page_alloc.c 189 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/stop_machine.h>
  46. #include <linux/sort.h>
  47. #include <linux/pfn.h>
  48. #include <linux/backing-dev.h>
  49. #include <linux/fault-inject.h>
  50. #include <linux/page-isolation.h>
  51. #include <linux/page_ext.h>
  52. #include <linux/debugobjects.h>
  53. #include <linux/kmemleak.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/prefetch.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page_ext.h>
  60. #include <linux/hugetlb.h>
  61. #include <linux/sched/rt.h>
  62. #include <linux/page_owner.h>
  63. #include <linux/kthread.h>
  64. #include <asm/sections.h>
  65. #include <asm/tlbflush.h>
  66. #include <asm/div64.h>
  67. #include "internal.h"
  68. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  69. static DEFINE_MUTEX(pcp_batch_high_lock);
  70. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  71. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  72. DEFINE_PER_CPU(int, numa_node);
  73. EXPORT_PER_CPU_SYMBOL(numa_node);
  74. #endif
  75. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  76. /*
  77. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  78. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  79. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  80. * defined in <linux/topology.h>.
  81. */
  82. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  83. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  84. int _node_numa_mem_[MAX_NUMNODES];
  85. #endif
  86. /*
  87. * Array of node states.
  88. */
  89. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  90. [N_POSSIBLE] = NODE_MASK_ALL,
  91. [N_ONLINE] = { { [0] = 1UL } },
  92. #ifndef CONFIG_NUMA
  93. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  94. #ifdef CONFIG_HIGHMEM
  95. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  96. #endif
  97. #ifdef CONFIG_MOVABLE_NODE
  98. [N_MEMORY] = { { [0] = 1UL } },
  99. #endif
  100. [N_CPU] = { { [0] = 1UL } },
  101. #endif /* NUMA */
  102. };
  103. EXPORT_SYMBOL(node_states);
  104. /* Protect totalram_pages and zone->managed_pages */
  105. static DEFINE_SPINLOCK(managed_page_count_lock);
  106. unsigned long totalram_pages __read_mostly;
  107. unsigned long totalreserve_pages __read_mostly;
  108. unsigned long totalcma_pages __read_mostly;
  109. /*
  110. * When calculating the number of globally allowed dirty pages, there
  111. * is a certain number of per-zone reserves that should not be
  112. * considered dirtyable memory. This is the sum of those reserves
  113. * over all existing zones that contribute dirtyable memory.
  114. */
  115. unsigned long dirty_balance_reserve __read_mostly;
  116. int percpu_pagelist_fraction;
  117. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  118. /*
  119. * A cached value of the page's pageblock's migratetype, used when the page is
  120. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  121. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  122. * Also the migratetype set in the page does not necessarily match the pcplist
  123. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  124. * other index - this ensures that it will be put on the correct CMA freelist.
  125. */
  126. static inline int get_pcppage_migratetype(struct page *page)
  127. {
  128. return page->index;
  129. }
  130. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  131. {
  132. page->index = migratetype;
  133. }
  134. #ifdef CONFIG_PM_SLEEP
  135. /*
  136. * The following functions are used by the suspend/hibernate code to temporarily
  137. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  138. * while devices are suspended. To avoid races with the suspend/hibernate code,
  139. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  140. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  141. * guaranteed not to run in parallel with that modification).
  142. */
  143. static gfp_t saved_gfp_mask;
  144. void pm_restore_gfp_mask(void)
  145. {
  146. WARN_ON(!mutex_is_locked(&pm_mutex));
  147. if (saved_gfp_mask) {
  148. gfp_allowed_mask = saved_gfp_mask;
  149. saved_gfp_mask = 0;
  150. }
  151. }
  152. void pm_restrict_gfp_mask(void)
  153. {
  154. WARN_ON(!mutex_is_locked(&pm_mutex));
  155. WARN_ON(saved_gfp_mask);
  156. saved_gfp_mask = gfp_allowed_mask;
  157. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  158. }
  159. bool pm_suspended_storage(void)
  160. {
  161. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  162. return false;
  163. return true;
  164. }
  165. #endif /* CONFIG_PM_SLEEP */
  166. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  167. unsigned int pageblock_order __read_mostly;
  168. #endif
  169. static void __free_pages_ok(struct page *page, unsigned int order);
  170. /*
  171. * results with 256, 32 in the lowmem_reserve sysctl:
  172. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  173. * 1G machine -> (16M dma, 784M normal, 224M high)
  174. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  175. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  176. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  177. *
  178. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  179. * don't need any ZONE_NORMAL reservation
  180. */
  181. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  182. #ifdef CONFIG_ZONE_DMA
  183. 256,
  184. #endif
  185. #ifdef CONFIG_ZONE_DMA32
  186. 256,
  187. #endif
  188. #ifdef CONFIG_HIGHMEM
  189. 32,
  190. #endif
  191. 32,
  192. };
  193. EXPORT_SYMBOL(totalram_pages);
  194. static char * const zone_names[MAX_NR_ZONES] = {
  195. #ifdef CONFIG_ZONE_DMA
  196. "DMA",
  197. #endif
  198. #ifdef CONFIG_ZONE_DMA32
  199. "DMA32",
  200. #endif
  201. "Normal",
  202. #ifdef CONFIG_HIGHMEM
  203. "HighMem",
  204. #endif
  205. "Movable",
  206. #ifdef CONFIG_ZONE_DEVICE
  207. "Device",
  208. #endif
  209. };
  210. static void free_compound_page(struct page *page);
  211. compound_page_dtor * const compound_page_dtors[] = {
  212. NULL,
  213. free_compound_page,
  214. #ifdef CONFIG_HUGETLB_PAGE
  215. free_huge_page,
  216. #endif
  217. };
  218. int min_free_kbytes = 1024;
  219. int user_min_free_kbytes = -1;
  220. static unsigned long __meminitdata nr_kernel_pages;
  221. static unsigned long __meminitdata nr_all_pages;
  222. static unsigned long __meminitdata dma_reserve;
  223. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  224. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  225. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  226. static unsigned long __initdata required_kernelcore;
  227. static unsigned long __initdata required_movablecore;
  228. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  229. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  230. int movable_zone;
  231. EXPORT_SYMBOL(movable_zone);
  232. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  233. #if MAX_NUMNODES > 1
  234. int nr_node_ids __read_mostly = MAX_NUMNODES;
  235. int nr_online_nodes __read_mostly = 1;
  236. EXPORT_SYMBOL(nr_node_ids);
  237. EXPORT_SYMBOL(nr_online_nodes);
  238. #endif
  239. int page_group_by_mobility_disabled __read_mostly;
  240. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  241. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  242. {
  243. pgdat->first_deferred_pfn = ULONG_MAX;
  244. }
  245. /* Returns true if the struct page for the pfn is uninitialised */
  246. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  247. {
  248. if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
  249. return true;
  250. return false;
  251. }
  252. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  253. {
  254. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  255. return true;
  256. return false;
  257. }
  258. /*
  259. * Returns false when the remaining initialisation should be deferred until
  260. * later in the boot cycle when it can be parallelised.
  261. */
  262. static inline bool update_defer_init(pg_data_t *pgdat,
  263. unsigned long pfn, unsigned long zone_end,
  264. unsigned long *nr_initialised)
  265. {
  266. /* Always populate low zones for address-contrained allocations */
  267. if (zone_end < pgdat_end_pfn(pgdat))
  268. return true;
  269. /* Initialise at least 2G of the highest zone */
  270. (*nr_initialised)++;
  271. if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
  272. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  273. pgdat->first_deferred_pfn = pfn;
  274. return false;
  275. }
  276. return true;
  277. }
  278. #else
  279. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  280. {
  281. }
  282. static inline bool early_page_uninitialised(unsigned long pfn)
  283. {
  284. return false;
  285. }
  286. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  287. {
  288. return false;
  289. }
  290. static inline bool update_defer_init(pg_data_t *pgdat,
  291. unsigned long pfn, unsigned long zone_end,
  292. unsigned long *nr_initialised)
  293. {
  294. return true;
  295. }
  296. #endif
  297. void set_pageblock_migratetype(struct page *page, int migratetype)
  298. {
  299. if (unlikely(page_group_by_mobility_disabled &&
  300. migratetype < MIGRATE_PCPTYPES))
  301. migratetype = MIGRATE_UNMOVABLE;
  302. set_pageblock_flags_group(page, (unsigned long)migratetype,
  303. PB_migrate, PB_migrate_end);
  304. }
  305. #ifdef CONFIG_DEBUG_VM
  306. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  307. {
  308. int ret = 0;
  309. unsigned seq;
  310. unsigned long pfn = page_to_pfn(page);
  311. unsigned long sp, start_pfn;
  312. do {
  313. seq = zone_span_seqbegin(zone);
  314. start_pfn = zone->zone_start_pfn;
  315. sp = zone->spanned_pages;
  316. if (!zone_spans_pfn(zone, pfn))
  317. ret = 1;
  318. } while (zone_span_seqretry(zone, seq));
  319. if (ret)
  320. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  321. pfn, zone_to_nid(zone), zone->name,
  322. start_pfn, start_pfn + sp);
  323. return ret;
  324. }
  325. static int page_is_consistent(struct zone *zone, struct page *page)
  326. {
  327. if (!pfn_valid_within(page_to_pfn(page)))
  328. return 0;
  329. if (zone != page_zone(page))
  330. return 0;
  331. return 1;
  332. }
  333. /*
  334. * Temporary debugging check for pages not lying within a given zone.
  335. */
  336. static int bad_range(struct zone *zone, struct page *page)
  337. {
  338. if (page_outside_zone_boundaries(zone, page))
  339. return 1;
  340. if (!page_is_consistent(zone, page))
  341. return 1;
  342. return 0;
  343. }
  344. #else
  345. static inline int bad_range(struct zone *zone, struct page *page)
  346. {
  347. return 0;
  348. }
  349. #endif
  350. static void bad_page(struct page *page, const char *reason,
  351. unsigned long bad_flags)
  352. {
  353. static unsigned long resume;
  354. static unsigned long nr_shown;
  355. static unsigned long nr_unshown;
  356. /* Don't complain about poisoned pages */
  357. if (PageHWPoison(page)) {
  358. page_mapcount_reset(page); /* remove PageBuddy */
  359. return;
  360. }
  361. /*
  362. * Allow a burst of 60 reports, then keep quiet for that minute;
  363. * or allow a steady drip of one report per second.
  364. */
  365. if (nr_shown == 60) {
  366. if (time_before(jiffies, resume)) {
  367. nr_unshown++;
  368. goto out;
  369. }
  370. if (nr_unshown) {
  371. printk(KERN_ALERT
  372. "BUG: Bad page state: %lu messages suppressed\n",
  373. nr_unshown);
  374. nr_unshown = 0;
  375. }
  376. nr_shown = 0;
  377. }
  378. if (nr_shown++ == 0)
  379. resume = jiffies + 60 * HZ;
  380. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  381. current->comm, page_to_pfn(page));
  382. dump_page_badflags(page, reason, bad_flags);
  383. print_modules();
  384. dump_stack();
  385. out:
  386. /* Leave bad fields for debug, except PageBuddy could make trouble */
  387. page_mapcount_reset(page); /* remove PageBuddy */
  388. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  389. }
  390. /*
  391. * Higher-order pages are called "compound pages". They are structured thusly:
  392. *
  393. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  394. *
  395. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  396. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  397. *
  398. * The first tail page's ->compound_dtor holds the offset in array of compound
  399. * page destructors. See compound_page_dtors.
  400. *
  401. * The first tail page's ->compound_order holds the order of allocation.
  402. * This usage means that zero-order pages may not be compound.
  403. */
  404. static void free_compound_page(struct page *page)
  405. {
  406. __free_pages_ok(page, compound_order(page));
  407. }
  408. void prep_compound_page(struct page *page, unsigned int order)
  409. {
  410. int i;
  411. int nr_pages = 1 << order;
  412. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  413. set_compound_order(page, order);
  414. __SetPageHead(page);
  415. for (i = 1; i < nr_pages; i++) {
  416. struct page *p = page + i;
  417. set_page_count(p, 0);
  418. set_compound_head(p, page);
  419. }
  420. }
  421. #ifdef CONFIG_DEBUG_PAGEALLOC
  422. unsigned int _debug_guardpage_minorder;
  423. bool _debug_pagealloc_enabled __read_mostly;
  424. bool _debug_guardpage_enabled __read_mostly;
  425. static int __init early_debug_pagealloc(char *buf)
  426. {
  427. if (!buf)
  428. return -EINVAL;
  429. if (strcmp(buf, "on") == 0)
  430. _debug_pagealloc_enabled = true;
  431. return 0;
  432. }
  433. early_param("debug_pagealloc", early_debug_pagealloc);
  434. static bool need_debug_guardpage(void)
  435. {
  436. /* If we don't use debug_pagealloc, we don't need guard page */
  437. if (!debug_pagealloc_enabled())
  438. return false;
  439. return true;
  440. }
  441. static void init_debug_guardpage(void)
  442. {
  443. if (!debug_pagealloc_enabled())
  444. return;
  445. _debug_guardpage_enabled = true;
  446. }
  447. struct page_ext_operations debug_guardpage_ops = {
  448. .need = need_debug_guardpage,
  449. .init = init_debug_guardpage,
  450. };
  451. static int __init debug_guardpage_minorder_setup(char *buf)
  452. {
  453. unsigned long res;
  454. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  455. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  456. return 0;
  457. }
  458. _debug_guardpage_minorder = res;
  459. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  460. return 0;
  461. }
  462. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  463. static inline void set_page_guard(struct zone *zone, struct page *page,
  464. unsigned int order, int migratetype)
  465. {
  466. struct page_ext *page_ext;
  467. if (!debug_guardpage_enabled())
  468. return;
  469. page_ext = lookup_page_ext(page);
  470. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  471. INIT_LIST_HEAD(&page->lru);
  472. set_page_private(page, order);
  473. /* Guard pages are not available for any usage */
  474. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  475. }
  476. static inline void clear_page_guard(struct zone *zone, struct page *page,
  477. unsigned int order, int migratetype)
  478. {
  479. struct page_ext *page_ext;
  480. if (!debug_guardpage_enabled())
  481. return;
  482. page_ext = lookup_page_ext(page);
  483. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  484. set_page_private(page, 0);
  485. if (!is_migrate_isolate(migratetype))
  486. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  487. }
  488. #else
  489. struct page_ext_operations debug_guardpage_ops = { NULL, };
  490. static inline void set_page_guard(struct zone *zone, struct page *page,
  491. unsigned int order, int migratetype) {}
  492. static inline void clear_page_guard(struct zone *zone, struct page *page,
  493. unsigned int order, int migratetype) {}
  494. #endif
  495. static inline void set_page_order(struct page *page, unsigned int order)
  496. {
  497. set_page_private(page, order);
  498. __SetPageBuddy(page);
  499. }
  500. static inline void rmv_page_order(struct page *page)
  501. {
  502. __ClearPageBuddy(page);
  503. set_page_private(page, 0);
  504. }
  505. /*
  506. * This function checks whether a page is free && is the buddy
  507. * we can do coalesce a page and its buddy if
  508. * (a) the buddy is not in a hole &&
  509. * (b) the buddy is in the buddy system &&
  510. * (c) a page and its buddy have the same order &&
  511. * (d) a page and its buddy are in the same zone.
  512. *
  513. * For recording whether a page is in the buddy system, we set ->_mapcount
  514. * PAGE_BUDDY_MAPCOUNT_VALUE.
  515. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  516. * serialized by zone->lock.
  517. *
  518. * For recording page's order, we use page_private(page).
  519. */
  520. static inline int page_is_buddy(struct page *page, struct page *buddy,
  521. unsigned int order)
  522. {
  523. if (!pfn_valid_within(page_to_pfn(buddy)))
  524. return 0;
  525. if (page_is_guard(buddy) && page_order(buddy) == order) {
  526. if (page_zone_id(page) != page_zone_id(buddy))
  527. return 0;
  528. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  529. return 1;
  530. }
  531. if (PageBuddy(buddy) && page_order(buddy) == order) {
  532. /*
  533. * zone check is done late to avoid uselessly
  534. * calculating zone/node ids for pages that could
  535. * never merge.
  536. */
  537. if (page_zone_id(page) != page_zone_id(buddy))
  538. return 0;
  539. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  540. return 1;
  541. }
  542. return 0;
  543. }
  544. /*
  545. * Freeing function for a buddy system allocator.
  546. *
  547. * The concept of a buddy system is to maintain direct-mapped table
  548. * (containing bit values) for memory blocks of various "orders".
  549. * The bottom level table contains the map for the smallest allocatable
  550. * units of memory (here, pages), and each level above it describes
  551. * pairs of units from the levels below, hence, "buddies".
  552. * At a high level, all that happens here is marking the table entry
  553. * at the bottom level available, and propagating the changes upward
  554. * as necessary, plus some accounting needed to play nicely with other
  555. * parts of the VM system.
  556. * At each level, we keep a list of pages, which are heads of continuous
  557. * free pages of length of (1 << order) and marked with _mapcount
  558. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  559. * field.
  560. * So when we are allocating or freeing one, we can derive the state of the
  561. * other. That is, if we allocate a small block, and both were
  562. * free, the remainder of the region must be split into blocks.
  563. * If a block is freed, and its buddy is also free, then this
  564. * triggers coalescing into a block of larger size.
  565. *
  566. * -- nyc
  567. */
  568. static inline void __free_one_page(struct page *page,
  569. unsigned long pfn,
  570. struct zone *zone, unsigned int order,
  571. int migratetype)
  572. {
  573. unsigned long page_idx;
  574. unsigned long combined_idx;
  575. unsigned long uninitialized_var(buddy_idx);
  576. struct page *buddy;
  577. unsigned int max_order = MAX_ORDER;
  578. VM_BUG_ON(!zone_is_initialized(zone));
  579. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  580. VM_BUG_ON(migratetype == -1);
  581. if (is_migrate_isolate(migratetype)) {
  582. /*
  583. * We restrict max order of merging to prevent merge
  584. * between freepages on isolate pageblock and normal
  585. * pageblock. Without this, pageblock isolation
  586. * could cause incorrect freepage accounting.
  587. */
  588. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  589. } else {
  590. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  591. }
  592. page_idx = pfn & ((1 << max_order) - 1);
  593. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  594. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  595. while (order < max_order - 1) {
  596. buddy_idx = __find_buddy_index(page_idx, order);
  597. buddy = page + (buddy_idx - page_idx);
  598. if (!page_is_buddy(page, buddy, order))
  599. break;
  600. /*
  601. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  602. * merge with it and move up one order.
  603. */
  604. if (page_is_guard(buddy)) {
  605. clear_page_guard(zone, buddy, order, migratetype);
  606. } else {
  607. list_del(&buddy->lru);
  608. zone->free_area[order].nr_free--;
  609. rmv_page_order(buddy);
  610. }
  611. combined_idx = buddy_idx & page_idx;
  612. page = page + (combined_idx - page_idx);
  613. page_idx = combined_idx;
  614. order++;
  615. }
  616. set_page_order(page, order);
  617. /*
  618. * If this is not the largest possible page, check if the buddy
  619. * of the next-highest order is free. If it is, it's possible
  620. * that pages are being freed that will coalesce soon. In case,
  621. * that is happening, add the free page to the tail of the list
  622. * so it's less likely to be used soon and more likely to be merged
  623. * as a higher order page
  624. */
  625. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  626. struct page *higher_page, *higher_buddy;
  627. combined_idx = buddy_idx & page_idx;
  628. higher_page = page + (combined_idx - page_idx);
  629. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  630. higher_buddy = higher_page + (buddy_idx - combined_idx);
  631. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  632. list_add_tail(&page->lru,
  633. &zone->free_area[order].free_list[migratetype]);
  634. goto out;
  635. }
  636. }
  637. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  638. out:
  639. zone->free_area[order].nr_free++;
  640. }
  641. static inline int free_pages_check(struct page *page)
  642. {
  643. const char *bad_reason = NULL;
  644. unsigned long bad_flags = 0;
  645. if (unlikely(page_mapcount(page)))
  646. bad_reason = "nonzero mapcount";
  647. if (unlikely(page->mapping != NULL))
  648. bad_reason = "non-NULL mapping";
  649. if (unlikely(atomic_read(&page->_count) != 0))
  650. bad_reason = "nonzero _count";
  651. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  652. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  653. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  654. }
  655. #ifdef CONFIG_MEMCG
  656. if (unlikely(page->mem_cgroup))
  657. bad_reason = "page still charged to cgroup";
  658. #endif
  659. if (unlikely(bad_reason)) {
  660. bad_page(page, bad_reason, bad_flags);
  661. return 1;
  662. }
  663. page_cpupid_reset_last(page);
  664. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  665. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  666. return 0;
  667. }
  668. /*
  669. * Frees a number of pages from the PCP lists
  670. * Assumes all pages on list are in same zone, and of same order.
  671. * count is the number of pages to free.
  672. *
  673. * If the zone was previously in an "all pages pinned" state then look to
  674. * see if this freeing clears that state.
  675. *
  676. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  677. * pinned" detection logic.
  678. */
  679. static void free_pcppages_bulk(struct zone *zone, int count,
  680. struct per_cpu_pages *pcp)
  681. {
  682. int migratetype = 0;
  683. int batch_free = 0;
  684. int to_free = count;
  685. unsigned long nr_scanned;
  686. spin_lock(&zone->lock);
  687. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  688. if (nr_scanned)
  689. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  690. while (to_free) {
  691. struct page *page;
  692. struct list_head *list;
  693. /*
  694. * Remove pages from lists in a round-robin fashion. A
  695. * batch_free count is maintained that is incremented when an
  696. * empty list is encountered. This is so more pages are freed
  697. * off fuller lists instead of spinning excessively around empty
  698. * lists
  699. */
  700. do {
  701. batch_free++;
  702. if (++migratetype == MIGRATE_PCPTYPES)
  703. migratetype = 0;
  704. list = &pcp->lists[migratetype];
  705. } while (list_empty(list));
  706. /* This is the only non-empty list. Free them all. */
  707. if (batch_free == MIGRATE_PCPTYPES)
  708. batch_free = to_free;
  709. do {
  710. int mt; /* migratetype of the to-be-freed page */
  711. page = list_entry(list->prev, struct page, lru);
  712. /* must delete as __free_one_page list manipulates */
  713. list_del(&page->lru);
  714. mt = get_pcppage_migratetype(page);
  715. /* MIGRATE_ISOLATE page should not go to pcplists */
  716. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  717. /* Pageblock could have been isolated meanwhile */
  718. if (unlikely(has_isolate_pageblock(zone)))
  719. mt = get_pageblock_migratetype(page);
  720. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  721. trace_mm_page_pcpu_drain(page, 0, mt);
  722. } while (--to_free && --batch_free && !list_empty(list));
  723. }
  724. spin_unlock(&zone->lock);
  725. }
  726. static void free_one_page(struct zone *zone,
  727. struct page *page, unsigned long pfn,
  728. unsigned int order,
  729. int migratetype)
  730. {
  731. unsigned long nr_scanned;
  732. spin_lock(&zone->lock);
  733. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  734. if (nr_scanned)
  735. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  736. if (unlikely(has_isolate_pageblock(zone) ||
  737. is_migrate_isolate(migratetype))) {
  738. migratetype = get_pfnblock_migratetype(page, pfn);
  739. }
  740. __free_one_page(page, pfn, zone, order, migratetype);
  741. spin_unlock(&zone->lock);
  742. }
  743. static int free_tail_pages_check(struct page *head_page, struct page *page)
  744. {
  745. int ret = 1;
  746. /*
  747. * We rely page->lru.next never has bit 0 set, unless the page
  748. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  749. */
  750. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  751. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  752. ret = 0;
  753. goto out;
  754. }
  755. if (unlikely(!PageTail(page))) {
  756. bad_page(page, "PageTail not set", 0);
  757. goto out;
  758. }
  759. if (unlikely(compound_head(page) != head_page)) {
  760. bad_page(page, "compound_head not consistent", 0);
  761. goto out;
  762. }
  763. ret = 0;
  764. out:
  765. clear_compound_head(page);
  766. return ret;
  767. }
  768. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  769. unsigned long zone, int nid)
  770. {
  771. set_page_links(page, zone, nid, pfn);
  772. init_page_count(page);
  773. page_mapcount_reset(page);
  774. page_cpupid_reset_last(page);
  775. INIT_LIST_HEAD(&page->lru);
  776. #ifdef WANT_PAGE_VIRTUAL
  777. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  778. if (!is_highmem_idx(zone))
  779. set_page_address(page, __va(pfn << PAGE_SHIFT));
  780. #endif
  781. }
  782. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  783. int nid)
  784. {
  785. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  786. }
  787. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  788. static void init_reserved_page(unsigned long pfn)
  789. {
  790. pg_data_t *pgdat;
  791. int nid, zid;
  792. if (!early_page_uninitialised(pfn))
  793. return;
  794. nid = early_pfn_to_nid(pfn);
  795. pgdat = NODE_DATA(nid);
  796. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  797. struct zone *zone = &pgdat->node_zones[zid];
  798. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  799. break;
  800. }
  801. __init_single_pfn(pfn, zid, nid);
  802. }
  803. #else
  804. static inline void init_reserved_page(unsigned long pfn)
  805. {
  806. }
  807. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  808. /*
  809. * Initialised pages do not have PageReserved set. This function is
  810. * called for each range allocated by the bootmem allocator and
  811. * marks the pages PageReserved. The remaining valid pages are later
  812. * sent to the buddy page allocator.
