mmu.c 124 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "cpuid.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. #undef MMU_DEBUG
  58. #ifdef MMU_DEBUG
  59. static bool dbg = 0;
  60. module_param(dbg, bool, 0644);
  61. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  62. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  63. #define MMU_WARN_ON(x) WARN_ON(x)
  64. #else
  65. #define pgprintk(x...) do { } while (0)
  66. #define rmap_printk(x...) do { } while (0)
  67. #define MMU_WARN_ON(x) do { } while (0)
  68. #endif
  69. #define PTE_PREFETCH_NUM 8
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define PT64_LEVEL_BITS 9
  73. #define PT64_LEVEL_SHIFT(level) \
  74. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  75. #define PT64_INDEX(address, level)\
  76. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  77. #define PT32_LEVEL_BITS 10
  78. #define PT32_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  80. #define PT32_LVL_OFFSET_MASK(level) \
  81. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  82. * PT32_LEVEL_BITS))) - 1))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT64_LVL_ADDR_MASK(level) \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT64_LEVEL_BITS))) - 1))
  91. #define PT64_LVL_OFFSET_MASK(level) \
  92. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  93. * PT64_LEVEL_BITS))) - 1))
  94. #define PT32_BASE_ADDR_MASK PAGE_MASK
  95. #define PT32_DIR_BASE_ADDR_MASK \
  96. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  97. #define PT32_LVL_ADDR_MASK(level) \
  98. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT32_LEVEL_BITS))) - 1))
  100. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
  101. | shadow_x_mask | shadow_nx_mask)
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #include <trace/events/kvm.h>
  107. #define CREATE_TRACE_POINTS
  108. #include "mmutrace.h"
  109. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  110. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  111. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  112. /* make pte_list_desc fit well in cache line */
  113. #define PTE_LIST_EXT 3
  114. struct pte_list_desc {
  115. u64 *sptes[PTE_LIST_EXT];
  116. struct pte_list_desc *more;
  117. };
  118. struct kvm_shadow_walk_iterator {
  119. u64 addr;
  120. hpa_t shadow_addr;
  121. u64 *sptep;
  122. int level;
  123. unsigned index;
  124. };
  125. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  126. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  127. shadow_walk_okay(&(_walker)); \
  128. shadow_walk_next(&(_walker)))
  129. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  130. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  131. shadow_walk_okay(&(_walker)) && \
  132. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  133. __shadow_walk_next(&(_walker), spte))
  134. static struct kmem_cache *pte_list_desc_cache;
  135. static struct kmem_cache *mmu_page_header_cache;
  136. static struct percpu_counter kvm_total_used_mmu_pages;
  137. static u64 __read_mostly shadow_nx_mask;
  138. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  139. static u64 __read_mostly shadow_user_mask;
  140. static u64 __read_mostly shadow_accessed_mask;
  141. static u64 __read_mostly shadow_dirty_mask;
  142. static u64 __read_mostly shadow_mmio_mask;
  143. static void mmu_spte_set(u64 *sptep, u64 spte);
  144. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  145. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  146. {
  147. shadow_mmio_mask = mmio_mask;
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  150. /*
  151. * the low bit of the generation number is always presumed to be zero.
  152. * This disables mmio caching during memslot updates. The concept is
  153. * similar to a seqcount but instead of retrying the access we just punt
  154. * and ignore the cache.
  155. *
  156. * spte bits 3-11 are used as bits 1-9 of the generation number,
  157. * the bits 52-61 are used as bits 10-19 of the generation number.
  158. */
  159. #define MMIO_SPTE_GEN_LOW_SHIFT 2
  160. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  161. #define MMIO_GEN_SHIFT 20
  162. #define MMIO_GEN_LOW_SHIFT 10
  163. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
  164. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  165. static u64 generation_mmio_spte_mask(unsigned int gen)
  166. {
  167. u64 mask;
  168. WARN_ON(gen & ~MMIO_GEN_MASK);
  169. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  170. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  171. return mask;
  172. }
  173. static unsigned int get_mmio_spte_generation(u64 spte)
  174. {
  175. unsigned int gen;
  176. spte &= ~shadow_mmio_mask;
  177. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  178. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  179. return gen;
  180. }
  181. static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
  182. {
  183. return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
  184. }
  185. static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
  186. unsigned access)
  187. {
  188. unsigned int gen = kvm_current_mmio_generation(vcpu);
  189. u64 mask = generation_mmio_spte_mask(gen);
  190. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  191. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  192. trace_mark_mmio_spte(sptep, gfn, access, gen);
  193. mmu_spte_set(sptep, mask);
  194. }
  195. static bool is_mmio_spte(u64 spte)
  196. {
  197. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  198. }
  199. static gfn_t get_mmio_spte_gfn(u64 spte)
  200. {
  201. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  202. return (spte & ~mask) >> PAGE_SHIFT;
  203. }
  204. static unsigned get_mmio_spte_access(u64 spte)
  205. {
  206. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  207. return (spte & ~mask) & ~PAGE_MASK;
  208. }
  209. static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
  210. pfn_t pfn, unsigned access)
  211. {
  212. if (unlikely(is_noslot_pfn(pfn))) {
  213. mark_mmio_spte(vcpu, sptep, gfn, access);
  214. return true;
  215. }
  216. return false;
  217. }
  218. static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
  219. {
  220. unsigned int kvm_gen, spte_gen;
  221. kvm_gen = kvm_current_mmio_generation(vcpu);
  222. spte_gen = get_mmio_spte_generation(spte);
  223. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  224. return likely(kvm_gen == spte_gen);
  225. }
  226. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  227. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  228. {
  229. shadow_user_mask = user_mask;
  230. shadow_accessed_mask = accessed_mask;
  231. shadow_dirty_mask = dirty_mask;
  232. shadow_nx_mask = nx_mask;
  233. shadow_x_mask = x_mask;
  234. }
  235. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  236. static int is_cpuid_PSE36(void)
  237. {
  238. return 1;
  239. }
  240. static int is_nx(struct kvm_vcpu *vcpu)
  241. {
  242. return vcpu->arch.efer & EFER_NX;
  243. }
  244. static int is_shadow_present_pte(u64 pte)
  245. {
  246. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  247. }
  248. static int is_large_pte(u64 pte)
  249. {
  250. return pte & PT_PAGE_SIZE_MASK;
  251. }
  252. static int is_rmap_spte(u64 pte)
  253. {
  254. return is_shadow_present_pte(pte);
  255. }
  256. static int is_last_spte(u64 pte, int level)
  257. {
  258. if (level == PT_PAGE_TABLE_LEVEL)
  259. return 1;
  260. if (is_large_pte(pte))
  261. return 1;
  262. return 0;
  263. }
  264. static pfn_t spte_to_pfn(u64 pte)
  265. {
  266. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  267. }
  268. static gfn_t pse36_gfn_delta(u32 gpte)
  269. {
  270. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  271. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  272. }
  273. #ifdef CONFIG_X86_64
  274. static void __set_spte(u64 *sptep, u64 spte)
  275. {
  276. *sptep = spte;
  277. }
  278. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  279. {
  280. *sptep = spte;
  281. }
  282. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  283. {
  284. return xchg(sptep, spte);
  285. }
  286. static u64 __get_spte_lockless(u64 *sptep)
  287. {
  288. return ACCESS_ONCE(*sptep);
  289. }
  290. #else
  291. union split_spte {
  292. struct {
  293. u32 spte_low;
  294. u32 spte_high;
  295. };
  296. u64 spte;
  297. };
  298. static void count_spte_clear(u64 *sptep, u64 spte)
  299. {
  300. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  301. if (is_shadow_present_pte(spte))
  302. return;
  303. /* Ensure the spte is completely set before we increase the count */
  304. smp_wmb();
  305. sp->clear_spte_count++;
  306. }
  307. static void __set_spte(u64 *sptep, u64 spte)
  308. {
  309. union split_spte *ssptep, sspte;
  310. ssptep = (union split_spte *)sptep;
  311. sspte = (union split_spte)spte;
  312. ssptep->spte_high = sspte.spte_high;
  313. /*
  314. * If we map the spte from nonpresent to present, We should store
  315. * the high bits firstly, then set present bit, so cpu can not
  316. * fetch this spte while we are setting the spte.
