758. /**
  759. * unregister_pernet_subsys - unregister a network namespace subsystem
  760. * @ops: pernet operations structure to manipulate
  761. *
  762. * Remove the pernet operations structure from the list to be
  763. * used when network namespaces are created or destroyed. In
  764. * addition run the exit method for all existing network
  765. * namespaces.
  766. */
  767. void unregister_pernet_subsys(struct pernet_operations *ops)
  768. {
  769. mutex_lock(&net_mutex);
  770. unregister_pernet_operations(ops);
  771. mutex_unlock(&net_mutex);
  772. }
  773. EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
  774. /**
  775. * register_pernet_device - register a network namespace device
  776. * @ops: pernet operations structure for the subsystem
  777. *
  778. * Register a device which has init and exit functions
  779. * that are called when network namespaces are created and
  780. * destroyed respectively.
  781. *
  782. * When registered all network namespace init functions are
  783. * called for every existing network namespace. Allowing kernel
  784. * modules to have a race free view of the set of network namespaces.
  785. *
  786. * When a new network namespace is created all of the init
  787. * methods are called in the order in which they were registered.
  788. *
  789. * When a network namespace is destroyed all of the exit methods
  790. * are called in the reverse of the order with which they were
  791. * registered.
  792. */
  793. int register_pernet_device(struct pernet_operations *ops)
  794. {
  795. int error;
  796. mutex_lock(&net_mutex);
  797. error = register_pernet_operations(&pernet_list, ops);
  798. if (!error && (first_device == &pernet_list))
  799. first_device = &ops->list;
  800. mutex_unlock(&net_mutex);
  801. return error;
  802. }
  803. EXPORT_SYMBOL_GPL(register_pernet_device);
  804. /**
  805. * unregister_pernet_device - unregister a network namespace netdevice
  806. * @ops: pernet operations structure to manipulate
  807. *
  808. * Remove the pernet operations structure from the list to be
  809. * used when network namespaces are created or destroyed. In
  810. * addition run the exit method for all existing network
  811. * namespaces.
  812. */
  813. void unregister_pernet_device(struct pernet_operations *ops)
  814. {
  815. mutex_lock(&net_mutex);
  816. if (&ops->list == first_device)
  817. first_device = first_device->next;
  818. unregister_pernet_operations(ops);
  819. mutex_unlock(&net_mutex);
  820. }
  821. EXPORT_SYMBOL_GPL(unregister_pernet_device);
  822. #ifdef CONFIG_NET_NS
  823. static struct ns_common *netns_get(struct task_struct *task)
  824. {
  825. struct net *net = NULL;
  826. struct nsproxy *nsproxy;
  827. task_lock(task);
  828. nsproxy = task->nsproxy;
  829. if (nsproxy)
  830. net = get_net(nsproxy->net_ns);
  831. task_unlock(task);
  832. return net ? &net->ns : NULL;
  833. }
  834. static inline struct net *to_net_ns(struct ns_common *ns)
  835. {
  836. return container_of(ns, struct net, ns);
  837. }
  838. static void netns_put(struct ns_common *ns)
  839. {
  840. put_net(to_net_ns(ns));
  841. }
  842. static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  843. {
  844. struct net *net = to_net_ns(ns);
  845. if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
  846. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  847. return -EPERM;
  848. put_net(nsproxy->net_ns);
  849. nsproxy->net_ns = get_net(net);
  850. return 0;
  851. }
  852. static struct user_namespace *netns_owner(struct ns_common *ns)
  853. {
  854. return to_net_ns(ns)->user_ns;
  855. }
  856. const struct proc_ns_operations netns_operations = {
  857. .name = "net",
  858. .type = CLONE_NEWNET,
  859. .get = netns_get,
  860. .put = netns_put,
  861. .install = netns_install,
  862. .owner = netns_owner,
  863. };
  864. #endif