  813. */
  814. void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
  815. {
  816. unsigned long start_pfn = PFN_DOWN(start);
  817. unsigned long end_pfn = PFN_UP(end);
  818. for (; start_pfn < end_pfn; start_pfn++) {
  819. if (pfn_valid(start_pfn)) {
  820. struct page *page = pfn_to_page(start_pfn);
  821. init_reserved_page(start_pfn);
  822. /* Avoid false-positive PageTail() */
  823. INIT_LIST_HEAD(&page->lru);
  824. SetPageReserved(page);
  825. }
  826. }
  827. }
  828. static bool free_pages_prepare(struct page *page, unsigned int order)
  829. {
  830. bool compound = PageCompound(page);
  831. int i, bad = 0;
  832. VM_BUG_ON_PAGE(PageTail(page), page);
  833. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  834. trace_mm_page_free(page, order);
  835. kmemcheck_free_shadow(page, order);
  836. kasan_free_pages(page, order);
  837. if (PageAnon(page))
  838. page->mapping = NULL;
  839. bad += free_pages_check(page);
  840. for (i = 1; i < (1 << order); i++) {
  841. if (compound)
  842. bad += free_tail_pages_check(page, page + i);
  843. bad += free_pages_check(page + i);
  844. }
  845. if (bad)
  846. return false;
  847. reset_page_owner(page, order);
  848. if (!PageHighMem(page)) {
  849. debug_check_no_locks_freed(page_address(page),
  850. PAGE_SIZE << order);
  851. debug_check_no_obj_freed(page_address(page),
  852. PAGE_SIZE << order);
  853. }
  854. arch_free_page(page, order);
  855. kernel_map_pages(page, 1 << order, 0);
  856. return true;
  857. }
  858. static void __free_pages_ok(struct page *page, unsigned int order)
  859. {
  860. unsigned long flags;
  861. int migratetype;
  862. unsigned long pfn = page_to_pfn(page);
  863. if (!free_pages_prepare(page, order))
  864. return;
  865. migratetype = get_pfnblock_migratetype(page, pfn);
  866. local_irq_save(flags);
  867. __count_vm_events(PGFREE, 1 << order);
  868. free_one_page(page_zone(page), page, pfn, order, migratetype);
  869. local_irq_restore(flags);
  870. }
  871. static void __init __free_pages_boot_core(struct page *page,
  872. unsigned long pfn, unsigned int order)
  873. {
  874. unsigned int nr_pages = 1 << order;
  875. struct page *p = page;
  876. unsigned int loop;
  877. prefetchw(p);
  878. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  879. prefetchw(p + 1);
  880. __ClearPageReserved(p);
  881. set_page_count(p, 0);
  882. }
  883. __ClearPageReserved(p);
  884. set_page_count(p, 0);
  885. page_zone(page)->managed_pages += nr_pages;
  886. set_page_refcounted(page);
  887. __free_pages(page, order);
  888. }
  889. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  890. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  891. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  892. int __meminit early_pfn_to_nid(unsigned long pfn)
  893. {
  894. static DEFINE_SPINLOCK(early_pfn_lock);
  895. int nid;
  896. spin_lock(&early_pfn_lock);
  897. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  898. if (nid < 0)
  899. nid = 0;
  900. spin_unlock(&early_pfn_lock);
  901. return nid;
  902. }
  903. #endif
  904. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  905. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  906. struct mminit_pfnnid_cache *state)
  907. {
  908. int nid;
  909. nid = __early_pfn_to_nid(pfn, state);
  910. if (nid >= 0 && nid != node)
  911. return false;
  912. return true;
  913. }
  914. /* Only safe to use early in boot when initialisation is single-threaded */
  915. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  916. {
  917. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  918. }
  919. #else
  920. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  921. {
  922. return true;
  923. }
  924. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  925. struct mminit_pfnnid_cache *state)
  926. {
  927. return true;
  928. }
  929. #endif
  930. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  931. unsigned int order)
  932. {
  933. if (early_page_uninitialised(pfn))
  934. return;
  935. return __free_pages_boot_core(page, pfn, order);
  936. }
  937. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  938. static void __init deferred_free_range(struct page *page,
  939. unsigned long pfn, int nr_pages)
  940. {
  941. int i;
  942. if (!page)
  943. return;
  944. /* Free a large naturally-aligned chunk if possible */
  945. if (nr_pages == MAX_ORDER_NR_PAGES &&
  946. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  947. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  948. __free_pages_boot_core(page, pfn, MAX_ORDER-1);
  949. return;
  950. }
  951. for (i = 0; i < nr_pages; i++, page++, pfn++)
  952. __free_pages_boot_core(page, pfn, 0);
  953. }
  954. /* Completion tracking for deferred_init_memmap() threads */
  955. static atomic_t pgdat_init_n_undone __initdata;
  956. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  957. static inline void __init pgdat_init_report_one_done(void)
  958. {
  959. if (atomic_dec_and_test(&pgdat_init_n_undone))
  960. complete(&pgdat_init_all_done_comp);
  961. }
  962. /* Initialise remaining memory on a node */
  963. static int __init deferred_init_memmap(void *data)
  964. {
  965. pg_data_t *pgdat = data;
  966. int nid = pgdat->node_id;
  967. struct mminit_pfnnid_cache nid_init_state = { };
  968. unsigned long start = jiffies;
  969. unsigned long nr_pages = 0;
  970. unsigned long walk_start, walk_end;
  971. int i, zid;
  972. struct zone *zone;
  973. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  974. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  975. if (first_init_pfn == ULONG_MAX) {
  976. pgdat_init_report_one_done();
  977. return 0;
  978. }
  979. /* Bind memory initialisation thread to a local node if possible */
  980. if (!cpumask_empty(cpumask))
  981. set_cpus_allowed_ptr(current, cpumask);
  982. /* Sanity check boundaries */
  983. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  984. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  985. pgdat->first_deferred_pfn = ULONG_MAX;
  986. /* Only the highest zone is deferred so find it */
  987. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  988. zone = pgdat->node_zones + zid;
  989. if (first_init_pfn < zone_end_pfn(zone))
  990. break;
  991. }
  992. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  993. unsigned long pfn, end_pfn;
  994. struct page *page = NULL;
  995. struct page *free_base_page = NULL;
  996. unsigned long free_base_pfn = 0;
  997. int nr_to_free = 0;
  998. end_pfn = min(walk_end, zone_end_pfn(zone));
  999. pfn = first_init_pfn;
  1000. if (pfn < walk_start)
  1001. pfn = walk_start;
  1002. if (pfn < zone->zone_start_pfn)
  1003. pfn = zone->zone_start_pfn;
  1004. for (; pfn < end_pfn; pfn++) {
  1005. if (!pfn_valid_within(pfn))
  1006. goto free_range;
  1007. /*
  1008. * Ensure pfn_valid is checked every
  1009. * MAX_ORDER_NR_PAGES for memory holes
  1010. */
  1011. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  1012. if (!pfn_valid(pfn)) {
  1013. page = NULL;
  1014. goto free_range;
  1015. }
  1016. }
  1017. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1018. page = NULL;
  1019. goto free_range;
  1020. }
  1021. /* Minimise pfn page lookups and scheduler checks */
  1022. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  1023. page++;
  1024. } else {
  1025. nr_pages += nr_to_free;
  1026. deferred_free_range(free_base_page,
  1027. free_base_pfn, nr_to_free);
  1028. free_base_page = NULL;
  1029. free_base_pfn = nr_to_free = 0;
  1030. page = pfn_to_page(pfn);
  1031. cond_resched();
  1032. }
  1033. if (page->flags) {
  1034. VM_BUG_ON(page_zone(page) != zone);
  1035. goto free_range;
  1036. }
  1037. __init_single_page(page, pfn, zid, nid);
  1038. if (!free_base_page) {
  1039. free_base_page = page;
  1040. free_base_pfn = pfn;
  1041. nr_to_free = 0;
  1042. }
  1043. nr_to_free++;
  1044. /* Where possible, batch up pages for a single free */
  1045. continue;
  1046. free_range:
  1047. /* Free the current block of pages to allocator */
  1048. nr_pages += nr_to_free;
  1049. deferred_free_range(free_base_page, free_base_pfn,
  1050. nr_to_free);
  1051. free_base_page = NULL;
  1052. free_base_pfn = nr_to_free = 0;
  1053. }
  1054. first_init_pfn = max(end_pfn, first_init_pfn);
  1055. }
  1056. /* Sanity check that the next zone really is unpopulated */
  1057. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1058. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1059. jiffies_to_msecs(jiffies - start));
  1060. pgdat_init_report_one_done();
  1061. return 0;
  1062. }
  1063. void __init page_alloc_init_late(void)
  1064. {
  1065. int nid;
  1066. /* There will be num_node_state(N_MEMORY) threads */
  1067. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1068. for_each_node_state(nid, N_MEMORY) {
  1069. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1070. }
  1071. /* Block until all are initialised */
  1072. wait_for_completion(&pgdat_init_all_done_comp);
  1073. /* Reinit limits that are based on free pages after the kernel is up */
  1074. files_maxfiles_init();
  1075. }
  1076. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1077. #ifdef CONFIG_CMA
  1078. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1079. void __init init_cma_reserved_pageblock(struct page *page)
  1080. {
  1081. unsigned i = pageblock_nr_pages;
  1082. struct page *p = page;
  1083. do {
  1084. __ClearPageReserved(p);
  1085. set_page_count(p, 0);
  1086. } while (++p, --i);
  1087. set_pageblock_migratetype(page, MIGRATE_CMA);
  1088. if (pageblock_order >= MAX_ORDER) {
  1089. i = pageblock_nr_pages;
  1090. p = page;
  1091. do {
  1092. set_page_refcounted(p);
  1093. __free_pages(p, MAX_ORDER - 1);
  1094. p += MAX_ORDER_NR_PAGES;
  1095. } while (i -= MAX_ORDER_NR_PAGES);
  1096. } else {
  1097. set_page_refcounted(page);
  1098. __free_pages(page, pageblock_order);
  1099. }
  1100. adjust_managed_page_count(page, pageblock_nr_pages);
  1101. }
  1102. #endif
  1103. /*
  1104. * The order of subdivision here is critical for the IO subsystem.
  1105. * Please do not alter this order without good reasons and regression
  1106. * testing. Specifically, as large blocks of memory are subdivided,
  1107. * the order in which smaller blocks are delivered depends on the order
  1108. * they're subdivided in this function. This is the primary factor
  1109. * influencing the order in which pages are delivered to the IO
  1110. * subsystem according to empirical testing, and this is also justified
  1111. * by considering the behavior of a buddy system containing a single
  1112. * large block of memory acted on by a series of small allocations.
  1113. * This behavior is a critical factor in sglist merging's success.
  1114. *
  1115. * -- nyc
  1116. */
  1117. static inline void expand(struct zone *zone, struct page *page,
  1118. int low, int high, struct free_area *area,
  1119. int migratetype)
  1120. {
  1121. unsigned long size = 1 << high;
  1122. while (high > low) {
  1123. area--;
  1124. high--;
  1125. size >>= 1;
  1126. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1127. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1128. debug_guardpage_enabled() &&
  1129. high < debug_guardpage_minorder()) {
  1130. /*
  1131. * Mark as guard pages (or page), that will allow to
  1132. * merge back to allocator when buddy will be freed.
  1133. * Corresponding page table entries will not be touched,
  1134. * pages will stay not present in virtual address space
  1135. */
  1136. set_page_guard(zone, &page[size], high, migratetype);
  1137. continue;
  1138. }
  1139. list_add(&page[size].lru, &area->free_list[migratetype]);
  1140. area->nr_free++;
  1141. set_page_order(&page[size], high);
  1142. }
  1143. }
  1144. /*
  1145. * This page is about to be returned from the page allocator
  1146. */
  1147. static inline int check_new_page(struct page *page)
  1148. {
  1149. const char *bad_reason = NULL;
  1150. unsigned long bad_flags = 0;
  1151. if (unlikely(page_mapcount(page)))
  1152. bad_reason = "nonzero mapcount";
  1153. if (unlikely(page->mapping != NULL))
  1154. bad_reason = "non-NULL mapping";
  1155. if (unlikely(atomic_read(&page->_count) != 0))
  1156. bad_reason = "nonzero _count";
  1157. if (unlikely(page->flags & __PG_HWPOISON)) {
  1158. bad_reason = "HWPoisoned (hardware-corrupted)";
  1159. bad_flags = __PG_HWPOISON;
  1160. }
  1161. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1162. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1163. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1164. }
  1165. #ifdef CONFIG_MEMCG
  1166. if (unlikely(page->mem_cgroup))
  1167. bad_reason = "page still charged to cgroup";
  1168. #endif
  1169. if (unlikely(bad_reason)) {
  1170. bad_page(page, bad_reason, bad_flags);
  1171. return 1;
  1172. }
  1173. return 0;
  1174. }
  1175. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1176. int alloc_flags)
  1177. {
  1178. int i;
  1179. for (i = 0; i < (1 << order); i++) {
  1180. struct page *p = page + i;
  1181. if (unlikely(check_new_page(p)))
  1182. return 1;
  1183. }
  1184. set_page_private(page, 0);
  1185. set_page_refcounted(page);
  1186. arch_alloc_page(page, order);
  1187. kernel_map_pages(page, 1 << order, 1);
  1188. kasan_alloc_pages(page, order);
  1189. if (gfp_flags & __GFP_ZERO)
  1190. for (i = 0; i < (1 << order); i++)
  1191. clear_highpage(page + i);
  1192. if (order && (gfp_flags & __GFP_COMP))
  1193. prep_compound_page(page, order);
  1194. set_page_owner(page, order, gfp_flags);
  1195. /*
  1196. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1197. * allocate the page. The expectation is that the caller is taking
  1198. * steps that will free more memory. The caller should avoid the page
  1199. * being used for !PFMEMALLOC purposes.
  1200. */
  1201. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1202. set_page_pfmemalloc(page);
  1203. else
  1204. clear_page_pfmemalloc(page);
  1205. return 0;
  1206. }
  1207. /*
  1208. * Go through the free lists for the given migratetype and remove
  1209. * the smallest available page from the freelists
  1210. */
  1211. static inline
  1212. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1213. int migratetype)
  1214. {
  1215. unsigned int current_order;
  1216. struct free_area *area;
  1217. struct page *page;
  1218. /* Find a page of the appropriate size in the preferred list */
  1219. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1220. area = &(zone->free_area[current_order]);
  1221. if (list_empty(&area->free_list[migratetype]))
  1222. continue;
  1223. page = list_entry(area->free_list[migratetype].next,
  1224. struct page, lru);
  1225. list_del(&page->lru);
  1226. rmv_page_order(page);
  1227. area->nr_free--;
  1228. expand(zone, page, order, current_order, area, migratetype);
  1229. set_pcppage_migratetype(page, migratetype);
  1230. return page;
  1231. }
  1232. return NULL;
  1233. }
  1234. /*
  1235. * This array describes the order lists are fallen back to when
  1236. * the free lists for the desirable migrate type are depleted
  1237. */
  1238. static int fallbacks[MIGRATE_TYPES][4] = {
  1239. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1240. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1241. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1242. #ifdef CONFIG_CMA
  1243. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1244. #endif
  1245. #ifdef CONFIG_MEMORY_ISOLATION
  1246. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1247. #endif
  1248. };
  1249. #ifdef CONFIG_CMA
  1250. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1251. unsigned int order)
  1252. {
  1253. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1254. }
  1255. #else
  1256. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1257. unsigned int order) { return NULL; }
  1258. #endif
  1259. /*
  1260. * Move the free pages in a range to the free lists of the requested type.
  1261. * Note that start_page and end_pages are not aligned on a pageblock
  1262. * boundary. If alignment is required, use move_freepages_block()
  1263. */
  1264. int move_freepages(struct zone *zone,
  1265. struct page *start_page, struct page *end_page,
  1266. int migratetype)
  1267. {
  1268. struct page *page;
  1269. unsigned int order;
  1270. int pages_moved = 0;
  1271. #ifndef CONFIG_HOLES_IN_ZONE
  1272. /*
  1273. * page_zone is not safe to call in this context when
  1274. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1275. * anyway as we check zone boundaries in move_freepages_block().
  1276. * Remove at a later date when no bug reports exist related to
  1277. * grouping pages by mobility
  1278. */
  1279. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1280. #endif
  1281. for (page = start_page; page <= end_page;) {
  1282. /* Make sure we are not inadvertently changing nodes */
  1283. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1284. if (!pfn_valid_within(page_to_pfn(page))) {
  1285. page++;
  1286. continue;
  1287. }
  1288. if (!PageBuddy(page)) {
  1289. page++;
  1290. continue;
  1291. }
  1292. order = page_order(page);
  1293. list_move(&page->lru,
  1294. &zone->free_area[order].free_list[migratetype]);
  1295. page += 1 << order;
  1296. pages_moved += 1 << order;
  1297. }
  1298. return pages_moved;
  1299. }
  1300. int move_freepages_block(struct zone *zone, struct page *page,
  1301. int migratetype)
  1302. {
  1303. unsigned long start_pfn, end_pfn;
  1304. struct page *start_page, *end_page;
  1305. start_pfn = page_to_pfn(page);
  1306. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1307. start_page = pfn_to_page(start_pfn);
  1308. end_page = start_page + pageblock_nr_pages - 1;
  1309. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1310. /* Do not cross zone boundaries */
  1311. if (!zone_spans_pfn(zone, start_pfn))
  1312. start_page = page;
  1313. if (!zone_spans_pfn(zone, end_pfn))
  1314. return 0;
  1315. return move_freepages(zone, start_page, end_page, migratetype);
  1316. }
  1317. static void change_pageblock_range(struct page *pageblock_page,
  1318. int start_order, int migratetype)
  1319. {
  1320. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1321. while (nr_pageblocks--) {
  1322. set_pageblock_migratetype(pageblock_page, migratetype);
  1323. pageblock_page += pageblock_nr_pages;
  1324. }
  1325. }
  1326. /*
  1327. * When we are falling back to another migratetype during allocation, try to
  1328. * steal extra free pages from the same pageblocks to satisfy further
  1329. * allocations, instead of polluting multiple pageblocks.
  1330. *
  1331. * If we are stealing a relatively large buddy page, it is likely there will
  1332. * be more free pages in the pageblock, so try to steal them all. For
  1333. * reclaimable and unmovable allocations, we steal regardless of page size,
  1334. * as fragmentation caused by those allocations polluting movable pageblocks
  1335. * is worse than movable allocations stealing from unmovable and reclaimable
  1336. * pageblocks.
  1337. */
  1338. static bool can_steal_fallback(unsigned int order, int start_mt)
  1339. {
  1340. /*
  1341. * Leaving this order check is intended, although there is
  1342. * relaxed order check in next check. The reason is that
  1343. * we can actually steal whole pageblock if this condition met,
  1344. * but, below check doesn't guarantee it and that is just heuristic
  1345. * so could be changed anytime.
  1346. */
  1347. if (order >= pageblock_order)
  1348. return true;
  1349. if (order >= pageblock_order / 2 ||
  1350. start_mt == MIGRATE_RECLAIMABLE ||
  1351. start_mt == MIGRATE_UNMOVABLE ||
  1352. page_group_by_mobility_disabled)
  1353. return true;
  1354. return false;
  1355. }
  1356. /*
  1357. * This function implements actual steal behaviour. If order is large enough,
  1358. * we can steal whole pageblock. If not, we first move freepages in this
  1359. * pageblock and check whether half of pages are moved or not. If half of
  1360. * pages are moved, we can change migratetype of pageblock and permanently
  1361. * use it's pages as requested migratetype in the future.
  1362. */
  1363. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1364. int start_type)
  1365. {
  1366. unsigned int current_order = page_order(page);
  1367. int pages;
  1368. /* Take ownership for orders >= pageblock_order */
  1369. if (current_order >= pageblock_order) {
  1370. change_pageblock_range(page, current_order, start_type);
  1371. return;
  1372. }
  1373. pages = move_freepages_block(zone, page, start_type);
  1374. /* Claim the whole block if over half of it is free */
  1375. if (pages >= (1 << (pageblock_order-1)) ||
  1376. page_group_by_mobility_disabled)
  1377. set_pageblock_migratetype(page, start_type);
  1378. }
  1379. /*
  1380. * Check whether there is a suitable fallback freepage with requested order.
  1381. * If only_stealable is true, this function returns fallback_mt only if
  1382. * we can steal other freepages all together. This would help to reduce
  1383. * fragmentation due to mixed migratetype pages in one pageblock.
  1384. */
  1385. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1386. int migratetype, bool only_stealable, bool *can_steal)
  1387. {
  1388. int i;
  1389. int fallback_mt;
  1390. if (area->nr_free == 0)
  1391. return -1;
  1392. *can_steal = false;
  1393. for (i = 0;; i++) {
  1394. fallback_mt = fallbacks[migratetype][i];
  1395. if (fallback_mt == MIGRATE_TYPES)
  1396. break;
  1397. if (list_empty(&area->free_list[fallback_mt]))
  1398. continue;
  1399. if (can_steal_fallback(order, migratetype))
  1400. *can_steal = true;
  1401. if (!only_stealable)
  1402. return fallback_mt;
  1403. if (*can_steal)
  1404. return fallback_mt;
  1405. }
  1406. return -1;
  1407. }
  1408. /*
  1409. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1410. * there are no empty page blocks that contain a page with a suitable order
  1411. */
  1412. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1413. unsigned int alloc_order)
  1414. {
  1415. int mt;
  1416. unsigned long max_managed, flags;
  1417. /*
  1418. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1419. * Check is race-prone but harmless.
  1420. */
  1421. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1422. if (zone->nr_reserved_highatomic >= max_managed)
  1423. return;
  1424. spin_lock_irqsave(&zone->lock, flags);
  1425. /* Recheck the nr_reserved_highatomic limit under the lock */
  1426. if (zone->nr_reserved_highatomic >= max_managed)
  1427. goto out_unlock;
  1428. /* Yoink! */
  1429. mt = get_pageblock_migratetype(page);
  1430. if (mt != MIGRATE_HIGHATOMIC &&
  1431. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1432. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1433. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1434. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1435. }
  1436. out_unlock:
  1437. spin_unlock_irqrestore(&zone->lock, flags);
  1438. }
  1439. /*
  1440. * Used when an allocation is about to fail under memory pressure. This
  1441. * potentially hurts the reliability of high-order allocations when under
  1442. * intense memory pressure but failed atomic allocations should be easier
  1443. * to recover from than an OOM.
  1444. */
  1445. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1446. {
  1447. struct zonelist *zonelist = ac->zonelist;
  1448. unsigned long flags;
  1449. struct zoneref *z;
  1450. struct zone *zone;
  1451. struct page *page;
  1452. int order;
  1453. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1454. ac->nodemask) {
  1455. /* Preserve at least one pageblock */
  1456. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1457. continue;
  1458. spin_lock_irqsave(&zone->lock, flags);
  1459. for (order = 0; order < MAX_ORDER; order++) {
  1460. struct free_area *area = &(zone->free_area[order]);
  1461. if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
  1462. continue;
  1463. page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
  1464. struct page, lru);
  1465. /*
  1466. * It should never happen but changes to locking could
  1467. * inadvertently allow a per-cpu drain to add pages
  1468. * to MIGRATE_HIGHATOMIC while unreserving so be safe
  1469. * and watch for underflows.
  1470. */
  1471. zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
  1472. zone->nr_reserved_highatomic);
  1473. /*
  1474. * Convert to ac->migratetype and avoid the normal
  1475. * pageblock stealing heuristics. Minimally, the caller
  1476. * is doing the work and needs the pages. More
  1477. * importantly, if the block was always converted to
  1478. * MIGRATE_UNMOVABLE or another type then the number
  1479. * of pageblocks that cannot be completely freed
  1480. * may increase.
  1481. */
  1482. set_pageblock_migratetype(page, ac->migratetype);
  1483. move_freepages_block(zone, page, ac->migratetype);
  1484. spin_unlock_irqrestore(&zone->lock, flags);
  1485. return;
  1486. }
  1487. spin_unlock_irqrestore(&zone->lock, flags);
  1488. }
  1489. }
  1490. /* Remove an element from the buddy allocator from the fallback list */
  1491. static inline struct page *
  1492. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1493. {
  1494. struct free_area *area;
  1495. unsigned int current_order;
  1496. struct page *page;
  1497. int fallback_mt;
  1498. bool can_steal;
  1499. /* Find the largest possible block of pages in the other list */
  1500. for (current_order = MAX_ORDER-1;
  1501. current_order >= order && current_order <= MAX_ORDER-1;
  1502. --current_order) {
  1503. area = &(zone->free_area[current_order]);
  1504. fallback_mt = find_suitable_fallback(area, current_order,
  1505. start_migratetype, false, &can_steal);
  1506. if (fallback_mt == -1)
  1507. continue;
  1508. page = list_entry(area->free_list[fallback_mt].next,
  1509. struct page, lru);
  1510. if (can_steal)
  1511. steal_suitable_fallback(zone, page, start_migratetype);
  1512. /* Remove the page from the freelists */
  1513. area->nr_free--;
  1514. list_del(&page->lru);
  1515. rmv_page_order(page);
  1516. expand(zone, page, order, current_order, area,
  1517. start_migratetype);
  1518. /*
  1519. * The pcppage_migratetype may differ from pageblock's
  1520. * migratetype depending on the decisions in
  1521. * find_suitable_fallback(). This is OK as long as it does not
  1522. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1523. * fallback only via special __rmqueue_cma_fallback() function
  1524. */
  1525. set_pcppage_migratetype(page, start_migratetype);
  1526. trace_mm_page_alloc_extfrag(page, order, current_order,
  1527. start_migratetype, fallback_mt);
  1528. return page;
  1529. }
  1530. return NULL;
  1531. }
  1532. /*
  1533. * Do the hard work of removing an element from the buddy allocator.
  1534. * Call me with the zone->lock already held.
  1535. */
  1536. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1537. int migratetype, gfp_t gfp_flags)
  1538. {
  1539. struct page *page;
  1540. page = __rmqueue_smallest(zone, order, migratetype);
  1541. if (unlikely(!page)) {
  1542. if (migratetype == MIGRATE_MOVABLE)
  1543. page = __rmqueue_cma_fallback(zone, order);
  1544. if (!page)
  1545. page = __rmqueue_fallback(zone, order, migratetype);
  1546. }
  1547. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1548. return page;
  1549. }
  1550. /*
  1551. * Obtain a specified number of elements from the buddy allocator, all under
  1552. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1553. * Returns the number of new pages which were placed at *list.