  317. */
  318. smp_wmb();
  319. ssptep->spte_low = sspte.spte_low;
  320. }
  321. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  322. {
  323. union split_spte *ssptep, sspte;
  324. ssptep = (union split_spte *)sptep;
  325. sspte = (union split_spte)spte;
  326. ssptep->spte_low = sspte.spte_low;
  327. /*
  328. * If we map the spte from present to nonpresent, we should clear
  329. * present bit firstly to avoid vcpu fetch the old high bits.
  330. */
  331. smp_wmb();
  332. ssptep->spte_high = sspte.spte_high;
  333. count_spte_clear(sptep, spte);
  334. }
  335. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  336. {
  337. union split_spte *ssptep, sspte, orig;
  338. ssptep = (union split_spte *)sptep;
  339. sspte = (union split_spte)spte;
  340. /* xchg acts as a barrier before the setting of the high bits */
  341. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  342. orig.spte_high = ssptep->spte_high;
  343. ssptep->spte_high = sspte.spte_high;
  344. count_spte_clear(sptep, spte);
  345. return orig.spte;
  346. }
  347. /*
  348. * The idea using the light way get the spte on x86_32 guest is from
  349. * gup_get_pte(arch/x86/mm/gup.c).
  350. *
  351. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  352. * coalesces them and we are running out of the MMU lock. Therefore
  353. * we need to protect against in-progress updates of the spte.
  354. *
  355. * Reading the spte while an update is in progress may get the old value
  356. * for the high part of the spte. The race is fine for a present->non-present
  357. * change (because the high part of the spte is ignored for non-present spte),
  358. * but for a present->present change we must reread the spte.
  359. *
  360. * All such changes are done in two steps (present->non-present and
  361. * non-present->present), hence it is enough to count the number of
  362. * present->non-present updates: if it changed while reading the spte,
  363. * we might have hit the race. This is done using clear_spte_count.
  364. */
  365. static u64 __get_spte_lockless(u64 *sptep)
  366. {
  367. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  368. union split_spte spte, *orig = (union split_spte *)sptep;
  369. int count;
  370. retry:
  371. count = sp->clear_spte_count;
  372. smp_rmb();
  373. spte.spte_low = orig->spte_low;
  374. smp_rmb();
  375. spte.spte_high = orig->spte_high;
  376. smp_rmb();
  377. if (unlikely(spte.spte_low != orig->spte_low ||
  378. count != sp->clear_spte_count))
  379. goto retry;
  380. return spte.spte;
  381. }
  382. #endif
  383. static bool spte_is_locklessly_modifiable(u64 spte)
  384. {
  385. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  386. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  387. }
  388. static bool spte_has_volatile_bits(u64 spte)
  389. {
  390. /*
  391. * Always atomicly update spte if it can be updated
  392. * out of mmu-lock, it can ensure dirty bit is not lost,
  393. * also, it can help us to get a stable is_writable_pte()
  394. * to ensure tlb flush is not missed.
  395. */
  396. if (spte_is_locklessly_modifiable(spte))
  397. return true;
  398. if (!shadow_accessed_mask)
  399. return false;
  400. if (!is_shadow_present_pte(spte))
  401. return false;
  402. if ((spte & shadow_accessed_mask) &&
  403. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  404. return false;
  405. return true;
  406. }
  407. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  408. {
  409. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  410. }
  411. static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
  412. {
  413. return (old_spte & bit_mask) != (new_spte & bit_mask);
  414. }
  415. /* Rules for using mmu_spte_set:
  416. * Set the sptep from nonpresent to present.
  417. * Note: the sptep being assigned *must* be either not present
  418. * or in a state where the hardware will not attempt to update
  419. * the spte.
  420. */
  421. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  422. {
  423. WARN_ON(is_shadow_present_pte(*sptep));
  424. __set_spte(sptep, new_spte);
  425. }
  426. /* Rules for using mmu_spte_update:
  427. * Update the state bits, it means the mapped pfn is not changged.
  428. *
  429. * Whenever we overwrite a writable spte with a read-only one we
  430. * should flush remote TLBs. Otherwise rmap_write_protect
  431. * will find a read-only spte, even though the writable spte
  432. * might be cached on a CPU's TLB, the return value indicates this
  433. * case.
  434. */
  435. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  436. {
  437. u64 old_spte = *sptep;
  438. bool ret = false;
  439. WARN_ON(!is_rmap_spte(new_spte));
  440. if (!is_shadow_present_pte(old_spte)) {
  441. mmu_spte_set(sptep, new_spte);
  442. return ret;
  443. }
  444. if (!spte_has_volatile_bits(old_spte))
  445. __update_clear_spte_fast(sptep, new_spte);
  446. else
  447. old_spte = __update_clear_spte_slow(sptep, new_spte);
  448. /*
  449. * For the spte updated out of mmu-lock is safe, since
  450. * we always atomicly update it, see the comments in
  451. * spte_has_volatile_bits().
  452. */
  453. if (spte_is_locklessly_modifiable(old_spte) &&
  454. !is_writable_pte(new_spte))
  455. ret = true;
  456. if (!shadow_accessed_mask)
  457. return ret;
  458. /*
  459. * Flush TLB when accessed/dirty bits are changed in the page tables,
  460. * to guarantee consistency between TLB and page tables.
  461. */
  462. if (spte_is_bit_changed(old_spte, new_spte,
  463. shadow_accessed_mask | shadow_dirty_mask))
  464. ret = true;
  465. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  466. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  467. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  468. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  469. return ret;
  470. }
  471. /*
  472. * Rules for using mmu_spte_clear_track_bits:
  473. * It sets the sptep from present to nonpresent, and track the
  474. * state bits, it is used to clear the last level sptep.
  475. */
  476. static int mmu_spte_clear_track_bits(u64 *sptep)
  477. {
  478. pfn_t pfn;
  479. u64 old_spte = *sptep;
  480. if (!spte_has_volatile_bits(old_spte))
  481. __update_clear_spte_fast(sptep, 0ull);
  482. else
  483. old_spte = __update_clear_spte_slow(sptep, 0ull);
  484. if (!is_rmap_spte(old_spte))
  485. return 0;
  486. pfn = spte_to_pfn(old_spte);
  487. /*
  488. * KVM does not hold the refcount of the page used by
  489. * kvm mmu, before reclaiming the page, we should
  490. * unmap it from mmu first.
  491. */
  492. WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  493. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  494. kvm_set_pfn_accessed(pfn);
  495. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  496. kvm_set_pfn_dirty(pfn);
  497. return 1;
  498. }
  499. /*
  500. * Rules for using mmu_spte_clear_no_track:
  501. * Directly clear spte without caring the state bits of sptep,
  502. * it is used to set the upper level spte.
  503. */
  504. static void mmu_spte_clear_no_track(u64 *sptep)
  505. {
  506. __update_clear_spte_fast(sptep, 0ull);
  507. }
  508. static u64 mmu_spte_get_lockless(u64 *sptep)
  509. {
  510. return __get_spte_lockless(sptep);
  511. }
  512. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  513. {
  514. /*
  515. * Prevent page table teardown by making any free-er wait during
  516. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  517. */
  518. local_irq_disable();
  519. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  520. /*
  521. * Make sure a following spte read is not reordered ahead of the write
  522. * to vcpu->mode.
