sock.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/errqueue.h>
  95. #include <linux/types.h>
  96. #include <linux/socket.h>
  97. #include <linux/in.h>
  98. #include <linux/kernel.h>
  99. #include <linux/module.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <linux/sched.h>
  103. #include <linux/timer.h>
  104. #include <linux/string.h>
  105. #include <linux/sockios.h>
  106. #include <linux/net.h>
  107. #include <linux/mm.h>
  108. #include <linux/slab.h>
  109. #include <linux/interrupt.h>
  110. #include <linux/poll.h>
  111. #include <linux/tcp.h>
  112. #include <linux/init.h>
  113. #include <linux/highmem.h>
  114. #include <linux/user_namespace.h>
  115. #include <linux/static_key.h>
  116. #include <linux/memcontrol.h>
  117. #include <linux/prefetch.h>
  118. #include <asm/uaccess.h>
  119. #include <linux/netdevice.h>
  120. #include <net/protocol.h>
  121. #include <linux/skbuff.h>
  122. #include <net/net_namespace.h>
  123. #include <net/request_sock.h>
  124. #include <net/sock.h>
  125. #include <linux/net_tstamp.h>
  126. #include <net/xfrm.h>
  127. #include <linux/ipsec.h>
  128. #include <net/cls_cgroup.h>
  129. #include <net/netprio_cgroup.h>
  130. #include <linux/sock_diag.h>
  131. #include <linux/filter.h>
  132. #include <trace/events/sock.h>
  133. #ifdef CONFIG_INET
  134. #include <net/tcp.h>
  135. #endif
  136. #include <net/busy_poll.h>
  137. static DEFINE_MUTEX(proto_list_mutex);
  138. static LIST_HEAD(proto_list);
  139. /**
  140. * sk_ns_capable - General socket capability test
  141. * @sk: Socket to use a capability on or through
  142. * @user_ns: The user namespace of the capability to use
  143. * @cap: The capability to use
  144. *
  145. * Test to see if the opener of the socket had when the socket was
  146. * created and the current process has the capability @cap in the user
  147. * namespace @user_ns.
  148. */
  149. bool sk_ns_capable(const struct sock *sk,
  150. struct user_namespace *user_ns, int cap)
  151. {
  152. return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
  153. ns_capable(user_ns, cap);
  154. }
  155. EXPORT_SYMBOL(sk_ns_capable);
  156. /**
  157. * sk_capable - Socket global capability test
  158. * @sk: Socket to use a capability on or through
  159. * @cap: The global capability to use
  160. *
  161. * Test to see if the opener of the socket had when the socket was
  162. * created and the current process has the capability @cap in all user
  163. * namespaces.
  164. */
  165. bool sk_capable(const struct sock *sk, int cap)
  166. {
  167. return sk_ns_capable(sk, &init_user_ns, cap);
  168. }
  169. EXPORT_SYMBOL(sk_capable);
  170. /**
  171. * sk_net_capable - Network namespace socket capability test
  172. * @sk: Socket to use a capability on or through
  173. * @cap: The capability to use
  174. *
  175. * Test to see if the opener of the socket had when the socket was created
  176. * and the current process has the capability @cap over the network namespace
  177. * the socket is a member of.
  178. */
  179. bool sk_net_capable(const struct sock *sk, int cap)
  180. {
  181. return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
  182. }
  183. EXPORT_SYMBOL(sk_net_capable);
  184. #ifdef CONFIG_MEMCG_KMEM
  185. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  186. {
  187. struct proto *proto;
  188. int ret = 0;
  189. mutex_lock(&proto_list_mutex);
  190. list_for_each_entry(proto, &proto_list, node) {
  191. if (proto->init_cgroup) {
  192. ret = proto->init_cgroup(memcg, ss);
  193. if (ret)
  194. goto out;
  195. }
  196. }
  197. mutex_unlock(&proto_list_mutex);
  198. return ret;
  199. out:
  200. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  201. if (proto->destroy_cgroup)
  202. proto->destroy_cgroup(memcg);
  203. mutex_unlock(&proto_list_mutex);
  204. return ret;
  205. }
  206. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  207. {
  208. struct proto *proto;
  209. mutex_lock(&proto_list_mutex);
  210. list_for_each_entry_reverse(proto, &proto_list, node)
  211. if (proto->destroy_cgroup)
  212. proto->destroy_cgroup(memcg);
  213. mutex_unlock(&proto_list_mutex);
  214. }
  215. #endif
  216. /*
  217. * Each address family might have different locking rules, so we have
  218. * one slock key per address family:
  219. */
  220. static struct lock_class_key af_family_keys[AF_MAX];
  221. static struct lock_class_key af_family_slock_keys[AF_MAX];
  222. #if defined(CONFIG_MEMCG_KMEM)
  223. struct static_key memcg_socket_limit_enabled;
  224. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  225. #endif
  226. /*
  227. * Make lock validator output more readable. (we pre-construct these
  228. * strings build-time, so that runtime initialization of socket
  229. * locks is fast):
  230. */
  231. static const char *const af_family_key_strings[AF_MAX+1] = {
  232. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  233. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  234. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  235. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  236. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  237. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  238. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  239. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  240. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  241. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  242. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  243. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  244. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  245. "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
  246. };
  247. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  248. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  249. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  250. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  251. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  252. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  253. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  254. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  255. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  256. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  257. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  258. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  259. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  260. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  261. "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
  262. };
  263. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  264. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  265. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  266. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  267. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  268. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  269. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  270. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  271. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  272. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  273. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  274. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  275. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  276. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  277. "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
  278. };
  279. /*
  280. * sk_callback_lock locking rules are per-address-family,
  281. * so split the lock classes by using a per-AF key:
  282. */
  283. static struct lock_class_key af_callback_keys[AF_MAX];
  284. /* Take into consideration the size of the struct sk_buff overhead in the
  285. * determination of these values, since that is non-constant across
  286. * platforms. This makes socket queueing behavior and performance
  287. * not depend upon such differences.
  288. */
  289. #define _SK_MEM_PACKETS 256
  290. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  291. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  292. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  293. /* Run time adjustable parameters. */
  294. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  295. EXPORT_SYMBOL(sysctl_wmem_max);
  296. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  297. EXPORT_SYMBOL(sysctl_rmem_max);
  298. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  299. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  300. /* Maximal space eaten by iovec or ancillary data plus some space */
  301. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  302. EXPORT_SYMBOL(sysctl_optmem_max);
  303. int sysctl_tstamp_allow_data __read_mostly = 1;
  304. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  305. EXPORT_SYMBOL_GPL(memalloc_socks);
  306. /**
  307. * sk_set_memalloc - sets %SOCK_MEMALLOC
  308. * @sk: socket to set it on
  309. *
  310. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  311. * It's the responsibility of the admin to adjust min_free_kbytes
  312. * to meet the requirements
  313. */
  314. void sk_set_memalloc(struct sock *sk)
  315. {
  316. sock_set_flag(sk, SOCK_MEMALLOC);
  317. sk->sk_allocation |= __GFP_MEMALLOC;
  318. static_key_slow_inc(&memalloc_socks);
  319. }
  320. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  321. void sk_clear_memalloc(struct sock *sk)
  322. {
  323. sock_reset_flag(sk, SOCK_MEMALLOC);
  324. sk->sk_allocation &= ~__GFP_MEMALLOC;
  325. static_key_slow_dec(&memalloc_socks);
  326. /*
  327. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  328. * progress of swapping. SOCK_MEMALLOC may be cleared while
  329. * it has rmem allocations due to the last swapfile being deactivated
  330. * but there is a risk that the socket is unusable due to exceeding
  331. * the rmem limits. Reclaim the reserves and obey rmem limits again.
  332. */
  333. sk_mem_reclaim(sk);
  334. }
  335. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  336. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  337. {
  338. int ret;
  339. unsigned long pflags = current->flags;
  340. /* these should have been dropped before queueing */
  341. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  342. current->flags |= PF_MEMALLOC;
  343. ret = sk->sk_backlog_rcv(sk, skb);
  344. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  345. return ret;
  346. }
  347. EXPORT_SYMBOL(__sk_backlog_rcv);
  348. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  349. {
  350. struct timeval tv;
  351. if (optlen < sizeof(tv))
  352. return -EINVAL;
  353. if (copy_from_user(&tv, optval, sizeof(tv)))
  354. return -EFAULT;
  355. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  356. return -EDOM;
  357. if (tv.tv_sec < 0) {
  358. static int warned __read_mostly;
  359. *timeo_p = 0;
  360. if (warned < 10 && net_ratelimit()) {
  361. warned++;
  362. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  363. __func__, current->comm, task_pid_nr(current));
  364. }
  365. return 0;
  366. }
  367. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  368. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  369. return 0;
  370. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  371. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  372. return 0;
  373. }
  374. static void sock_warn_obsolete_bsdism(const char *name)
  375. {
  376. static int warned;
  377. static char warncomm[TASK_COMM_LEN];
  378. if (strcmp(warncomm, current->comm) && warned < 5) {
  379. strcpy(warncomm, current->comm);
  380. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  381. warncomm, name);
  382. warned++;
  383. }
  384. }
  385. static bool sock_needs_netstamp(const struct sock *sk)
  386. {
  387. switch (sk->sk_family) {
  388. case AF_UNSPEC:
  389. case AF_UNIX:
  390. return false;
  391. default:
  392. return true;
  393. }
  394. }
  395. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  396. {
  397. if (sk->sk_flags & flags) {
  398. sk->sk_flags &= ~flags;
  399. if (sock_needs_netstamp(sk) &&
  400. !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  401. net_disable_timestamp();
  402. }
  403. }
  404. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  405. {
  406. int err;
  407. unsigned long flags;
  408. struct sk_buff_head *list = &sk->sk_receive_queue;
  409. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  410. atomic_inc(&sk->sk_drops);
  411. trace_sock_rcvqueue_full(sk, skb);
  412. return -ENOMEM;
  413. }
  414. err = sk_filter(sk, skb);
  415. if (err)
  416. return err;
  417. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  418. atomic_inc(&sk->sk_drops);
  419. return -ENOBUFS;
  420. }
  421. skb->dev = NULL;
  422. skb_set_owner_r(skb, sk);
  423. /* we escape from rcu protected region, make sure we dont leak
  424. * a norefcounted dst
  425. */
  426. skb_dst_force(skb);
  427. spin_lock_irqsave(&list->lock, flags);
  428. sock_skb_set_dropcount(sk, skb);
  429. __skb_queue_tail(list, skb);
  430. spin_unlock_irqrestore(&list->lock, flags);
  431. if (!sock_flag(sk, SOCK_DEAD))
  432. sk->sk_data_ready(sk);
  433. return 0;
  434. }
  435. EXPORT_SYMBOL(sock_queue_rcv_skb);
  436. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  437. {
  438. int rc = NET_RX_SUCCESS;
  439. if (sk_filter(sk, skb))
  440. goto discard_and_relse;
  441. skb->dev = NULL;
  442. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  443. atomic_inc(&sk->sk_drops);
  444. goto discard_and_relse;
  445. }
  446. if (nested)
  447. bh_lock_sock_nested(sk);
  448. else
  449. bh_lock_sock(sk);
  450. if (!sock_owned_by_user(sk)) {
  451. /*
  452. * trylock + unlock semantics:
  453. */
  454. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  455. rc = sk_backlog_rcv(sk, skb);
  456. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  457. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  458. bh_unlock_sock(sk);
  459. atomic_inc(&sk->sk_drops);
  460. goto discard_and_relse;
  461. }
  462. bh_unlock_sock(sk);
  463. out:
  464. sock_put(sk);
  465. return rc;
  466. discard_and_relse:
  467. kfree_skb(skb);
  468. goto out;
  469. }
  470. EXPORT_SYMBOL(sk_receive_skb);
  471. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  472. {
  473. struct dst_entry *dst = __sk_dst_get(sk);
  474. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  475. sk_tx_queue_clear(sk);
  476. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  477. dst_release(dst);
  478. return NULL;
  479. }
  480. return dst;
  481. }
  482. EXPORT_SYMBOL(__sk_dst_check);
  483. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  484. {
  485. struct dst_entry *dst = sk_dst_get(sk);
  486. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  487. sk_dst_reset(sk);
  488. dst_release(dst);
  489. return NULL;
  490. }
  491. return dst;
  492. }
  493. EXPORT_SYMBOL(sk_dst_check);
  494. static int sock_setbindtodevice(struct sock *sk, char __user *optval,
  495. int optlen)
  496. {
  497. int ret = -ENOPROTOOPT;
  498. #ifdef CONFIG_NETDEVICES
  499. struct net *net = sock_net(sk);
  500. char devname[IFNAMSIZ];
  501. int index;
  502. /* Sorry... */
  503. ret = -EPERM;
  504. if (!ns_capable(net->user_ns, CAP_NET_RAW))
  505. goto out;
  506. ret = -EINVAL;
  507. if (optlen < 0)
  508. goto out;
  509. /* Bind this socket to a particular device like "eth0",
  510. * as specified in the passed interface name. If the
  511. * name is "" or the option length is zero the socket
  512. * is not bound.