  1554. */
  1555. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1556. unsigned long count, struct list_head *list,
  1557. int migratetype, bool cold)
  1558. {
  1559. int i;
  1560. spin_lock(&zone->lock);
  1561. for (i = 0; i < count; ++i) {
  1562. struct page *page = __rmqueue(zone, order, migratetype, 0);
  1563. if (unlikely(page == NULL))
  1564. break;
  1565. /*
  1566. * Split buddy pages returned by expand() are received here
  1567. * in physical page order. The page is added to the callers and
  1568. * list and the list head then moves forward. From the callers
  1569. * perspective, the linked list is ordered by page number in
  1570. * some conditions. This is useful for IO devices that can
  1571. * merge IO requests if the physical pages are ordered
  1572. * properly.
  1573. */
  1574. if (likely(!cold))
  1575. list_add(&page->lru, list);
  1576. else
  1577. list_add_tail(&page->lru, list);
  1578. list = &page->lru;
  1579. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1580. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1581. -(1 << order));
  1582. }
  1583. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1584. spin_unlock(&zone->lock);
  1585. return i;
  1586. }
  1587. #ifdef CONFIG_NUMA
  1588. /*
  1589. * Called from the vmstat counter updater to drain pagesets of this
  1590. * currently executing processor on remote nodes after they have
  1591. * expired.
  1592. *
  1593. * Note that this function must be called with the thread pinned to
  1594. * a single processor.
  1595. */
  1596. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1597. {
  1598. unsigned long flags;
  1599. int to_drain, batch;
  1600. local_irq_save(flags);
  1601. batch = READ_ONCE(pcp->batch);
  1602. to_drain = min(pcp->count, batch);
  1603. if (to_drain > 0) {
  1604. free_pcppages_bulk(zone, to_drain, pcp);
  1605. pcp->count -= to_drain;
  1606. }
  1607. local_irq_restore(flags);
  1608. }
  1609. #endif
  1610. /*
  1611. * Drain pcplists of the indicated processor and zone.
  1612. *
  1613. * The processor must either be the current processor and the
  1614. * thread pinned to the current processor or a processor that
  1615. * is not online.
  1616. */
  1617. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1618. {
  1619. unsigned long flags;
  1620. struct per_cpu_pageset *pset;
  1621. struct per_cpu_pages *pcp;
  1622. local_irq_save(flags);
  1623. pset = per_cpu_ptr(zone->pageset, cpu);
  1624. pcp = &pset->pcp;
  1625. if (pcp->count) {
  1626. free_pcppages_bulk(zone, pcp->count, pcp);
  1627. pcp->count = 0;
  1628. }
  1629. local_irq_restore(flags);
  1630. }
  1631. /*
  1632. * Drain pcplists of all zones on the indicated processor.
  1633. *
  1634. * The processor must either be the current processor and the
  1635. * thread pinned to the current processor or a processor that
  1636. * is not online.
  1637. */
  1638. static void drain_pages(unsigned int cpu)
  1639. {
  1640. struct zone *zone;
  1641. for_each_populated_zone(zone) {
  1642. drain_pages_zone(cpu, zone);
  1643. }
  1644. }
  1645. /*
  1646. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1647. *
  1648. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1649. * the single zone's pages.
  1650. */
  1651. void drain_local_pages(struct zone *zone)
  1652. {
  1653. int cpu = smp_processor_id();
  1654. if (zone)
  1655. drain_pages_zone(cpu, zone);
  1656. else
  1657. drain_pages(cpu);
  1658. }
  1659. /*
  1660. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1661. *
  1662. * When zone parameter is non-NULL, spill just the single zone's pages.
  1663. *
  1664. * Note that this code is protected against sending an IPI to an offline
  1665. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1666. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1667. * nothing keeps CPUs from showing up after we populated the cpumask and
  1668. * before the call to on_each_cpu_mask().
  1669. */
  1670. void drain_all_pages(struct zone *zone)
  1671. {
  1672. int cpu;
  1673. /*
  1674. * Allocate in the BSS so we wont require allocation in
  1675. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1676. */
  1677. static cpumask_t cpus_with_pcps;
  1678. /*
  1679. * We don't care about racing with CPU hotplug event
  1680. * as offline notification will cause the notified
  1681. * cpu to drain that CPU pcps and on_each_cpu_mask
  1682. * disables preemption as part of its processing
  1683. */
  1684. for_each_online_cpu(cpu) {
  1685. struct per_cpu_pageset *pcp;
  1686. struct zone *z;
  1687. bool has_pcps = false;
  1688. if (zone) {
  1689. pcp = per_cpu_ptr(zone->pageset, cpu);
  1690. if (pcp->pcp.count)
  1691. has_pcps = true;
  1692. } else {
  1693. for_each_populated_zone(z) {
  1694. pcp = per_cpu_ptr(z->pageset, cpu);
  1695. if (pcp->pcp.count) {
  1696. has_pcps = true;
  1697. break;
  1698. }
  1699. }
  1700. }
  1701. if (has_pcps)
  1702. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1703. else
  1704. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1705. }
  1706. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  1707. zone, 1);
  1708. }
  1709. #ifdef CONFIG_HIBERNATION
  1710. void mark_free_pages(struct zone *zone)
  1711. {
  1712. unsigned long pfn, max_zone_pfn;
  1713. unsigned long flags;
  1714. unsigned int order, t;
  1715. struct list_head *curr;
  1716. if (zone_is_empty(zone))
  1717. return;
  1718. spin_lock_irqsave(&zone->lock, flags);
  1719. max_zone_pfn = zone_end_pfn(zone);
  1720. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1721. if (pfn_valid(pfn)) {
  1722. struct page *page = pfn_to_page(pfn);
  1723. if (!swsusp_page_is_forbidden(page))
  1724. swsusp_unset_page_free(page);
  1725. }
  1726. for_each_migratetype_order(order, t) {
  1727. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1728. unsigned long i;
  1729. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1730. for (i = 0; i < (1UL << order); i++)
  1731. swsusp_set_page_free(pfn_to_page(pfn + i));
  1732. }
  1733. }
  1734. spin_unlock_irqrestore(&zone->lock, flags);
  1735. }
  1736. #endif /* CONFIG_PM */
  1737. /*
  1738. * Free a 0-order page
  1739. * cold == true ? free a cold page : free a hot page
  1740. */
  1741. void free_hot_cold_page(struct page *page, bool cold)
  1742. {
  1743. struct zone *zone = page_zone(page);
  1744. struct per_cpu_pages *pcp;
  1745. unsigned long flags;
  1746. unsigned long pfn = page_to_pfn(page);
  1747. int migratetype;
  1748. if (!free_pages_prepare(page, 0))
  1749. return;
  1750. migratetype = get_pfnblock_migratetype(page, pfn);
  1751. set_pcppage_migratetype(page, migratetype);
  1752. local_irq_save(flags);
  1753. __count_vm_event(PGFREE);
  1754. /*
  1755. * We only track unmovable, reclaimable and movable on pcp lists.
  1756. * Free ISOLATE pages back to the allocator because they are being
  1757. * offlined but treat RESERVE as movable pages so we can get those
  1758. * areas back if necessary. Otherwise, we may have to free
  1759. * excessively into the page allocator
  1760. */
  1761. if (migratetype >= MIGRATE_PCPTYPES) {
  1762. if (unlikely(is_migrate_isolate(migratetype))) {
  1763. free_one_page(zone, page, pfn, 0, migratetype);
  1764. goto out;
  1765. }
  1766. migratetype = MIGRATE_MOVABLE;
  1767. }
  1768. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1769. if (!cold)
  1770. list_add(&page->lru, &pcp->lists[migratetype]);
  1771. else
  1772. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1773. pcp->count++;
  1774. if (pcp->count >= pcp->high) {
  1775. unsigned long batch = READ_ONCE(pcp->batch);
  1776. free_pcppages_bulk(zone, batch, pcp);
  1777. pcp->count -= batch;
  1778. }
  1779. out:
  1780. local_irq_restore(flags);
  1781. }
  1782. /*
  1783. * Free a list of 0-order pages
  1784. */
  1785. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1786. {
  1787. struct page *page, *next;
  1788. list_for_each_entry_safe(page, next, list, lru) {
  1789. trace_mm_page_free_batched(page, cold);
  1790. free_hot_cold_page(page, cold);
  1791. }
  1792. }
  1793. /*
  1794. * split_page takes a non-compound higher-order page, and splits it into
  1795. * n (1<<order) sub-pages: page[0..n]
  1796. * Each sub-page must be freed individually.
  1797. *
  1798. * Note: this is probably too low level an operation for use in drivers.
  1799. * Please consult with lkml before using this in your driver.
  1800. */
  1801. void split_page(struct page *page, unsigned int order)
  1802. {
  1803. int i;
  1804. gfp_t gfp_mask;
  1805. VM_BUG_ON_PAGE(PageCompound(page), page);
  1806. VM_BUG_ON_PAGE(!page_count(page), page);
  1807. #ifdef CONFIG_KMEMCHECK
  1808. /*
  1809. * Split shadow pages too, because free(page[0]) would
  1810. * otherwise free the whole shadow.
  1811. */
  1812. if (kmemcheck_page_is_tracked(page))
  1813. split_page(virt_to_page(page[0].shadow), order);
  1814. #endif
  1815. gfp_mask = get_page_owner_gfp(page);
  1816. set_page_owner(page, 0, gfp_mask);
  1817. for (i = 1; i < (1 << order); i++) {
  1818. set_page_refcounted(page + i);
  1819. set_page_owner(page + i, 0, gfp_mask);
  1820. }
  1821. }
  1822. EXPORT_SYMBOL_GPL(split_page);
  1823. int __isolate_free_page(struct page *page, unsigned int order)
  1824. {
  1825. unsigned long watermark;
  1826. struct zone *zone;
  1827. int mt;
  1828. BUG_ON(!PageBuddy(page));
  1829. zone = page_zone(page);
  1830. mt = get_pageblock_migratetype(page);
  1831. if (!is_migrate_isolate(mt)) {
  1832. /* Obey watermarks as if the page was being allocated */
  1833. watermark = low_wmark_pages(zone) + (1 << order);
  1834. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1835. return 0;
  1836. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1837. }
  1838. /* Remove page from free list */
  1839. list_del(&page->lru);
  1840. zone->free_area[order].nr_free--;
  1841. rmv_page_order(page);
  1842. set_page_owner(page, order, __GFP_MOVABLE);
  1843. /* Set the pageblock if the isolated page is at least a pageblock */
  1844. if (order >= pageblock_order - 1) {
  1845. struct page *endpage = page + (1 << order) - 1;
  1846. for (; page < endpage; page += pageblock_nr_pages) {
  1847. int mt = get_pageblock_migratetype(page);
  1848. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1849. set_pageblock_migratetype(page,
  1850. MIGRATE_MOVABLE);
  1851. }
  1852. }
  1853. return 1UL << order;
  1854. }
  1855. /*
  1856. * Similar to split_page except the page is already free. As this is only
  1857. * being used for migration, the migratetype of the block also changes.
  1858. * As this is called with interrupts disabled, the caller is responsible
  1859. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1860. * are enabled.
  1861. *
  1862. * Note: this is probably too low level an operation for use in drivers.
  1863. * Please consult with lkml before using this in your driver.
  1864. */
  1865. int split_free_page(struct page *page)
  1866. {
  1867. unsigned int order;
  1868. int nr_pages;
  1869. order = page_order(page);
  1870. nr_pages = __isolate_free_page(page, order);
  1871. if (!nr_pages)
  1872. return 0;
  1873. /* Split into individual pages */
  1874. set_page_refcounted(page);
  1875. split_page(page, order);
  1876. return nr_pages;
  1877. }
  1878. /*
  1879. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  1880. */
  1881. static inline
  1882. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1883. struct zone *zone, unsigned int order,
  1884. gfp_t gfp_flags, int alloc_flags, int migratetype)
  1885. {
  1886. unsigned long flags;
  1887. struct page *page;
  1888. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1889. if (likely(order == 0)) {
  1890. struct per_cpu_pages *pcp;
  1891. struct list_head *list;
  1892. local_irq_save(flags);
  1893. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1894. list = &pcp->lists[migratetype];
  1895. if (list_empty(list)) {
  1896. pcp->count += rmqueue_bulk(zone, 0,
  1897. pcp->batch, list,
  1898. migratetype, cold);
  1899. if (unlikely(list_empty(list)))
  1900. goto failed;
  1901. }
  1902. if (cold)
  1903. page = list_entry(list->prev, struct page, lru);
  1904. else
  1905. page = list_entry(list->next, struct page, lru);
  1906. list_del(&page->lru);
  1907. pcp->count--;
  1908. } else {
  1909. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1910. /*
  1911. * __GFP_NOFAIL is not to be used in new code.
  1912. *
  1913. * All __GFP_NOFAIL callers should be fixed so that they
  1914. * properly detect and handle allocation failures.
  1915. *
  1916. * We most definitely don't want callers attempting to
  1917. * allocate greater than order-1 page units with
  1918. * __GFP_NOFAIL.
  1919. */
  1920. WARN_ON_ONCE(order > 1);
  1921. }
  1922. spin_lock_irqsave(&zone->lock, flags);
  1923. page = NULL;
  1924. if (alloc_flags & ALLOC_HARDER) {
  1925. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  1926. if (page)
  1927. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1928. }
  1929. if (!page)
  1930. page = __rmqueue(zone, order, migratetype, gfp_flags);
  1931. spin_unlock(&zone->lock);
  1932. if (!page)
  1933. goto failed;
  1934. __mod_zone_freepage_state(zone, -(1 << order),
  1935. get_pcppage_migratetype(page));
  1936. }
  1937. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1938. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  1939. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  1940. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1941. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1942. zone_statistics(preferred_zone, zone, gfp_flags);
  1943. local_irq_restore(flags);
  1944. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  1945. return page;
  1946. failed:
  1947. local_irq_restore(flags);
  1948. return NULL;
  1949. }
  1950. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1951. static struct {
  1952. struct fault_attr attr;
  1953. bool ignore_gfp_highmem;
  1954. bool ignore_gfp_reclaim;
  1955. u32 min_order;
  1956. } fail_page_alloc = {
  1957. .attr = FAULT_ATTR_INITIALIZER,
  1958. .ignore_gfp_reclaim = true,
  1959. .ignore_gfp_highmem = true,
  1960. .min_order = 1,
  1961. };
  1962. static int __init setup_fail_page_alloc(char *str)
  1963. {
  1964. return setup_fault_attr(&fail_page_alloc.attr, str);
  1965. }
  1966. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1967. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1968. {
  1969. if (order < fail_page_alloc.min_order)
  1970. return false;
  1971. if (gfp_mask & __GFP_NOFAIL)
  1972. return false;
  1973. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1974. return false;
  1975. if (fail_page_alloc.ignore_gfp_reclaim &&
  1976. (gfp_mask & __GFP_DIRECT_RECLAIM))
  1977. return false;
  1978. return should_fail(&fail_page_alloc.attr, 1 << order);
  1979. }
  1980. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1981. static int __init fail_page_alloc_debugfs(void)
  1982. {
  1983. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1984. struct dentry *dir;
  1985. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1986. &fail_page_alloc.attr);
  1987. if (IS_ERR(dir))
  1988. return PTR_ERR(dir);
  1989. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1990. &fail_page_alloc.ignore_gfp_reclaim))
  1991. goto fail;
  1992. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1993. &fail_page_alloc.ignore_gfp_highmem))
  1994. goto fail;
  1995. if (!debugfs_create_u32("min-order", mode, dir,
  1996. &fail_page_alloc.min_order))
  1997. goto fail;
  1998. return 0;
  1999. fail:
  2000. debugfs_remove_recursive(dir);
  2001. return -ENOMEM;
  2002. }
  2003. late_initcall(fail_page_alloc_debugfs);
  2004. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2005. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2006. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2007. {
  2008. return false;
  2009. }
  2010. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2011. /*
  2012. * Return true if free base pages are above 'mark'. For high-order checks it
  2013. * will return true of the order-0 watermark is reached and there is at least
  2014. * one free page of a suitable size. Checking now avoids taking the zone lock
  2015. * to check in the allocation paths if no pages are free.
  2016. */
  2017. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  2018. unsigned long mark, int classzone_idx, int alloc_flags,
  2019. long free_pages)
  2020. {
  2021. long min = mark;
  2022. int o;
  2023. const int alloc_harder = (alloc_flags & ALLOC_HARDER);
  2024. /* free_pages may go negative - that's OK */
  2025. free_pages -= (1 << order) - 1;
  2026. if (alloc_flags & ALLOC_HIGH)
  2027. min -= min / 2;
  2028. /*
  2029. * If the caller does not have rights to ALLOC_HARDER then subtract
  2030. * the high-atomic reserves. This will over-estimate the size of the
  2031. * atomic reserve but it avoids a search.
  2032. */
  2033. if (likely(!alloc_harder))
  2034. free_pages -= z->nr_reserved_highatomic;
  2035. else
  2036. min -= min / 4;
  2037. #ifdef CONFIG_CMA
  2038. /* If allocation can't use CMA areas don't use free CMA pages */
  2039. if (!(alloc_flags & ALLOC_CMA))
  2040. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2041. #endif
  2042. /*
  2043. * Check watermarks for an order-0 allocation request. If these
  2044. * are not met, then a high-order request also cannot go ahead
  2045. * even if a suitable page happened to be free.
  2046. */
  2047. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2048. return false;
  2049. /* If this is an order-0 request then the watermark is fine */
  2050. if (!order)
  2051. return true;
  2052. /* For a high-order request, check at least one suitable page is free */
  2053. for (o = order; o < MAX_ORDER; o++) {
  2054. struct free_area *area = &z->free_area[o];
  2055. int mt;
  2056. if (!area->nr_free)
  2057. continue;
  2058. if (alloc_harder)
  2059. return true;
  2060. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2061. if (!list_empty(&area->free_list[mt]))
  2062. return true;
  2063. }
  2064. #ifdef CONFIG_CMA
  2065. if ((alloc_flags & ALLOC_CMA) &&
  2066. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2067. return true;
  2068. }
  2069. #endif
  2070. }
  2071. return false;
  2072. }
  2073. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2074. int classzone_idx, int alloc_flags)
  2075. {
  2076. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2077. zone_page_state(z, NR_FREE_PAGES));
  2078. }
  2079. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2080. unsigned long mark, int classzone_idx)
  2081. {
  2082. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2083. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2084. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2085. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2086. free_pages);
  2087. }
  2088. #ifdef CONFIG_NUMA
  2089. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2090. {
  2091. return local_zone->node == zone->node;
  2092. }
  2093. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2094. {
  2095. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2096. RECLAIM_DISTANCE;
  2097. }
  2098. #else /* CONFIG_NUMA */
  2099. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2100. {
  2101. return true;
  2102. }
  2103. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2104. {
  2105. return true;
  2106. }
  2107. #endif /* CONFIG_NUMA */
  2108. static void reset_alloc_batches(struct zone *preferred_zone)
  2109. {
  2110. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2111. do {
  2112. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2113. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2114. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2115. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2116. } while (zone++ != preferred_zone);
  2117. }
  2118. /*
  2119. * get_page_from_freelist goes through the zonelist trying to allocate
  2120. * a page.
  2121. */
  2122. static struct page *
  2123. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2124. const struct alloc_context *ac)
  2125. {
  2126. struct zonelist *zonelist = ac->zonelist;
  2127. struct zoneref *z;
  2128. struct page *page = NULL;
  2129. struct zone *zone;
  2130. int nr_fair_skipped = 0;
  2131. bool zonelist_rescan;
  2132. zonelist_scan:
  2133. zonelist_rescan = false;
  2134. /*
  2135. * Scan zonelist, looking for a zone with enough free.
  2136. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2137. */
  2138. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  2139. ac->nodemask) {
  2140. unsigned long mark;
  2141. if (cpusets_enabled() &&
  2142. (alloc_flags & ALLOC_CPUSET) &&
  2143. !cpuset_zone_allowed(zone, gfp_mask))
  2144. continue;
  2145. /*
  2146. * Distribute pages in proportion to the individual
  2147. * zone size to ensure fair page aging. The zone a
  2148. * page was allocated in should have no effect on the
  2149. * time the page has in memory before being reclaimed.
  2150. */
  2151. if (alloc_flags & ALLOC_FAIR) {
  2152. if (!zone_local(ac->preferred_zone, zone))
  2153. break;
  2154. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2155. nr_fair_skipped++;
  2156. continue;
  2157. }
  2158. }
  2159. /*
  2160. * When allocating a page cache page for writing, we
  2161. * want to get it from a zone that is within its dirty
  2162. * limit, such that no single zone holds more than its
  2163. * proportional share of globally allowed dirty pages.
  2164. * The dirty limits take into account the zone's
  2165. * lowmem reserves and high watermark so that kswapd
  2166. * should be able to balance it without having to
  2167. * write pages from its LRU list.
  2168. *
  2169. * This may look like it could increase pressure on
  2170. * lower zones by failing allocations in higher zones
  2171. * before they are full. But the pages that do spill
  2172. * over are limited as the lower zones are protected
  2173. * by this very same mechanism. It should not become
  2174. * a practical burden to them.
  2175. *
  2176. * XXX: For now, allow allocations to potentially
  2177. * exceed the per-zone dirty limit in the slowpath
  2178. * (spread_dirty_pages unset) before going into reclaim,
  2179. * which is important when on a NUMA setup the allowed
  2180. * zones are together not big enough to reach the
  2181. * global limit. The proper fix for these situations
  2182. * will require awareness of zones in the
  2183. * dirty-throttling and the flusher threads.
  2184. */
  2185. if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
  2186. continue;
  2187. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2188. if (!zone_watermark_ok(zone, order, mark,
  2189. ac->classzone_idx, alloc_flags)) {
  2190. int ret;
  2191. /* Checked here to keep the fast path fast */
  2192. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2193. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2194. goto try_this_zone;
  2195. if (zone_reclaim_mode == 0 ||
  2196. !zone_allows_reclaim(ac->preferred_zone, zone))
  2197. continue;
  2198. ret = zone_reclaim(zone, gfp_mask, order);
  2199. switch (ret) {
  2200. case ZONE_RECLAIM_NOSCAN:
  2201. /* did not scan */
  2202. continue;
  2203. case ZONE_RECLAIM_FULL:
  2204. /* scanned but unreclaimable */
  2205. continue;
  2206. default:
  2207. /* did we reclaim enough */
  2208. if (zone_watermark_ok(zone, order, mark,
  2209. ac->classzone_idx, alloc_flags))
  2210. goto try_this_zone;
  2211. continue;
  2212. }
  2213. }
  2214. try_this_zone:
  2215. page = buffered_rmqueue(ac->preferred_zone, zone, order,
  2216. gfp_mask, alloc_flags, ac->migratetype);
  2217. if (page) {
  2218. if (prep_new_page(page, order, gfp_mask, alloc_flags))
  2219. goto try_this_zone;
  2220. /*
  2221. * If this is a high-order atomic allocation then check
  2222. * if the pageblock should be reserved for the future
  2223. */
  2224. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2225. reserve_highatomic_pageblock(page, zone, order);
  2226. return page;
  2227. }
  2228. }
  2229. /*
  2230. * The first pass makes sure allocations are spread fairly within the
  2231. * local node. However, the local node might have free pages left
  2232. * after the fairness batches are exhausted, and remote zones haven't
  2233. * even been considered yet. Try once more without fairness, and
  2234. * include remote zones now, before entering the slowpath and waking
  2235. * kswapd: prefer spilling to a remote zone over swapping locally.
  2236. */
  2237. if (alloc_flags & ALLOC_FAIR) {
  2238. alloc_flags &= ~ALLOC_FAIR;
  2239. if (nr_fair_skipped) {
  2240. zonelist_rescan = true;
  2241. reset_alloc_batches(ac->preferred_zone);
  2242. }
  2243. if (nr_online_nodes > 1)
  2244. zonelist_rescan = true;
  2245. }
  2246. if (zonelist_rescan)
  2247. goto zonelist_scan;
  2248. return NULL;
  2249. }
  2250. /*
  2251. * Large machines with many possible nodes should not always dump per-node
  2252. * meminfo in irq context.
  2253. */
  2254. static inline bool should_suppress_show_mem(void)
  2255. {
  2256. bool ret = false;
  2257. #if NODES_SHIFT > 8
  2258. ret = in_interrupt();
  2259. #endif
  2260. return ret;
  2261. }
  2262. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2263. DEFAULT_RATELIMIT_INTERVAL,
  2264. DEFAULT_RATELIMIT_BURST);
  2265. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
  2266. {
  2267. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2268. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2269. debug_guardpage_minorder() > 0)
  2270. return;
  2271. /*
  2272. * This documents exceptions given to allocations in certain
  2273. * contexts that are allowed to allocate outside current's set
  2274. * of allowed nodes.
  2275. */
  2276. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2277. if (test_thread_flag(TIF_MEMDIE) ||
  2278. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2279. filter &= ~SHOW_MEM_FILTER_NODES;
  2280. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2281. filter &= ~SHOW_MEM_FILTER_NODES;
  2282. if (fmt) {
  2283. struct va_format vaf;
  2284. va_list args;
  2285. va_start(args, fmt);
  2286. vaf.fmt = fmt;
  2287. vaf.va = &args;
  2288. pr_warn("%pV", &vaf);
  2289. va_end(args);
  2290. }
  2291. pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
  2292. current->comm, order, gfp_mask);
  2293. dump_stack();
  2294. if (!should_suppress_show_mem())
  2295. show_mem(filter);
  2296. }
  2297. static inline struct page *
  2298. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2299. const struct alloc_context *ac, unsigned long *did_some_progress)
  2300. {
  2301. struct oom_control oc = {
  2302. .zonelist = ac->zonelist,
  2303. .nodemask = ac->nodemask,
  2304. .gfp_mask = gfp_mask,
  2305. .order = order,
  2306. };
  2307. struct page *page;
  2308. *did_some_progress = 0;
  2309. /*
  2310. * Acquire the oom lock. If that fails, somebody else is
  2311. * making progress for us.