  523. */
  524. smp_mb();
  525. }
  526. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  527. {
  528. /*
  529. * Make sure the write to vcpu->mode is not reordered in front of
  530. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  531. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  532. */
  533. smp_mb();
  534. vcpu->mode = OUTSIDE_GUEST_MODE;
  535. local_irq_enable();
  536. }
  537. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  538. struct kmem_cache *base_cache, int min)
  539. {
  540. void *obj;
  541. if (cache->nobjs >= min)
  542. return 0;
  543. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  544. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  545. if (!obj)
  546. return -ENOMEM;
  547. cache->objects[cache->nobjs++] = obj;
  548. }
  549. return 0;
  550. }
  551. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  552. {
  553. return cache->nobjs;
  554. }
  555. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  556. struct kmem_cache *cache)
  557. {
  558. while (mc->nobjs)
  559. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  560. }
  561. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  562. int min)
  563. {
  564. void *page;
  565. if (cache->nobjs >= min)
  566. return 0;
  567. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  568. page = (void *)__get_free_page(GFP_KERNEL);
  569. if (!page)
  570. return -ENOMEM;
  571. cache->objects[cache->nobjs++] = page;
  572. }
  573. return 0;
  574. }
  575. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  576. {
  577. while (mc->nobjs)
  578. free_page((unsigned long)mc->objects[--mc->nobjs]);
  579. }
  580. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  581. {
  582. int r;
  583. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  584. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  585. if (r)
  586. goto out;
  587. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  588. if (r)
  589. goto out;
  590. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  591. mmu_page_header_cache, 4);
  592. out:
  593. return r;
  594. }
  595. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  596. {
  597. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  598. pte_list_desc_cache);
  599. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  600. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  601. mmu_page_header_cache);
  602. }
  603. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  604. {
  605. void *p;
  606. BUG_ON(!mc->nobjs);
  607. p = mc->objects[--mc->nobjs];
  608. return p;
  609. }
  610. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  611. {
  612. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  613. }
  614. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  615. {
  616. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  617. }
  618. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  619. {
  620. if (!sp->role.direct)
  621. return sp->gfns[index];
  622. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  623. }
  624. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  625. {
  626. if (sp->role.direct)
  627. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  628. else
  629. sp->gfns[index] = gfn;
  630. }
  631. /*
  632. * Return the pointer to the large page information for a given gfn,
  633. * handling slots that are not large page aligned.
  634. */
  635. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  636. struct kvm_memory_slot *slot,
  637. int level)
  638. {
  639. unsigned long idx;
  640. idx = gfn_to_index(gfn, slot->base_gfn, level);
  641. return &slot->arch.lpage_info[level - 2][idx];
  642. }
  643. static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
  644. {
  645. struct kvm_memslots *slots;
  646. struct kvm_memory_slot *slot;
  647. struct kvm_lpage_info *linfo;
  648. gfn_t gfn;
  649. int i;
  650. gfn = sp->gfn;
  651. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  652. slot = __gfn_to_memslot(slots, gfn);
  653. for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  654. linfo = lpage_info_slot(gfn, slot, i);
  655. linfo->write_count += 1;
  656. }
  657. kvm->arch.indirect_shadow_pages++;
  658. }
  659. static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
  660. {
  661. struct kvm_memslots *slots;
  662. struct kvm_memory_slot *slot;
  663. struct kvm_lpage_info *linfo;
  664. gfn_t gfn;
  665. int i;
  666. gfn = sp->gfn;
  667. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  668. slot = __gfn_to_memslot(slots, gfn);
  669. for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  670. linfo = lpage_info_slot(gfn, slot, i);
  671. linfo->write_count -= 1;
  672. WARN_ON(linfo->write_count < 0);
  673. }
  674. kvm->arch.indirect_shadow_pages--;
  675. }
  676. static int __has_wrprotected_page(gfn_t gfn, int level,
  677. struct kvm_memory_slot *slot)
  678. {
  679. struct kvm_lpage_info *linfo;
  680. if (slot) {
  681. linfo = lpage_info_slot(gfn, slot, level);
  682. return linfo->write_count;
  683. }
  684. return 1;
  685. }
  686. static int has_wrprotected_page(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
  687. {
  688. struct kvm_memory_slot *slot;
  689. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  690. return __has_wrprotected_page(gfn, level, slot);
  691. }
  692. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  693. {
  694. unsigned long page_size;
  695. int i, ret = 0;
  696. page_size = kvm_host_page_size(kvm, gfn);
  697. for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  698. if (page_size >= KVM_HPAGE_SIZE(i))
  699. ret = i;
  700. else
  701. break;
  702. }
  703. return ret;
  704. }
  705. static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
  706. bool no_dirty_log)
  707. {
  708. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  709. return false;
  710. if (no_dirty_log && slot->dirty_bitmap)
  711. return false;
  712. return true;
  713. }
  714. static struct kvm_memory_slot *
  715. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  716. bool no_dirty_log)
  717. {
  718. struct kvm_memory_slot *slot;
  719. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  720. if (!memslot_valid_for_gpte(slot, no_dirty_log))
  721. slot = NULL;
  722. return slot;
  723. }
  724. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
  725. bool *force_pt_level)
  726. {
  727. int host_level, level, max_level;
  728. struct kvm_memory_slot *slot;
  729. if (unlikely(*force_pt_level))
  730. return PT_PAGE_TABLE_LEVEL;
  731. slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
  732. *force_pt_level = !memslot_valid_for_gpte(slot, true);
  733. if (unlikely(*force_pt_level))
  734. return PT_PAGE_TABLE_LEVEL;
  735. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  736. if (host_level == PT_PAGE_TABLE_LEVEL)
  737. return host_level;
  738. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  739. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  740. if (__has_wrprotected_page(large_gfn, level, slot))
  741. break;
  742. return level - 1;
  743. }
  744. /*
  745. * Pte mapping structures:
  746. *
  747. * If pte_list bit zero is zero, then pte_list point to the spte.
  748. *
  749. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  750. * pte_list_desc containing more mappings.
  751. *
  752. * Returns the number of pte entries before the spte was added or zero if
  753. * the spte was not added.
  754. *
  755. */
  756. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  757. unsigned long *pte_list)
  758. {
  759. struct pte_list_desc *desc;
  760. int i, count = 0;
  761. if (!*pte_list) {
  762. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  763. *pte_list = (unsigned long)spte;
  764. } else if (!(*pte_list & 1)) {
  765. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  766. desc = mmu_alloc_pte_list_desc(vcpu);
  767. desc->sptes[0] = (u64 *)*pte_list;
  768. desc->sptes[1] = spte;
  769. *pte_list = (unsigned long)desc | 1;
  770. ++count;
  771. } else {
  772. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  773. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  774. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  775. desc = desc->more;
  776. count += PTE_LIST_EXT;
  777. }
  778. if (desc->sptes[PTE_LIST_EXT-1]) {
  779. desc->more = mmu_alloc_pte_list_desc(vcpu);
  780. desc = desc->more;
  781. }
  782. for (i = 0; desc->sptes[i]; ++i)
  783. ++count;
  784. desc->sptes[i] = spte;
  785. }
  786. return count;
  787. }
  788. static void
  789. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  790. int i, struct pte_list_desc *prev_desc)
  791. {
  792. int j;
  793. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  794. ;
  795. desc->sptes[i] = desc->sptes[j];
  796. desc->sptes[j] = NULL;
  797. if (j != 0)
  798. return;
  799. if (!prev_desc && !desc->more)
  800. *pte_list = (unsigned long)desc->sptes[0];
  801. else
  802. if (prev_desc)
  803. prev_desc->more = desc->more;
  804. else
  805. *pte_list = (unsigned long)desc->more | 1;
  806. mmu_free_pte_list_desc(desc);
  807. }
  808. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  809. {
  810. struct pte_list_desc *desc;
  811. struct pte_list_desc *prev_desc;
  812. int i;
  813. if (!*pte_list) {
  814. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  815. BUG();
  816. } else if (!(*pte_list & 1)) {
  817. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  818. if ((u64 *)*pte_list != spte) {
  819. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  820. BUG();
  821. }
  822. *pte_list = 0;
  823. } else {
  824. rmap_printk("pte_list_remove: %p many->many\n", spte);
  825. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  826. prev_desc = NULL;
  827. while (desc) {
  828. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  829. if (desc->sptes[i] == spte) {
  830. pte_list_desc_remove_entry(pte_list,
  831. desc, i,
  832. prev_desc);
  833. return;
  834. }
  835. prev_desc = desc;
  836. desc = desc->more;
  837. }
  838. pr_err("pte_list_remove: %p many->many\n", spte);
  839. BUG();
  840. }
  841. }
  842. typedef void (*pte_list_walk_fn) (u64 *spte);
  843. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  844. {
  845. struct pte_list_desc *desc;
  846. int i;
  847. if (!*pte_list)
  848. return;
  849. if (!(*pte_list & 1))
  850. return fn((u64 *)*pte_list);
  851. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  852. while (desc) {
  853. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  854. fn(desc->sptes[i]);
  855. desc = desc->more;
  856. }
  857. }
  858. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  859. struct kvm_memory_slot *slot)
  860. {
  861. unsigned long idx;
  862. idx = gfn_to_index(gfn, slot->base_gfn, level);
  863. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  864. }
  865. /*
  866. * Take gfn and return the reverse mapping to it.