  513. */
  514. if (optlen > IFNAMSIZ - 1)
  515. optlen = IFNAMSIZ - 1;
  516. memset(devname, 0, sizeof(devname));
  517. ret = -EFAULT;
  518. if (copy_from_user(devname, optval, optlen))
  519. goto out;
  520. index = 0;
  521. if (devname[0] != '\0') {
  522. struct net_device *dev;
  523. rcu_read_lock();
  524. dev = dev_get_by_name_rcu(net, devname);
  525. if (dev)
  526. index = dev->ifindex;
  527. rcu_read_unlock();
  528. ret = -ENODEV;
  529. if (!dev)
  530. goto out;
  531. }
  532. lock_sock(sk);
  533. sk->sk_bound_dev_if = index;
  534. sk_dst_reset(sk);
  535. release_sock(sk);
  536. ret = 0;
  537. out:
  538. #endif
  539. return ret;
  540. }
  541. static int sock_getbindtodevice(struct sock *sk, char __user *optval,
  542. int __user *optlen, int len)
  543. {
  544. int ret = -ENOPROTOOPT;
  545. #ifdef CONFIG_NETDEVICES
  546. struct net *net = sock_net(sk);
  547. char devname[IFNAMSIZ];
  548. if (sk->sk_bound_dev_if == 0) {
  549. len = 0;
  550. goto zero;
  551. }
  552. ret = -EINVAL;
  553. if (len < IFNAMSIZ)
  554. goto out;
  555. ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
  556. if (ret)
  557. goto out;
  558. len = strlen(devname) + 1;
  559. ret = -EFAULT;
  560. if (copy_to_user(optval, devname, len))
  561. goto out;
  562. zero:
  563. ret = -EFAULT;
  564. if (put_user(len, optlen))
  565. goto out;
  566. ret = 0;
  567. out:
  568. #endif
  569. return ret;
  570. }
  571. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  572. {
  573. if (valbool)
  574. sock_set_flag(sk, bit);
  575. else
  576. sock_reset_flag(sk, bit);
  577. }
  578. bool sk_mc_loop(struct sock *sk)
  579. {
  580. if (dev_recursion_level())
  581. return false;
  582. if (!sk)
  583. return true;
  584. switch (sk->sk_family) {
  585. case AF_INET:
  586. return inet_sk(sk)->mc_loop;
  587. #if IS_ENABLED(CONFIG_IPV6)
  588. case AF_INET6:
  589. return inet6_sk(sk)->mc_loop;
  590. #endif
  591. }
  592. WARN_ON(1);
  593. return true;
  594. }
  595. EXPORT_SYMBOL(sk_mc_loop);
  596. /*
  597. * This is meant for all protocols to use and covers goings on
  598. * at the socket level. Everything here is generic.
  599. */
  600. int sock_setsockopt(struct socket *sock, int level, int optname,
  601. char __user *optval, unsigned int optlen)
  602. {
  603. struct sock *sk = sock->sk;
  604. int val;
  605. int valbool;
  606. struct linger ling;
  607. int ret = 0;
  608. /*
  609. * Options without arguments
  610. */
  611. if (optname == SO_BINDTODEVICE)
  612. return sock_setbindtodevice(sk, optval, optlen);
  613. if (optlen < sizeof(int))
  614. return -EINVAL;
  615. if (get_user(val, (int __user *)optval))
  616. return -EFAULT;
  617. valbool = val ? 1 : 0;
  618. lock_sock(sk);
  619. switch (optname) {
  620. case SO_DEBUG:
  621. if (val && !capable(CAP_NET_ADMIN))
  622. ret = -EACCES;
  623. else
  624. sock_valbool_flag(sk, SOCK_DBG, valbool);
  625. break;
  626. case SO_REUSEADDR:
  627. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  628. break;
  629. case SO_REUSEPORT:
  630. sk->sk_reuseport = valbool;
  631. break;
  632. case SO_TYPE:
  633. case SO_PROTOCOL:
  634. case SO_DOMAIN:
  635. case SO_ERROR:
  636. ret = -ENOPROTOOPT;
  637. break;
  638. case SO_DONTROUTE:
  639. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  640. break;
  641. case SO_BROADCAST:
  642. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  643. break;
  644. case SO_SNDBUF:
  645. /* Don't error on this BSD doesn't and if you think
  646. * about it this is right. Otherwise apps have to
  647. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  648. * are treated in BSD as hints
  649. */
  650. val = min_t(u32, val, sysctl_wmem_max);
  651. set_sndbuf:
  652. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  653. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  654. /* Wake up sending tasks if we upped the value. */
  655. sk->sk_write_space(sk);
  656. break;
  657. case SO_SNDBUFFORCE:
  658. if (!capable(CAP_NET_ADMIN)) {
  659. ret = -EPERM;
  660. break;
  661. }
  662. goto set_sndbuf;
  663. case SO_RCVBUF:
  664. /* Don't error on this BSD doesn't and if you think
  665. * about it this is right. Otherwise apps have to
  666. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  667. * are treated in BSD as hints
  668. */
  669. val = min_t(u32, val, sysctl_rmem_max);
  670. set_rcvbuf:
  671. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  672. /*
  673. * We double it on the way in to account for
  674. * "struct sk_buff" etc. overhead. Applications
  675. * assume that the SO_RCVBUF setting they make will
  676. * allow that much actual data to be received on that
  677. * socket.
  678. *
  679. * Applications are unaware that "struct sk_buff" and
  680. * other overheads allocate from the receive buffer
  681. * during socket buffer allocation.
  682. *
  683. * And after considering the possible alternatives,
  684. * returning the value we actually used in getsockopt
  685. * is the most desirable behavior.