  2312. */
  2313. if (!mutex_trylock(&oom_lock)) {
  2314. *did_some_progress = 1;
  2315. schedule_timeout_uninterruptible(1);
  2316. return NULL;
  2317. }
  2318. /*
  2319. * Go through the zonelist yet one more time, keep very high watermark
  2320. * here, this is only to catch a parallel oom killing, we must fail if
  2321. * we're still under heavy pressure.
  2322. */
  2323. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2324. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2325. if (page)
  2326. goto out;
  2327. if (!(gfp_mask & __GFP_NOFAIL)) {
  2328. /* Coredumps can quickly deplete all memory reserves */
  2329. if (current->flags & PF_DUMPCORE)
  2330. goto out;
  2331. /* The OOM killer will not help higher order allocs */
  2332. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2333. goto out;
  2334. /* The OOM killer does not needlessly kill tasks for lowmem */
  2335. if (ac->high_zoneidx < ZONE_NORMAL)
  2336. goto out;
  2337. /* The OOM killer does not compensate for IO-less reclaim */
  2338. if (!(gfp_mask & __GFP_FS)) {
  2339. /*
  2340. * XXX: Page reclaim didn't yield anything,
  2341. * and the OOM killer can't be invoked, but
  2342. * keep looping as per tradition.
  2343. */
  2344. *did_some_progress = 1;
  2345. goto out;
  2346. }
  2347. if (pm_suspended_storage())
  2348. goto out;
  2349. /* The OOM killer may not free memory on a specific node */
  2350. if (gfp_mask & __GFP_THISNODE)
  2351. goto out;
  2352. }
  2353. /* Exhausted what can be done so it's blamo time */
  2354. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
  2355. *did_some_progress = 1;
  2356. out:
  2357. mutex_unlock(&oom_lock);
  2358. return page;
  2359. }
  2360. #ifdef CONFIG_COMPACTION
  2361. /* Try memory compaction for high-order allocations before reclaim */
  2362. static struct page *
  2363. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2364. int alloc_flags, const struct alloc_context *ac,
  2365. enum migrate_mode mode, int *contended_compaction,
  2366. bool *deferred_compaction)
  2367. {
  2368. unsigned long compact_result;
  2369. struct page *page;
  2370. if (!order)
  2371. return NULL;
  2372. current->flags |= PF_MEMALLOC;
  2373. compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2374. mode, contended_compaction);
  2375. current->flags &= ~PF_MEMALLOC;
  2376. switch (compact_result) {
  2377. case COMPACT_DEFERRED:
  2378. *deferred_compaction = true;
  2379. /* fall-through */
  2380. case COMPACT_SKIPPED:
  2381. return NULL;
  2382. default:
  2383. break;
  2384. }
  2385. /*
  2386. * At least in one zone compaction wasn't deferred or skipped, so let's
  2387. * count a compaction stall
  2388. */
  2389. count_vm_event(COMPACTSTALL);
  2390. page = get_page_from_freelist(gfp_mask, order,
  2391. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2392. if (page) {
  2393. struct zone *zone = page_zone(page);
  2394. zone->compact_blockskip_flush = false;
  2395. compaction_defer_reset(zone, order, true);
  2396. count_vm_event(COMPACTSUCCESS);
  2397. return page;
  2398. }
  2399. /*
  2400. * It's bad if compaction run occurs and fails. The most likely reason
  2401. * is that pages exist, but not enough to satisfy watermarks.
  2402. */
  2403. count_vm_event(COMPACTFAIL);
  2404. cond_resched();
  2405. return NULL;
  2406. }
  2407. #else
  2408. static inline struct page *
  2409. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2410. int alloc_flags, const struct alloc_context *ac,
  2411. enum migrate_mode mode, int *contended_compaction,
  2412. bool *deferred_compaction)
  2413. {
  2414. return NULL;
  2415. }
  2416. #endif /* CONFIG_COMPACTION */
  2417. /* Perform direct synchronous page reclaim */
  2418. static int
  2419. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2420. const struct alloc_context *ac)
  2421. {
  2422. struct reclaim_state reclaim_state;
  2423. int progress;
  2424. cond_resched();
  2425. /* We now go into synchronous reclaim */
  2426. cpuset_memory_pressure_bump();
  2427. current->flags |= PF_MEMALLOC;
  2428. lockdep_set_current_reclaim_state(gfp_mask);
  2429. reclaim_state.reclaimed_slab = 0;
  2430. current->reclaim_state = &reclaim_state;
  2431. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2432. ac->nodemask);
  2433. current->reclaim_state = NULL;
  2434. lockdep_clear_current_reclaim_state();
  2435. current->flags &= ~PF_MEMALLOC;
  2436. cond_resched();
  2437. return progress;
  2438. }
  2439. /* The really slow allocator path where we enter direct reclaim */
  2440. static inline struct page *
  2441. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2442. int alloc_flags, const struct alloc_context *ac,
  2443. unsigned long *did_some_progress)
  2444. {
  2445. struct page *page = NULL;
  2446. bool drained = false;
  2447. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2448. if (unlikely(!(*did_some_progress)))
  2449. return NULL;
  2450. retry:
  2451. page = get_page_from_freelist(gfp_mask, order,
  2452. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2453. /*
  2454. * If an allocation failed after direct reclaim, it could be because
  2455. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2456. * Shrink them them and try again
  2457. */
  2458. if (!page && !drained) {
  2459. unreserve_highatomic_pageblock(ac);
  2460. drain_all_pages(NULL);
  2461. drained = true;
  2462. goto retry;
  2463. }
  2464. return page;
  2465. }
  2466. /*
  2467. * This is called in the allocator slow-path if the allocation request is of
  2468. * sufficient urgency to ignore watermarks and take other desperate measures
  2469. */
  2470. static inline struct page *
  2471. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2472. const struct alloc_context *ac)
  2473. {
  2474. struct page *page;
  2475. do {
  2476. page = get_page_from_freelist(gfp_mask, order,
  2477. ALLOC_NO_WATERMARKS, ac);
  2478. if (!page && gfp_mask & __GFP_NOFAIL)
  2479. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
  2480. HZ/50);
  2481. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2482. return page;
  2483. }
  2484. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2485. {
  2486. struct zoneref *z;
  2487. struct zone *zone;
  2488. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2489. ac->high_zoneidx, ac->nodemask)
  2490. wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
  2491. }
  2492. static inline int
  2493. gfp_to_alloc_flags(gfp_t gfp_mask)
  2494. {
  2495. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2496. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2497. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2498. /*
  2499. * The caller may dip into page reserves a bit more if the caller
  2500. * cannot run direct reclaim, or if the caller has realtime scheduling
  2501. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2502. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2503. */
  2504. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2505. if (gfp_mask & __GFP_ATOMIC) {
  2506. /*
  2507. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2508. * if it can't schedule.
  2509. */
  2510. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2511. alloc_flags |= ALLOC_HARDER;
  2512. /*
  2513. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2514. * comment for __cpuset_node_allowed().
  2515. */
  2516. alloc_flags &= ~ALLOC_CPUSET;
  2517. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2518. alloc_flags |= ALLOC_HARDER;
  2519. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2520. if (gfp_mask & __GFP_MEMALLOC)
  2521. alloc_flags |= ALLOC_NO_WATERMARKS;
  2522. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2523. alloc_flags |= ALLOC_NO_WATERMARKS;
  2524. else if (!in_interrupt() &&
  2525. ((current->flags & PF_MEMALLOC) ||
  2526. unlikely(test_thread_flag(TIF_MEMDIE))))
  2527. alloc_flags |= ALLOC_NO_WATERMARKS;
  2528. }
  2529. #ifdef CONFIG_CMA
  2530. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2531. alloc_flags |= ALLOC_CMA;
  2532. #endif
  2533. return alloc_flags;
  2534. }
  2535. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2536. {
  2537. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2538. }
  2539. static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
  2540. {
  2541. return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
  2542. }
  2543. static inline struct page *
  2544. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2545. struct alloc_context *ac)
  2546. {
  2547. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  2548. struct page *page = NULL;
  2549. int alloc_flags;
  2550. unsigned long pages_reclaimed = 0;
  2551. unsigned long did_some_progress;
  2552. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2553. bool deferred_compaction = false;
  2554. int contended_compaction = COMPACT_CONTENDED_NONE;
  2555. /*
  2556. * In the slowpath, we sanity check order to avoid ever trying to
  2557. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2558. * be using allocators in order of preference for an area that is
  2559. * too large.
  2560. */
  2561. if (order >= MAX_ORDER) {
  2562. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2563. return NULL;
  2564. }
  2565. /*
  2566. * We also sanity check to catch abuse of atomic reserves being used by
  2567. * callers that are not in atomic context.
  2568. */
  2569. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  2570. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  2571. gfp_mask &= ~__GFP_ATOMIC;
  2572. /*
  2573. * If this allocation cannot block and it is for a specific node, then
  2574. * fail early. There's no need to wakeup kswapd or retry for a
  2575. * speculative node-specific allocation.
  2576. */
  2577. if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
  2578. goto nopage;
  2579. retry:
  2580. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  2581. wake_all_kswapds(order, ac);
  2582. /*
  2583. * OK, we're below the kswapd watermark and have kicked background
  2584. * reclaim. Now things get more complex, so set up alloc_flags according
  2585. * to how we want to proceed.
  2586. */
  2587. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2588. /*
  2589. * Find the true preferred zone if the allocation is unconstrained by
  2590. * cpusets.
  2591. */
  2592. if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
  2593. struct zoneref *preferred_zoneref;
  2594. preferred_zoneref = first_zones_zonelist(ac->zonelist,
  2595. ac->high_zoneidx, NULL, &ac->preferred_zone);
  2596. ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2597. }
  2598. /* This is the last chance, in general, before the goto nopage. */
  2599. page = get_page_from_freelist(gfp_mask, order,
  2600. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2601. if (page)
  2602. goto got_pg;
  2603. /* Allocate without watermarks if the context allows */
  2604. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2605. /*
  2606. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2607. * the allocation is high priority and these type of
  2608. * allocations are system rather than user orientated
  2609. */
  2610. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2611. page = __alloc_pages_high_priority(gfp_mask, order, ac);
  2612. if (page) {
  2613. goto got_pg;
  2614. }
  2615. }
  2616. /* Caller is not willing to reclaim, we can't balance anything */
  2617. if (!can_direct_reclaim) {
  2618. /*
  2619. * All existing users of the deprecated __GFP_NOFAIL are
  2620. * blockable, so warn of any new users that actually allow this
  2621. * type of allocation to fail.
  2622. */
  2623. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2624. goto nopage;
  2625. }
  2626. /* Avoid recursion of direct reclaim */
  2627. if (current->flags & PF_MEMALLOC)
  2628. goto nopage;
  2629. /* Avoid allocations with no watermarks from looping endlessly */
  2630. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2631. goto nopage;
  2632. /*
  2633. * Try direct compaction. The first pass is asynchronous. Subsequent
  2634. * attempts after direct reclaim are synchronous
  2635. */
  2636. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  2637. migration_mode,
  2638. &contended_compaction,
  2639. &deferred_compaction);
  2640. if (page)
  2641. goto got_pg;
  2642. /* Checks for THP-specific high-order allocations */
  2643. if (is_thp_gfp_mask(gfp_mask)) {
  2644. /*
  2645. * If compaction is deferred for high-order allocations, it is
  2646. * because sync compaction recently failed. If this is the case
  2647. * and the caller requested a THP allocation, we do not want
  2648. * to heavily disrupt the system, so we fail the allocation
  2649. * instead of entering direct reclaim.
  2650. */
  2651. if (deferred_compaction)
  2652. goto nopage;
  2653. /*
  2654. * In all zones where compaction was attempted (and not
  2655. * deferred or skipped), lock contention has been detected.
  2656. * For THP allocation we do not want to disrupt the others
  2657. * so we fallback to base pages instead.
  2658. */
  2659. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2660. goto nopage;
  2661. /*
  2662. * If compaction was aborted due to need_resched(), we do not
  2663. * want to further increase allocation latency, unless it is
  2664. * khugepaged trying to collapse.
  2665. */
  2666. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2667. && !(current->flags & PF_KTHREAD))
  2668. goto nopage;
  2669. }
  2670. /*
  2671. * It can become very expensive to allocate transparent hugepages at
  2672. * fault, so use asynchronous memory compaction for THP unless it is
  2673. * khugepaged trying to collapse.
  2674. */
  2675. if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
  2676. migration_mode = MIGRATE_SYNC_LIGHT;
  2677. /* Try direct reclaim and then allocating */
  2678. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  2679. &did_some_progress);
  2680. if (page)
  2681. goto got_pg;
  2682. /* Do not loop if specifically requested */
  2683. if (gfp_mask & __GFP_NORETRY)
  2684. goto noretry;
  2685. /* Keep reclaiming pages as long as there is reasonable progress */
  2686. pages_reclaimed += did_some_progress;
  2687. if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
  2688. ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
  2689. /* Wait for some write requests to complete then retry */
  2690. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
  2691. goto retry;
  2692. }
  2693. /* Reclaim has failed us, start killing things */
  2694. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  2695. if (page)
  2696. goto got_pg;
  2697. /* Retry as long as the OOM killer is making progress */
  2698. if (did_some_progress)
  2699. goto retry;
  2700. noretry:
  2701. /*
  2702. * High-order allocations do not necessarily loop after
  2703. * direct reclaim and reclaim/compaction depends on compaction
  2704. * being called after reclaim so call directly if necessary
  2705. */
  2706. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  2707. ac, migration_mode,
  2708. &contended_compaction,
  2709. &deferred_compaction);
  2710. if (page)
  2711. goto got_pg;
  2712. nopage:
  2713. warn_alloc_failed(gfp_mask, order, NULL);
  2714. got_pg:
  2715. return page;
  2716. }
  2717. /*
  2718. * This is the 'heart' of the zoned buddy allocator.
  2719. */
  2720. struct page *
  2721. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2722. struct zonelist *zonelist, nodemask_t *nodemask)
  2723. {
  2724. struct zoneref *preferred_zoneref;
  2725. struct page *page = NULL;
  2726. unsigned int cpuset_mems_cookie;
  2727. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2728. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  2729. struct alloc_context ac = {
  2730. .high_zoneidx = gfp_zone(gfp_mask),
  2731. .nodemask = nodemask,
  2732. .migratetype = gfpflags_to_migratetype(gfp_mask),
  2733. };
  2734. gfp_mask &= gfp_allowed_mask;
  2735. lockdep_trace_alloc(gfp_mask);
  2736. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  2737. if (should_fail_alloc_page(gfp_mask, order))
  2738. return NULL;
  2739. /*
  2740. * Check the zones suitable for the gfp_mask contain at least one
  2741. * valid zone. It's possible to have an empty zonelist as a result
  2742. * of __GFP_THISNODE and a memoryless node
  2743. */
  2744. if (unlikely(!zonelist->_zonerefs->zone))
  2745. return NULL;
  2746. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  2747. alloc_flags |= ALLOC_CMA;
  2748. retry_cpuset:
  2749. cpuset_mems_cookie = read_mems_allowed_begin();
  2750. /* We set it here, as __alloc_pages_slowpath might have changed it */
  2751. ac.zonelist = zonelist;
  2752. /* Dirty zone balancing only done in the fast path */
  2753. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  2754. /* The preferred zone is used for statistics later */
  2755. preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
  2756. ac.nodemask ? : &cpuset_current_mems_allowed,
  2757. &ac.preferred_zone);
  2758. if (!ac.preferred_zone)
  2759. goto out;
  2760. ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2761. /* First allocation attempt */
  2762. alloc_mask = gfp_mask|__GFP_HARDWALL;
  2763. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  2764. if (unlikely(!page)) {
  2765. /*
  2766. * Runtime PM, block IO and its error handling path
  2767. * can deadlock because I/O on the device might not
  2768. * complete.
  2769. */
  2770. alloc_mask = memalloc_noio_flags(gfp_mask);
  2771. ac.spread_dirty_pages = false;
  2772. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  2773. }
  2774. if (kmemcheck_enabled && page)
  2775. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2776. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  2777. out:
  2778. /*
  2779. * When updating a task's mems_allowed, it is possible to race with
  2780. * parallel threads in such a way that an allocation can fail while
  2781. * the mask is being updated. If a page allocation is about to fail,
  2782. * check if the cpuset changed during allocation and if so, retry.
  2783. */
  2784. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2785. goto retry_cpuset;
  2786. return page;
  2787. }
  2788. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2789. /*
  2790. * Common helper functions.
  2791. */
  2792. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2793. {
  2794. struct page *page;
  2795. /*
  2796. * __get_free_pages() returns a 32-bit address, which cannot represent
  2797. * a highmem page
  2798. */
  2799. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2800. page = alloc_pages(gfp_mask, order);
  2801. if (!page)
  2802. return 0;
  2803. return (unsigned long) page_address(page);
  2804. }
  2805. EXPORT_SYMBOL(__get_free_pages);
  2806. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2807. {
  2808. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2809. }
  2810. EXPORT_SYMBOL(get_zeroed_page);
  2811. void __free_pages(struct page *page, unsigned int order)
  2812. {
  2813. if (put_page_testzero(page)) {
  2814. if (order == 0)
  2815. free_hot_cold_page(page, false);
  2816. else
  2817. __free_pages_ok(page, order);
  2818. }
  2819. }
  2820. EXPORT_SYMBOL(__free_pages);
  2821. void free_pages(unsigned long addr, unsigned int order)
  2822. {
  2823. if (addr != 0) {
  2824. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2825. __free_pages(virt_to_page((void *)addr), order);
  2826. }
  2827. }
  2828. EXPORT_SYMBOL(free_pages);
  2829. /*
  2830. * Page Fragment:
  2831. * An arbitrary-length arbitrary-offset area of memory which resides
  2832. * within a 0 or higher order page. Multiple fragments within that page
  2833. * are individually refcounted, in the page's reference counter.
  2834. *
  2835. * The page_frag functions below provide a simple allocation framework for
  2836. * page fragments. This is used by the network stack and network device
  2837. * drivers to provide a backing region of memory for use as either an
  2838. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  2839. */
  2840. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  2841. gfp_t gfp_mask)
  2842. {
  2843. struct page *page = NULL;
  2844. gfp_t gfp = gfp_mask;
  2845. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2846. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  2847. __GFP_NOMEMALLOC;
  2848. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  2849. PAGE_FRAG_CACHE_MAX_ORDER);
  2850. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  2851. #endif
  2852. if (unlikely(!page))
  2853. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  2854. nc->va = page ? page_address(page) : NULL;
  2855. return page;
  2856. }
  2857. void *__alloc_page_frag(struct page_frag_cache *nc,
  2858. unsigned int fragsz, gfp_t gfp_mask)
  2859. {
  2860. unsigned int size = PAGE_SIZE;
  2861. struct page *page;
  2862. int offset;
  2863. if (unlikely(!nc->va)) {
  2864. refill:
  2865. page = __page_frag_refill(nc, gfp_mask);
  2866. if (!page)
  2867. return NULL;
  2868. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2869. /* if size can vary use size else just use PAGE_SIZE */
  2870. size = nc->size;
  2871. #endif
  2872. /* Even if we own the page, we do not use atomic_set().
  2873. * This would break get_page_unless_zero() users.
  2874. */
  2875. atomic_add(size - 1, &page->_count);
  2876. /* reset page count bias and offset to start of new frag */
  2877. nc->pfmemalloc = page_is_pfmemalloc(page);
  2878. nc->pagecnt_bias = size;
  2879. nc->offset = size;
  2880. }
  2881. offset = nc->offset - fragsz;
  2882. if (unlikely(offset < 0)) {
  2883. page = virt_to_page(nc->va);
  2884. if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
  2885. goto refill;
  2886. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2887. /* if size can vary use size else just use PAGE_SIZE */
  2888. size = nc->size;
  2889. #endif
  2890. /* OK, page count is 0, we can safely set it */
  2891. atomic_set(&page->_count, size);
  2892. /* reset page count bias and offset to start of new frag */
  2893. nc->pagecnt_bias = size;
  2894. offset = size - fragsz;
  2895. }
  2896. nc->pagecnt_bias--;
  2897. nc->offset = offset;
  2898. return nc->va + offset;
  2899. }
  2900. EXPORT_SYMBOL(__alloc_page_frag);
  2901. /*
  2902. * Frees a page fragment allocated out of either a compound or order 0 page.
  2903. */
  2904. void __free_page_frag(void *addr)
  2905. {
  2906. struct page *page = virt_to_head_page(addr);
  2907. if (unlikely(put_page_testzero(page)))
  2908. __free_pages_ok(page, compound_order(page));
  2909. }
  2910. EXPORT_SYMBOL(__free_page_frag);
  2911. /*
  2912. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2913. * of the current memory cgroup.
  2914. *
  2915. * It should be used when the caller would like to use kmalloc, but since the
  2916. * allocation is large, it has to fall back to the page allocator.
  2917. */
  2918. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2919. {
  2920. struct page *page;
  2921. page = alloc_pages(gfp_mask, order);
  2922. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  2923. __free_pages(page, order);
  2924. page = NULL;
  2925. }
  2926. return page;
  2927. }
  2928. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2929. {
  2930. struct page *page;
  2931. page = alloc_pages_node(nid, gfp_mask, order);
  2932. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  2933. __free_pages(page, order);
  2934. page = NULL;
  2935. }
  2936. return page;
  2937. }
  2938. /*
  2939. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2940. * alloc_kmem_pages.
  2941. */
  2942. void __free_kmem_pages(struct page *page, unsigned int order)
  2943. {
  2944. memcg_kmem_uncharge(page, order);
  2945. __free_pages(page, order);
  2946. }
  2947. void free_kmem_pages(unsigned long addr, unsigned int order)
  2948. {
  2949. if (addr != 0) {
  2950. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2951. __free_kmem_pages(virt_to_page((void *)addr), order);
  2952. }
  2953. }
  2954. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  2955. size_t size)
  2956. {
  2957. if (addr) {
  2958. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2959. unsigned long used = addr + PAGE_ALIGN(size);
  2960. split_page(virt_to_page((void *)addr), order);
  2961. while (used < alloc_end) {
  2962. free_page(used);
  2963. used += PAGE_SIZE;
  2964. }
  2965. }
  2966. return (void *)addr;
  2967. }
  2968. /**
  2969. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2970. * @size: the number of bytes to allocate
  2971. * @gfp_mask: GFP flags for the allocation
  2972. *
  2973. * This function is similar to alloc_pages(), except that it allocates the
  2974. * minimum number of pages to satisfy the request. alloc_pages() can only
  2975. * allocate memory in power-of-two pages.
  2976. *
  2977. * This function is also limited by MAX_ORDER.
  2978. *
  2979. * Memory allocated by this function must be released by free_pages_exact().
  2980. */
  2981. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2982. {
  2983. unsigned int order = get_order(size);
  2984. unsigned long addr;
  2985. addr = __get_free_pages(gfp_mask, order);
  2986. return make_alloc_exact(addr, order, size);
  2987. }
  2988. EXPORT_SYMBOL(alloc_pages_exact);
  2989. /**
  2990. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2991. * pages on a node.
  2992. * @nid: the preferred node ID where memory should be allocated
  2993. * @size: the number of bytes to allocate
  2994. * @gfp_mask: GFP flags for the allocation
  2995. *
  2996. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2997. * back.
  2998. */
  2999. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3000. {
  3001. unsigned int order = get_order(size);
  3002. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3003. if (!p)
  3004. return NULL;
  3005. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3006. }
  3007. /**
  3008. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3009. * @virt: the value returned by alloc_pages_exact.
  3010. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3011. *
  3012. * Release the memory allocated by a previous call to alloc_pages_exact.
  3013. */
  3014. void free_pages_exact(void *virt, size_t size)
  3015. {
  3016. unsigned long addr = (unsigned long)virt;
  3017. unsigned long end = addr + PAGE_ALIGN(size);
  3018. while (addr < end) {
  3019. free_page(addr);
  3020. addr += PAGE_SIZE;
  3021. }
  3022. }
  3023. EXPORT_SYMBOL(free_pages_exact);
  3024. /**
  3025. * nr_free_zone_pages - count number of pages beyond high watermark
  3026. * @offset: The zone index of the highest zone
  3027. *
  3028. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3029. * high watermark within all zones at or below a given zone index. For each
  3030. * zone, the number of pages is calculated as:
  3031. * managed_pages - high_pages
  3032. */
  3033. static unsigned long nr_free_zone_pages(int offset)
  3034. {
  3035. struct zoneref *z;
  3036. struct zone *zone;
  3037. /* Just pick one node, since fallback list is circular */
  3038. unsigned long sum = 0;
  3039. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3040. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3041. unsigned long size = zone->managed_pages;
  3042. unsigned long high = high_wmark_pages(zone);
  3043. if (size > high)
  3044. sum += size - high;
  3045. }
  3046. return sum;
  3047. }
  3048. /**
  3049. * nr_free_buffer_pages - count number of pages beyond high watermark
  3050. *
  3051. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3052. * watermark within ZONE_DMA and ZONE_NORMAL.
  3053. */
  3054. unsigned long nr_free_buffer_pages(void)
  3055. {
  3056. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3057. }
  3058. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3059. /**
  3060. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3061. *
  3062. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3063. * high watermark within all zones.