  867. */
  868. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
  869. {
  870. struct kvm_memslots *slots;
  871. struct kvm_memory_slot *slot;
  872. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  873. slot = __gfn_to_memslot(slots, gfn);
  874. return __gfn_to_rmap(gfn, sp->role.level, slot);
  875. }
  876. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  877. {
  878. struct kvm_mmu_memory_cache *cache;
  879. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  880. return mmu_memory_cache_free_objects(cache);
  881. }
  882. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  883. {
  884. struct kvm_mmu_page *sp;
  885. unsigned long *rmapp;
  886. sp = page_header(__pa(spte));
  887. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  888. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
  889. return pte_list_add(vcpu, spte, rmapp);
  890. }
  891. static void rmap_remove(struct kvm *kvm, u64 *spte)
  892. {
  893. struct kvm_mmu_page *sp;
  894. gfn_t gfn;
  895. unsigned long *rmapp;
  896. sp = page_header(__pa(spte));
  897. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  898. rmapp = gfn_to_rmap(kvm, gfn, sp);
  899. pte_list_remove(spte, rmapp);
  900. }
  901. /*
  902. * Used by the following functions to iterate through the sptes linked by a
  903. * rmap. All fields are private and not assumed to be used outside.
  904. */
  905. struct rmap_iterator {
  906. /* private fields */
  907. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  908. int pos; /* index of the sptep */
  909. };
  910. /*
  911. * Iteration must be started by this function. This should also be used after
  912. * removing/dropping sptes from the rmap link because in such cases the
  913. * information in the itererator may not be valid.
  914. *
  915. * Returns sptep if found, NULL otherwise.
  916. */
  917. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  918. {
  919. if (!rmap)
  920. return NULL;
  921. if (!(rmap & 1)) {
  922. iter->desc = NULL;
  923. return (u64 *)rmap;
  924. }
  925. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  926. iter->pos = 0;
  927. return iter->desc->sptes[iter->pos];
  928. }
  929. /*
  930. * Must be used with a valid iterator: e.g. after rmap_get_first().
  931. *
  932. * Returns sptep if found, NULL otherwise.
  933. */
  934. static u64 *rmap_get_next(struct rmap_iterator *iter)
  935. {
  936. if (iter->desc) {
  937. if (iter->pos < PTE_LIST_EXT - 1) {
  938. u64 *sptep;
  939. ++iter->pos;
  940. sptep = iter->desc->sptes[iter->pos];
  941. if (sptep)
  942. return sptep;
  943. }
  944. iter->desc = iter->desc->more;
  945. if (iter->desc) {
  946. iter->pos = 0;
  947. /* desc->sptes[0] cannot be NULL */
  948. return iter->desc->sptes[iter->pos];
  949. }
  950. }
  951. return NULL;
  952. }
  953. #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
  954. for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
  955. _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
  956. _spte_ = rmap_get_next(_iter_))
  957. static void drop_spte(struct kvm *kvm, u64 *sptep)
  958. {
  959. if (mmu_spte_clear_track_bits(sptep))
  960. rmap_remove(kvm, sptep);
  961. }
  962. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  963. {
  964. if (is_large_pte(*sptep)) {
  965. WARN_ON(page_header(__pa(sptep))->role.level ==
  966. PT_PAGE_TABLE_LEVEL);
  967. drop_spte(kvm, sptep);
  968. --kvm->stat.lpages;
  969. return true;
  970. }
  971. return false;
  972. }
  973. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  974. {
  975. if (__drop_large_spte(vcpu->kvm, sptep))
  976. kvm_flush_remote_tlbs(vcpu->kvm);
  977. }
  978. /*
  979. * Write-protect on the specified @sptep, @pt_protect indicates whether
  980. * spte write-protection is caused by protecting shadow page table.
  981. *
  982. * Note: write protection is difference between dirty logging and spte
  983. * protection:
  984. * - for dirty logging, the spte can be set to writable at anytime if
  985. * its dirty bitmap is properly set.
  986. * - for spte protection, the spte can be writable only after unsync-ing
  987. * shadow page.
  988. *
  989. * Return true if tlb need be flushed.
  990. */
  991. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
  992. {
  993. u64 spte = *sptep;
  994. if (!is_writable_pte(spte) &&
  995. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  996. return false;
  997. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  998. if (pt_protect)
  999. spte &= ~SPTE_MMU_WRITEABLE;
  1000. spte = spte & ~PT_WRITABLE_MASK;
  1001. return mmu_spte_update(sptep, spte);
  1002. }
  1003. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  1004. bool pt_protect)
  1005. {
  1006. u64 *sptep;
  1007. struct rmap_iterator iter;
  1008. bool flush = false;
  1009. for_each_rmap_spte(rmapp, &iter, sptep)
  1010. flush |= spte_write_protect(kvm, sptep, pt_protect);
  1011. return flush;
  1012. }
  1013. static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
  1014. {
  1015. u64 spte = *sptep;
  1016. rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
  1017. spte &= ~shadow_dirty_mask;
  1018. return mmu_spte_update(sptep, spte);
  1019. }
  1020. static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
  1021. {
  1022. u64 *sptep;
  1023. struct rmap_iterator iter;
  1024. bool flush = false;
  1025. for_each_rmap_spte(rmapp, &iter, sptep)
  1026. flush |= spte_clear_dirty(kvm, sptep);
  1027. return flush;
  1028. }
  1029. static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
  1030. {
  1031. u64 spte = *sptep;
  1032. rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
  1033. spte |= shadow_dirty_mask;
  1034. return mmu_spte_update(sptep, spte);
  1035. }
  1036. static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
  1037. {
  1038. u64 *sptep;
  1039. struct rmap_iterator iter;
  1040. bool flush = false;
  1041. for_each_rmap_spte(rmapp, &iter, sptep)
  1042. flush |= spte_set_dirty(kvm, sptep);
  1043. return flush;
  1044. }
  1045. /**
  1046. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1047. * @kvm: kvm instance
  1048. * @slot: slot to protect
  1049. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1050. * @mask: indicates which pages we should protect
  1051. *
  1052. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1053. * logging we do not have any such mappings.
  1054. */
  1055. static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1056. struct kvm_memory_slot *slot,
  1057. gfn_t gfn_offset, unsigned long mask)
  1058. {
  1059. unsigned long *rmapp;
  1060. while (mask) {
  1061. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1062. PT_PAGE_TABLE_LEVEL, slot);
  1063. __rmap_write_protect(kvm, rmapp, false);
  1064. /* clear the first set bit */
  1065. mask &= mask - 1;
  1066. }
  1067. }
  1068. /**
  1069. * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
  1070. * @kvm: kvm instance
  1071. * @slot: slot to clear D-bit
  1072. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1073. * @mask: indicates which pages we should clear D-bit
  1074. *
  1075. * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
  1076. */
  1077. void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
  1078. struct kvm_memory_slot *slot,
  1079. gfn_t gfn_offset, unsigned long mask)
  1080. {
  1081. unsigned long *rmapp;
  1082. while (mask) {
  1083. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1084. PT_PAGE_TABLE_LEVEL, slot);
  1085. __rmap_clear_dirty(kvm, rmapp);
  1086. /* clear the first set bit */
  1087. mask &= mask - 1;
  1088. }
  1089. }
  1090. EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
  1091. /**
  1092. * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
  1093. * PT level pages.