  686. */
  687. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  688. break;
  689. case SO_RCVBUFFORCE:
  690. if (!capable(CAP_NET_ADMIN)) {
  691. ret = -EPERM;
  692. break;
  693. }
  694. goto set_rcvbuf;
  695. case SO_KEEPALIVE:
  696. #ifdef CONFIG_INET
  697. if (sk->sk_protocol == IPPROTO_TCP &&
  698. sk->sk_type == SOCK_STREAM)
  699. tcp_set_keepalive(sk, valbool);
  700. #endif
  701. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  702. break;
  703. case SO_OOBINLINE:
  704. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  705. break;
  706. case SO_NO_CHECK:
  707. sk->sk_no_check_tx = valbool;
  708. break;
  709. case SO_PRIORITY:
  710. if ((val >= 0 && val <= 6) ||
  711. ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  712. sk->sk_priority = val;
  713. else
  714. ret = -EPERM;
  715. break;
  716. case SO_LINGER:
  717. if (optlen < sizeof(ling)) {
  718. ret = -EINVAL; /* 1003.1g */
  719. break;
  720. }
  721. if (copy_from_user(&ling, optval, sizeof(ling))) {
  722. ret = -EFAULT;
  723. break;
  724. }
  725. if (!ling.l_onoff)
  726. sock_reset_flag(sk, SOCK_LINGER);
  727. else {
  728. #if (BITS_PER_LONG == 32)
  729. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  730. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  731. else
  732. #endif
  733. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  734. sock_set_flag(sk, SOCK_LINGER);
  735. }
  736. break;
  737. case SO_BSDCOMPAT:
  738. sock_warn_obsolete_bsdism("setsockopt");
  739. break;
  740. case SO_PASSCRED:
  741. if (valbool)
  742. set_bit(SOCK_PASSCRED, &sock->flags);
  743. else
  744. clear_bit(SOCK_PASSCRED, &sock->flags);
  745. break;
  746. case SO_TIMESTAMP:
  747. case SO_TIMESTAMPNS:
  748. if (valbool) {
  749. if (optname == SO_TIMESTAMP)
  750. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  751. else
  752. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  753. sock_set_flag(sk, SOCK_RCVTSTAMP);
  754. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  755. } else {
  756. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  757. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  758. }
  759. break;
  760. case SO_TIMESTAMPING:
  761. if (val & ~SOF_TIMESTAMPING_MASK) {
  762. ret = -EINVAL;
  763. break;
  764. }
  765. if (val & SOF_TIMESTAMPING_OPT_ID &&
  766. !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
  767. if (sk->sk_protocol == IPPROTO_TCP &&
  768. sk->sk_type == SOCK_STREAM) {
  769. if (sk->sk_state != TCP_ESTABLISHED) {
  770. ret = -EINVAL;
  771. break;
  772. }
  773. sk->sk_tskey = tcp_sk(sk)->snd_una;
  774. } else {
  775. sk->sk_tskey = 0;
  776. }
  777. }
  778. sk->sk_tsflags = val;
  779. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  780. sock_enable_timestamp(sk,
  781. SOCK_TIMESTAMPING_RX_SOFTWARE);
  782. else
  783. sock_disable_timestamp(sk,
  784. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  785. break;
  786. case SO_RCVLOWAT:
  787. if (val < 0)
  788. val = INT_MAX;
  789. sk->sk_rcvlowat = val ? : 1;
  790. break;
  791. case SO_RCVTIMEO:
  792. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  793. break;
  794. case SO_SNDTIMEO:
  795. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  796. break;
  797. case SO_ATTACH_FILTER:
  798. ret = -EINVAL;
  799. if (optlen == sizeof(struct sock_fprog)) {
  800. struct sock_fprog fprog;
  801. ret = -EFAULT;
  802. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  803. break;
  804. ret = sk_attach_filter(&fprog, sk);
  805. }
  806. break;
  807. case SO_ATTACH_BPF:
  808. ret = -EINVAL;
  809. if (optlen == sizeof(u32)) {
  810. u32 ufd;
  811. ret = -EFAULT;
  812. if (copy_from_user(&ufd, optval, sizeof(ufd)))
  813. break;
  814. ret = sk_attach_bpf(ufd, sk);
  815. }
  816. break;
  817. case SO_DETACH_FILTER:
  818. ret = sk_detach_filter(sk);
  819. break;
  820. case SO_LOCK_FILTER:
  821. if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
  822. ret = -EPERM;
  823. else
  824. sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
  825. break;
  826. case SO_PASSSEC:
  827. if (valbool)
  828. set_bit(SOCK_PASSSEC, &sock->flags);
  829. else
  830. clear_bit(SOCK_PASSSEC, &sock->flags);
  831. break;
  832. case SO_MARK:
  833. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  834. ret = -EPERM;
  835. else
  836. sk->sk_mark = val;
  837. break;
  838. case SO_RXQ_OVFL:
  839. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  840. break;
  841. case SO_WIFI_STATUS:
  842. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  843. break;
  844. case SO_PEEK_OFF:
  845. if (sock->ops->set_peek_off)
  846. ret = sock->ops->set_peek_off(sk, val);
  847. else
  848. ret = -EOPNOTSUPP;
  849. break;
  850. case SO_NOFCS:
  851. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  852. break;
  853. case SO_SELECT_ERR_QUEUE:
  854. sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
  855. break;
  856. #ifdef CONFIG_NET_RX_BUSY_POLL
  857. case SO_BUSY_POLL:
  858. /* allow unprivileged users to decrease the value */
  859. if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
  860. ret = -EPERM;
  861. else {
  862. if (val < 0)
  863. ret = -EINVAL;
  864. else
  865. sk->sk_ll_usec = val;
  866. }
  867. break;
  868. #endif
  869. case SO_MAX_PACING_RATE:
  870. sk->sk_max_pacing_rate = val;
  871. sk->sk_pacing_rate = min(sk->sk_pacing_rate,
  872. sk->sk_max_pacing_rate);
  873. break;
  874. case SO_INCOMING_CPU:
  875. sk->sk_incoming_cpu = val;
  876. break;
  877. default:
  878. ret = -ENOPROTOOPT;
  879. break;
  880. }
  881. release_sock(sk);
  882. return ret;
  883. }
  884. EXPORT_SYMBOL(sock_setsockopt);
  885. static void cred_to_ucred(struct pid *pid, const struct cred *cred,
  886. struct ucred *ucred)
  887. {
  888. ucred->pid = pid_vnr(pid);
  889. ucred->uid = ucred->gid = -1;
  890. if (cred) {
  891. struct user_namespace *current_ns = current_user_ns();
  892. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  893. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  894. }
  895. }
  896. int sock_getsockopt(struct socket *sock, int level, int optname,
  897. char __user *optval, int __user *optlen)
  898. {
  899. struct sock *sk = sock->sk;
  900. union {
  901. int val;
  902. struct linger ling;
  903. struct timeval tm;
  904. } v;
  905. int lv = sizeof(int);
  906. int len;
  907. if (get_user(len, optlen))
  908. return -EFAULT;
  909. if (len < 0)
  910. return -EINVAL;
  911. memset(&v, 0, sizeof(v));
  912. switch (optname) {
  913. case SO_DEBUG:
  914. v.val = sock_flag(sk, SOCK_DBG);
  915. break;
  916. case SO_DONTROUTE:
  917. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  918. break;
  919. case SO_BROADCAST:
  920. v.val = sock_flag(sk, SOCK_BROADCAST);
  921. break;
  922. case SO_SNDBUF:
  923. v.val = sk->sk_sndbuf;
  924. break;
  925. case SO_RCVBUF:
  926. v.val = sk->sk_rcvbuf;
  927. break;
  928. case SO_REUSEADDR:
  929. v.val = sk->sk_reuse;
  930. break;
  931. case SO_REUSEPORT:
  932. v.val = sk->sk_reuseport;
  933. break;
  934. case SO_KEEPALIVE:
  935. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  936. break;
  937. case SO_TYPE:
  938. v.val = sk->sk_type;
  939. break;
  940. case SO_PROTOCOL:
  941. v.val = sk->sk_protocol;
  942. break;
  943. case SO_DOMAIN:
  944. v.val = sk->sk_family;
  945. break;
  946. case SO_ERROR:
  947. v.val = -sock_error(sk);
  948. if (v.val == 0)
  949. v.val = xchg(&sk->sk_err_soft, 0);
  950. break;
  951. case SO_OOBINLINE:
  952. v.val = sock_flag(sk, SOCK_URGINLINE);
  953. break;
  954. case SO_NO_CHECK:
  955. v.val = sk->sk_no_check_tx;
  956. break;
  957. case SO_PRIORITY:
  958. v.val = sk->sk_priority;
  959. break;
  960. case SO_LINGER:
  961. lv = sizeof(v.ling);
  962. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  963. v.ling.l_linger = sk->sk_lingertime / HZ;
  964. break;
  965. case SO_BSDCOMPAT:
  966. sock_warn_obsolete_bsdism("getsockopt");
  967. break;
  968. case SO_TIMESTAMP:
  969. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  970. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  971. break;
  972. case SO_TIMESTAMPNS:
  973. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  974. break;
  975. case SO_TIMESTAMPING:
  976. v.val = sk->sk_tsflags;
  977. break;
  978. case SO_RCVTIMEO:
  979. lv = sizeof(struct timeval);
  980. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  981. v.tm.tv_sec = 0;
  982. v.tm.tv_usec = 0;
  983. } else {
  984. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  985. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  986. }
  987. break;
  988. case SO_SNDTIMEO:
  989. lv = sizeof(struct timeval);
  990. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  991. v.tm.tv_sec = 0;
  992. v.tm.tv_usec = 0;
  993. } else {
  994. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  995. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  996. }
  997. break;
  998. case SO_RCVLOWAT:
  999. v.val = sk->sk_rcvlowat;
  1000. break;
  1001. case SO_SNDLOWAT:
  1002. v.val = 1;
  1003. break;
  1004. case SO_PASSCRED:
  1005. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  1006. break;
  1007. case SO_PEERCRED:
  1008. {
  1009. struct ucred peercred;
  1010. if (len > sizeof(peercred))
  1011. len = sizeof(peercred);
  1012. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  1013. if (copy_to_user(optval, &peercred, len))
  1014. return -EFAULT;
  1015. goto lenout;
  1016. }
  1017. case SO_PEERNAME:
  1018. {
  1019. char address[128];
  1020. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  1021. return -ENOTCONN;
  1022. if (lv < len)
  1023. return -EINVAL;
  1024. if (copy_to_user(optval, address, len))
  1025. return -EFAULT;
  1026. goto lenout;
  1027. }
  1028. /* Dubious BSD thing... Probably nobody even uses it, but
  1029. * the UNIX standard wants it for whatever reason... -DaveM
  1030. */
  1031. case SO_ACCEPTCONN:
  1032. v.val = sk->sk_state == TCP_LISTEN;
  1033. break;
  1034. case SO_PASSSEC:
  1035. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  1036. break;
  1037. case SO_PEERSEC:
  1038. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  1039. case SO_MARK:
  1040. v.val = sk->sk_mark;
  1041. break;
  1042. case SO_RXQ_OVFL:
  1043. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  1044. break;
  1045. case SO_WIFI_STATUS:
  1046. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  1047. break;
  1048. case SO_PEEK_OFF:
  1049. if (!sock->ops->set_peek_off)
  1050. return -EOPNOTSUPP;
  1051. v.val = sk->sk_peek_off;
  1052. break;
  1053. case SO_NOFCS:
  1054. v.val = sock_flag(sk, SOCK_NOFCS);
  1055. break;
  1056. case SO_BINDTODEVICE:
  1057. return sock_getbindtodevice(sk, optval, optlen, len);
  1058. case SO_GET_FILTER:
  1059. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  1060. if (len < 0)
  1061. return len;
  1062. goto lenout;
  1063. case SO_LOCK_FILTER:
  1064. v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
  1065. break;
  1066. case SO_BPF_EXTENSIONS:
  1067. v.val = bpf_tell_extensions();
  1068. break;
  1069. case SO_SELECT_ERR_QUEUE:
  1070. v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
  1071. break;
  1072. #ifdef CONFIG_NET_RX_BUSY_POLL
  1073. case SO_BUSY_POLL:
  1074. v.val = sk->sk_ll_usec;
  1075. break;
  1076. #endif
  1077. case SO_MAX_PACING_RATE:
  1078. v.val = sk->sk_max_pacing_rate;
  1079. break;
  1080. case SO_INCOMING_CPU:
  1081. v.val = sk->sk_incoming_cpu;
  1082. break;
  1083. default:
  1084. /* We implement the SO_SNDLOWAT etc to not be settable
  1085. * (1003.1g 7).
  1086. */
  1087. return -ENOPROTOOPT;
  1088. }
  1089. if (len > lv)
  1090. len = lv;
  1091. if (copy_to_user(optval, &v, len))
  1092. return -EFAULT;
  1093. lenout:
  1094. if (put_user(len, optlen))
  1095. return -EFAULT;
  1096. return 0;
  1097. }
  1098. /*
  1099. * Initialize an sk_lock.