  3064. */
  3065. unsigned long nr_free_pagecache_pages(void)
  3066. {
  3067. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3068. }
  3069. static inline void show_node(struct zone *zone)
  3070. {
  3071. if (IS_ENABLED(CONFIG_NUMA))
  3072. printk("Node %d ", zone_to_nid(zone));
  3073. }
  3074. void si_meminfo(struct sysinfo *val)
  3075. {
  3076. val->totalram = totalram_pages;
  3077. val->sharedram = global_page_state(NR_SHMEM);
  3078. val->freeram = global_page_state(NR_FREE_PAGES);
  3079. val->bufferram = nr_blockdev_pages();
  3080. val->totalhigh = totalhigh_pages;
  3081. val->freehigh = nr_free_highpages();
  3082. val->mem_unit = PAGE_SIZE;
  3083. }
  3084. EXPORT_SYMBOL(si_meminfo);
  3085. #ifdef CONFIG_NUMA
  3086. void si_meminfo_node(struct sysinfo *val, int nid)
  3087. {
  3088. int zone_type; /* needs to be signed */
  3089. unsigned long managed_pages = 0;
  3090. pg_data_t *pgdat = NODE_DATA(nid);
  3091. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3092. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3093. val->totalram = managed_pages;
  3094. val->sharedram = node_page_state(nid, NR_SHMEM);
  3095. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  3096. #ifdef CONFIG_HIGHMEM
  3097. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  3098. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  3099. NR_FREE_PAGES);
  3100. #else
  3101. val->totalhigh = 0;
  3102. val->freehigh = 0;
  3103. #endif
  3104. val->mem_unit = PAGE_SIZE;
  3105. }
  3106. #endif
  3107. /*
  3108. * Determine whether the node should be displayed or not, depending on whether
  3109. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3110. */
  3111. bool skip_free_areas_node(unsigned int flags, int nid)
  3112. {
  3113. bool ret = false;
  3114. unsigned int cpuset_mems_cookie;
  3115. if (!(flags & SHOW_MEM_FILTER_NODES))
  3116. goto out;
  3117. do {
  3118. cpuset_mems_cookie = read_mems_allowed_begin();
  3119. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3120. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3121. out:
  3122. return ret;
  3123. }
  3124. #define K(x) ((x) << (PAGE_SHIFT-10))
  3125. static void show_migration_types(unsigned char type)
  3126. {
  3127. static const char types[MIGRATE_TYPES] = {
  3128. [MIGRATE_UNMOVABLE] = 'U',
  3129. [MIGRATE_MOVABLE] = 'M',
  3130. [MIGRATE_RECLAIMABLE] = 'E',
  3131. [MIGRATE_HIGHATOMIC] = 'H',
  3132. #ifdef CONFIG_CMA
  3133. [MIGRATE_CMA] = 'C',
  3134. #endif
  3135. #ifdef CONFIG_MEMORY_ISOLATION
  3136. [MIGRATE_ISOLATE] = 'I',
  3137. #endif
  3138. };
  3139. char tmp[MIGRATE_TYPES + 1];
  3140. char *p = tmp;
  3141. int i;
  3142. for (i = 0; i < MIGRATE_TYPES; i++) {
  3143. if (type & (1 << i))
  3144. *p++ = types[i];
  3145. }
  3146. *p = '\0';
  3147. printk("(%s) ", tmp);
  3148. }
  3149. /*
  3150. * Show free area list (used inside shift_scroll-lock stuff)
  3151. * We also calculate the percentage fragmentation. We do this by counting the
  3152. * memory on each free list with the exception of the first item on the list.
  3153. *
  3154. * Bits in @filter:
  3155. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3156. * cpuset.
  3157. */
  3158. void show_free_areas(unsigned int filter)
  3159. {
  3160. unsigned long free_pcp = 0;
  3161. int cpu;
  3162. struct zone *zone;
  3163. for_each_populated_zone(zone) {
  3164. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3165. continue;
  3166. for_each_online_cpu(cpu)
  3167. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3168. }
  3169. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3170. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3171. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3172. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3173. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3174. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3175. global_page_state(NR_ACTIVE_ANON),
  3176. global_page_state(NR_INACTIVE_ANON),
  3177. global_page_state(NR_ISOLATED_ANON),
  3178. global_page_state(NR_ACTIVE_FILE),
  3179. global_page_state(NR_INACTIVE_FILE),
  3180. global_page_state(NR_ISOLATED_FILE),
  3181. global_page_state(NR_UNEVICTABLE),
  3182. global_page_state(NR_FILE_DIRTY),
  3183. global_page_state(NR_WRITEBACK),
  3184. global_page_state(NR_UNSTABLE_NFS),
  3185. global_page_state(NR_SLAB_RECLAIMABLE),
  3186. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3187. global_page_state(NR_FILE_MAPPED),
  3188. global_page_state(NR_SHMEM),
  3189. global_page_state(NR_PAGETABLE),
  3190. global_page_state(NR_BOUNCE),
  3191. global_page_state(NR_FREE_PAGES),
  3192. free_pcp,
  3193. global_page_state(NR_FREE_CMA_PAGES));
  3194. for_each_populated_zone(zone) {
  3195. int i;
  3196. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3197. continue;
  3198. free_pcp = 0;
  3199. for_each_online_cpu(cpu)
  3200. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3201. show_node(zone);
  3202. printk("%s"
  3203. " free:%lukB"
  3204. " min:%lukB"
  3205. " low:%lukB"
  3206. " high:%lukB"
  3207. " active_anon:%lukB"
  3208. " inactive_anon:%lukB"
  3209. " active_file:%lukB"
  3210. " inactive_file:%lukB"
  3211. " unevictable:%lukB"
  3212. " isolated(anon):%lukB"
  3213. " isolated(file):%lukB"
  3214. " present:%lukB"
  3215. " managed:%lukB"
  3216. " mlocked:%lukB"
  3217. " dirty:%lukB"
  3218. " writeback:%lukB"
  3219. " mapped:%lukB"
  3220. " shmem:%lukB"
  3221. " slab_reclaimable:%lukB"
  3222. " slab_unreclaimable:%lukB"
  3223. " kernel_stack:%lukB"
  3224. " pagetables:%lukB"
  3225. " unstable:%lukB"
  3226. " bounce:%lukB"
  3227. " free_pcp:%lukB"
  3228. " local_pcp:%ukB"
  3229. " free_cma:%lukB"
  3230. " writeback_tmp:%lukB"
  3231. " pages_scanned:%lu"
  3232. " all_unreclaimable? %s"
  3233. "\n",
  3234. zone->name,
  3235. K(zone_page_state(zone, NR_FREE_PAGES)),
  3236. K(min_wmark_pages(zone)),
  3237. K(low_wmark_pages(zone)),
  3238. K(high_wmark_pages(zone)),
  3239. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  3240. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  3241. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  3242. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  3243. K(zone_page_state(zone, NR_UNEVICTABLE)),
  3244. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  3245. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  3246. K(zone->present_pages),
  3247. K(zone->managed_pages),
  3248. K(zone_page_state(zone, NR_MLOCK)),
  3249. K(zone_page_state(zone, NR_FILE_DIRTY)),
  3250. K(zone_page_state(zone, NR_WRITEBACK)),
  3251. K(zone_page_state(zone, NR_FILE_MAPPED)),
  3252. K(zone_page_state(zone, NR_SHMEM)),
  3253. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3254. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3255. zone_page_state(zone, NR_KERNEL_STACK) *
  3256. THREAD_SIZE / 1024,
  3257. K(zone_page_state(zone, NR_PAGETABLE)),
  3258. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  3259. K(zone_page_state(zone, NR_BOUNCE)),
  3260. K(free_pcp),
  3261. K(this_cpu_read(zone->pageset->pcp.count)),
  3262. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3263. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  3264. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  3265. (!zone_reclaimable(zone) ? "yes" : "no")
  3266. );
  3267. printk("lowmem_reserve[]:");
  3268. for (i = 0; i < MAX_NR_ZONES; i++)
  3269. printk(" %ld", zone->lowmem_reserve[i]);
  3270. printk("\n");
  3271. }
  3272. for_each_populated_zone(zone) {
  3273. unsigned int order;
  3274. unsigned long nr[MAX_ORDER], flags, total = 0;
  3275. unsigned char types[MAX_ORDER];
  3276. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3277. continue;
  3278. show_node(zone);
  3279. printk("%s: ", zone->name);
  3280. spin_lock_irqsave(&zone->lock, flags);
  3281. for (order = 0; order < MAX_ORDER; order++) {
  3282. struct free_area *area = &zone->free_area[order];
  3283. int type;
  3284. nr[order] = area->nr_free;
  3285. total += nr[order] << order;
  3286. types[order] = 0;
  3287. for (type = 0; type < MIGRATE_TYPES; type++) {
  3288. if (!list_empty(&area->free_list[type]))
  3289. types[order] |= 1 << type;
  3290. }
  3291. }
  3292. spin_unlock_irqrestore(&zone->lock, flags);
  3293. for (order = 0; order < MAX_ORDER; order++) {
  3294. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3295. if (nr[order])
  3296. show_migration_types(types[order]);
  3297. }
  3298. printk("= %lukB\n", K(total));
  3299. }
  3300. hugetlb_show_meminfo();
  3301. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  3302. show_swap_cache_info();
  3303. }
  3304. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3305. {
  3306. zoneref->zone = zone;
  3307. zoneref->zone_idx = zone_idx(zone);
  3308. }
  3309. /*
  3310. * Builds allocation fallback zone lists.
  3311. *
  3312. * Add all populated zones of a node to the zonelist.
  3313. */
  3314. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3315. int nr_zones)
  3316. {
  3317. struct zone *zone;
  3318. enum zone_type zone_type = MAX_NR_ZONES;
  3319. do {
  3320. zone_type--;
  3321. zone = pgdat->node_zones + zone_type;
  3322. if (populated_zone(zone)) {
  3323. zoneref_set_zone(zone,
  3324. &zonelist->_zonerefs[nr_zones++]);
  3325. check_highest_zone(zone_type);
  3326. }
  3327. } while (zone_type);
  3328. return nr_zones;
  3329. }
  3330. /*
  3331. * zonelist_order:
  3332. * 0 = automatic detection of better ordering.
  3333. * 1 = order by ([node] distance, -zonetype)
  3334. * 2 = order by (-zonetype, [node] distance)
  3335. *
  3336. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3337. * the same zonelist. So only NUMA can configure this param.
  3338. */
  3339. #define ZONELIST_ORDER_DEFAULT 0
  3340. #define ZONELIST_ORDER_NODE 1
  3341. #define ZONELIST_ORDER_ZONE 2
  3342. /* zonelist order in the kernel.
  3343. * set_zonelist_order() will set this to NODE or ZONE.
  3344. */
  3345. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3346. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3347. #ifdef CONFIG_NUMA
  3348. /* The value user specified ....changed by config */
  3349. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3350. /* string for sysctl */
  3351. #define NUMA_ZONELIST_ORDER_LEN 16
  3352. char numa_zonelist_order[16] = "default";
  3353. /*
  3354. * interface for configure zonelist ordering.
  3355. * command line option "numa_zonelist_order"
  3356. * = "[dD]efault - default, automatic configuration.
  3357. * = "[nN]ode - order by node locality, then by zone within node
  3358. * = "[zZ]one - order by zone, then by locality within zone
  3359. */
  3360. static int __parse_numa_zonelist_order(char *s)
  3361. {
  3362. if (*s == 'd' || *s == 'D') {
  3363. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3364. } else if (*s == 'n' || *s == 'N') {
  3365. user_zonelist_order = ZONELIST_ORDER_NODE;
  3366. } else if (*s == 'z' || *s == 'Z') {
  3367. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3368. } else {
  3369. printk(KERN_WARNING
  3370. "Ignoring invalid numa_zonelist_order value: "
  3371. "%s\n", s);
  3372. return -EINVAL;
  3373. }
  3374. return 0;
  3375. }
  3376. static __init int setup_numa_zonelist_order(char *s)
  3377. {
  3378. int ret;
  3379. if (!s)
  3380. return 0;
  3381. ret = __parse_numa_zonelist_order(s);
  3382. if (ret == 0)
  3383. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3384. return ret;
  3385. }
  3386. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3387. /*
  3388. * sysctl handler for numa_zonelist_order
  3389. */
  3390. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3391. void __user *buffer, size_t *length,
  3392. loff_t *ppos)
  3393. {
  3394. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3395. int ret;
  3396. static DEFINE_MUTEX(zl_order_mutex);
  3397. mutex_lock(&zl_order_mutex);
  3398. if (write) {
  3399. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3400. ret = -EINVAL;
  3401. goto out;
  3402. }
  3403. strcpy(saved_string, (char *)table->data);
  3404. }
  3405. ret = proc_dostring(table, write, buffer, length, ppos);
  3406. if (ret)
  3407. goto out;
  3408. if (write) {
  3409. int oldval = user_zonelist_order;
  3410. ret = __parse_numa_zonelist_order((char *)table->data);
  3411. if (ret) {
  3412. /*
  3413. * bogus value. restore saved string
  3414. */
  3415. strncpy((char *)table->data, saved_string,
  3416. NUMA_ZONELIST_ORDER_LEN);
  3417. user_zonelist_order = oldval;
  3418. } else if (oldval != user_zonelist_order) {
  3419. mutex_lock(&zonelists_mutex);
  3420. build_all_zonelists(NULL, NULL);
  3421. mutex_unlock(&zonelists_mutex);
  3422. }
  3423. }
  3424. out:
  3425. mutex_unlock(&zl_order_mutex);
  3426. return ret;
  3427. }
  3428. #define MAX_NODE_LOAD (nr_online_nodes)
  3429. static int node_load[MAX_NUMNODES];
  3430. /**
  3431. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3432. * @node: node whose fallback list we're appending
  3433. * @used_node_mask: nodemask_t of already used nodes
  3434. *
  3435. * We use a number of factors to determine which is the next node that should
  3436. * appear on a given node's fallback list. The node should not have appeared
  3437. * already in @node's fallback list, and it should be the next closest node
  3438. * according to the distance array (which contains arbitrary distance values
  3439. * from each node to each node in the system), and should also prefer nodes
  3440. * with no CPUs, since presumably they'll have very little allocation pressure
  3441. * on them otherwise.
  3442. * It returns -1 if no node is found.
  3443. */
  3444. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3445. {
  3446. int n, val;
  3447. int min_val = INT_MAX;
  3448. int best_node = NUMA_NO_NODE;
  3449. const struct cpumask *tmp = cpumask_of_node(0);
  3450. /* Use the local node if we haven't already */
  3451. if (!node_isset(node, *used_node_mask)) {
  3452. node_set(node, *used_node_mask);
  3453. return node;
  3454. }
  3455. for_each_node_state(n, N_MEMORY) {
  3456. /* Don't want a node to appear more than once */
  3457. if (node_isset(n, *used_node_mask))
  3458. continue;
  3459. /* Use the distance array to find the distance */
  3460. val = node_distance(node, n);
  3461. /* Penalize nodes under us ("prefer the next node") */
  3462. val += (n < node);
  3463. /* Give preference to headless and unused nodes */
  3464. tmp = cpumask_of_node(n);
  3465. if (!cpumask_empty(tmp))
  3466. val += PENALTY_FOR_NODE_WITH_CPUS;
  3467. /* Slight preference for less loaded node */
  3468. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3469. val += node_load[n];
  3470. if (val < min_val) {
  3471. min_val = val;
  3472. best_node = n;
  3473. }
  3474. }
  3475. if (best_node >= 0)
  3476. node_set(best_node, *used_node_mask);
  3477. return best_node;
  3478. }
  3479. /*
  3480. * Build zonelists ordered by node and zones within node.
  3481. * This results in maximum locality--normal zone overflows into local
  3482. * DMA zone, if any--but risks exhausting DMA zone.
  3483. */
  3484. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3485. {
  3486. int j;
  3487. struct zonelist *zonelist;
  3488. zonelist = &pgdat->node_zonelists[0];
  3489. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3490. ;
  3491. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3492. zonelist->_zonerefs[j].zone = NULL;
  3493. zonelist->_zonerefs[j].zone_idx = 0;
  3494. }
  3495. /*
  3496. * Build gfp_thisnode zonelists
  3497. */
  3498. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3499. {
  3500. int j;
  3501. struct zonelist *zonelist;
  3502. zonelist = &pgdat->node_zonelists[1];
  3503. j = build_zonelists_node(pgdat, zonelist, 0);
  3504. zonelist->_zonerefs[j].zone = NULL;
  3505. zonelist->_zonerefs[j].zone_idx = 0;
  3506. }
  3507. /*
  3508. * Build zonelists ordered by zone and nodes within zones.
  3509. * This results in conserving DMA zone[s] until all Normal memory is
  3510. * exhausted, but results in overflowing to remote node while memory
  3511. * may still exist in local DMA zone.
  3512. */
  3513. static int node_order[MAX_NUMNODES];
  3514. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3515. {
  3516. int pos, j, node;
  3517. int zone_type; /* needs to be signed */
  3518. struct zone *z;
  3519. struct zonelist *zonelist;
  3520. zonelist = &pgdat->node_zonelists[0];
  3521. pos = 0;
  3522. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3523. for (j = 0; j < nr_nodes; j++) {
  3524. node = node_order[j];
  3525. z = &NODE_DATA(node)->node_zones[zone_type];
  3526. if (populated_zone(z)) {
  3527. zoneref_set_zone(z,
  3528. &zonelist->_zonerefs[pos++]);
  3529. check_highest_zone(zone_type);
  3530. }
  3531. }
  3532. }
  3533. zonelist->_zonerefs[pos].zone = NULL;
  3534. zonelist->_zonerefs[pos].zone_idx = 0;
  3535. }
  3536. #if defined(CONFIG_64BIT)
  3537. /*
  3538. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3539. * penalty to every machine in case the specialised case applies. Default
  3540. * to Node-ordering on 64-bit NUMA machines
  3541. */
  3542. static int default_zonelist_order(void)
  3543. {
  3544. return ZONELIST_ORDER_NODE;
  3545. }
  3546. #else
  3547. /*
  3548. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3549. * by the kernel. If processes running on node 0 deplete the low memory zone
  3550. * then reclaim will occur more frequency increasing stalls and potentially
  3551. * be easier to OOM if a large percentage of the zone is under writeback or
  3552. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3553. * Hence, default to zone ordering on 32-bit.
  3554. */
  3555. static int default_zonelist_order(void)
  3556. {
  3557. return ZONELIST_ORDER_ZONE;
  3558. }
  3559. #endif /* CONFIG_64BIT */
  3560. static void set_zonelist_order(void)
  3561. {
  3562. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3563. current_zonelist_order = default_zonelist_order();
  3564. else
  3565. current_zonelist_order = user_zonelist_order;
  3566. }
  3567. static void build_zonelists(pg_data_t *pgdat)
  3568. {
  3569. int j, node, load;
  3570. enum zone_type i;
  3571. nodemask_t used_mask;
  3572. int local_node, prev_node;
  3573. struct zonelist *zonelist;
  3574. unsigned int order = current_zonelist_order;
  3575. /* initialize zonelists */
  3576. for (i = 0; i < MAX_ZONELISTS; i++) {
  3577. zonelist = pgdat->node_zonelists + i;
  3578. zonelist->_zonerefs[0].zone = NULL;
  3579. zonelist->_zonerefs[0].zone_idx = 0;
  3580. }
  3581. /* NUMA-aware ordering of nodes */
  3582. local_node = pgdat->node_id;
  3583. load = nr_online_nodes;
  3584. prev_node = local_node;
  3585. nodes_clear(used_mask);
  3586. memset(node_order, 0, sizeof(node_order));
  3587. j = 0;
  3588. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3589. /*
  3590. * We don't want to pressure a particular node.
  3591. * So adding penalty to the first node in same
  3592. * distance group to make it round-robin.
  3593. */
  3594. if (node_distance(local_node, node) !=
  3595. node_distance(local_node, prev_node))
  3596. node_load[node] = load;
  3597. prev_node = node;
  3598. load--;
  3599. if (order == ZONELIST_ORDER_NODE)
  3600. build_zonelists_in_node_order(pgdat, node);
  3601. else
  3602. node_order[j++] = node; /* remember order */
  3603. }
  3604. if (order == ZONELIST_ORDER_ZONE) {
  3605. /* calculate node order -- i.e., DMA last! */
  3606. build_zonelists_in_zone_order(pgdat, j);
  3607. }
  3608. build_thisnode_zonelists(pgdat);
  3609. }
  3610. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3611. /*
  3612. * Return node id of node used for "local" allocations.
  3613. * I.e., first node id of first zone in arg node's generic zonelist.
  3614. * Used for initializing percpu 'numa_mem', which is used primarily
  3615. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3616. */
  3617. int local_memory_node(int node)
  3618. {
  3619. struct zone *zone;
  3620. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3621. gfp_zone(GFP_KERNEL),
  3622. NULL,
  3623. &zone);
  3624. return zone->node;
  3625. }
  3626. #endif
  3627. #else /* CONFIG_NUMA */
  3628. static void set_zonelist_order(void)
  3629. {
  3630. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3631. }
  3632. static void build_zonelists(pg_data_t *pgdat)
  3633. {
  3634. int node, local_node;
  3635. enum zone_type j;
  3636. struct zonelist *zonelist;
  3637. local_node = pgdat->node_id;
  3638. zonelist = &pgdat->node_zonelists[0];
  3639. j = build_zonelists_node(pgdat, zonelist, 0);
  3640. /*
  3641. * Now we build the zonelist so that it contains the zones
  3642. * of all the other nodes.
  3643. * We don't want to pressure a particular node, so when
  3644. * building the zones for node N, we make sure that the
  3645. * zones coming right after the local ones are those from
  3646. * node N+1 (modulo N)
  3647. */
  3648. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3649. if (!node_online(node))
  3650. continue;
  3651. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3652. }
  3653. for (node = 0; node < local_node; node++) {
  3654. if (!node_online(node))
  3655. continue;
  3656. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3657. }
  3658. zonelist->_zonerefs[j].zone = NULL;
  3659. zonelist->_zonerefs[j].zone_idx = 0;
  3660. }
  3661. #endif /* CONFIG_NUMA */
  3662. /*
  3663. * Boot pageset table. One per cpu which is going to be used for all
  3664. * zones and all nodes. The parameters will be set in such a way
  3665. * that an item put on a list will immediately be handed over to
  3666. * the buddy list. This is safe since pageset manipulation is done
  3667. * with interrupts disabled.
  3668. *
  3669. * The boot_pagesets must be kept even after bootup is complete for
  3670. * unused processors and/or zones. They do play a role for bootstrapping
  3671. * hotplugged processors.
  3672. *
  3673. * zoneinfo_show() and maybe other functions do
  3674. * not check if the processor is online before following the pageset pointer.
  3675. * Other parts of the kernel may not check if the zone is available.
  3676. */
  3677. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3678. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3679. static void setup_zone_pageset(struct zone *zone);
  3680. /*
  3681. * Global mutex to protect against size modification of zonelists
  3682. * as well as to serialize pageset setup for the new populated zone.
  3683. */
  3684. DEFINE_MUTEX(zonelists_mutex);
  3685. /* return values int ....just for stop_machine() */
  3686. static int __build_all_zonelists(void *data)
  3687. {
  3688. int nid;
  3689. int cpu;
  3690. pg_data_t *self = data;
  3691. #ifdef CONFIG_NUMA
  3692. memset(node_load, 0, sizeof(node_load));
  3693. #endif
  3694. if (self && !node_online(self->node_id)) {
  3695. build_zonelists(self);
  3696. }
  3697. for_each_online_node(nid) {
  3698. pg_data_t *pgdat = NODE_DATA(nid);
  3699. build_zonelists(pgdat);
  3700. }
  3701. /*
  3702. * Initialize the boot_pagesets that are going to be used
  3703. * for bootstrapping processors. The real pagesets for
  3704. * each zone will be allocated later when the per cpu
  3705. * allocator is available.
  3706. *
  3707. * boot_pagesets are used also for bootstrapping offline
  3708. * cpus if the system is already booted because the pagesets
  3709. * are needed to initialize allocators on a specific cpu too.
  3710. * F.e. the percpu allocator needs the page allocator which
  3711. * needs the percpu allocator in order to allocate its pagesets
  3712. * (a chicken-egg dilemma).
  3713. */
  3714. for_each_possible_cpu(cpu) {
  3715. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3716. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3717. /*
  3718. * We now know the "local memory node" for each node--
  3719. * i.e., the node of the first zone in the generic zonelist.
  3720. * Set up numa_mem percpu variable for on-line cpus. During
  3721. * boot, only the boot cpu should be on-line; we'll init the
  3722. * secondary cpus' numa_mem as they come on-line. During
  3723. * node/memory hotplug, we'll fixup all on-line cpus.
  3724. */
  3725. if (cpu_online(cpu))
  3726. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3727. #endif
  3728. }
  3729. return 0;
  3730. }
  3731. static noinline void __init
  3732. build_all_zonelists_init(void)
  3733. {
  3734. __build_all_zonelists(NULL);
  3735. mminit_verify_zonelist();
  3736. cpuset_init_current_mems_allowed();
  3737. }
  3738. /*
  3739. * Called with zonelists_mutex held always
  3740. * unless system_state == SYSTEM_BOOTING.
  3741. *
  3742. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  3743. * [we're only called with non-NULL zone through __meminit paths] and
  3744. * (2) call of __init annotated helper build_all_zonelists_init
  3745. * [protected by SYSTEM_BOOTING].
  3746. */
  3747. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3748. {
  3749. set_zonelist_order();
  3750. if (system_state == SYSTEM_BOOTING) {
  3751. build_all_zonelists_init();
  3752. } else {
  3753. #ifdef CONFIG_MEMORY_HOTPLUG
  3754. if (zone)
  3755. setup_zone_pageset(zone);
  3756. #endif
  3757. /* we have to stop all cpus to guarantee there is no user
  3758. of zonelist */
  3759. stop_machine(__build_all_zonelists, pgdat, NULL);
  3760. /* cpuset refresh routine should be here */
  3761. }
  3762. vm_total_pages = nr_free_pagecache_pages();
  3763. /*
  3764. * Disable grouping by mobility if the number of pages in the
  3765. * system is too low to allow the mechanism to work. It would be
  3766. * more accurate, but expensive to check per-zone. This check is
  3767. * made on memory-hotadd so a system can start with mobility
  3768. * disabled and enable it later
  3769. */
  3770. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3771. page_group_by_mobility_disabled = 1;
  3772. else
  3773. page_group_by_mobility_disabled = 0;
  3774. pr_info("Built %i zonelists in %s order, mobility grouping %s. "
  3775. "Total pages: %ld\n",
  3776. nr_online_nodes,
  3777. zonelist_order_name[current_zonelist_order],
  3778. page_group_by_mobility_disabled ? "off" : "on",
  3779. vm_total_pages);
  3780. #ifdef CONFIG_NUMA
  3781. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  3782. #endif
  3783. }
  3784. /*
  3785. * Helper functions to size the waitqueue hash table.