  1094. *
  1095. * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
  1096. * enable dirty logging for them.
  1097. *
  1098. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1099. * logging we do not have any such mappings.
  1100. */
  1101. void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
  1102. struct kvm_memory_slot *slot,
  1103. gfn_t gfn_offset, unsigned long mask)
  1104. {
  1105. if (kvm_x86_ops->enable_log_dirty_pt_masked)
  1106. kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
  1107. mask);
  1108. else
  1109. kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
  1110. }
  1111. static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  1112. {
  1113. struct kvm_memory_slot *slot;
  1114. unsigned long *rmapp;
  1115. int i;
  1116. bool write_protected = false;
  1117. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1118. for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  1119. rmapp = __gfn_to_rmap(gfn, i, slot);
  1120. write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
  1121. }
  1122. return write_protected;
  1123. }
  1124. static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  1125. {
  1126. u64 *sptep;
  1127. struct rmap_iterator iter;
  1128. bool flush = false;
  1129. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1130. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1131. rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
  1132. drop_spte(kvm, sptep);
  1133. flush = true;
  1134. }
  1135. return flush;
  1136. }
  1137. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1138. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1139. unsigned long data)
  1140. {
  1141. return kvm_zap_rmapp(kvm, rmapp);
  1142. }
  1143. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1144. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1145. unsigned long data)
  1146. {
  1147. u64 *sptep;
  1148. struct rmap_iterator iter;
  1149. int need_flush = 0;
  1150. u64 new_spte;
  1151. pte_t *ptep = (pte_t *)data;
  1152. pfn_t new_pfn;
  1153. WARN_ON(pte_huge(*ptep));
  1154. new_pfn = pte_pfn(*ptep);
  1155. restart:
  1156. for_each_rmap_spte(rmapp, &iter, sptep) {
  1157. rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
  1158. sptep, *sptep, gfn, level);
  1159. need_flush = 1;
  1160. if (pte_write(*ptep)) {
  1161. drop_spte(kvm, sptep);
  1162. goto restart;
  1163. } else {
  1164. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1165. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1166. new_spte &= ~PT_WRITABLE_MASK;
  1167. new_spte &= ~SPTE_HOST_WRITEABLE;
  1168. new_spte &= ~shadow_accessed_mask;
  1169. mmu_spte_clear_track_bits(sptep);
  1170. mmu_spte_set(sptep, new_spte);
  1171. }
  1172. }
  1173. if (need_flush)
  1174. kvm_flush_remote_tlbs(kvm);
  1175. return 0;
  1176. }
  1177. struct slot_rmap_walk_iterator {
  1178. /* input fields. */
  1179. struct kvm_memory_slot *slot;
  1180. gfn_t start_gfn;
  1181. gfn_t end_gfn;
  1182. int start_level;
  1183. int end_level;
  1184. /* output fields. */
  1185. gfn_t gfn;
  1186. unsigned long *rmap;
  1187. int level;
  1188. /* private field. */
  1189. unsigned long *end_rmap;
  1190. };
  1191. static void
  1192. rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
  1193. {
  1194. iterator->level = level;
  1195. iterator->gfn = iterator->start_gfn;
  1196. iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
  1197. iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
  1198. iterator->slot);
  1199. }
  1200. static void
  1201. slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
  1202. struct kvm_memory_slot *slot, int start_level,
  1203. int end_level, gfn_t start_gfn, gfn_t end_gfn)
  1204. {
  1205. iterator->slot = slot;
  1206. iterator->start_level = start_level;
  1207. iterator->end_level = end_level;
  1208. iterator->start_gfn = start_gfn;
  1209. iterator->end_gfn = end_gfn;
  1210. rmap_walk_init_level(iterator, iterator->start_level);
  1211. }
  1212. static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
  1213. {
  1214. return !!iterator->rmap;
  1215. }
  1216. static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
  1217. {
  1218. if (++iterator->rmap <= iterator->end_rmap) {
  1219. iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
  1220. return;
  1221. }
  1222. if (++iterator->level > iterator->end_level) {
  1223. iterator->rmap = NULL;
  1224. return;
  1225. }
  1226. rmap_walk_init_level(iterator, iterator->level);
  1227. }
  1228. #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
  1229. _start_gfn, _end_gfn, _iter_) \
  1230. for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
  1231. _end_level_, _start_gfn, _end_gfn); \
  1232. slot_rmap_walk_okay(_iter_); \
  1233. slot_rmap_walk_next(_iter_))
  1234. static int kvm_handle_hva_range(struct kvm *kvm,
  1235. unsigned long start,
  1236. unsigned long end,
  1237. unsigned long data,
  1238. int (*handler)(struct kvm *kvm,
  1239. unsigned long *rmapp,
  1240. struct kvm_memory_slot *slot,
  1241. gfn_t gfn,
  1242. int level,
  1243. unsigned long data))
  1244. {
  1245. struct kvm_memslots *slots;
  1246. struct kvm_memory_slot *memslot;
  1247. struct slot_rmap_walk_iterator iterator;
  1248. int ret = 0;
  1249. int i;
  1250. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  1251. slots = __kvm_memslots(kvm, i);
  1252. kvm_for_each_memslot(memslot, slots) {
  1253. unsigned long hva_start, hva_end;
  1254. gfn_t gfn_start, gfn_end;
  1255. hva_start = max(start, memslot->userspace_addr);
  1256. hva_end = min(end, memslot->userspace_addr +
  1257. (memslot->npages << PAGE_SHIFT));
  1258. if (hva_start >= hva_end)
  1259. continue;
  1260. /*
  1261. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1262. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1263. */
  1264. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1265. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1266. for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
  1267. PT_MAX_HUGEPAGE_LEVEL,
  1268. gfn_start, gfn_end - 1,
  1269. &iterator)
  1270. ret |= handler(kvm, iterator.rmap, memslot,
  1271. iterator.gfn, iterator.level, data);
  1272. }
  1273. }
  1274. return ret;
  1275. }
  1276. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1277. unsigned long data,
  1278. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1279. struct kvm_memory_slot *slot,
  1280. gfn_t gfn, int level,
  1281. unsigned long data))
  1282. {
  1283. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1284. }
  1285. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1286. {
  1287. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1288. }
  1289. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1290. {
  1291. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1292. }
  1293. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1294. {
  1295. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1296. }
  1297. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1298. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1299. unsigned long data)
  1300. {
  1301. u64 *sptep;
  1302. struct rmap_iterator uninitialized_var(iter);
  1303. int young = 0;
  1304. BUG_ON(!shadow_accessed_mask);
  1305. for_each_rmap_spte(rmapp, &iter, sptep)
  1306. if (*sptep & shadow_accessed_mask) {
  1307. young = 1;
  1308. clear_bit((ffs(shadow_accessed_mask) - 1),
  1309. (unsigned long *)sptep);
  1310. }
  1311. trace_kvm_age_page(gfn, level, slot, young);
  1312. return young;
  1313. }
  1314. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1315. struct kvm_memory_slot *slot, gfn_t gfn,
  1316. int level, unsigned long data)
  1317. {
  1318. u64 *sptep;
  1319. struct rmap_iterator iter;
  1320. int young = 0;
  1321. /*
  1322. * If there's no access bit in the secondary pte set by the
  1323. * hardware it's up to gup-fast/gup to set the access bit in
  1324. * the primary pte or in the page structure.