  1100. *
  1101. * (We also register the sk_lock with the lock validator.)
  1102. */
  1103. static inline void sock_lock_init(struct sock *sk)
  1104. {
  1105. sock_lock_init_class_and_name(sk,
  1106. af_family_slock_key_strings[sk->sk_family],
  1107. af_family_slock_keys + sk->sk_family,
  1108. af_family_key_strings[sk->sk_family],
  1109. af_family_keys + sk->sk_family);
  1110. }
  1111. /*
  1112. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  1113. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  1114. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  1115. */
  1116. static void sock_copy(struct sock *nsk, const struct sock *osk)
  1117. {
  1118. #ifdef CONFIG_SECURITY_NETWORK
  1119. void *sptr = nsk->sk_security;
  1120. #endif
  1121. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  1122. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  1123. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  1124. #ifdef CONFIG_SECURITY_NETWORK
  1125. nsk->sk_security = sptr;
  1126. security_sk_clone(osk, nsk);
  1127. #endif
  1128. }
  1129. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  1130. {
  1131. unsigned long nulls1, nulls2;
  1132. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  1133. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  1134. if (nulls1 > nulls2)
  1135. swap(nulls1, nulls2);
  1136. if (nulls1 != 0)
  1137. memset((char *)sk, 0, nulls1);
  1138. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1139. nulls2 - nulls1 - sizeof(void *));
  1140. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1141. size - nulls2 - sizeof(void *));
  1142. }
  1143. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1144. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1145. int family)
  1146. {
  1147. struct sock *sk;
  1148. struct kmem_cache *slab;
  1149. slab = prot->slab;
  1150. if (slab != NULL) {
  1151. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1152. if (!sk)
  1153. return sk;
  1154. if (priority & __GFP_ZERO) {
  1155. if (prot->clear_sk)
  1156. prot->clear_sk(sk, prot->obj_size);
  1157. else
  1158. sk_prot_clear_nulls(sk, prot->obj_size);
  1159. }
  1160. } else
  1161. sk = kmalloc(prot->obj_size, priority);
  1162. if (sk != NULL) {
  1163. kmemcheck_annotate_bitfield(sk, flags);
  1164. if (security_sk_alloc(sk, family, priority))
  1165. goto out_free;
  1166. if (!try_module_get(prot->owner))
  1167. goto out_free_sec;
  1168. sk_tx_queue_clear(sk);
  1169. }
  1170. return sk;
  1171. out_free_sec:
  1172. security_sk_free(sk);
  1173. out_free:
  1174. if (slab != NULL)
  1175. kmem_cache_free(slab, sk);
  1176. else
  1177. kfree(sk);
  1178. return NULL;
  1179. }
  1180. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1181. {
  1182. struct kmem_cache *slab;
  1183. struct module *owner;
  1184. owner = prot->owner;
  1185. slab = prot->slab;
  1186. security_sk_free(sk);
  1187. if (slab != NULL)
  1188. kmem_cache_free(slab, sk);
  1189. else
  1190. kfree(sk);
  1191. module_put(owner);
  1192. }
  1193. #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
  1194. void sock_update_netprioidx(struct sock *sk)
  1195. {
  1196. if (in_interrupt())
  1197. return;
  1198. sk->sk_cgrp_prioidx = task_netprioidx(current);
  1199. }
  1200. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1201. #endif
  1202. /**
  1203. * sk_alloc - All socket objects are allocated here
  1204. * @net: the applicable net namespace
  1205. * @family: protocol family
  1206. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1207. * @prot: struct proto associated with this new sock instance
  1208. * @kern: is this to be a kernel socket?
  1209. */
  1210. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1211. struct proto *prot, int kern)
  1212. {
  1213. struct sock *sk;
  1214. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1215. if (sk) {
  1216. sk->sk_family = family;
  1217. /*
  1218. * See comment in struct sock definition to understand
  1219. * why we need sk_prot_creator -acme
  1220. */
  1221. sk->sk_prot = sk->sk_prot_creator = prot;
  1222. sock_lock_init(sk);
  1223. sk->sk_net_refcnt = kern ? 0 : 1;
  1224. if (likely(sk->sk_net_refcnt))
  1225. get_net(net);
  1226. sock_net_set(sk, net);
  1227. atomic_set(&sk->sk_wmem_alloc, 1);
  1228. sock_update_classid(sk);
  1229. sock_update_netprioidx(sk);
  1230. }
  1231. return sk;
  1232. }
  1233. EXPORT_SYMBOL(sk_alloc);
  1234. void sk_destruct(struct sock *sk)
  1235. {
  1236. struct sk_filter *filter;
  1237. if (sk->sk_destruct)
  1238. sk->sk_destruct(sk);
  1239. filter = rcu_dereference_check(sk->sk_filter,
  1240. atomic_read(&sk->sk_wmem_alloc) == 0);
  1241. if (filter) {
  1242. sk_filter_uncharge(sk, filter);
  1243. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1244. }
  1245. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1246. if (atomic_read(&sk->sk_omem_alloc))
  1247. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1248. __func__, atomic_read(&sk->sk_omem_alloc));
  1249. if (sk->sk_peer_cred)
  1250. put_cred(sk->sk_peer_cred);
  1251. put_pid(sk->sk_peer_pid);
  1252. if (likely(sk->sk_net_refcnt))
  1253. put_net(sock_net(sk));
  1254. sk_prot_free(sk->sk_prot_creator, sk);
  1255. }
  1256. static void __sk_free(struct sock *sk)
  1257. {
  1258. if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
  1259. sock_diag_broadcast_destroy(sk);
  1260. else
  1261. sk_destruct(sk);
  1262. }
  1263. void sk_free(struct sock *sk)
  1264. {
  1265. /*
  1266. * We subtract one from sk_wmem_alloc and can know if
  1267. * some packets are still in some tx queue.
  1268. * If not null, sock_wfree() will call __sk_free(sk) later
  1269. */
  1270. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1271. __sk_free(sk);
  1272. }
  1273. EXPORT_SYMBOL(sk_free);
  1274. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1275. {
  1276. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1277. sock_update_memcg(newsk);
  1278. }
  1279. /**
  1280. * sk_clone_lock - clone a socket, and lock its clone
  1281. * @sk: the socket to clone
  1282. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1283. *
  1284. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1285. */
  1286. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1287. {
  1288. struct sock *newsk;
  1289. bool is_charged = true;
  1290. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1291. if (newsk != NULL) {
  1292. struct sk_filter *filter;
  1293. sock_copy(newsk, sk);
  1294. /* SANITY */
  1295. if (likely(newsk->sk_net_refcnt))
  1296. get_net(sock_net(newsk));
  1297. sk_node_init(&newsk->sk_node);
  1298. sock_lock_init(newsk);
  1299. bh_lock_sock(newsk);
  1300. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1301. newsk->sk_backlog.len = 0;
  1302. atomic_set(&newsk->sk_rmem_alloc, 0);
  1303. /*
  1304. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1305. */
  1306. atomic_set(&newsk->sk_wmem_alloc, 1);
  1307. atomic_set(&newsk->sk_omem_alloc, 0);
  1308. skb_queue_head_init(&newsk->sk_receive_queue);
  1309. skb_queue_head_init(&newsk->sk_write_queue);
  1310. rwlock_init(&newsk->sk_callback_lock);
  1311. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1312. af_callback_keys + newsk->sk_family,
  1313. af_family_clock_key_strings[newsk->sk_family]);
  1314. newsk->sk_dst_cache = NULL;
  1315. newsk->sk_wmem_queued = 0;
  1316. newsk->sk_forward_alloc = 0;
  1317. newsk->sk_send_head = NULL;
  1318. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1319. sock_reset_flag(newsk, SOCK_DONE);
  1320. skb_queue_head_init(&newsk->sk_error_queue);
  1321. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1322. if (filter != NULL)
  1323. /* though it's an empty new sock, the charging may fail
  1324. * if sysctl_optmem_max was changed between creation of
  1325. * original socket and cloning
  1326. */
  1327. is_charged = sk_filter_charge(newsk, filter);
  1328. if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
  1329. /* It is still raw copy of parent, so invalidate
  1330. * destructor and make plain sk_free() */
  1331. newsk->sk_destruct = NULL;
  1332. bh_unlock_sock(newsk);
  1333. sk_free(newsk);
  1334. newsk = NULL;
  1335. goto out;
  1336. }
  1337. newsk->sk_err = 0;
  1338. newsk->sk_priority = 0;
  1339. newsk->sk_incoming_cpu = raw_smp_processor_id();
  1340. atomic64_set(&newsk->sk_cookie, 0);
  1341. /*
  1342. * Before updating sk_refcnt, we must commit prior changes to memory
  1343. * (Documentation/RCU/rculist_nulls.txt for details)
  1344. */
  1345. smp_wmb();
  1346. atomic_set(&newsk->sk_refcnt, 2);
  1347. /*
  1348. * Increment the counter in the same struct proto as the master
  1349. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1350. * is the same as sk->sk_prot->socks, as this field was copied
  1351. * with memcpy).
  1352. *
  1353. * This _changes_ the previous behaviour, where
  1354. * tcp_create_openreq_child always was incrementing the
  1355. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1356. * to be taken into account in all callers. -acme
  1357. */
  1358. sk_refcnt_debug_inc(newsk);
  1359. sk_set_socket(newsk, NULL);
  1360. newsk->sk_wq = NULL;
  1361. sk_update_clone(sk, newsk);
  1362. if (newsk->sk_prot->sockets_allocated)
  1363. sk_sockets_allocated_inc(newsk);
  1364. if (sock_needs_netstamp(sk) &&
  1365. newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1366. net_enable_timestamp();
  1367. }
  1368. out:
  1369. return newsk;
  1370. }
  1371. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1372. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1373. {
  1374. u32 max_segs = 1;
  1375. sk_dst_set(sk, dst);
  1376. sk->sk_route_caps = dst->dev->features;
  1377. if (sk->sk_route_caps & NETIF_F_GSO)
  1378. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1379. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1380. if (sk_can_gso(sk)) {
  1381. if (dst->header_len) {
  1382. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1383. } else {
  1384. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1385. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1386. max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
  1387. }
  1388. }
  1389. sk->sk_gso_max_segs = max_segs;
  1390. }
  1391. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1392. /*
  1393. * Simple resource managers for sockets.
  1394. */
  1395. /*
  1396. * Write buffer destructor automatically called from kfree_skb.