  3786. * Essentially these want to choose hash table sizes sufficiently
  3787. * large so that collisions trying to wait on pages are rare.
  3788. * But in fact, the number of active page waitqueues on typical
  3789. * systems is ridiculously low, less than 200. So this is even
  3790. * conservative, even though it seems large.
  3791. *
  3792. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3793. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3794. */
  3795. #define PAGES_PER_WAITQUEUE 256
  3796. #ifndef CONFIG_MEMORY_HOTPLUG
  3797. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3798. {
  3799. unsigned long size = 1;
  3800. pages /= PAGES_PER_WAITQUEUE;
  3801. while (size < pages)
  3802. size <<= 1;
  3803. /*
  3804. * Once we have dozens or even hundreds of threads sleeping
  3805. * on IO we've got bigger problems than wait queue collision.
  3806. * Limit the size of the wait table to a reasonable size.
  3807. */
  3808. size = min(size, 4096UL);
  3809. return max(size, 4UL);
  3810. }
  3811. #else
  3812. /*
  3813. * A zone's size might be changed by hot-add, so it is not possible to determine
  3814. * a suitable size for its wait_table. So we use the maximum size now.
  3815. *
  3816. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3817. *
  3818. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3819. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3820. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3821. *
  3822. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3823. * or more by the traditional way. (See above). It equals:
  3824. *
  3825. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3826. * ia64(16K page size) : = ( 8G + 4M)byte.
  3827. * powerpc (64K page size) : = (32G +16M)byte.
  3828. */
  3829. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3830. {
  3831. return 4096UL;
  3832. }
  3833. #endif
  3834. /*
  3835. * This is an integer logarithm so that shifts can be used later
  3836. * to extract the more random high bits from the multiplicative
  3837. * hash function before the remainder is taken.
  3838. */
  3839. static inline unsigned long wait_table_bits(unsigned long size)
  3840. {
  3841. return ffz(~size);
  3842. }
  3843. /*
  3844. * Initially all pages are reserved - free ones are freed
  3845. * up by free_all_bootmem() once the early boot process is
  3846. * done. Non-atomic initialization, single-pass.
  3847. */
  3848. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3849. unsigned long start_pfn, enum memmap_context context)
  3850. {
  3851. pg_data_t *pgdat = NODE_DATA(nid);
  3852. unsigned long end_pfn = start_pfn + size;
  3853. unsigned long pfn;
  3854. struct zone *z;
  3855. unsigned long nr_initialised = 0;
  3856. if (highest_memmap_pfn < end_pfn - 1)
  3857. highest_memmap_pfn = end_pfn - 1;
  3858. z = &pgdat->node_zones[zone];
  3859. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3860. /*
  3861. * There can be holes in boot-time mem_map[]s
  3862. * handed to this function. They do not
  3863. * exist on hotplugged memory.
  3864. */
  3865. if (context == MEMMAP_EARLY) {
  3866. if (!early_pfn_valid(pfn))
  3867. continue;
  3868. if (!early_pfn_in_nid(pfn, nid))
  3869. continue;
  3870. if (!update_defer_init(pgdat, pfn, end_pfn,
  3871. &nr_initialised))
  3872. break;
  3873. }
  3874. /*
  3875. * Mark the block movable so that blocks are reserved for
  3876. * movable at startup. This will force kernel allocations
  3877. * to reserve their blocks rather than leaking throughout
  3878. * the address space during boot when many long-lived
  3879. * kernel allocations are made.
  3880. *
  3881. * bitmap is created for zone's valid pfn range. but memmap
  3882. * can be created for invalid pages (for alignment)
  3883. * check here not to call set_pageblock_migratetype() against
  3884. * pfn out of zone.
  3885. */
  3886. if (!(pfn & (pageblock_nr_pages - 1))) {
  3887. struct page *page = pfn_to_page(pfn);
  3888. __init_single_page(page, pfn, zone, nid);
  3889. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3890. } else {
  3891. __init_single_pfn(pfn, zone, nid);
  3892. }
  3893. }
  3894. }
  3895. static void __meminit zone_init_free_lists(struct zone *zone)
  3896. {
  3897. unsigned int order, t;
  3898. for_each_migratetype_order(order, t) {
  3899. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3900. zone->free_area[order].nr_free = 0;
  3901. }
  3902. }
  3903. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3904. #define memmap_init(size, nid, zone, start_pfn) \
  3905. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3906. #endif
  3907. static int zone_batchsize(struct zone *zone)
  3908. {
  3909. #ifdef CONFIG_MMU
  3910. int batch;
  3911. /*
  3912. * The per-cpu-pages pools are set to around 1000th of the
  3913. * size of the zone. But no more than 1/2 of a meg.
  3914. *
  3915. * OK, so we don't know how big the cache is. So guess.
  3916. */
  3917. batch = zone->managed_pages / 1024;
  3918. if (batch * PAGE_SIZE > 512 * 1024)
  3919. batch = (512 * 1024) / PAGE_SIZE;
  3920. batch /= 4; /* We effectively *= 4 below */
  3921. if (batch < 1)
  3922. batch = 1;
  3923. /*
  3924. * Clamp the batch to a 2^n - 1 value. Having a power
  3925. * of 2 value was found to be more likely to have
  3926. * suboptimal cache aliasing properties in some cases.
  3927. *
  3928. * For example if 2 tasks are alternately allocating
  3929. * batches of pages, one task can end up with a lot
  3930. * of pages of one half of the possible page colors
  3931. * and the other with pages of the other colors.
  3932. */
  3933. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3934. return batch;
  3935. #else
  3936. /* The deferral and batching of frees should be suppressed under NOMMU
  3937. * conditions.
  3938. *
  3939. * The problem is that NOMMU needs to be able to allocate large chunks
  3940. * of contiguous memory as there's no hardware page translation to
  3941. * assemble apparent contiguous memory from discontiguous pages.
  3942. *
  3943. * Queueing large contiguous runs of pages for batching, however,
  3944. * causes the pages to actually be freed in smaller chunks. As there
  3945. * can be a significant delay between the individual batches being
  3946. * recycled, this leads to the once large chunks of space being
  3947. * fragmented and becoming unavailable for high-order allocations.
  3948. */
  3949. return 0;
  3950. #endif
  3951. }
  3952. /*
  3953. * pcp->high and pcp->batch values are related and dependent on one another:
  3954. * ->batch must never be higher then ->high.
  3955. * The following function updates them in a safe manner without read side
  3956. * locking.
  3957. *
  3958. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3959. * those fields changing asynchronously (acording the the above rule).
  3960. *
  3961. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3962. * outside of boot time (or some other assurance that no concurrent updaters
  3963. * exist).
  3964. */
  3965. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3966. unsigned long batch)
  3967. {
  3968. /* start with a fail safe value for batch */
  3969. pcp->batch = 1;
  3970. smp_wmb();
  3971. /* Update high, then batch, in order */
  3972. pcp->high = high;
  3973. smp_wmb();
  3974. pcp->batch = batch;
  3975. }
  3976. /* a companion to pageset_set_high() */
  3977. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3978. {
  3979. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3980. }
  3981. static void pageset_init(struct per_cpu_pageset *p)
  3982. {
  3983. struct per_cpu_pages *pcp;
  3984. int migratetype;
  3985. memset(p, 0, sizeof(*p));
  3986. pcp = &p->pcp;
  3987. pcp->count = 0;
  3988. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3989. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3990. }
  3991. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3992. {
  3993. pageset_init(p);
  3994. pageset_set_batch(p, batch);
  3995. }
  3996. /*
  3997. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3998. * to the value high for the pageset p.
  3999. */
  4000. static void pageset_set_high(struct per_cpu_pageset *p,
  4001. unsigned long high)
  4002. {
  4003. unsigned long batch = max(1UL, high / 4);
  4004. if ((high / 4) > (PAGE_SHIFT * 8))
  4005. batch = PAGE_SHIFT * 8;
  4006. pageset_update(&p->pcp, high, batch);
  4007. }
  4008. static void pageset_set_high_and_batch(struct zone *zone,
  4009. struct per_cpu_pageset *pcp)
  4010. {
  4011. if (percpu_pagelist_fraction)
  4012. pageset_set_high(pcp,
  4013. (zone->managed_pages /
  4014. percpu_pagelist_fraction));
  4015. else
  4016. pageset_set_batch(pcp, zone_batchsize(zone));
  4017. }
  4018. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4019. {
  4020. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4021. pageset_init(pcp);
  4022. pageset_set_high_and_batch(zone, pcp);
  4023. }
  4024. static void __meminit setup_zone_pageset(struct zone *zone)
  4025. {
  4026. int cpu;
  4027. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4028. for_each_possible_cpu(cpu)
  4029. zone_pageset_init(zone, cpu);
  4030. }
  4031. /*
  4032. * Allocate per cpu pagesets and initialize them.
  4033. * Before this call only boot pagesets were available.
  4034. */
  4035. void __init setup_per_cpu_pageset(void)
  4036. {
  4037. struct zone *zone;
  4038. for_each_populated_zone(zone)
  4039. setup_zone_pageset(zone);
  4040. }
  4041. static noinline __init_refok
  4042. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4043. {
  4044. int i;
  4045. size_t alloc_size;
  4046. /*
  4047. * The per-page waitqueue mechanism uses hashed waitqueues
  4048. * per zone.
  4049. */
  4050. zone->wait_table_hash_nr_entries =
  4051. wait_table_hash_nr_entries(zone_size_pages);
  4052. zone->wait_table_bits =
  4053. wait_table_bits(zone->wait_table_hash_nr_entries);
  4054. alloc_size = zone->wait_table_hash_nr_entries
  4055. * sizeof(wait_queue_head_t);
  4056. if (!slab_is_available()) {
  4057. zone->wait_table = (wait_queue_head_t *)
  4058. memblock_virt_alloc_node_nopanic(
  4059. alloc_size, zone->zone_pgdat->node_id);
  4060. } else {
  4061. /*
  4062. * This case means that a zone whose size was 0 gets new memory
  4063. * via memory hot-add.
  4064. * But it may be the case that a new node was hot-added. In
  4065. * this case vmalloc() will not be able to use this new node's
  4066. * memory - this wait_table must be initialized to use this new
  4067. * node itself as well.
  4068. * To use this new node's memory, further consideration will be
  4069. * necessary.
  4070. */
  4071. zone->wait_table = vmalloc(alloc_size);
  4072. }
  4073. if (!zone->wait_table)
  4074. return -ENOMEM;
  4075. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4076. init_waitqueue_head(zone->wait_table + i);
  4077. return 0;
  4078. }
  4079. static __meminit void zone_pcp_init(struct zone *zone)
  4080. {
  4081. /*
  4082. * per cpu subsystem is not up at this point. The following code
  4083. * relies on the ability of the linker to provide the
  4084. * offset of a (static) per cpu variable into the per cpu area.
  4085. */
  4086. zone->pageset = &boot_pageset;
  4087. if (populated_zone(zone))
  4088. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4089. zone->name, zone->present_pages,
  4090. zone_batchsize(zone));
  4091. }
  4092. int __meminit init_currently_empty_zone(struct zone *zone,
  4093. unsigned long zone_start_pfn,
  4094. unsigned long size)
  4095. {
  4096. struct pglist_data *pgdat = zone->zone_pgdat;
  4097. int ret;
  4098. ret = zone_wait_table_init(zone, size);
  4099. if (ret)
  4100. return ret;
  4101. pgdat->nr_zones = zone_idx(zone) + 1;
  4102. zone->zone_start_pfn = zone_start_pfn;
  4103. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4104. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4105. pgdat->node_id,
  4106. (unsigned long)zone_idx(zone),
  4107. zone_start_pfn, (zone_start_pfn + size));
  4108. zone_init_free_lists(zone);
  4109. return 0;
  4110. }
  4111. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4112. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4113. /*
  4114. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4115. */
  4116. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4117. struct mminit_pfnnid_cache *state)
  4118. {
  4119. unsigned long start_pfn, end_pfn;
  4120. int nid;
  4121. if (state->last_start <= pfn && pfn < state->last_end)
  4122. return state->last_nid;
  4123. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4124. if (nid != -1) {
  4125. state->last_start = start_pfn;
  4126. state->last_end = end_pfn;
  4127. state->last_nid = nid;
  4128. }
  4129. return nid;
  4130. }
  4131. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4132. /**
  4133. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4134. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4135. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4136. *
  4137. * If an architecture guarantees that all ranges registered contain no holes
  4138. * and may be freed, this this function may be used instead of calling
  4139. * memblock_free_early_nid() manually.
  4140. */
  4141. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4142. {
  4143. unsigned long start_pfn, end_pfn;
  4144. int i, this_nid;
  4145. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4146. start_pfn = min(start_pfn, max_low_pfn);
  4147. end_pfn = min(end_pfn, max_low_pfn);
  4148. if (start_pfn < end_pfn)
  4149. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4150. (end_pfn - start_pfn) << PAGE_SHIFT,
  4151. this_nid);
  4152. }
  4153. }
  4154. /**
  4155. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4156. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4157. *
  4158. * If an architecture guarantees that all ranges registered contain no holes and may
  4159. * be freed, this function may be used instead of calling memory_present() manually.
  4160. */
  4161. void __init sparse_memory_present_with_active_regions(int nid)
  4162. {
  4163. unsigned long start_pfn, end_pfn;
  4164. int i, this_nid;
  4165. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4166. memory_present(this_nid, start_pfn, end_pfn);
  4167. }
  4168. /**
  4169. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4170. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4171. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4172. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4173. *
  4174. * It returns the start and end page frame of a node based on information
  4175. * provided by memblock_set_node(). If called for a node
  4176. * with no available memory, a warning is printed and the start and end
  4177. * PFNs will be 0.
  4178. */
  4179. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4180. unsigned long *start_pfn, unsigned long *end_pfn)
  4181. {
  4182. unsigned long this_start_pfn, this_end_pfn;
  4183. int i;
  4184. *start_pfn = -1UL;
  4185. *end_pfn = 0;
  4186. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4187. *start_pfn = min(*start_pfn, this_start_pfn);
  4188. *end_pfn = max(*end_pfn, this_end_pfn);
  4189. }
  4190. if (*start_pfn == -1UL)
  4191. *start_pfn = 0;
  4192. }
  4193. /*
  4194. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4195. * assumption is made that zones within a node are ordered in monotonic
  4196. * increasing memory addresses so that the "highest" populated zone is used
  4197. */
  4198. static void __init find_usable_zone_for_movable(void)
  4199. {
  4200. int zone_index;
  4201. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4202. if (zone_index == ZONE_MOVABLE)
  4203. continue;
  4204. if (arch_zone_highest_possible_pfn[zone_index] >
  4205. arch_zone_lowest_possible_pfn[zone_index])
  4206. break;
  4207. }
  4208. VM_BUG_ON(zone_index == -1);
  4209. movable_zone = zone_index;
  4210. }
  4211. /*
  4212. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4213. * because it is sized independent of architecture. Unlike the other zones,
  4214. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4215. * in each node depending on the size of each node and how evenly kernelcore
  4216. * is distributed. This helper function adjusts the zone ranges
  4217. * provided by the architecture for a given node by using the end of the
  4218. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4219. * zones within a node are in order of monotonic increases memory addresses
  4220. */
  4221. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4222. unsigned long zone_type,
  4223. unsigned long node_start_pfn,
  4224. unsigned long node_end_pfn,
  4225. unsigned long *zone_start_pfn,
  4226. unsigned long *zone_end_pfn)
  4227. {
  4228. /* Only adjust if ZONE_MOVABLE is on this node */
  4229. if (zone_movable_pfn[nid]) {
  4230. /* Size ZONE_MOVABLE */
  4231. if (zone_type == ZONE_MOVABLE) {
  4232. *zone_start_pfn = zone_movable_pfn[nid];
  4233. *zone_end_pfn = min(node_end_pfn,
  4234. arch_zone_highest_possible_pfn[movable_zone]);
  4235. /* Adjust for ZONE_MOVABLE starting within this range */
  4236. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  4237. *zone_end_pfn > zone_movable_pfn[nid]) {
  4238. *zone_end_pfn = zone_movable_pfn[nid];
  4239. /* Check if this whole range is within ZONE_MOVABLE */
  4240. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4241. *zone_start_pfn = *zone_end_pfn;
  4242. }
  4243. }
  4244. /*
  4245. * Return the number of pages a zone spans in a node, including holes
  4246. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4247. */
  4248. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4249. unsigned long zone_type,
  4250. unsigned long node_start_pfn,
  4251. unsigned long node_end_pfn,
  4252. unsigned long *ignored)
  4253. {
  4254. unsigned long zone_start_pfn, zone_end_pfn;
  4255. /* When hotadd a new node from cpu_up(), the node should be empty */
  4256. if (!node_start_pfn && !node_end_pfn)
  4257. return 0;
  4258. /* Get the start and end of the zone */
  4259. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4260. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4261. adjust_zone_range_for_zone_movable(nid, zone_type,
  4262. node_start_pfn, node_end_pfn,
  4263. &zone_start_pfn, &zone_end_pfn);
  4264. /* Check that this node has pages within the zone's required range */
  4265. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  4266. return 0;
  4267. /* Move the zone boundaries inside the node if necessary */
  4268. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  4269. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  4270. /* Return the spanned pages */
  4271. return zone_end_pfn - zone_start_pfn;
  4272. }
  4273. /*
  4274. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4275. * then all holes in the requested range will be accounted for.
  4276. */
  4277. unsigned long __meminit __absent_pages_in_range(int nid,
  4278. unsigned long range_start_pfn,
  4279. unsigned long range_end_pfn)
  4280. {
  4281. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4282. unsigned long start_pfn, end_pfn;
  4283. int i;
  4284. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4285. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4286. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4287. nr_absent -= end_pfn - start_pfn;
  4288. }
  4289. return nr_absent;
  4290. }
  4291. /**
  4292. * absent_pages_in_range - Return number of page frames in holes within a range
  4293. * @start_pfn: The start PFN to start searching for holes
  4294. * @end_pfn: The end PFN to stop searching for holes
  4295. *
  4296. * It returns the number of pages frames in memory holes within a range.
  4297. */
  4298. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4299. unsigned long end_pfn)
  4300. {
  4301. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4302. }
  4303. /* Return the number of page frames in holes in a zone on a node */
  4304. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4305. unsigned long zone_type,
  4306. unsigned long node_start_pfn,
  4307. unsigned long node_end_pfn,
  4308. unsigned long *ignored)
  4309. {
  4310. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4311. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4312. unsigned long zone_start_pfn, zone_end_pfn;
  4313. /* When hotadd a new node from cpu_up(), the node should be empty */
  4314. if (!node_start_pfn && !node_end_pfn)
  4315. return 0;
  4316. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4317. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4318. adjust_zone_range_for_zone_movable(nid, zone_type,
  4319. node_start_pfn, node_end_pfn,
  4320. &zone_start_pfn, &zone_end_pfn);
  4321. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4322. }
  4323. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4324. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4325. unsigned long zone_type,
  4326. unsigned long node_start_pfn,
  4327. unsigned long node_end_pfn,
  4328. unsigned long *zones_size)
  4329. {
  4330. return zones_size[zone_type];
  4331. }
  4332. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4333. unsigned long zone_type,
  4334. unsigned long node_start_pfn,
  4335. unsigned long node_end_pfn,
  4336. unsigned long *zholes_size)
  4337. {
  4338. if (!zholes_size)
  4339. return 0;
  4340. return zholes_size[zone_type];
  4341. }
  4342. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4343. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4344. unsigned long node_start_pfn,
  4345. unsigned long node_end_pfn,
  4346. unsigned long *zones_size,
  4347. unsigned long *zholes_size)
  4348. {
  4349. unsigned long realtotalpages = 0, totalpages = 0;
  4350. enum zone_type i;
  4351. for (i = 0; i < MAX_NR_ZONES; i++) {
  4352. struct zone *zone = pgdat->node_zones + i;
  4353. unsigned long size, real_size;
  4354. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4355. node_start_pfn,
  4356. node_end_pfn,
  4357. zones_size);
  4358. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4359. node_start_pfn, node_end_pfn,
  4360. zholes_size);
  4361. zone->spanned_pages = size;
  4362. zone->present_pages = real_size;
  4363. totalpages += size;
  4364. realtotalpages += real_size;
  4365. }
  4366. pgdat->node_spanned_pages = totalpages;
  4367. pgdat->node_present_pages = realtotalpages;
  4368. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4369. realtotalpages);
  4370. }
  4371. #ifndef CONFIG_SPARSEMEM
  4372. /*
  4373. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4374. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4375. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4376. * round what is now in bits to nearest long in bits, then return it in
  4377. * bytes.
  4378. */
  4379. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4380. {
  4381. unsigned long usemapsize;
  4382. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4383. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4384. usemapsize = usemapsize >> pageblock_order;
  4385. usemapsize *= NR_PAGEBLOCK_BITS;
  4386. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4387. return usemapsize / 8;
  4388. }
  4389. static void __init setup_usemap(struct pglist_data *pgdat,
  4390. struct zone *zone,
  4391. unsigned long zone_start_pfn,
  4392. unsigned long zonesize)
  4393. {
  4394. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4395. zone->pageblock_flags = NULL;
  4396. if (usemapsize)
  4397. zone->pageblock_flags =
  4398. memblock_virt_alloc_node_nopanic(usemapsize,
  4399. pgdat->node_id);
  4400. }
  4401. #else
  4402. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4403. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4404. #endif /* CONFIG_SPARSEMEM */
  4405. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4406. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4407. void __paginginit set_pageblock_order(void)
  4408. {
  4409. unsigned int order;
  4410. /* Check that pageblock_nr_pages has not already been setup */
  4411. if (pageblock_order)
  4412. return;
  4413. if (HPAGE_SHIFT > PAGE_SHIFT)
  4414. order = HUGETLB_PAGE_ORDER;
  4415. else
  4416. order = MAX_ORDER - 1;
  4417. /*
  4418. * Assume the largest contiguous order of interest is a huge page.
  4419. * This value may be variable depending on boot parameters on IA64 and
  4420. * powerpc.
  4421. */
  4422. pageblock_order = order;
  4423. }
  4424. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4425. /*
  4426. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4427. * is unused as pageblock_order is set at compile-time. See
  4428. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4429. * the kernel config
  4430. */
  4431. void __paginginit set_pageblock_order(void)
  4432. {
  4433. }
  4434. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4435. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4436. unsigned long present_pages)
  4437. {
  4438. unsigned long pages = spanned_pages;
  4439. /*
  4440. * Provide a more accurate estimation if there are holes within
  4441. * the zone and SPARSEMEM is in use. If there are holes within the
  4442. * zone, each populated memory region may cost us one or two extra
  4443. * memmap pages due to alignment because memmap pages for each
  4444. * populated regions may not naturally algined on page boundary.
  4445. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4446. */
  4447. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4448. IS_ENABLED(CONFIG_SPARSEMEM))
  4449. pages = present_pages;
  4450. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4451. }
  4452. /*
  4453. * Set up the zone data structures:
  4454. * - mark all pages reserved
  4455. * - mark all memory queues empty
  4456. * - clear the memory bitmaps
  4457. *
  4458. * NOTE: pgdat should get zeroed by caller.
  4459. */
  4460. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  4461. {
  4462. enum zone_type j;
  4463. int nid = pgdat->node_id;
  4464. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4465. int ret;
  4466. pgdat_resize_init(pgdat);
  4467. #ifdef CONFIG_NUMA_BALANCING
  4468. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4469. pgdat->numabalancing_migrate_nr_pages = 0;
  4470. pgdat->numabalancing_migrate_next_window = jiffies;
  4471. #endif
  4472. init_waitqueue_head(&pgdat->kswapd_wait);
  4473. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4474. pgdat_page_ext_init(pgdat);
  4475. for (j = 0; j < MAX_NR_ZONES; j++) {
  4476. struct zone *zone = pgdat->node_zones + j;
  4477. unsigned long size, realsize, freesize, memmap_pages;
  4478. size = zone->spanned_pages;
  4479. realsize = freesize = zone->present_pages;
  4480. /*
  4481. * Adjust freesize so that it accounts for how much memory
  4482. * is used by this zone for memmap. This affects the watermark
  4483. * and per-cpu initialisations
  4484. */
  4485. memmap_pages = calc_memmap_size(size, realsize);
  4486. if (!is_highmem_idx(j)) {
  4487. if (freesize >= memmap_pages) {
  4488. freesize -= memmap_pages;
  4489. if (memmap_pages)
  4490. printk(KERN_DEBUG
  4491. " %s zone: %lu pages used for memmap\n",
  4492. zone_names[j], memmap_pages);
  4493. } else
  4494. printk(KERN_WARNING
  4495. " %s zone: %lu pages exceeds freesize %lu\n",
  4496. zone_names[j], memmap_pages, freesize);
  4497. }
  4498. /* Account for reserved pages */
  4499. if (j == 0 && freesize > dma_reserve) {
  4500. freesize -= dma_reserve;
  4501. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4502. zone_names[0], dma_reserve);
  4503. }
  4504. if (!is_highmem_idx(j))
  4505. nr_kernel_pages += freesize;
  4506. /* Charge for highmem memmap if there are enough kernel pages */
  4507. else if (nr_kernel_pages > memmap_pages * 2)
  4508. nr_kernel_pages -= memmap_pages;
  4509. nr_all_pages += freesize;
  4510. /*
  4511. * Set an approximate value for lowmem here, it will be adjusted
  4512. * when the bootmem allocator frees pages into the buddy system.
  4513. * And all highmem pages will be managed by the buddy system.