  1325. */
  1326. if (!shadow_accessed_mask)
  1327. goto out;
  1328. for_each_rmap_spte(rmapp, &iter, sptep)
  1329. if (*sptep & shadow_accessed_mask) {
  1330. young = 1;
  1331. break;
  1332. }
  1333. out:
  1334. return young;
  1335. }
  1336. #define RMAP_RECYCLE_THRESHOLD 1000
  1337. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1338. {
  1339. unsigned long *rmapp;
  1340. struct kvm_mmu_page *sp;
  1341. sp = page_header(__pa(spte));
  1342. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
  1343. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
  1344. kvm_flush_remote_tlbs(vcpu->kvm);
  1345. }
  1346. int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
  1347. {
  1348. /*
  1349. * In case of absence of EPT Access and Dirty Bits supports,
  1350. * emulate the accessed bit for EPT, by checking if this page has
  1351. * an EPT mapping, and clearing it if it does. On the next access,
  1352. * a new EPT mapping will be established.
  1353. * This has some overhead, but not as much as the cost of swapping
  1354. * out actively used pages or breaking up actively used hugepages.
  1355. */
  1356. if (!shadow_accessed_mask) {
  1357. /*
  1358. * We are holding the kvm->mmu_lock, and we are blowing up
  1359. * shadow PTEs. MMU notifier consumers need to be kept at bay.
  1360. * This is correct as long as we don't decouple the mmu_lock
  1361. * protected regions (like invalidate_range_start|end does).
  1362. */
  1363. kvm->mmu_notifier_seq++;
  1364. return kvm_handle_hva_range(kvm, start, end, 0,
  1365. kvm_unmap_rmapp);
  1366. }
  1367. return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
  1368. }
  1369. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1370. {
  1371. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1372. }
  1373. #ifdef MMU_DEBUG
  1374. static int is_empty_shadow_page(u64 *spt)
  1375. {
  1376. u64 *pos;
  1377. u64 *end;
  1378. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1379. if (is_shadow_present_pte(*pos)) {
  1380. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1381. pos, *pos);
  1382. return 0;
  1383. }
  1384. return 1;
  1385. }
  1386. #endif
  1387. /*
  1388. * This value is the sum of all of the kvm instances's
  1389. * kvm->arch.n_used_mmu_pages values. We need a global,
  1390. * aggregate version in order to make the slab shrinker
  1391. * faster
  1392. */
  1393. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1394. {
  1395. kvm->arch.n_used_mmu_pages += nr;
  1396. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1397. }
  1398. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1399. {
  1400. MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
  1401. hlist_del(&sp->hash_link);
  1402. list_del(&sp->link);
  1403. free_page((unsigned long)sp->spt);
  1404. if (!sp->role.direct)
  1405. free_page((unsigned long)sp->gfns);
  1406. kmem_cache_free(mmu_page_header_cache, sp);
  1407. }
  1408. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1409. {
  1410. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1411. }
  1412. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1413. struct kvm_mmu_page *sp, u64 *parent_pte)
  1414. {
  1415. if (!parent_pte)
  1416. return;
  1417. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1418. }
  1419. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1420. u64 *parent_pte)
  1421. {
  1422. pte_list_remove(parent_pte, &sp->parent_ptes);
  1423. }
  1424. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1425. u64 *parent_pte)
  1426. {
  1427. mmu_page_remove_parent_pte(sp, parent_pte);
  1428. mmu_spte_clear_no_track(parent_pte);
  1429. }
  1430. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1431. u64 *parent_pte, int direct)
  1432. {
  1433. struct kvm_mmu_page *sp;
  1434. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1435. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1436. if (!direct)
  1437. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1438. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1439. /*
  1440. * The active_mmu_pages list is the FIFO list, do not move the
  1441. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1442. * this feature. See the comments in kvm_zap_obsolete_pages().
  1443. */
  1444. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1445. sp->parent_ptes = 0;
  1446. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1447. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1448. return sp;
  1449. }
  1450. static void mark_unsync(u64 *spte);
  1451. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1452. {
  1453. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1454. }
  1455. static void mark_unsync(u64 *spte)
  1456. {
  1457. struct kvm_mmu_page *sp;
  1458. unsigned int index;
  1459. sp = page_header(__pa(spte));
  1460. index = spte - sp->spt;
  1461. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1462. return;
  1463. if (sp->unsync_children++)
  1464. return;
  1465. kvm_mmu_mark_parents_unsync(sp);
  1466. }
  1467. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1468. struct kvm_mmu_page *sp)
  1469. {
  1470. return 1;
  1471. }
  1472. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1473. {
  1474. }
  1475. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1476. struct kvm_mmu_page *sp, u64 *spte,
  1477. const void *pte)
  1478. {
  1479. WARN_ON(1);
  1480. }
  1481. #define KVM_PAGE_ARRAY_NR 16
  1482. struct kvm_mmu_pages {
  1483. struct mmu_page_and_offset {
  1484. struct kvm_mmu_page *sp;
  1485. unsigned int idx;
  1486. } page[KVM_PAGE_ARRAY_NR];
  1487. unsigned int nr;
  1488. };
  1489. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1490. int idx)
  1491. {
  1492. int i;
  1493. if (sp->unsync)
  1494. for (i=0; i < pvec->nr; i++)
  1495. if (pvec->page[i].sp == sp)
  1496. return 0;
  1497. pvec->page[pvec->nr].sp = sp;
  1498. pvec->page[pvec->nr].idx = idx;
  1499. pvec->nr++;
  1500. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1501. }
  1502. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1503. struct kvm_mmu_pages *pvec)
  1504. {
  1505. int i, ret, nr_unsync_leaf = 0;
  1506. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1507. struct kvm_mmu_page *child;
  1508. u64 ent = sp->spt[i];
  1509. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1510. goto clear_child_bitmap;
  1511. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1512. if (child->unsync_children) {
  1513. if (mmu_pages_add(pvec, child, i))
  1514. return -ENOSPC;
  1515. ret = __mmu_unsync_walk(child, pvec);
  1516. if (!ret)
  1517. goto clear_child_bitmap;
  1518. else if (ret > 0)
  1519. nr_unsync_leaf += ret;
  1520. else
  1521. return ret;
  1522. } else if (child->unsync) {
  1523. nr_unsync_leaf++;
  1524. if (mmu_pages_add(pvec, child, i))
  1525. return -ENOSPC;
  1526. } else
  1527. goto clear_child_bitmap;
  1528. continue;
  1529. clear_child_bitmap:
  1530. __clear_bit(i, sp->unsync_child_bitmap);
  1531. sp->unsync_children--;
  1532. WARN_ON((int)sp->unsync_children < 0);
  1533. }
  1534. return nr_unsync_leaf;
  1535. }
  1536. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1537. struct kvm_mmu_pages *pvec)
  1538. {
  1539. if (!sp->unsync_children)
  1540. return 0;
  1541. mmu_pages_add(pvec, sp, 0);
  1542. return __mmu_unsync_walk(sp, pvec);
  1543. }
  1544. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1545. {
  1546. WARN_ON(!sp->unsync);
  1547. trace_kvm_mmu_sync_page(sp);
  1548. sp->unsync = 0;
  1549. --kvm->stat.mmu_unsync;
  1550. }
  1551. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1552. struct list_head *invalid_list);
  1553. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1554. struct list_head *invalid_list);
  1555. /*
  1556. * NOTE: we should pay more attention on the zapped-obsolete page
  1557. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1558. * since it has been deleted from active_mmu_pages but still can be found
  1559. * at hast list.
  1560. *
  1561. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1562. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1563. * all the obsolete pages.