  1397. */
  1398. void sock_wfree(struct sk_buff *skb)
  1399. {
  1400. struct sock *sk = skb->sk;
  1401. unsigned int len = skb->truesize;
  1402. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1403. /*
  1404. * Keep a reference on sk_wmem_alloc, this will be released
  1405. * after sk_write_space() call
  1406. */
  1407. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1408. sk->sk_write_space(sk);
  1409. len = 1;
  1410. }
  1411. /*
  1412. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1413. * could not do because of in-flight packets
  1414. */
  1415. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1416. __sk_free(sk);
  1417. }
  1418. EXPORT_SYMBOL(sock_wfree);
  1419. void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
  1420. {
  1421. skb_orphan(skb);
  1422. skb->sk = sk;
  1423. #ifdef CONFIG_INET
  1424. if (unlikely(!sk_fullsock(sk))) {
  1425. skb->destructor = sock_edemux;
  1426. sock_hold(sk);
  1427. return;
  1428. }
  1429. #endif
  1430. skb->destructor = sock_wfree;
  1431. skb_set_hash_from_sk(skb, sk);
  1432. /*
  1433. * We used to take a refcount on sk, but following operation
  1434. * is enough to guarantee sk_free() wont free this sock until
  1435. * all in-flight packets are completed
  1436. */
  1437. atomic_add(skb->truesize, &sk->sk_wmem_alloc);
  1438. }
  1439. EXPORT_SYMBOL(skb_set_owner_w);
  1440. void skb_orphan_partial(struct sk_buff *skb)
  1441. {
  1442. /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
  1443. * so we do not completely orphan skb, but transfert all
  1444. * accounted bytes but one, to avoid unexpected reorders.
  1445. */
  1446. if (skb->destructor == sock_wfree
  1447. #ifdef CONFIG_INET
  1448. || skb->destructor == tcp_wfree
  1449. #endif
  1450. ) {
  1451. atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
  1452. skb->truesize = 1;
  1453. } else {
  1454. skb_orphan(skb);
  1455. }
  1456. }
  1457. EXPORT_SYMBOL(skb_orphan_partial);
  1458. /*
  1459. * Read buffer destructor automatically called from kfree_skb.
  1460. */
  1461. void sock_rfree(struct sk_buff *skb)
  1462. {
  1463. struct sock *sk = skb->sk;
  1464. unsigned int len = skb->truesize;
  1465. atomic_sub(len, &sk->sk_rmem_alloc);
  1466. sk_mem_uncharge(sk, len);
  1467. }
  1468. EXPORT_SYMBOL(sock_rfree);
  1469. /*
  1470. * Buffer destructor for skbs that are not used directly in read or write
  1471. * path, e.g. for error handler skbs. Automatically called from kfree_skb.
  1472. */
  1473. void sock_efree(struct sk_buff *skb)
  1474. {
  1475. sock_put(skb->sk);
  1476. }
  1477. EXPORT_SYMBOL(sock_efree);
  1478. kuid_t sock_i_uid(struct sock *sk)
  1479. {
  1480. kuid_t uid;
  1481. read_lock_bh(&sk->sk_callback_lock);
  1482. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1483. read_unlock_bh(&sk->sk_callback_lock);
  1484. return uid;
  1485. }
  1486. EXPORT_SYMBOL(sock_i_uid);
  1487. unsigned long sock_i_ino(struct sock *sk)
  1488. {
  1489. unsigned long ino;
  1490. read_lock_bh(&sk->sk_callback_lock);
  1491. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1492. read_unlock_bh(&sk->sk_callback_lock);
  1493. return ino;
  1494. }
  1495. EXPORT_SYMBOL(sock_i_ino);
  1496. /*
  1497. * Allocate a skb from the socket's send buffer.
  1498. */
  1499. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1500. gfp_t priority)
  1501. {
  1502. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1503. struct sk_buff *skb = alloc_skb(size, priority);
  1504. if (skb) {
  1505. skb_set_owner_w(skb, sk);
  1506. return skb;
  1507. }
  1508. }
  1509. return NULL;
  1510. }
  1511. EXPORT_SYMBOL(sock_wmalloc);
  1512. /*
  1513. * Allocate a memory block from the socket's option memory buffer.
  1514. */
  1515. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1516. {
  1517. if ((unsigned int)size <= sysctl_optmem_max &&
  1518. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1519. void *mem;
  1520. /* First do the add, to avoid the race if kmalloc
  1521. * might sleep.
  1522. */
  1523. atomic_add(size, &sk->sk_omem_alloc);
  1524. mem = kmalloc(size, priority);
  1525. if (mem)
  1526. return mem;
  1527. atomic_sub(size, &sk->sk_omem_alloc);
  1528. }
  1529. return NULL;
  1530. }
  1531. EXPORT_SYMBOL(sock_kmalloc);
  1532. /* Free an option memory block. Note, we actually want the inline
  1533. * here as this allows gcc to detect the nullify and fold away the
  1534. * condition entirely.
  1535. */
  1536. static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
  1537. const bool nullify)
  1538. {
  1539. if (WARN_ON_ONCE(!mem))
  1540. return;
  1541. if (nullify)
  1542. kzfree(mem);
  1543. else
  1544. kfree(mem);
  1545. atomic_sub(size, &sk->sk_omem_alloc);
  1546. }
  1547. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1548. {
  1549. __sock_kfree_s(sk, mem, size, false);
  1550. }
  1551. EXPORT_SYMBOL(sock_kfree_s);
  1552. void sock_kzfree_s(struct sock *sk, void *mem, int size)
  1553. {
  1554. __sock_kfree_s(sk, mem, size, true);
  1555. }
  1556. EXPORT_SYMBOL(sock_kzfree_s);
  1557. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1558. I think, these locks should be removed for datagram sockets.
  1559. */
  1560. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1561. {
  1562. DEFINE_WAIT(wait);
  1563. sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1564. for (;;) {
  1565. if (!timeo)
  1566. break;
  1567. if (signal_pending(current))
  1568. break;
  1569. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1570. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1571. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1572. break;
  1573. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1574. break;
  1575. if (sk->sk_err)
  1576. break;
  1577. timeo = schedule_timeout(timeo);
  1578. }
  1579. finish_wait(sk_sleep(sk), &wait);
  1580. return timeo;
  1581. }
  1582. /*
  1583. * Generic send/receive buffer handlers
  1584. */
  1585. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1586. unsigned long data_len, int noblock,
  1587. int *errcode, int max_page_order)
  1588. {
  1589. struct sk_buff *skb;
  1590. long timeo;
  1591. int err;
  1592. timeo = sock_sndtimeo(sk, noblock);
  1593. for (;;) {
  1594. err = sock_error(sk);
  1595. if (err != 0)
  1596. goto failure;
  1597. err = -EPIPE;
  1598. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1599. goto failure;
  1600. if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
  1601. break;
  1602. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1603. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1604. err = -EAGAIN;
  1605. if (!timeo)
  1606. goto failure;
  1607. if (signal_pending(current))
  1608. goto interrupted;
  1609. timeo = sock_wait_for_wmem(sk, timeo);
  1610. }
  1611. skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
  1612. errcode, sk->sk_allocation);
  1613. if (skb)
  1614. skb_set_owner_w(skb, sk);
  1615. return skb;
  1616. interrupted:
  1617. err = sock_intr_errno(timeo);
  1618. failure:
  1619. *errcode = err;
  1620. return NULL;
  1621. }
  1622. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1623. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1624. int noblock, int *errcode)
  1625. {
  1626. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
  1627. }
  1628. EXPORT_SYMBOL(sock_alloc_send_skb);
  1629. int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
  1630. struct sockcm_cookie *sockc)
  1631. {
  1632. struct cmsghdr *cmsg;
  1633. for_each_cmsghdr(cmsg, msg) {
  1634. if (!CMSG_OK(msg, cmsg))
  1635. return -EINVAL;
  1636. if (cmsg->cmsg_level != SOL_SOCKET)
  1637. continue;
  1638. switch (cmsg->cmsg_type) {
  1639. case SO_MARK:
  1640. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  1641. return -EPERM;
  1642. if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
  1643. return -EINVAL;
  1644. sockc->mark = *(u32 *)CMSG_DATA(cmsg);
  1645. break;
  1646. default:
  1647. return -EINVAL;
  1648. }
  1649. }
  1650. return 0;
  1651. }
  1652. EXPORT_SYMBOL(sock_cmsg_send);
  1653. /* On 32bit arches, an skb frag is limited to 2^15 */
  1654. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1655. /**
  1656. * skb_page_frag_refill - check that a page_frag contains enough room
  1657. * @sz: minimum size of the fragment we want to get
  1658. * @pfrag: pointer to page_frag
  1659. * @gfp: priority for memory allocation
  1660. *
  1661. * Note: While this allocator tries to use high order pages, there is
  1662. * no guarantee that allocations succeed. Therefore, @sz MUST be
  1663. * less or equal than PAGE_SIZE.
  1664. */
  1665. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
  1666. {
  1667. if (pfrag->page) {
  1668. if (atomic_read(&pfrag->page->_count) == 1) {
  1669. pfrag->offset = 0;
  1670. return true;
  1671. }
  1672. if (pfrag->offset + sz <= pfrag->size)
  1673. return true;
  1674. put_page(pfrag->page);
  1675. }
  1676. pfrag->offset = 0;
  1677. if (SKB_FRAG_PAGE_ORDER) {
  1678. /* Avoid direct reclaim but allow kswapd to wake */
  1679. pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
  1680. __GFP_COMP | __GFP_NOWARN |
  1681. __GFP_NORETRY,
  1682. SKB_FRAG_PAGE_ORDER);
  1683. if (likely(pfrag->page)) {
  1684. pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
  1685. return true;
  1686. }
  1687. }
  1688. pfrag->page = alloc_page(gfp);
  1689. if (likely(pfrag->page)) {
  1690. pfrag->size = PAGE_SIZE;
  1691. return true;
  1692. }
  1693. return false;
  1694. }
  1695. EXPORT_SYMBOL(skb_page_frag_refill);
  1696. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1697. {
  1698. if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
  1699. return true;
  1700. sk_enter_memory_pressure(sk);
  1701. sk_stream_moderate_sndbuf(sk);
  1702. return false;
  1703. }
  1704. EXPORT_SYMBOL(sk_page_frag_refill);
  1705. static void __lock_sock(struct sock *sk)
  1706. __releases(&sk->sk_lock.slock)
  1707. __acquires(&sk->sk_lock.slock)
  1708. {
  1709. DEFINE_WAIT(wait);
  1710. for (;;) {
  1711. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1712. TASK_UNINTERRUPTIBLE);
  1713. spin_unlock_bh(&sk->sk_lock.slock);
  1714. schedule();
  1715. spin_lock_bh(&sk->sk_lock.slock);
  1716. if (!sock_owned_by_user(sk))
  1717. break;
  1718. }
  1719. finish_wait(&sk->sk_lock.wq, &wait);
  1720. }
  1721. static void __release_sock(struct sock *sk)
  1722. __releases(&sk->sk_lock.slock)
  1723. __acquires(&sk->sk_lock.slock)
  1724. {
  1725. struct sk_buff *skb = sk->sk_backlog.head;
  1726. do {
  1727. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1728. bh_unlock_sock(sk);
  1729. do {
  1730. struct sk_buff *next = skb->next;
  1731. prefetch(next);
  1732. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1733. skb->next = NULL;
  1734. sk_backlog_rcv(sk, skb);
  1735. /*
  1736. * We are in process context here with softirqs
  1737. * disabled, use cond_resched_softirq() to preempt.