  4514. */
  4515. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4516. #ifdef CONFIG_NUMA
  4517. zone->node = nid;
  4518. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4519. / 100;
  4520. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4521. #endif
  4522. zone->name = zone_names[j];
  4523. spin_lock_init(&zone->lock);
  4524. spin_lock_init(&zone->lru_lock);
  4525. zone_seqlock_init(zone);
  4526. zone->zone_pgdat = pgdat;
  4527. zone_pcp_init(zone);
  4528. /* For bootup, initialized properly in watermark setup */
  4529. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4530. lruvec_init(&zone->lruvec);
  4531. if (!size)
  4532. continue;
  4533. set_pageblock_order();
  4534. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4535. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  4536. BUG_ON(ret);
  4537. memmap_init(size, nid, j, zone_start_pfn);
  4538. zone_start_pfn += size;
  4539. }
  4540. }
  4541. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4542. {
  4543. unsigned long __maybe_unused start = 0;
  4544. unsigned long __maybe_unused offset = 0;
  4545. /* Skip empty nodes */
  4546. if (!pgdat->node_spanned_pages)
  4547. return;
  4548. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4549. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4550. offset = pgdat->node_start_pfn - start;
  4551. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4552. if (!pgdat->node_mem_map) {
  4553. unsigned long size, end;
  4554. struct page *map;
  4555. /*
  4556. * The zone's endpoints aren't required to be MAX_ORDER
  4557. * aligned but the node_mem_map endpoints must be in order
  4558. * for the buddy allocator to function correctly.
  4559. */
  4560. end = pgdat_end_pfn(pgdat);
  4561. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4562. size = (end - start) * sizeof(struct page);
  4563. map = alloc_remap(pgdat->node_id, size);
  4564. if (!map)
  4565. map = memblock_virt_alloc_node_nopanic(size,
  4566. pgdat->node_id);
  4567. pgdat->node_mem_map = map + offset;
  4568. }
  4569. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4570. /*
  4571. * With no DISCONTIG, the global mem_map is just set as node 0's
  4572. */
  4573. if (pgdat == NODE_DATA(0)) {
  4574. mem_map = NODE_DATA(0)->node_mem_map;
  4575. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  4576. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4577. mem_map -= offset;
  4578. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4579. }
  4580. #endif
  4581. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4582. }
  4583. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4584. unsigned long node_start_pfn, unsigned long *zholes_size)
  4585. {
  4586. pg_data_t *pgdat = NODE_DATA(nid);
  4587. unsigned long start_pfn = 0;
  4588. unsigned long end_pfn = 0;
  4589. /* pg_data_t should be reset to zero when it's allocated */
  4590. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4591. reset_deferred_meminit(pgdat);
  4592. pgdat->node_id = nid;
  4593. pgdat->node_start_pfn = node_start_pfn;
  4594. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4595. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4596. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  4597. (u64)start_pfn << PAGE_SHIFT,
  4598. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  4599. #endif
  4600. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4601. zones_size, zholes_size);
  4602. alloc_node_mem_map(pgdat);
  4603. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4604. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4605. nid, (unsigned long)pgdat,
  4606. (unsigned long)pgdat->node_mem_map);
  4607. #endif
  4608. free_area_init_core(pgdat);
  4609. }
  4610. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4611. #if MAX_NUMNODES > 1
  4612. /*
  4613. * Figure out the number of possible node ids.
  4614. */
  4615. void __init setup_nr_node_ids(void)
  4616. {
  4617. unsigned int highest;
  4618. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  4619. nr_node_ids = highest + 1;
  4620. }
  4621. #endif
  4622. /**
  4623. * node_map_pfn_alignment - determine the maximum internode alignment
  4624. *
  4625. * This function should be called after node map is populated and sorted.
  4626. * It calculates the maximum power of two alignment which can distinguish
  4627. * all the nodes.
  4628. *
  4629. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4630. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4631. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4632. * shifted, 1GiB is enough and this function will indicate so.
  4633. *
  4634. * This is used to test whether pfn -> nid mapping of the chosen memory
  4635. * model has fine enough granularity to avoid incorrect mapping for the
  4636. * populated node map.
  4637. *
  4638. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4639. * requirement (single node).
  4640. */
  4641. unsigned long __init node_map_pfn_alignment(void)
  4642. {
  4643. unsigned long accl_mask = 0, last_end = 0;
  4644. unsigned long start, end, mask;
  4645. int last_nid = -1;
  4646. int i, nid;
  4647. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4648. if (!start || last_nid < 0 || last_nid == nid) {
  4649. last_nid = nid;
  4650. last_end = end;
  4651. continue;
  4652. }
  4653. /*
  4654. * Start with a mask granular enough to pin-point to the
  4655. * start pfn and tick off bits one-by-one until it becomes
  4656. * too coarse to separate the current node from the last.
  4657. */
  4658. mask = ~((1 << __ffs(start)) - 1);
  4659. while (mask && last_end <= (start & (mask << 1)))
  4660. mask <<= 1;
  4661. /* accumulate all internode masks */
  4662. accl_mask |= mask;
  4663. }
  4664. /* convert mask to number of pages */
  4665. return ~accl_mask + 1;
  4666. }
  4667. /* Find the lowest pfn for a node */
  4668. static unsigned long __init find_min_pfn_for_node(int nid)
  4669. {
  4670. unsigned long min_pfn = ULONG_MAX;
  4671. unsigned long start_pfn;
  4672. int i;
  4673. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4674. min_pfn = min(min_pfn, start_pfn);
  4675. if (min_pfn == ULONG_MAX) {
  4676. printk(KERN_WARNING
  4677. "Could not find start_pfn for node %d\n", nid);
  4678. return 0;
  4679. }
  4680. return min_pfn;
  4681. }
  4682. /**
  4683. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4684. *
  4685. * It returns the minimum PFN based on information provided via
  4686. * memblock_set_node().
  4687. */
  4688. unsigned long __init find_min_pfn_with_active_regions(void)
  4689. {
  4690. return find_min_pfn_for_node(MAX_NUMNODES);
  4691. }
  4692. /*
  4693. * early_calculate_totalpages()
  4694. * Sum pages in active regions for movable zone.
  4695. * Populate N_MEMORY for calculating usable_nodes.
  4696. */
  4697. static unsigned long __init early_calculate_totalpages(void)
  4698. {
  4699. unsigned long totalpages = 0;
  4700. unsigned long start_pfn, end_pfn;
  4701. int i, nid;
  4702. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4703. unsigned long pages = end_pfn - start_pfn;
  4704. totalpages += pages;
  4705. if (pages)
  4706. node_set_state(nid, N_MEMORY);
  4707. }
  4708. return totalpages;
  4709. }
  4710. /*
  4711. * Find the PFN the Movable zone begins in each node. Kernel memory
  4712. * is spread evenly between nodes as long as the nodes have enough
  4713. * memory. When they don't, some nodes will have more kernelcore than
  4714. * others
  4715. */
  4716. static void __init find_zone_movable_pfns_for_nodes(void)
  4717. {
  4718. int i, nid;
  4719. unsigned long usable_startpfn;
  4720. unsigned long kernelcore_node, kernelcore_remaining;
  4721. /* save the state before borrow the nodemask */
  4722. nodemask_t saved_node_state = node_states[N_MEMORY];
  4723. unsigned long totalpages = early_calculate_totalpages();
  4724. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4725. struct memblock_region *r;
  4726. /* Need to find movable_zone earlier when movable_node is specified. */
  4727. find_usable_zone_for_movable();
  4728. /*
  4729. * If movable_node is specified, ignore kernelcore and movablecore
  4730. * options.
  4731. */
  4732. if (movable_node_is_enabled()) {
  4733. for_each_memblock(memory, r) {
  4734. if (!memblock_is_hotpluggable(r))
  4735. continue;
  4736. nid = r->nid;
  4737. usable_startpfn = PFN_DOWN(r->base);
  4738. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4739. min(usable_startpfn, zone_movable_pfn[nid]) :
  4740. usable_startpfn;
  4741. }
  4742. goto out2;
  4743. }
  4744. /*
  4745. * If movablecore=nn[KMG] was specified, calculate what size of
  4746. * kernelcore that corresponds so that memory usable for
  4747. * any allocation type is evenly spread. If both kernelcore
  4748. * and movablecore are specified, then the value of kernelcore
  4749. * will be used for required_kernelcore if it's greater than
  4750. * what movablecore would have allowed.
  4751. */
  4752. if (required_movablecore) {
  4753. unsigned long corepages;
  4754. /*
  4755. * Round-up so that ZONE_MOVABLE is at least as large as what
  4756. * was requested by the user
  4757. */
  4758. required_movablecore =
  4759. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4760. required_movablecore = min(totalpages, required_movablecore);
  4761. corepages = totalpages - required_movablecore;
  4762. required_kernelcore = max(required_kernelcore, corepages);
  4763. }
  4764. /*
  4765. * If kernelcore was not specified or kernelcore size is larger
  4766. * than totalpages, there is no ZONE_MOVABLE.
  4767. */
  4768. if (!required_kernelcore || required_kernelcore >= totalpages)
  4769. goto out;
  4770. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4771. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4772. restart:
  4773. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4774. kernelcore_node = required_kernelcore / usable_nodes;
  4775. for_each_node_state(nid, N_MEMORY) {
  4776. unsigned long start_pfn, end_pfn;
  4777. /*
  4778. * Recalculate kernelcore_node if the division per node
  4779. * now exceeds what is necessary to satisfy the requested
  4780. * amount of memory for the kernel
  4781. */
  4782. if (required_kernelcore < kernelcore_node)
  4783. kernelcore_node = required_kernelcore / usable_nodes;
  4784. /*
  4785. * As the map is walked, we track how much memory is usable
  4786. * by the kernel using kernelcore_remaining. When it is
  4787. * 0, the rest of the node is usable by ZONE_MOVABLE
  4788. */
  4789. kernelcore_remaining = kernelcore_node;
  4790. /* Go through each range of PFNs within this node */
  4791. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4792. unsigned long size_pages;
  4793. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4794. if (start_pfn >= end_pfn)
  4795. continue;
  4796. /* Account for what is only usable for kernelcore */
  4797. if (start_pfn < usable_startpfn) {
  4798. unsigned long kernel_pages;
  4799. kernel_pages = min(end_pfn, usable_startpfn)
  4800. - start_pfn;
  4801. kernelcore_remaining -= min(kernel_pages,
  4802. kernelcore_remaining);
  4803. required_kernelcore -= min(kernel_pages,
  4804. required_kernelcore);
  4805. /* Continue if range is now fully accounted */
  4806. if (end_pfn <= usable_startpfn) {
  4807. /*
  4808. * Push zone_movable_pfn to the end so
  4809. * that if we have to rebalance
  4810. * kernelcore across nodes, we will
  4811. * not double account here
  4812. */
  4813. zone_movable_pfn[nid] = end_pfn;
  4814. continue;
  4815. }
  4816. start_pfn = usable_startpfn;
  4817. }
  4818. /*
  4819. * The usable PFN range for ZONE_MOVABLE is from
  4820. * start_pfn->end_pfn. Calculate size_pages as the
  4821. * number of pages used as kernelcore
  4822. */
  4823. size_pages = end_pfn - start_pfn;
  4824. if (size_pages > kernelcore_remaining)
  4825. size_pages = kernelcore_remaining;
  4826. zone_movable_pfn[nid] = start_pfn + size_pages;
  4827. /*
  4828. * Some kernelcore has been met, update counts and
  4829. * break if the kernelcore for this node has been
  4830. * satisfied
  4831. */
  4832. required_kernelcore -= min(required_kernelcore,
  4833. size_pages);
  4834. kernelcore_remaining -= size_pages;
  4835. if (!kernelcore_remaining)
  4836. break;
  4837. }
  4838. }
  4839. /*
  4840. * If there is still required_kernelcore, we do another pass with one
  4841. * less node in the count. This will push zone_movable_pfn[nid] further
  4842. * along on the nodes that still have memory until kernelcore is
  4843. * satisfied
  4844. */
  4845. usable_nodes--;
  4846. if (usable_nodes && required_kernelcore > usable_nodes)
  4847. goto restart;
  4848. out2:
  4849. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4850. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4851. zone_movable_pfn[nid] =
  4852. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4853. out:
  4854. /* restore the node_state */
  4855. node_states[N_MEMORY] = saved_node_state;
  4856. }
  4857. /* Any regular or high memory on that node ? */
  4858. static void check_for_memory(pg_data_t *pgdat, int nid)
  4859. {
  4860. enum zone_type zone_type;
  4861. if (N_MEMORY == N_NORMAL_MEMORY)
  4862. return;
  4863. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4864. struct zone *zone = &pgdat->node_zones[zone_type];
  4865. if (populated_zone(zone)) {
  4866. node_set_state(nid, N_HIGH_MEMORY);
  4867. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4868. zone_type <= ZONE_NORMAL)
  4869. node_set_state(nid, N_NORMAL_MEMORY);
  4870. break;
  4871. }
  4872. }
  4873. }
  4874. /**
  4875. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4876. * @max_zone_pfn: an array of max PFNs for each zone
  4877. *
  4878. * This will call free_area_init_node() for each active node in the system.
  4879. * Using the page ranges provided by memblock_set_node(), the size of each
  4880. * zone in each node and their holes is calculated. If the maximum PFN
  4881. * between two adjacent zones match, it is assumed that the zone is empty.
  4882. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4883. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4884. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4885. * at arch_max_dma_pfn.
  4886. */
  4887. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4888. {
  4889. unsigned long start_pfn, end_pfn;
  4890. int i, nid;
  4891. /* Record where the zone boundaries are */
  4892. memset(arch_zone_lowest_possible_pfn, 0,
  4893. sizeof(arch_zone_lowest_possible_pfn));
  4894. memset(arch_zone_highest_possible_pfn, 0,
  4895. sizeof(arch_zone_highest_possible_pfn));
  4896. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4897. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4898. for (i = 1; i < MAX_NR_ZONES; i++) {
  4899. if (i == ZONE_MOVABLE)
  4900. continue;
  4901. arch_zone_lowest_possible_pfn[i] =
  4902. arch_zone_highest_possible_pfn[i-1];
  4903. arch_zone_highest_possible_pfn[i] =
  4904. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4905. }
  4906. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4907. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4908. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4909. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4910. find_zone_movable_pfns_for_nodes();
  4911. /* Print out the zone ranges */
  4912. pr_info("Zone ranges:\n");
  4913. for (i = 0; i < MAX_NR_ZONES; i++) {
  4914. if (i == ZONE_MOVABLE)
  4915. continue;
  4916. pr_info(" %-8s ", zone_names[i]);
  4917. if (arch_zone_lowest_possible_pfn[i] ==
  4918. arch_zone_highest_possible_pfn[i])
  4919. pr_cont("empty\n");
  4920. else
  4921. pr_cont("[mem %#018Lx-%#018Lx]\n",
  4922. (u64)arch_zone_lowest_possible_pfn[i]
  4923. << PAGE_SHIFT,
  4924. ((u64)arch_zone_highest_possible_pfn[i]
  4925. << PAGE_SHIFT) - 1);
  4926. }
  4927. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4928. pr_info("Movable zone start for each node\n");
  4929. for (i = 0; i < MAX_NUMNODES; i++) {
  4930. if (zone_movable_pfn[i])
  4931. pr_info(" Node %d: %#018Lx\n", i,
  4932. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  4933. }
  4934. /* Print out the early node map */
  4935. pr_info("Early memory node ranges\n");
  4936. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4937. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  4938. (u64)start_pfn << PAGE_SHIFT,
  4939. ((u64)end_pfn << PAGE_SHIFT) - 1);
  4940. /* Initialise every node */
  4941. mminit_verify_pageflags_layout();
  4942. setup_nr_node_ids();
  4943. for_each_online_node(nid) {
  4944. pg_data_t *pgdat = NODE_DATA(nid);
  4945. free_area_init_node(nid, NULL,
  4946. find_min_pfn_for_node(nid), NULL);
  4947. /* Any memory on that node */
  4948. if (pgdat->node_present_pages)
  4949. node_set_state(nid, N_MEMORY);
  4950. check_for_memory(pgdat, nid);
  4951. }
  4952. }
  4953. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4954. {
  4955. unsigned long long coremem;
  4956. if (!p)
  4957. return -EINVAL;
  4958. coremem = memparse(p, &p);
  4959. *core = coremem >> PAGE_SHIFT;
  4960. /* Paranoid check that UL is enough for the coremem value */
  4961. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4962. return 0;
  4963. }
  4964. /*
  4965. * kernelcore=size sets the amount of memory for use for allocations that
  4966. * cannot be reclaimed or migrated.
  4967. */
  4968. static int __init cmdline_parse_kernelcore(char *p)
  4969. {
  4970. return cmdline_parse_core(p, &required_kernelcore);
  4971. }
  4972. /*
  4973. * movablecore=size sets the amount of memory for use for allocations that
  4974. * can be reclaimed or migrated.
  4975. */
  4976. static int __init cmdline_parse_movablecore(char *p)
  4977. {
  4978. return cmdline_parse_core(p, &required_movablecore);
  4979. }
  4980. early_param("kernelcore", cmdline_parse_kernelcore);
  4981. early_param("movablecore", cmdline_parse_movablecore);
  4982. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4983. void adjust_managed_page_count(struct page *page, long count)
  4984. {
  4985. spin_lock(&managed_page_count_lock);
  4986. page_zone(page)->managed_pages += count;
  4987. totalram_pages += count;
  4988. #ifdef CONFIG_HIGHMEM
  4989. if (PageHighMem(page))
  4990. totalhigh_pages += count;
  4991. #endif
  4992. spin_unlock(&managed_page_count_lock);
  4993. }
  4994. EXPORT_SYMBOL(adjust_managed_page_count);
  4995. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4996. {
  4997. void *pos;
  4998. unsigned long pages = 0;
  4999. start = (void *)PAGE_ALIGN((unsigned long)start);
  5000. end = (void *)((unsigned long)end & PAGE_MASK);
  5001. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5002. if ((unsigned int)poison <= 0xFF)
  5003. memset(pos, poison, PAGE_SIZE);
  5004. free_reserved_page(virt_to_page(pos));
  5005. }
  5006. if (pages && s)
  5007. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5008. s, pages << (PAGE_SHIFT - 10), start, end);
  5009. return pages;
  5010. }
  5011. EXPORT_SYMBOL(free_reserved_area);
  5012. #ifdef CONFIG_HIGHMEM
  5013. void free_highmem_page(struct page *page)
  5014. {
  5015. __free_reserved_page(page);
  5016. totalram_pages++;
  5017. page_zone(page)->managed_pages++;
  5018. totalhigh_pages++;
  5019. }
  5020. #endif
  5021. void __init mem_init_print_info(const char *str)
  5022. {
  5023. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5024. unsigned long init_code_size, init_data_size;
  5025. physpages = get_num_physpages();
  5026. codesize = _etext - _stext;
  5027. datasize = _edata - _sdata;
  5028. rosize = __end_rodata - __start_rodata;
  5029. bss_size = __bss_stop - __bss_start;
  5030. init_data_size = __init_end - __init_begin;
  5031. init_code_size = _einittext - _sinittext;
  5032. /*
  5033. * Detect special cases and adjust section sizes accordingly:
  5034. * 1) .init.* may be embedded into .data sections
  5035. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5036. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5037. * 3) .rodata.* may be embedded into .text or .data sections.
  5038. */
  5039. #define adj_init_size(start, end, size, pos, adj) \
  5040. do { \
  5041. if (start <= pos && pos < end && size > adj) \
  5042. size -= adj; \
  5043. } while (0)
  5044. adj_init_size(__init_begin, __init_end, init_data_size,
  5045. _sinittext, init_code_size);
  5046. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5047. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5048. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5049. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5050. #undef adj_init_size
  5051. pr_info("Memory: %luK/%luK available "
  5052. "(%luK kernel code, %luK rwdata, %luK rodata, "
  5053. "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5054. #ifdef CONFIG_HIGHMEM
  5055. ", %luK highmem"
  5056. #endif
  5057. "%s%s)\n",
  5058. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  5059. codesize >> 10, datasize >> 10, rosize >> 10,
  5060. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5061. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
  5062. totalcma_pages << (PAGE_SHIFT-10),
  5063. #ifdef CONFIG_HIGHMEM
  5064. totalhigh_pages << (PAGE_SHIFT-10),
  5065. #endif
  5066. str ? ", " : "", str ? str : "");
  5067. }
  5068. /**
  5069. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5070. * @new_dma_reserve: The number of pages to mark reserved
  5071. *
  5072. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5073. * In the DMA zone, a significant percentage may be consumed by kernel image
  5074. * and other unfreeable allocations which can skew the watermarks badly. This
  5075. * function may optionally be used to account for unfreeable pages in the
  5076. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5077. * smaller per-cpu batchsize.
  5078. */
  5079. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5080. {
  5081. dma_reserve = new_dma_reserve;
  5082. }
  5083. void __init free_area_init(unsigned long *zones_size)
  5084. {
  5085. free_area_init_node(0, zones_size,
  5086. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5087. }
  5088. static int page_alloc_cpu_notify(struct notifier_block *self,
  5089. unsigned long action, void *hcpu)
  5090. {
  5091. int cpu = (unsigned long)hcpu;
  5092. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5093. lru_add_drain_cpu(cpu);
  5094. drain_pages(cpu);
  5095. /*
  5096. * Spill the event counters of the dead processor
  5097. * into the current processors event counters.
  5098. * This artificially elevates the count of the current
  5099. * processor.
  5100. */
  5101. vm_events_fold_cpu(cpu);
  5102. /*
  5103. * Zero the differential counters of the dead processor
  5104. * so that the vm statistics are consistent.
  5105. *
  5106. * This is only okay since the processor is dead and cannot
  5107. * race with what we are doing.
  5108. */
  5109. cpu_vm_stats_fold(cpu);
  5110. }
  5111. return NOTIFY_OK;
  5112. }
  5113. void __init page_alloc_init(void)
  5114. {
  5115. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5116. }
  5117. /*
  5118. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5119. * or min_free_kbytes changes.
  5120. */
  5121. static void calculate_totalreserve_pages(void)
  5122. {
  5123. struct pglist_data *pgdat;
  5124. unsigned long reserve_pages = 0;
  5125. enum zone_type i, j;
  5126. for_each_online_pgdat(pgdat) {
  5127. for (i = 0; i < MAX_NR_ZONES; i++) {
  5128. struct zone *zone = pgdat->node_zones + i;
  5129. long max = 0;
  5130. /* Find valid and maximum lowmem_reserve in the zone */
  5131. for (j = i; j < MAX_NR_ZONES; j++) {
  5132. if (zone->lowmem_reserve[j] > max)
  5133. max = zone->lowmem_reserve[j];
  5134. }
  5135. /* we treat the high watermark as reserved pages. */
  5136. max += high_wmark_pages(zone);
  5137. if (max > zone->managed_pages)
  5138. max = zone->managed_pages;
  5139. reserve_pages += max;
  5140. /*
  5141. * Lowmem reserves are not available to
  5142. * GFP_HIGHUSER page cache allocations and
  5143. * kswapd tries to balance zones to their high
  5144. * watermark. As a result, neither should be
  5145. * regarded as dirtyable memory, to prevent a
  5146. * situation where reclaim has to clean pages
  5147. * in order to balance the zones.
  5148. */
  5149. zone->dirty_balance_reserve = max;
  5150. }
  5151. }
  5152. dirty_balance_reserve = reserve_pages;
  5153. totalreserve_pages = reserve_pages;
  5154. }
  5155. /*
  5156. * setup_per_zone_lowmem_reserve - called whenever
  5157. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5158. * has a correct pages reserved value, so an adequate number of
  5159. * pages are left in the zone after a successful __alloc_pages().
  5160. */
  5161. static void setup_per_zone_lowmem_reserve(void)
  5162. {
  5163. struct pglist_data *pgdat;
  5164. enum zone_type j, idx;
  5165. for_each_online_pgdat(pgdat) {
  5166. for (j = 0; j < MAX_NR_ZONES; j++) {
  5167. struct zone *zone = pgdat->node_zones + j;
  5168. unsigned long managed_pages = zone->managed_pages;
  5169. zone->lowmem_reserve[j] = 0;
  5170. idx = j;
  5171. while (idx) {
  5172. struct zone *lower_zone;
  5173. idx--;
  5174. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5175. sysctl_lowmem_reserve_ratio[idx] = 1;
  5176. lower_zone = pgdat->node_zones + idx;
  5177. lower_zone->lowmem_reserve[j] = managed_pages /
  5178. sysctl_lowmem_reserve_ratio[idx];
  5179. managed_pages += lower_zone->managed_pages;
  5180. }
  5181. }
  5182. }
  5183. /* update totalreserve_pages */
  5184. calculate_totalreserve_pages();
  5185. }
  5186. static void __setup_per_zone_wmarks(void)
  5187. {
  5188. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5189. unsigned long lowmem_pages = 0;
  5190. struct zone *zone;
  5191. unsigned long flags;
  5192. /* Calculate total number of !ZONE_HIGHMEM pages */
  5193. for_each_zone(zone) {
  5194. if (!is_highmem(zone))
  5195. lowmem_pages += zone->managed_pages;
  5196. }
  5197. for_each_zone(zone) {
  5198. u64 tmp;
  5199. spin_lock_irqsave(&zone->lock, flags);
  5200. tmp = (u64)pages_min * zone->managed_pages;
  5201. do_div(tmp, lowmem_pages);
  5202. if (is_highmem(zone)) {
  5203. /*
  5204. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5205. * need highmem pages, so cap pages_min to a small
  5206. * value here.
  5207. *
  5208. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5209. * deltas control asynch page reclaim, and so should
  5210. * not be capped for highmem.
  5211. */
  5212. unsigned long min_pages;
  5213. min_pages = zone->managed_pages / 1024;
  5214. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5215. zone->watermark[WMARK_MIN] = min_pages;
  5216. } else {
  5217. /*
  5218. * If it's a lowmem zone, reserve a number of pages
  5219. * proportionate to the zone's size.
  5220. */
  5221. zone->watermark[WMARK_MIN] = tmp;
  5222. }
  5223. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  5224. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  5225. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5226. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5227. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5228. spin_unlock_irqrestore(&zone->lock, flags);
  5229. }
  5230. /* update totalreserve_pages */
  5231. calculate_totalreserve_pages();
  5232. }
  5233. /**
  5234. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5235. * or when memory is hot-{added|removed}
  5236. *
  5237. * Ensures that the watermark[min,low,high] values for each zone are set
  5238. * correctly with respect to min_free_kbytes.