  1564. */
  1565. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1566. hlist_for_each_entry(_sp, \
  1567. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1568. if ((_sp)->gfn != (_gfn)) {} else
  1569. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1570. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1571. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1572. /* @sp->gfn should be write-protected at the call site */
  1573. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1574. struct list_head *invalid_list, bool clear_unsync)
  1575. {
  1576. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1577. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1578. return 1;
  1579. }
  1580. if (clear_unsync)
  1581. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1582. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1583. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1584. return 1;
  1585. }
  1586. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1587. return 0;
  1588. }
  1589. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1590. struct kvm_mmu_page *sp)
  1591. {
  1592. LIST_HEAD(invalid_list);
  1593. int ret;
  1594. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1595. if (ret)
  1596. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1597. return ret;
  1598. }
  1599. #ifdef CONFIG_KVM_MMU_AUDIT
  1600. #include "mmu_audit.c"
  1601. #else
  1602. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1603. static void mmu_audit_disable(void) { }
  1604. #endif
  1605. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1606. struct list_head *invalid_list)
  1607. {
  1608. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1609. }
  1610. /* @gfn should be write-protected at the call site */
  1611. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1612. {
  1613. struct kvm_mmu_page *s;
  1614. LIST_HEAD(invalid_list);
  1615. bool flush = false;
  1616. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1617. if (!s->unsync)
  1618. continue;
  1619. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1620. kvm_unlink_unsync_page(vcpu->kvm, s);
  1621. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1622. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1623. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1624. continue;
  1625. }
  1626. flush = true;
  1627. }
  1628. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1629. if (flush)
  1630. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1631. }
  1632. struct mmu_page_path {
  1633. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1634. unsigned int idx[PT64_ROOT_LEVEL-1];
  1635. };
  1636. #define for_each_sp(pvec, sp, parents, i) \
  1637. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1638. sp = pvec.page[i].sp; \
  1639. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1640. i = mmu_pages_next(&pvec, &parents, i))
  1641. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1642. struct mmu_page_path *parents,
  1643. int i)
  1644. {
  1645. int n;
  1646. for (n = i+1; n < pvec->nr; n++) {
  1647. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1648. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1649. parents->idx[0] = pvec->page[n].idx;
  1650. return n;
  1651. }
  1652. parents->parent[sp->role.level-2] = sp;
  1653. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1654. }
  1655. return n;
  1656. }
  1657. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1658. {
  1659. struct kvm_mmu_page *sp;
  1660. unsigned int level = 0;
  1661. do {
  1662. unsigned int idx = parents->idx[level];
  1663. sp = parents->parent[level];
  1664. if (!sp)
  1665. return;
  1666. --sp->unsync_children;
  1667. WARN_ON((int)sp->unsync_children < 0);
  1668. __clear_bit(idx, sp->unsync_child_bitmap);
  1669. level++;
  1670. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1671. }
  1672. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1673. struct mmu_page_path *parents,
  1674. struct kvm_mmu_pages *pvec)
  1675. {
  1676. parents->parent[parent->role.level-1] = NULL;
  1677. pvec->nr = 0;
  1678. }
  1679. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1680. struct kvm_mmu_page *parent)
  1681. {
  1682. int i;
  1683. struct kvm_mmu_page *sp;
  1684. struct mmu_page_path parents;
  1685. struct kvm_mmu_pages pages;
  1686. LIST_HEAD(invalid_list);
  1687. kvm_mmu_pages_init(parent, &parents, &pages);
  1688. while (mmu_unsync_walk(parent, &pages)) {
  1689. bool protected = false;
  1690. for_each_sp(pages, sp, parents, i)
  1691. protected |= rmap_write_protect(vcpu, sp->gfn);
  1692. if (protected)
  1693. kvm_flush_remote_tlbs(vcpu->kvm);
  1694. for_each_sp(pages, sp, parents, i) {
  1695. kvm_sync_page(vcpu, sp, &invalid_list);
  1696. mmu_pages_clear_parents(&parents);
  1697. }
  1698. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1699. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1700. kvm_mmu_pages_init(parent, &parents, &pages);
  1701. }
  1702. }
  1703. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1704. {
  1705. int i;
  1706. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1707. sp->spt[i] = 0ull;
  1708. }
  1709. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1710. {
  1711. sp->write_flooding_count = 0;
  1712. }
  1713. static void clear_sp_write_flooding_count(u64 *spte)
  1714. {
  1715. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1716. __clear_sp_write_flooding_count(sp);
  1717. }
  1718. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1719. {
  1720. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1721. }
  1722. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1723. gfn_t gfn,
  1724. gva_t gaddr,
  1725. unsigned level,
  1726. int direct,
  1727. unsigned access,
  1728. u64 *parent_pte)
  1729. {
  1730. union kvm_mmu_page_role role;
  1731. unsigned quadrant;
  1732. struct kvm_mmu_page *sp;
  1733. bool need_sync = false;
  1734. role = vcpu->arch.mmu.base_role;
  1735. role.level = level;
  1736. role.direct = direct;
  1737. if (role.direct)
  1738. role.cr4_pae = 0;
  1739. role.access = access;
  1740. if (!vcpu->arch.mmu.direct_map
  1741. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1742. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1743. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1744. role.quadrant = quadrant;
  1745. }
  1746. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1747. if (is_obsolete_sp(vcpu->kvm, sp))
  1748. continue;
  1749. if (!need_sync && sp->unsync)
  1750. need_sync = true;
  1751. if (sp->role.word != role.word)
  1752. continue;
  1753. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1754. break;
  1755. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1756. if (sp->unsync_children) {
  1757. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1758. kvm_mmu_mark_parents_unsync(sp);
  1759. } else if (sp->unsync)
  1760. kvm_mmu_mark_parents_unsync(sp);
  1761. __clear_sp_write_flooding_count(sp);
  1762. trace_kvm_mmu_get_page(sp, false);
  1763. return sp;
  1764. }
  1765. ++vcpu->kvm->stat.mmu_cache_miss;
  1766. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1767. if (!sp)
  1768. return sp;
  1769. sp->gfn = gfn;
  1770. sp->role = role;
  1771. hlist_add_head(&sp->hash_link,
  1772. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1773. if (!direct) {
  1774. if (rmap_write_protect(vcpu, gfn))
  1775. kvm_flush_remote_tlbs(vcpu->kvm);
  1776. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1777. kvm_sync_pages(vcpu, gfn);
  1778. account_shadowed(vcpu->kvm, sp);
  1779. }
  1780. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1781. init_shadow_page_table(sp);
  1782. trace_kvm_mmu_get_page(sp, true);
  1783. return sp;
  1784. }
  1785. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1786. struct kvm_vcpu *vcpu, u64 addr)
  1787. {
  1788. iterator->addr = addr;
  1789. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1790. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1791. if (iterator->level == PT64_ROOT_LEVEL &&
  1792. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1793. !vcpu->arch.mmu.direct_map)
  1794. --iterator->level;
  1795. if (iterator->level == PT32E_ROOT_LEVEL) {
  1796. iterator->shadow_addr
  1797. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1798. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1799. --iterator->level;
  1800. if (!iterator->shadow_addr)
  1801. iterator->level = 0;
  1802. }
  1803. }
  1804. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1805. {
  1806. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1807. return false;
  1808. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1809. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1810. return true;
  1811. }
  1812. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1813. u64 spte)
  1814. {
  1815. if (is_last_spte(spte, iterator->level)) {
  1816. iterator->level = 0;
  1817. return;
  1818. }
  1819. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1820. --iterator->level;
  1821. }
  1822. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1823. {
  1824. return __shadow_walk_next(iterator, *iterator->sptep);
  1825. }
  1826. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
  1827. {
  1828. u64 spte;
  1829. BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
  1830. VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
  1831. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1832. shadow_user_mask | shadow_x_mask;
  1833. if (accessed)
  1834. spte |= shadow_accessed_mask;
  1835. mmu_spte_set(sptep, spte);
  1836. }
  1837. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1838. unsigned direct_access)
  1839. {
  1840. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1841. struct kvm_mmu_page *child;
  1842. /*
  1843. * For the direct sp, if the guest pte's dirty bit
  1844. * changed form clean to dirty, it will corrupt the
  1845. * sp's access: allow writable in the read-only sp,
  1846. * so we should update the spte at this point to get
  1847. * a new sp with the correct access.