  1738. * This is safe to do because we've taken the backlog
  1739. * queue private:
  1740. */
  1741. cond_resched_softirq();
  1742. skb = next;
  1743. } while (skb != NULL);
  1744. bh_lock_sock(sk);
  1745. } while ((skb = sk->sk_backlog.head) != NULL);
  1746. /*
  1747. * Doing the zeroing here guarantee we can not loop forever
  1748. * while a wild producer attempts to flood us.
  1749. */
  1750. sk->sk_backlog.len = 0;
  1751. }
  1752. /**
  1753. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1754. * @sk: sock to wait on
  1755. * @timeo: for how long
  1756. * @skb: last skb seen on sk_receive_queue
  1757. *
  1758. * Now socket state including sk->sk_err is changed only under lock,
  1759. * hence we may omit checks after joining wait queue.
  1760. * We check receive queue before schedule() only as optimization;
  1761. * it is very likely that release_sock() added new data.
  1762. */
  1763. int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
  1764. {
  1765. int rc;
  1766. DEFINE_WAIT(wait);
  1767. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1768. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  1769. rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
  1770. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  1771. finish_wait(sk_sleep(sk), &wait);
  1772. return rc;
  1773. }
  1774. EXPORT_SYMBOL(sk_wait_data);
  1775. /**
  1776. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1777. * @sk: socket
  1778. * @size: memory size to allocate
  1779. * @kind: allocation type
  1780. *
  1781. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1782. * rmem allocation. This function assumes that protocols which have
  1783. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1784. */
  1785. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1786. {
  1787. struct proto *prot = sk->sk_prot;
  1788. int amt = sk_mem_pages(size);
  1789. long allocated;
  1790. int parent_status = UNDER_LIMIT;
  1791. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1792. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1793. /* Under limit. */
  1794. if (parent_status == UNDER_LIMIT &&
  1795. allocated <= sk_prot_mem_limits(sk, 0)) {
  1796. sk_leave_memory_pressure(sk);
  1797. return 1;
  1798. }
  1799. /* Under pressure. (we or our parents) */
  1800. if ((parent_status > SOFT_LIMIT) ||
  1801. allocated > sk_prot_mem_limits(sk, 1))
  1802. sk_enter_memory_pressure(sk);
  1803. /* Over hard limit (we or our parents) */
  1804. if ((parent_status == OVER_LIMIT) ||
  1805. (allocated > sk_prot_mem_limits(sk, 2)))
  1806. goto suppress_allocation;
  1807. /* guarantee minimum buffer size under pressure */
  1808. if (kind == SK_MEM_RECV) {
  1809. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1810. return 1;
  1811. } else { /* SK_MEM_SEND */
  1812. if (sk->sk_type == SOCK_STREAM) {
  1813. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1814. return 1;
  1815. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1816. prot->sysctl_wmem[0])
  1817. return 1;
  1818. }
  1819. if (sk_has_memory_pressure(sk)) {
  1820. int alloc;
  1821. if (!sk_under_memory_pressure(sk))
  1822. return 1;
  1823. alloc = sk_sockets_allocated_read_positive(sk);
  1824. if (sk_prot_mem_limits(sk, 2) > alloc *
  1825. sk_mem_pages(sk->sk_wmem_queued +
  1826. atomic_read(&sk->sk_rmem_alloc) +
  1827. sk->sk_forward_alloc))
  1828. return 1;
  1829. }
  1830. suppress_allocation:
  1831. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1832. sk_stream_moderate_sndbuf(sk);
  1833. /* Fail only if socket is _under_ its sndbuf.
  1834. * In this case we cannot block, so that we have to fail.
  1835. */
  1836. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1837. return 1;
  1838. }
  1839. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1840. /* Alas. Undo changes. */
  1841. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1842. sk_memory_allocated_sub(sk, amt);
  1843. return 0;
  1844. }
  1845. EXPORT_SYMBOL(__sk_mem_schedule);
  1846. /**
  1847. * __sk_mem_reclaim - reclaim memory_allocated
  1848. * @sk: socket
  1849. * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
  1850. */
  1851. void __sk_mem_reclaim(struct sock *sk, int amount)
  1852. {
  1853. amount >>= SK_MEM_QUANTUM_SHIFT;
  1854. sk_memory_allocated_sub(sk, amount);
  1855. sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
  1856. if (sk_under_memory_pressure(sk) &&
  1857. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1858. sk_leave_memory_pressure(sk);
  1859. }
  1860. EXPORT_SYMBOL(__sk_mem_reclaim);
  1861. /*
  1862. * Set of default routines for initialising struct proto_ops when
  1863. * the protocol does not support a particular function. In certain
  1864. * cases where it makes no sense for a protocol to have a "do nothing"
  1865. * function, some default processing is provided.
  1866. */
  1867. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1868. {
  1869. return -EOPNOTSUPP;
  1870. }
  1871. EXPORT_SYMBOL(sock_no_bind);
  1872. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1873. int len, int flags)
  1874. {
  1875. return -EOPNOTSUPP;
  1876. }
  1877. EXPORT_SYMBOL(sock_no_connect);
  1878. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1879. {
  1880. return -EOPNOTSUPP;
  1881. }
  1882. EXPORT_SYMBOL(sock_no_socketpair);
  1883. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1884. {
  1885. return -EOPNOTSUPP;
  1886. }
  1887. EXPORT_SYMBOL(sock_no_accept);
  1888. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1889. int *len, int peer)
  1890. {
  1891. return -EOPNOTSUPP;
  1892. }
  1893. EXPORT_SYMBOL(sock_no_getname);
  1894. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1895. {
  1896. return 0;
  1897. }
  1898. EXPORT_SYMBOL(sock_no_poll);
  1899. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1900. {
  1901. return -EOPNOTSUPP;
  1902. }
  1903. EXPORT_SYMBOL(sock_no_ioctl);
  1904. int sock_no_listen(struct socket *sock, int backlog)
  1905. {
  1906. return -EOPNOTSUPP;
  1907. }
  1908. EXPORT_SYMBOL(sock_no_listen);
  1909. int sock_no_shutdown(struct socket *sock, int how)
  1910. {
  1911. return -EOPNOTSUPP;
  1912. }
  1913. EXPORT_SYMBOL(sock_no_shutdown);
  1914. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1915. char __user *optval, unsigned int optlen)
  1916. {
  1917. return -EOPNOTSUPP;
  1918. }
  1919. EXPORT_SYMBOL(sock_no_setsockopt);
  1920. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1921. char __user *optval, int __user *optlen)
  1922. {
  1923. return -EOPNOTSUPP;
  1924. }
  1925. EXPORT_SYMBOL(sock_no_getsockopt);
  1926. int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
  1927. {
  1928. return -EOPNOTSUPP;
  1929. }
  1930. EXPORT_SYMBOL(sock_no_sendmsg);
  1931. int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
  1932. int flags)
  1933. {
  1934. return -EOPNOTSUPP;
  1935. }
  1936. EXPORT_SYMBOL(sock_no_recvmsg);
  1937. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1938. {
  1939. /* Mirror missing mmap method error code */
  1940. return -ENODEV;
  1941. }
  1942. EXPORT_SYMBOL(sock_no_mmap);
  1943. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1944. {
  1945. ssize_t res;
  1946. struct msghdr msg = {.msg_flags = flags};
  1947. struct kvec iov;
  1948. char *kaddr = kmap(page);
  1949. iov.iov_base = kaddr + offset;
  1950. iov.iov_len = size;
  1951. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1952. kunmap(page);
  1953. return res;
  1954. }
  1955. EXPORT_SYMBOL(sock_no_sendpage);
  1956. /*
  1957. * Default Socket Callbacks
  1958. */
  1959. static void sock_def_wakeup(struct sock *sk)
  1960. {
  1961. struct socket_wq *wq;
  1962. rcu_read_lock();
  1963. wq = rcu_dereference(sk->sk_wq);
  1964. if (wq_has_sleeper(wq))
  1965. wake_up_interruptible_all(&wq->wait);
  1966. rcu_read_unlock();
  1967. }
  1968. static void sock_def_error_report(struct sock *sk)
  1969. {
  1970. struct socket_wq *wq;
  1971. rcu_read_lock();
  1972. wq = rcu_dereference(sk->sk_wq);
  1973. if (wq_has_sleeper(wq))
  1974. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1975. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1976. rcu_read_unlock();
  1977. }
  1978. static void sock_def_readable(struct sock *sk)
  1979. {
  1980. struct socket_wq *wq;
  1981. rcu_read_lock();
  1982. wq = rcu_dereference(sk->sk_wq);
  1983. if (wq_has_sleeper(wq))
  1984. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1985. POLLRDNORM | POLLRDBAND);
  1986. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1987. rcu_read_unlock();
  1988. }
  1989. static void sock_def_write_space(struct sock *sk)
  1990. {
  1991. struct socket_wq *wq;
  1992. rcu_read_lock();
  1993. /* Do not wake up a writer until he can make "significant"
  1994. * progress. --DaveM
  1995. */
  1996. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1997. wq = rcu_dereference(sk->sk_wq);
  1998. if (wq_has_sleeper(wq))
  1999. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  2000. POLLWRNORM | POLLWRBAND);
  2001. /* Should agree with poll, otherwise some programs break */
  2002. if (sock_writeable(sk))
  2003. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  2004. }
  2005. rcu_read_unlock();
  2006. }
  2007. static void sock_def_destruct(struct sock *sk)
  2008. {
  2009. }
  2010. void sk_send_sigurg(struct sock *sk)
  2011. {
  2012. if (sk->sk_socket && sk->sk_socket->file)
  2013. if (send_sigurg(&sk->sk_socket->file->f_owner))
  2014. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  2015. }
  2016. EXPORT_SYMBOL(sk_send_sigurg);
  2017. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  2018. unsigned long expires)
  2019. {
  2020. if (!mod_timer(timer, expires))