  5239. */
  5240. void setup_per_zone_wmarks(void)
  5241. {
  5242. mutex_lock(&zonelists_mutex);
  5243. __setup_per_zone_wmarks();
  5244. mutex_unlock(&zonelists_mutex);
  5245. }
  5246. /*
  5247. * The inactive anon list should be small enough that the VM never has to
  5248. * do too much work, but large enough that each inactive page has a chance
  5249. * to be referenced again before it is swapped out.
  5250. *
  5251. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  5252. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  5253. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  5254. * the anonymous pages are kept on the inactive list.
  5255. *
  5256. * total target max
  5257. * memory ratio inactive anon
  5258. * -------------------------------------
  5259. * 10MB 1 5MB
  5260. * 100MB 1 50MB
  5261. * 1GB 3 250MB
  5262. * 10GB 10 0.9GB
  5263. * 100GB 31 3GB
  5264. * 1TB 101 10GB
  5265. * 10TB 320 32GB
  5266. */
  5267. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  5268. {
  5269. unsigned int gb, ratio;
  5270. /* Zone size in gigabytes */
  5271. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5272. if (gb)
  5273. ratio = int_sqrt(10 * gb);
  5274. else
  5275. ratio = 1;
  5276. zone->inactive_ratio = ratio;
  5277. }
  5278. static void __meminit setup_per_zone_inactive_ratio(void)
  5279. {
  5280. struct zone *zone;
  5281. for_each_zone(zone)
  5282. calculate_zone_inactive_ratio(zone);
  5283. }
  5284. /*
  5285. * Initialise min_free_kbytes.
  5286. *
  5287. * For small machines we want it small (128k min). For large machines
  5288. * we want it large (64MB max). But it is not linear, because network
  5289. * bandwidth does not increase linearly with machine size. We use
  5290. *
  5291. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5292. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5293. *
  5294. * which yields
  5295. *
  5296. * 16MB: 512k
  5297. * 32MB: 724k
  5298. * 64MB: 1024k
  5299. * 128MB: 1448k
  5300. * 256MB: 2048k
  5301. * 512MB: 2896k
  5302. * 1024MB: 4096k
  5303. * 2048MB: 5792k
  5304. * 4096MB: 8192k
  5305. * 8192MB: 11584k
  5306. * 16384MB: 16384k
  5307. */
  5308. int __meminit init_per_zone_wmark_min(void)
  5309. {
  5310. unsigned long lowmem_kbytes;
  5311. int new_min_free_kbytes;
  5312. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5313. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5314. if (new_min_free_kbytes > user_min_free_kbytes) {
  5315. min_free_kbytes = new_min_free_kbytes;
  5316. if (min_free_kbytes < 128)
  5317. min_free_kbytes = 128;
  5318. if (min_free_kbytes > 65536)
  5319. min_free_kbytes = 65536;
  5320. } else {
  5321. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5322. new_min_free_kbytes, user_min_free_kbytes);
  5323. }
  5324. setup_per_zone_wmarks();
  5325. refresh_zone_stat_thresholds();
  5326. setup_per_zone_lowmem_reserve();
  5327. setup_per_zone_inactive_ratio();
  5328. return 0;
  5329. }
  5330. module_init(init_per_zone_wmark_min)
  5331. /*
  5332. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5333. * that we can call two helper functions whenever min_free_kbytes
  5334. * changes.
  5335. */
  5336. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5337. void __user *buffer, size_t *length, loff_t *ppos)
  5338. {
  5339. int rc;
  5340. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5341. if (rc)
  5342. return rc;
  5343. if (write) {
  5344. user_min_free_kbytes = min_free_kbytes;
  5345. setup_per_zone_wmarks();
  5346. }
  5347. return 0;
  5348. }
  5349. #ifdef CONFIG_NUMA
  5350. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5351. void __user *buffer, size_t *length, loff_t *ppos)
  5352. {
  5353. struct zone *zone;
  5354. int rc;
  5355. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5356. if (rc)
  5357. return rc;
  5358. for_each_zone(zone)
  5359. zone->min_unmapped_pages = (zone->managed_pages *
  5360. sysctl_min_unmapped_ratio) / 100;
  5361. return 0;
  5362. }
  5363. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5364. void __user *buffer, size_t *length, loff_t *ppos)
  5365. {
  5366. struct zone *zone;
  5367. int rc;
  5368. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5369. if (rc)
  5370. return rc;
  5371. for_each_zone(zone)
  5372. zone->min_slab_pages = (zone->managed_pages *
  5373. sysctl_min_slab_ratio) / 100;
  5374. return 0;
  5375. }
  5376. #endif
  5377. /*
  5378. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5379. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5380. * whenever sysctl_lowmem_reserve_ratio changes.
  5381. *
  5382. * The reserve ratio obviously has absolutely no relation with the
  5383. * minimum watermarks. The lowmem reserve ratio can only make sense
  5384. * if in function of the boot time zone sizes.
  5385. */
  5386. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5387. void __user *buffer, size_t *length, loff_t *ppos)
  5388. {
  5389. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5390. setup_per_zone_lowmem_reserve();
  5391. return 0;
  5392. }
  5393. /*
  5394. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5395. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5396. * pagelist can have before it gets flushed back to buddy allocator.
  5397. */
  5398. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5399. void __user *buffer, size_t *length, loff_t *ppos)
  5400. {
  5401. struct zone *zone;
  5402. int old_percpu_pagelist_fraction;
  5403. int ret;
  5404. mutex_lock(&pcp_batch_high_lock);
  5405. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5406. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5407. if (!write || ret < 0)
  5408. goto out;
  5409. /* Sanity checking to avoid pcp imbalance */
  5410. if (percpu_pagelist_fraction &&
  5411. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5412. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5413. ret = -EINVAL;
  5414. goto out;
  5415. }
  5416. /* No change? */
  5417. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5418. goto out;
  5419. for_each_populated_zone(zone) {
  5420. unsigned int cpu;
  5421. for_each_possible_cpu(cpu)
  5422. pageset_set_high_and_batch(zone,
  5423. per_cpu_ptr(zone->pageset, cpu));
  5424. }
  5425. out:
  5426. mutex_unlock(&pcp_batch_high_lock);
  5427. return ret;
  5428. }
  5429. #ifdef CONFIG_NUMA
  5430. int hashdist = HASHDIST_DEFAULT;
  5431. static int __init set_hashdist(char *str)
  5432. {
  5433. if (!str)
  5434. return 0;
  5435. hashdist = simple_strtoul(str, &str, 0);
  5436. return 1;
  5437. }
  5438. __setup("hashdist=", set_hashdist);
  5439. #endif
  5440. /*
  5441. * allocate a large system hash table from bootmem
  5442. * - it is assumed that the hash table must contain an exact power-of-2
  5443. * quantity of entries
  5444. * - limit is the number of hash buckets, not the total allocation size
  5445. */
  5446. void *__init alloc_large_system_hash(const char *tablename,
  5447. unsigned long bucketsize,
  5448. unsigned long numentries,
  5449. int scale,
  5450. int flags,
  5451. unsigned int *_hash_shift,
  5452. unsigned int *_hash_mask,
  5453. unsigned long low_limit,
  5454. unsigned long high_limit)
  5455. {
  5456. unsigned long long max = high_limit;
  5457. unsigned long log2qty, size;
  5458. void *table = NULL;
  5459. /* allow the kernel cmdline to have a say */
  5460. if (!numentries) {
  5461. /* round applicable memory size up to nearest megabyte */
  5462. numentries = nr_kernel_pages;
  5463. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5464. if (PAGE_SHIFT < 20)
  5465. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5466. /* limit to 1 bucket per 2^scale bytes of low memory */
  5467. if (scale > PAGE_SHIFT)
  5468. numentries >>= (scale - PAGE_SHIFT);
  5469. else
  5470. numentries <<= (PAGE_SHIFT - scale);
  5471. /* Make sure we've got at least a 0-order allocation.. */
  5472. if (unlikely(flags & HASH_SMALL)) {
  5473. /* Makes no sense without HASH_EARLY */
  5474. WARN_ON(!(flags & HASH_EARLY));
  5475. if (!(numentries >> *_hash_shift)) {
  5476. numentries = 1UL << *_hash_shift;
  5477. BUG_ON(!numentries);
  5478. }
  5479. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5480. numentries = PAGE_SIZE / bucketsize;
  5481. }
  5482. numentries = roundup_pow_of_two(numentries);
  5483. /* limit allocation size to 1/16 total memory by default */
  5484. if (max == 0) {
  5485. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5486. do_div(max, bucketsize);
  5487. }
  5488. max = min(max, 0x80000000ULL);
  5489. if (numentries < low_limit)
  5490. numentries = low_limit;
  5491. if (numentries > max)
  5492. numentries = max;
  5493. log2qty = ilog2(numentries);
  5494. do {
  5495. size = bucketsize << log2qty;
  5496. if (flags & HASH_EARLY)
  5497. table = memblock_virt_alloc_nopanic(size, 0);
  5498. else if (hashdist)
  5499. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5500. else {
  5501. /*
  5502. * If bucketsize is not a power-of-two, we may free
  5503. * some pages at the end of hash table which
  5504. * alloc_pages_exact() automatically does
  5505. */
  5506. if (get_order(size) < MAX_ORDER) {
  5507. table = alloc_pages_exact(size, GFP_ATOMIC);
  5508. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5509. }
  5510. }
  5511. } while (!table && size > PAGE_SIZE && --log2qty);
  5512. if (!table)
  5513. panic("Failed to allocate %s hash table\n", tablename);
  5514. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5515. tablename,
  5516. (1UL << log2qty),
  5517. ilog2(size) - PAGE_SHIFT,
  5518. size);
  5519. if (_hash_shift)
  5520. *_hash_shift = log2qty;
  5521. if (_hash_mask)
  5522. *_hash_mask = (1 << log2qty) - 1;
  5523. return table;
  5524. }
  5525. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5526. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5527. unsigned long pfn)
  5528. {
  5529. #ifdef CONFIG_SPARSEMEM
  5530. return __pfn_to_section(pfn)->pageblock_flags;
  5531. #else
  5532. return zone->pageblock_flags;
  5533. #endif /* CONFIG_SPARSEMEM */
  5534. }
  5535. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5536. {
  5537. #ifdef CONFIG_SPARSEMEM
  5538. pfn &= (PAGES_PER_SECTION-1);
  5539. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5540. #else
  5541. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5542. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5543. #endif /* CONFIG_SPARSEMEM */
  5544. }
  5545. /**
  5546. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5547. * @page: The page within the block of interest
  5548. * @pfn: The target page frame number
  5549. * @end_bitidx: The last bit of interest to retrieve
  5550. * @mask: mask of bits that the caller is interested in
  5551. *
  5552. * Return: pageblock_bits flags
  5553. */
  5554. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5555. unsigned long end_bitidx,
  5556. unsigned long mask)
  5557. {
  5558. struct zone *zone;
  5559. unsigned long *bitmap;
  5560. unsigned long bitidx, word_bitidx;
  5561. unsigned long word;
  5562. zone = page_zone(page);
  5563. bitmap = get_pageblock_bitmap(zone, pfn);
  5564. bitidx = pfn_to_bitidx(zone, pfn);
  5565. word_bitidx = bitidx / BITS_PER_LONG;
  5566. bitidx &= (BITS_PER_LONG-1);
  5567. word = bitmap[word_bitidx];
  5568. bitidx += end_bitidx;
  5569. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5570. }
  5571. /**
  5572. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5573. * @page: The page within the block of interest
  5574. * @flags: The flags to set
  5575. * @pfn: The target page frame number
  5576. * @end_bitidx: The last bit of interest
  5577. * @mask: mask of bits that the caller is interested in
  5578. */
  5579. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5580. unsigned long pfn,
  5581. unsigned long end_bitidx,
  5582. unsigned long mask)
  5583. {
  5584. struct zone *zone;
  5585. unsigned long *bitmap;
  5586. unsigned long bitidx, word_bitidx;
  5587. unsigned long old_word, word;
  5588. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5589. zone = page_zone(page);
  5590. bitmap = get_pageblock_bitmap(zone, pfn);
  5591. bitidx = pfn_to_bitidx(zone, pfn);
  5592. word_bitidx = bitidx / BITS_PER_LONG;
  5593. bitidx &= (BITS_PER_LONG-1);
  5594. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5595. bitidx += end_bitidx;
  5596. mask <<= (BITS_PER_LONG - bitidx - 1);
  5597. flags <<= (BITS_PER_LONG - bitidx - 1);
  5598. word = READ_ONCE(bitmap[word_bitidx]);
  5599. for (;;) {
  5600. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5601. if (word == old_word)
  5602. break;
  5603. word = old_word;
  5604. }
  5605. }
  5606. /*
  5607. * This function checks whether pageblock includes unmovable pages or not.
  5608. * If @count is not zero, it is okay to include less @count unmovable pages
  5609. *
  5610. * PageLRU check without isolation or lru_lock could race so that
  5611. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5612. * expect this function should be exact.
  5613. */
  5614. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5615. bool skip_hwpoisoned_pages)
  5616. {
  5617. unsigned long pfn, iter, found;
  5618. int mt;
  5619. /*
  5620. * For avoiding noise data, lru_add_drain_all() should be called
  5621. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5622. */
  5623. if (zone_idx(zone) == ZONE_MOVABLE)
  5624. return false;
  5625. mt = get_pageblock_migratetype(page);
  5626. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5627. return false;
  5628. pfn = page_to_pfn(page);
  5629. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5630. unsigned long check = pfn + iter;
  5631. if (!pfn_valid_within(check))
  5632. continue;
  5633. page = pfn_to_page(check);
  5634. /*
  5635. * Hugepages are not in LRU lists, but they're movable.
  5636. * We need not scan over tail pages bacause we don't
  5637. * handle each tail page individually in migration.
  5638. */
  5639. if (PageHuge(page)) {
  5640. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5641. continue;
  5642. }
  5643. /*
  5644. * We can't use page_count without pin a page
  5645. * because another CPU can free compound page.
  5646. * This check already skips compound tails of THP
  5647. * because their page->_count is zero at all time.
  5648. */
  5649. if (!atomic_read(&page->_count)) {
  5650. if (PageBuddy(page))
  5651. iter += (1 << page_order(page)) - 1;
  5652. continue;
  5653. }
  5654. /*
  5655. * The HWPoisoned page may be not in buddy system, and
  5656. * page_count() is not 0.
  5657. */
  5658. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5659. continue;
  5660. if (!PageLRU(page))
  5661. found++;
  5662. /*
  5663. * If there are RECLAIMABLE pages, we need to check
  5664. * it. But now, memory offline itself doesn't call
  5665. * shrink_node_slabs() and it still to be fixed.
  5666. */
  5667. /*
  5668. * If the page is not RAM, page_count()should be 0.
  5669. * we don't need more check. This is an _used_ not-movable page.
  5670. *
  5671. * The problematic thing here is PG_reserved pages. PG_reserved
  5672. * is set to both of a memory hole page and a _used_ kernel
  5673. * page at boot.
  5674. */
  5675. if (found > count)
  5676. return true;
  5677. }
  5678. return false;
  5679. }
  5680. bool is_pageblock_removable_nolock(struct page *page)
  5681. {
  5682. struct zone *zone;
  5683. unsigned long pfn;
  5684. /*
  5685. * We have to be careful here because we are iterating over memory
  5686. * sections which are not zone aware so we might end up outside of
  5687. * the zone but still within the section.
  5688. * We have to take care about the node as well. If the node is offline
  5689. * its NODE_DATA will be NULL - see page_zone.
  5690. */
  5691. if (!node_online(page_to_nid(page)))
  5692. return false;
  5693. zone = page_zone(page);
  5694. pfn = page_to_pfn(page);
  5695. if (!zone_spans_pfn(zone, pfn))
  5696. return false;
  5697. return !has_unmovable_pages(zone, page, 0, true);
  5698. }
  5699. #ifdef CONFIG_CMA
  5700. static unsigned long pfn_max_align_down(unsigned long pfn)
  5701. {
  5702. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5703. pageblock_nr_pages) - 1);
  5704. }
  5705. static unsigned long pfn_max_align_up(unsigned long pfn)
  5706. {
  5707. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5708. pageblock_nr_pages));
  5709. }
  5710. /* [start, end) must belong to a single zone. */
  5711. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5712. unsigned long start, unsigned long end)
  5713. {
  5714. /* This function is based on compact_zone() from compaction.c. */
  5715. unsigned long nr_reclaimed;
  5716. unsigned long pfn = start;
  5717. unsigned int tries = 0;
  5718. int ret = 0;
  5719. migrate_prep();
  5720. while (pfn < end || !list_empty(&cc->migratepages)) {
  5721. if (fatal_signal_pending(current)) {
  5722. ret = -EINTR;
  5723. break;
  5724. }
  5725. if (list_empty(&cc->migratepages)) {
  5726. cc->nr_migratepages = 0;
  5727. pfn = isolate_migratepages_range(cc, pfn, end);
  5728. if (!pfn) {
  5729. ret = -EINTR;
  5730. break;
  5731. }
  5732. tries = 0;
  5733. } else if (++tries == 5) {
  5734. ret = ret < 0 ? ret : -EBUSY;
  5735. break;
  5736. }
  5737. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5738. &cc->migratepages);
  5739. cc->nr_migratepages -= nr_reclaimed;
  5740. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5741. NULL, 0, cc->mode, MR_CMA);
  5742. }
  5743. if (ret < 0) {
  5744. putback_movable_pages(&cc->migratepages);
  5745. return ret;
  5746. }
  5747. return 0;
  5748. }
  5749. /**
  5750. * alloc_contig_range() -- tries to allocate given range of pages
  5751. * @start: start PFN to allocate
  5752. * @end: one-past-the-last PFN to allocate
  5753. * @migratetype: migratetype of the underlaying pageblocks (either
  5754. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5755. * in range must have the same migratetype and it must
  5756. * be either of the two.
  5757. *
  5758. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5759. * aligned, however it's the caller's responsibility to guarantee that
  5760. * we are the only thread that changes migrate type of pageblocks the
  5761. * pages fall in.
  5762. *
  5763. * The PFN range must belong to a single zone.
  5764. *
  5765. * Returns zero on success or negative error code. On success all
  5766. * pages which PFN is in [start, end) are allocated for the caller and
  5767. * need to be freed with free_contig_range().
  5768. */
  5769. int alloc_contig_range(unsigned long start, unsigned long end,
  5770. unsigned migratetype)
  5771. {
  5772. unsigned long outer_start, outer_end;
  5773. unsigned int order;
  5774. int ret = 0;
  5775. struct compact_control cc = {
  5776. .nr_migratepages = 0,
  5777. .order = -1,
  5778. .zone = page_zone(pfn_to_page(start)),
  5779. .mode = MIGRATE_SYNC,
  5780. .ignore_skip_hint = true,
  5781. };
  5782. INIT_LIST_HEAD(&cc.migratepages);
  5783. /*
  5784. * What we do here is we mark all pageblocks in range as
  5785. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5786. * have different sizes, and due to the way page allocator
  5787. * work, we align the range to biggest of the two pages so
  5788. * that page allocator won't try to merge buddies from
  5789. * different pageblocks and change MIGRATE_ISOLATE to some
  5790. * other migration type.
  5791. *
  5792. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5793. * migrate the pages from an unaligned range (ie. pages that
  5794. * we are interested in). This will put all the pages in
  5795. * range back to page allocator as MIGRATE_ISOLATE.
  5796. *
  5797. * When this is done, we take the pages in range from page
  5798. * allocator removing them from the buddy system. This way
  5799. * page allocator will never consider using them.
  5800. *
  5801. * This lets us mark the pageblocks back as
  5802. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5803. * aligned range but not in the unaligned, original range are
  5804. * put back to page allocator so that buddy can use them.
  5805. */
  5806. ret = start_isolate_page_range(pfn_max_align_down(start),
  5807. pfn_max_align_up(end), migratetype,
  5808. false);
  5809. if (ret)
  5810. return ret;
  5811. ret = __alloc_contig_migrate_range(&cc, start, end);
  5812. if (ret)
  5813. goto done;
  5814. /*
  5815. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5816. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5817. * more, all pages in [start, end) are free in page allocator.
  5818. * What we are going to do is to allocate all pages from
  5819. * [start, end) (that is remove them from page allocator).
  5820. *
  5821. * The only problem is that pages at the beginning and at the
  5822. * end of interesting range may be not aligned with pages that
  5823. * page allocator holds, ie. they can be part of higher order
  5824. * pages. Because of this, we reserve the bigger range and
  5825. * once this is done free the pages we are not interested in.
  5826. *
  5827. * We don't have to hold zone->lock here because the pages are
  5828. * isolated thus they won't get removed from buddy.
  5829. */
  5830. lru_add_drain_all();
  5831. drain_all_pages(cc.zone);
  5832. order = 0;
  5833. outer_start = start;
  5834. while (!PageBuddy(pfn_to_page(outer_start))) {
  5835. if (++order >= MAX_ORDER) {
  5836. ret = -EBUSY;
  5837. goto done;
  5838. }
  5839. outer_start &= ~0UL << order;
  5840. }
  5841. /* Make sure the range is really isolated. */
  5842. if (test_pages_isolated(outer_start, end, false)) {
  5843. pr_info("%s: [%lx, %lx) PFNs busy\n",
  5844. __func__, outer_start, end);
  5845. ret = -EBUSY;
  5846. goto done;
  5847. }
  5848. /* Grab isolated pages from freelists. */
  5849. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5850. if (!outer_end) {
  5851. ret = -EBUSY;
  5852. goto done;
  5853. }
  5854. /* Free head and tail (if any) */
  5855. if (start != outer_start)
  5856. free_contig_range(outer_start, start - outer_start);
  5857. if (end != outer_end)
  5858. free_contig_range(end, outer_end - end);
  5859. done:
  5860. undo_isolate_page_range(pfn_max_align_down(start),
  5861. pfn_max_align_up(end), migratetype);
  5862. return ret;
  5863. }
  5864. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5865. {
  5866. unsigned int count = 0;
  5867. for (; nr_pages--; pfn++) {
  5868. struct page *page = pfn_to_page(pfn);
  5869. count += page_count(page) != 1;
  5870. __free_page(page);
  5871. }
  5872. WARN(count != 0, "%d pages are still in use!\n", count);
  5873. }
  5874. #endif
  5875. #ifdef CONFIG_MEMORY_HOTPLUG
  5876. /*
  5877. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5878. * page high values need to be recalulated.
  5879. */
  5880. void __meminit zone_pcp_update(struct zone *zone)
  5881. {
  5882. unsigned cpu;
  5883. mutex_lock(&pcp_batch_high_lock);
  5884. for_each_possible_cpu(cpu)
  5885. pageset_set_high_and_batch(zone,
  5886. per_cpu_ptr(zone->pageset, cpu));
  5887. mutex_unlock(&pcp_batch_high_lock);
  5888. }
  5889. #endif
  5890. void zone_pcp_reset(struct zone *zone)
  5891. {
  5892. unsigned long flags;
  5893. int cpu;
  5894. struct per_cpu_pageset *pset;
  5895. /* avoid races with drain_pages() */
  5896. local_irq_save(flags);
  5897. if (zone->pageset != &boot_pageset) {
  5898. for_each_online_cpu(cpu) {
  5899. pset = per_cpu_ptr(zone->pageset, cpu);
  5900. drain_zonestat(zone, pset);
  5901. }
  5902. free_percpu(zone->pageset);
  5903. zone->pageset = &boot_pageset;
  5904. }
  5905. local_irq_restore(flags);
  5906. }
  5907. #ifdef CONFIG_MEMORY_HOTREMOVE
  5908. /*
  5909. * All pages in the range must be isolated before calling this.
  5910. */
  5911. void
  5912. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5913. {
  5914. struct page *page;
  5915. struct zone *zone;
  5916. unsigned int order, i;
  5917. unsigned long pfn;
  5918. unsigned long flags;
  5919. /* find the first valid pfn */
  5920. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5921. if (pfn_valid(pfn))
  5922. break;
  5923. if (pfn == end_pfn)
  5924. return;
  5925. zone = page_zone(pfn_to_page(pfn));
  5926. spin_lock_irqsave(&zone->lock, flags);
  5927. pfn = start_pfn;
  5928. while (pfn < end_pfn) {
  5929. if (!pfn_valid(pfn)) {
  5930. pfn++;
  5931. continue;
  5932. }
  5933. page = pfn_to_page(pfn);
  5934. /*
  5935. * The HWPoisoned page may be not in buddy system, and
  5936. * page_count() is not 0.
  5937. */
  5938. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5939. pfn++;
  5940. SetPageReserved(page);
  5941. continue;
  5942. }
  5943. BUG_ON(page_count(page));
  5944. BUG_ON(!PageBuddy(page));
  5945. order = page_order(page);
  5946. #ifdef CONFIG_DEBUG_VM
  5947. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5948. pfn, 1 << order, end_pfn);
  5949. #endif
  5950. list_del(&page->lru);
  5951. rmv_page_order(page);
  5952. zone->free_area[order].nr_free--;
  5953. for (i = 0; i < (1 << order); i++)
  5954. SetPageReserved((page+i));
  5955. pfn += (1 << order);
  5956. }
  5957. spin_unlock_irqrestore(&zone->lock, flags);
  5958. }
  5959. #endif
  5960. #ifdef CONFIG_MEMORY_FAILURE
  5961. bool is_free_buddy_page(struct page *page)
  5962. {
  5963. struct zone *zone = page_zone(page);
  5964. unsigned long pfn = page_to_pfn(page);
  5965. unsigned long flags;
  5966. unsigned int order;
  5967. spin_lock_irqsave(&zone->lock, flags);
  5968. for (order = 0; order < MAX_ORDER; order++) {
  5969. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5970. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5971. break;
  5972. }
  5973. spin_unlock_irqrestore(&zone->lock, flags);
  5974. return order < MAX_ORDER;
  5975. }
  5976. #endif