  2021. sock_hold(sk);
  2022. }
  2023. EXPORT_SYMBOL(sk_reset_timer);
  2024. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  2025. {
  2026. if (del_timer(timer))
  2027. __sock_put(sk);
  2028. }
  2029. EXPORT_SYMBOL(sk_stop_timer);
  2030. void sock_init_data(struct socket *sock, struct sock *sk)
  2031. {
  2032. skb_queue_head_init(&sk->sk_receive_queue);
  2033. skb_queue_head_init(&sk->sk_write_queue);
  2034. skb_queue_head_init(&sk->sk_error_queue);
  2035. sk->sk_send_head = NULL;
  2036. init_timer(&sk->sk_timer);
  2037. sk->sk_allocation = GFP_KERNEL;
  2038. sk->sk_rcvbuf = sysctl_rmem_default;
  2039. sk->sk_sndbuf = sysctl_wmem_default;
  2040. sk->sk_state = TCP_CLOSE;
  2041. sk_set_socket(sk, sock);
  2042. sock_set_flag(sk, SOCK_ZAPPED);
  2043. if (sock) {
  2044. sk->sk_type = sock->type;
  2045. sk->sk_wq = sock->wq;
  2046. sock->sk = sk;
  2047. } else
  2048. sk->sk_wq = NULL;
  2049. rwlock_init(&sk->sk_callback_lock);
  2050. lockdep_set_class_and_name(&sk->sk_callback_lock,
  2051. af_callback_keys + sk->sk_family,
  2052. af_family_clock_key_strings[sk->sk_family]);
  2053. sk->sk_state_change = sock_def_wakeup;
  2054. sk->sk_data_ready = sock_def_readable;
  2055. sk->sk_write_space = sock_def_write_space;
  2056. sk->sk_error_report = sock_def_error_report;
  2057. sk->sk_destruct = sock_def_destruct;
  2058. sk->sk_frag.page = NULL;
  2059. sk->sk_frag.offset = 0;
  2060. sk->sk_peek_off = -1;
  2061. sk->sk_peer_pid = NULL;
  2062. sk->sk_peer_cred = NULL;
  2063. sk->sk_write_pending = 0;
  2064. sk->sk_rcvlowat = 1;
  2065. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  2066. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  2067. sk->sk_stamp = ktime_set(-1L, 0);
  2068. #ifdef CONFIG_NET_RX_BUSY_POLL
  2069. sk->sk_napi_id = 0;
  2070. sk->sk_ll_usec = sysctl_net_busy_read;
  2071. #endif
  2072. sk->sk_max_pacing_rate = ~0U;
  2073. sk->sk_pacing_rate = ~0U;
  2074. sk->sk_incoming_cpu = -1;
  2075. /*
  2076. * Before updating sk_refcnt, we must commit prior changes to memory
  2077. * (Documentation/RCU/rculist_nulls.txt for details)
  2078. */
  2079. smp_wmb();
  2080. atomic_set(&sk->sk_refcnt, 1);
  2081. atomic_set(&sk->sk_drops, 0);
  2082. }
  2083. EXPORT_SYMBOL(sock_init_data);
  2084. void lock_sock_nested(struct sock *sk, int subclass)
  2085. {
  2086. might_sleep();
  2087. spin_lock_bh(&sk->sk_lock.slock);
  2088. if (sk->sk_lock.owned)
  2089. __lock_sock(sk);
  2090. sk->sk_lock.owned = 1;
  2091. spin_unlock(&sk->sk_lock.slock);
  2092. /*
  2093. * The sk_lock has mutex_lock() semantics here:
  2094. */
  2095. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  2096. local_bh_enable();
  2097. }
  2098. EXPORT_SYMBOL(lock_sock_nested);
  2099. void release_sock(struct sock *sk)
  2100. {
  2101. /*
  2102. * The sk_lock has mutex_unlock() semantics:
  2103. */
  2104. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  2105. spin_lock_bh(&sk->sk_lock.slock);
  2106. if (sk->sk_backlog.tail)
  2107. __release_sock(sk);
  2108. /* Warning : release_cb() might need to release sk ownership,
  2109. * ie call sock_release_ownership(sk) before us.
  2110. */
  2111. if (sk->sk_prot->release_cb)
  2112. sk->sk_prot->release_cb(sk);
  2113. sock_release_ownership(sk);
  2114. if (waitqueue_active(&sk->sk_lock.wq))
  2115. wake_up(&sk->sk_lock.wq);
  2116. spin_unlock_bh(&sk->sk_lock.slock);
  2117. }
  2118. EXPORT_SYMBOL(release_sock);
  2119. /**
  2120. * lock_sock_fast - fast version of lock_sock
  2121. * @sk: socket
  2122. *
  2123. * This version should be used for very small section, where process wont block
  2124. * return false if fast path is taken
  2125. * sk_lock.slock locked, owned = 0, BH disabled
  2126. * return true if slow path is taken
  2127. * sk_lock.slock unlocked, owned = 1, BH enabled
  2128. */
  2129. bool lock_sock_fast(struct sock *sk)
  2130. {
  2131. might_sleep();
  2132. spin_lock_bh(&sk->sk_lock.slock);
  2133. if (!sk->sk_lock.owned)
  2134. /*
  2135. * Note : We must disable BH
  2136. */
  2137. return false;
  2138. __lock_sock(sk);
  2139. sk->sk_lock.owned = 1;
  2140. spin_unlock(&sk->sk_lock.slock);
  2141. /*
  2142. * The sk_lock has mutex_lock() semantics here:
  2143. */
  2144. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  2145. local_bh_enable();
  2146. return true;
  2147. }
  2148. EXPORT_SYMBOL(lock_sock_fast);
  2149. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  2150. {
  2151. struct timeval tv;
  2152. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2153. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2154. tv = ktime_to_timeval(sk->sk_stamp);
  2155. if (tv.tv_sec == -1)
  2156. return -ENOENT;
  2157. if (tv.tv_sec == 0) {
  2158. sk->sk_stamp = ktime_get_real();
  2159. tv = ktime_to_timeval(sk->sk_stamp);
  2160. }
  2161. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  2162. }
  2163. EXPORT_SYMBOL(sock_get_timestamp);
  2164. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  2165. {
  2166. struct timespec ts;
  2167. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2168. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2169. ts = ktime_to_timespec(sk->sk_stamp);
  2170. if (ts.tv_sec == -1)
  2171. return -ENOENT;
  2172. if (ts.tv_sec == 0) {
  2173. sk->sk_stamp = ktime_get_real();
  2174. ts = ktime_to_timespec(sk->sk_stamp);
  2175. }
  2176. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  2177. }
  2178. EXPORT_SYMBOL(sock_get_timestampns);
  2179. void sock_enable_timestamp(struct sock *sk, int flag)
  2180. {
  2181. if (!sock_flag(sk, flag)) {
  2182. unsigned long previous_flags = sk->sk_flags;
  2183. sock_set_flag(sk, flag);
  2184. /*
  2185. * we just set one of the two flags which require net
  2186. * time stamping, but time stamping might have been on
  2187. * already because of the other one
  2188. */
  2189. if (sock_needs_netstamp(sk) &&
  2190. !(previous_flags & SK_FLAGS_TIMESTAMP))
  2191. net_enable_timestamp();
  2192. }
  2193. }
  2194. int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
  2195. int level, int type)
  2196. {
  2197. struct sock_exterr_skb *serr;
  2198. struct sk_buff *skb;
  2199. int copied, err;
  2200. err = -EAGAIN;
  2201. skb = sock_dequeue_err_skb(sk);
  2202. if (skb == NULL)
  2203. goto out;
  2204. copied = skb->len;
  2205. if (copied > len) {
  2206. msg->msg_flags |= MSG_TRUNC;
  2207. copied = len;
  2208. }
  2209. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  2210. if (err)
  2211. goto out_free_skb;
  2212. sock_recv_timestamp(msg, sk, skb);
  2213. serr = SKB_EXT_ERR(skb);
  2214. put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
  2215. msg->msg_flags |= MSG_ERRQUEUE;
  2216. err = copied;
  2217. out_free_skb:
  2218. kfree_skb(skb);
  2219. out:
  2220. return err;
  2221. }
  2222. EXPORT_SYMBOL(sock_recv_errqueue);
  2223. /*
  2224. * Get a socket option on an socket.
  2225. *
  2226. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2227. * asynchronous errors should be reported by getsockopt. We assume
  2228. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2229. */
  2230. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2231. char __user *optval, int __user *optlen)
  2232. {
  2233. struct sock *sk = sock->sk;
  2234. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2235. }
  2236. EXPORT_SYMBOL(sock_common_getsockopt);
  2237. #ifdef CONFIG_COMPAT
  2238. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2239. char __user *optval, int __user *optlen)
  2240. {
  2241. struct sock *sk = sock->sk;
  2242. if (sk->sk_prot->compat_getsockopt != NULL)
  2243. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2244. optval, optlen);
  2245. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2246. }
  2247. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2248. #endif
  2249. int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
  2250. int flags)
  2251. {
  2252. struct sock *sk = sock->sk;
  2253. int addr_len = 0;
  2254. int err;
  2255. err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
  2256. flags & ~MSG_DONTWAIT, &addr_len);
  2257. if (err >= 0)
  2258. msg->msg_namelen = addr_len;
  2259. return err;
  2260. }
  2261. EXPORT_SYMBOL(sock_common_recvmsg);
  2262. /*
  2263. * Set socket options on an inet socket.
  2264. */
  2265. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2266. char __user *optval, unsigned int optlen)
  2267. {
  2268. struct sock *sk = sock->sk;
  2269. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2270. }
  2271. EXPORT_SYMBOL(sock_common_setsockopt);
  2272. #ifdef CONFIG_COMPAT
  2273. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2274. char __user *optval, unsigned int optlen)
  2275. {
  2276. struct sock *sk = sock->sk;
  2277. if (sk->sk_prot->compat_setsockopt != NULL)
  2278. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2279. optval, optlen);
  2280. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2281. }
  2282. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2283. #endif
  2284. void sk_common_release(struct sock *sk)
  2285. {
  2286. if (sk->sk_prot->destroy)
  2287. sk->sk_prot->destroy(sk);
  2288. /*
  2289. * Observation: when sock_common_release is called, processes have
  2290. * no access to socket. But net still has.
  2291. * Step one, detach it from networking:
  2292. *
  2293. * A. Remove from hash tables.
  2294. */
  2295. sk->sk_prot->unhash(sk);
  2296. /*
  2297. * In this point socket cannot receive new packets, but it is possible
  2298. * that some packets are in flight because some CPU runs receiver and
  2299. * did hash table lookup before we unhashed socket. They will achieve
  2300. * receive queue and will be purged by socket destructor.
  2301. *
  2302. * Also we still have packets pending on receive queue and probably,
  2303. * our own packets waiting in device queues. sock_destroy will drain
  2304. * receive queue, but transmitted packets will delay socket destruction
  2305. * until the last reference will be released.
  2306. */
  2307. sock_orphan(sk);
  2308. xfrm_sk_free_policy(sk);
  2309. sk_refcnt_debug_release(sk);
  2310. if (sk->sk_frag.page) {
  2311. put_page(sk->sk_frag.page);
  2312. sk->sk_frag.page = NULL;
  2313. }
  2314. sock_put(sk);
  2315. }
  2316. EXPORT_SYMBOL(sk_common_release);
  2317. #ifdef CONFIG_PROC_FS
  2318. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2319. struct prot_inuse {
  2320. int val[PROTO_INUSE_NR];
  2321. };
  2322. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2323. #ifdef CONFIG_NET_NS
  2324. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2325. {
  2326. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2327. }
  2328. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2329. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2330. {
  2331. int cpu, idx = prot->inuse_idx;
  2332. int res = 0;
  2333. for_each_possible_cpu(cpu)
  2334. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2335. return res >= 0 ? res : 0;
  2336. }
  2337. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2338. static int __net_init sock_inuse_init_net(struct net *net)
  2339. {
  2340. net->core.inuse = alloc_percpu(struct prot_inuse);
  2341. return net->core.inuse ? 0 : -ENOMEM;
  2342. }
  2343. static void __net_exit sock_inuse_exit_net(struct net *net)
  2344. {
  2345. free_percpu(net->core.inuse);
  2346. }
  2347. static struct pernet_operations net_inuse_ops = {
  2348. .init = sock_inuse_init_net,
  2349. .exit = sock_inuse_exit_net,
  2350. };
  2351. static __init int net_inuse_init(void)
  2352. {
  2353. if (register_pernet_subsys(&net_inuse_ops))
  2354. panic("Cannot initialize net inuse counters");
  2355. return 0;
  2356. }
  2357. core_initcall(net_inuse_init);
  2358. #else
  2359. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2360. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2361. {
  2362. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2363. }
  2364. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2365. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2366. {
  2367. int cpu, idx = prot->inuse_idx;
  2368. int res = 0;
  2369. for_each_possible_cpu(cpu)
  2370. res += per_cpu(prot_inuse, cpu).val[idx];
  2371. return res >= 0 ? res : 0;
  2372. }
  2373. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2374. #endif
  2375. static void assign_proto_idx(struct proto *prot)
  2376. {
  2377. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2378. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2379. pr_err("PROTO_INUSE_NR exhausted\n");
  2380. return;
  2381. }
  2382. set_bit(prot->inuse_idx, proto_inuse_idx);
  2383. }
  2384. static void release_proto_idx(struct proto *prot)
  2385. {
  2386. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2387. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2388. }
  2389. #else
  2390. static inline void assign_proto_idx(struct proto *prot)
  2391. {
  2392. }
  2393. static inline void release_proto_idx(struct proto *prot)
  2394. {
  2395. }
  2396. #endif
  2397. static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
  2398. {
  2399. if (!rsk_prot)
  2400. return;
  2401. kfree(rsk_prot->slab_name);
  2402. rsk_prot->slab_name = NULL;
  2403. kmem_cache_destroy(rsk_prot->slab);
  2404. rsk_prot->slab = NULL;
  2405. }
  2406. static int req_prot_init(const struct proto *prot)
  2407. {
  2408. struct request_sock_ops *rsk_prot = prot->rsk_prot;
  2409. if (!rsk_prot)
  2410. return 0;
  2411. rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
  2412. prot->name);
  2413. if (!rsk_prot->slab_name)
  2414. return -ENOMEM;
  2415. rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
  2416. rsk_prot->obj_size, 0,
  2417. prot->slab_flags, NULL);
  2418. if (!rsk_prot->slab) {
  2419. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2420. prot->name);
  2421. return -ENOMEM;
  2422. }
  2423. return 0;
  2424. }
  2425. int proto_register(struct proto *prot, int alloc_slab)
  2426. {
  2427. if (alloc_slab) {
  2428. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2429. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2430. NULL);
  2431. if (prot->slab == NULL) {
  2432. pr_crit("%s: Can't create sock SLAB cache!\n",
  2433. prot->name);
  2434. goto out;
  2435. }
  2436. if (req_prot_init(prot))
  2437. goto out_free_request_sock_slab;
  2438. if (prot->twsk_prot != NULL) {
  2439. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2440. if (prot->twsk_prot->twsk_slab_name == NULL)
  2441. goto out_free_request_sock_slab;
  2442. prot->twsk_prot->twsk_slab =
  2443. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2444. prot->twsk_prot->twsk_obj_size,
  2445. 0,
  2446. prot->slab_flags,
  2447. NULL);
  2448. if (prot->twsk_prot->twsk_slab == NULL)
  2449. goto out_free_timewait_sock_slab_name;
  2450. }
  2451. }
  2452. mutex_lock(&proto_list_mutex);
  2453. list_add(&prot->node, &proto_list);
  2454. assign_proto_idx(prot);
  2455. mutex_unlock(&proto_list_mutex);
  2456. return 0;
  2457. out_free_timewait_sock_slab_name:
  2458. kfree(prot->twsk_prot->twsk_slab_name);
  2459. out_free_request_sock_slab:
  2460. req_prot_cleanup(prot->rsk_prot);
  2461. kmem_cache_destroy(prot->slab);
  2462. prot->slab = NULL;
  2463. out:
  2464. return -ENOBUFS;
  2465. }
  2466. EXPORT_SYMBOL(proto_register);
  2467. void proto_unregister(struct proto *prot)
  2468. {
  2469. mutex_lock(&proto_list_mutex);
  2470. release_proto_idx(prot);
  2471. list_del(&prot->node);
  2472. mutex_unlock(&proto_list_mutex);
  2473. kmem_cache_destroy(prot->slab);
  2474. prot->slab = NULL;
  2475. req_prot_cleanup(prot->rsk_prot);
  2476. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2477. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2478. kfree(prot->twsk_prot->twsk_slab_name);
  2479. prot->twsk_prot->twsk_slab = NULL;
  2480. }
  2481. }
  2482. EXPORT_SYMBOL(proto_unregister);
  2483. #ifdef CONFIG_PROC_FS
  2484. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2485. __acquires(proto_list_mutex)
  2486. {
  2487. mutex_lock(&proto_list_mutex);
  2488. return seq_list_start_head(&proto_list, *pos);
  2489. }
  2490. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2491. {
  2492. return seq_list_next(v, &proto_list, pos);
  2493. }
  2494. static void proto_seq_stop(struct seq_file *seq, void *v)
  2495. __releases(proto_list_mutex)
  2496. {
  2497. mutex_unlock(&proto_list_mutex);
  2498. }
  2499. static char proto_method_implemented(const void *method)
  2500. {
  2501. return method == NULL ? 'n' : 'y';
  2502. }
  2503. static long sock_prot_memory_allocated(struct proto *proto)
  2504. {
  2505. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2506. }
  2507. static char *sock_prot_memory_pressure(struct proto *proto)
  2508. {
  2509. return proto->memory_pressure != NULL ?
  2510. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2511. }
  2512. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2513. {
  2514. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2515. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2516. proto->name,
  2517. proto->obj_size,
  2518. sock_prot_inuse_get(seq_file_net(seq), proto),
  2519. sock_prot_memory_allocated(proto),
  2520. sock_prot_memory_pressure(proto),
  2521. proto->max_header,
  2522. proto->slab == NULL ? "no" : "yes",
  2523. module_name(proto->owner),
  2524. proto_method_implemented(proto->close),
  2525. proto_method_implemented(proto->connect),
  2526. proto_method_implemented(proto->disconnect),
  2527. proto_method_implemented(proto->accept),
  2528. proto_method_implemented(proto->ioctl),
  2529. proto_method_implemented(proto->init),
  2530. proto_method_implemented(proto->destroy),
  2531. proto_method_implemented(proto->shutdown),
  2532. proto_method_implemented(proto->setsockopt),
  2533. proto_method_implemented(proto->getsockopt),
  2534. proto_method_implemented(proto->sendmsg),
  2535. proto_method_implemented(proto->recvmsg),
  2536. proto_method_implemented(proto->sendpage),
  2537. proto_method_implemented(proto->bind),
  2538. proto_method_implemented(proto->backlog_rcv),
  2539. proto_method_implemented(proto->hash),
  2540. proto_method_implemented(proto->unhash),
  2541. proto_method_implemented(proto->get_port),
  2542. proto_method_implemented(proto->enter_memory_pressure));
  2543. }
  2544. static int proto_seq_show(struct seq_file *seq, void *v)
  2545. {
  2546. if (v == &proto_list)
  2547. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2548. "protocol",
  2549. "size",
  2550. "sockets",
  2551. "memory",
  2552. "press",
  2553. "maxhdr",
  2554. "slab",
  2555. "module",
  2556. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2557. else
  2558. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2559. return 0;
  2560. }
  2561. static const struct seq_operations proto_seq_ops = {
  2562. .start = proto_seq_start,
  2563. .next = proto_seq_next,
  2564. .stop = proto_seq_stop,
  2565. .show = proto_seq_show,
  2566. };
  2567. static int proto_seq_open(struct inode *inode, struct file *file)
  2568. {
  2569. return seq_open_net(inode, file, &proto_seq_ops,
  2570. sizeof(struct seq_net_private));
  2571. }
  2572. static const struct file_operations proto_seq_fops = {
  2573. .owner = THIS_MODULE,
  2574. .open = proto_seq_open,
  2575. .read = seq_read,
  2576. .llseek = seq_lseek,
  2577. .release = seq_release_net,
  2578. };
  2579. static __net_init int proto_init_net(struct net *net)
  2580. {
  2581. if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
  2582. return -ENOMEM;
  2583. return 0;
  2584. }
  2585. static __net_exit void proto_exit_net(struct net *net)
  2586. {
  2587. remove_proc_entry("protocols", net->proc_net);
  2588. }
  2589. static __net_initdata struct pernet_operations proto_net_ops = {
  2590. .init = proto_init_net,
  2591. .exit = proto_exit_net,
  2592. };
  2593. static int __init proto_init(void)
  2594. {
  2595. return register_pernet_subsys(&proto_net_ops);
  2596. }
  2597. subsys_initcall(proto_init);
  2598. #endif /* PROC_FS */