  1848. */
  1849. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1850. if (child->role.access == direct_access)
  1851. return;
  1852. drop_parent_pte(child, sptep);
  1853. kvm_flush_remote_tlbs(vcpu->kvm);
  1854. }
  1855. }
  1856. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1857. u64 *spte)
  1858. {
  1859. u64 pte;
  1860. struct kvm_mmu_page *child;
  1861. pte = *spte;
  1862. if (is_shadow_present_pte(pte)) {
  1863. if (is_last_spte(pte, sp->role.level)) {
  1864. drop_spte(kvm, spte);
  1865. if (is_large_pte(pte))
  1866. --kvm->stat.lpages;
  1867. } else {
  1868. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1869. drop_parent_pte(child, spte);
  1870. }
  1871. return true;
  1872. }
  1873. if (is_mmio_spte(pte))
  1874. mmu_spte_clear_no_track(spte);
  1875. return false;
  1876. }
  1877. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1878. struct kvm_mmu_page *sp)
  1879. {
  1880. unsigned i;
  1881. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1882. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1883. }
  1884. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1885. {
  1886. mmu_page_remove_parent_pte(sp, parent_pte);
  1887. }
  1888. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1889. {
  1890. u64 *sptep;
  1891. struct rmap_iterator iter;
  1892. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1893. drop_parent_pte(sp, sptep);
  1894. }
  1895. static int mmu_zap_unsync_children(struct kvm *kvm,
  1896. struct kvm_mmu_page *parent,
  1897. struct list_head *invalid_list)
  1898. {
  1899. int i, zapped = 0;
  1900. struct mmu_page_path parents;
  1901. struct kvm_mmu_pages pages;
  1902. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1903. return 0;
  1904. kvm_mmu_pages_init(parent, &parents, &pages);
  1905. while (mmu_unsync_walk(parent, &pages)) {
  1906. struct kvm_mmu_page *sp;
  1907. for_each_sp(pages, sp, parents, i) {
  1908. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1909. mmu_pages_clear_parents(&parents);
  1910. zapped++;
  1911. }
  1912. kvm_mmu_pages_init(parent, &parents, &pages);
  1913. }
  1914. return zapped;
  1915. }
  1916. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1917. struct list_head *invalid_list)
  1918. {
  1919. int ret;
  1920. trace_kvm_mmu_prepare_zap_page(sp);
  1921. ++kvm->stat.mmu_shadow_zapped;
  1922. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1923. kvm_mmu_page_unlink_children(kvm, sp);
  1924. kvm_mmu_unlink_parents(kvm, sp);
  1925. if (!sp->role.invalid && !sp->role.direct)
  1926. unaccount_shadowed(kvm, sp);
  1927. if (sp->unsync)
  1928. kvm_unlink_unsync_page(kvm, sp);
  1929. if (!sp->root_count) {
  1930. /* Count self */
  1931. ret++;
  1932. list_move(&sp->link, invalid_list);
  1933. kvm_mod_used_mmu_pages(kvm, -1);
  1934. } else {
  1935. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1936. /*
  1937. * The obsolete pages can not be used on any vcpus.
  1938. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1939. */
  1940. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1941. kvm_reload_remote_mmus(kvm);
  1942. }
  1943. sp->role.invalid = 1;
  1944. return ret;
  1945. }
  1946. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1947. struct list_head *invalid_list)
  1948. {
  1949. struct kvm_mmu_page *sp, *nsp;
  1950. if (list_empty(invalid_list))
  1951. return;
  1952. /*
  1953. * wmb: make sure everyone sees our modifications to the page tables
  1954. * rmb: make sure we see changes to vcpu->mode
  1955. */
  1956. smp_mb();
  1957. /*
  1958. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1959. * page table walks.
  1960. */
  1961. kvm_flush_remote_tlbs(kvm);
  1962. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1963. WARN_ON(!sp->role.invalid || sp->root_count);
  1964. kvm_mmu_free_page(sp);
  1965. }
  1966. }
  1967. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1968. struct list_head *invalid_list)
  1969. {
  1970. struct kvm_mmu_page *sp;
  1971. if (list_empty(&kvm->arch.active_mmu_pages))
  1972. return false;
  1973. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1974. struct kvm_mmu_page, link);
  1975. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1976. return true;
  1977. }
  1978. /*
  1979. * Changing the number of mmu pages allocated to the vm
  1980. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1981. */
  1982. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1983. {
  1984. LIST_HEAD(invalid_list);
  1985. spin_lock(&kvm->mmu_lock);
  1986. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1987. /* Need to free some mmu pages to achieve the goal. */
  1988. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1989. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1990. break;
  1991. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1992. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1993. }
  1994. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1995. spin_unlock(&kvm->mmu_lock);
  1996. }
  1997. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1998. {
  1999. struct kvm_mmu_page *sp;
  2000. LIST_HEAD(invalid_list);
  2001. int r;
  2002. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  2003. r = 0;
  2004. spin_lock(&kvm->mmu_lock);
  2005. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  2006. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  2007. sp->role.word);
  2008. r = 1;
  2009. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  2010. }
  2011. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2012. spin_unlock(&kvm->mmu_lock);
  2013. return r;
  2014. }
  2015. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  2016. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  2017. {
  2018. trace_kvm_mmu_unsync_page(sp);
  2019. ++vcpu->kvm->stat.mmu_unsync;
  2020. sp->unsync = 1;
  2021. kvm_mmu_mark_parents_unsync(sp);
  2022. }
  2023. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  2024. {
  2025. struct kvm_mmu_page *s;
  2026. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2027. if (s->unsync)
  2028. continue;
  2029. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  2030. __kvm_unsync_page(vcpu, s);
  2031. }
  2032. }
  2033. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  2034. bool can_unsync)
  2035. {
  2036. struct kvm_mmu_page *s;
  2037. bool need_unsync = false;
  2038. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2039. if (!can_unsync)
  2040. return 1;
  2041. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  2042. return 1;
  2043. if (!s->unsync)
  2044. need_unsync = true;
  2045. }
  2046. if (need_unsync)
  2047. kvm_unsync_pages(vcpu, gfn);
  2048. return 0;
  2049. }
  2050. static bool kvm_is_mmio_pfn(pfn_t pfn)
  2051. {
  2052. if (pfn_valid(pfn))
  2053. return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
  2054. return true;
  2055. }
  2056. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2057. unsigned pte_access, int level,
  2058. gfn_t gfn, pfn_t pfn, bool speculative,
  2059. bool can_unsync, bool host_writable)
  2060. {
  2061. u64 spte;
  2062. int ret = 0;
  2063. if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
  2064. return 0;
  2065. spte = PT_PRESENT_MASK;
  2066. if (!speculative)
  2067. spte |= shadow_accessed_mask;
  2068. if (pte_access & ACC_EXEC_MASK)
  2069. spte |= shadow_x_mask;
  2070. else
  2071. spte |= shadow_nx_mask;
  2072. if (pte_access & ACC_USER_MASK)
  2073. spte |= shadow_user_mask;
  2074. if (level > PT_PAGE_TABLE_LEVEL)
  2075. spte |= PT_PAGE_SIZE_MASK;
  2076. if (tdp_enabled)
  2077. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2078. kvm_is_mmio_pfn(pfn));
  2079. if (host_writable)
  2080. spte |= SPTE_HOST_WRITEABLE;
  2081. else
  2082. pte_access &= ~ACC_WRITE_MASK;
  2083. spte |= (u64)pfn << PAGE_SHIFT;
  2084. if (pte_access & ACC_WRITE_MASK) {
  2085. /*
  2086. * Other vcpu creates new sp in the window between
  2087. * mapping_level() and acquiring mmu-lock. We can
  2088. * allow guest to retry the access, the mapping can
  2089. * be fixed if guest refault.
  2090. */
  2091. if (level > PT_PAGE_TABLE_LEVEL &&
  2092. has_wrprotected_page(vcpu, gfn, level))
  2093. goto done;
  2094. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2095. /*
  2096. * Optimization: for pte sync, if spte was writable the hash
  2097. * lookup is unnecessary (and expensive). Write protection
  2098. * is responsibility of mmu_get_page / kvm_sync_page.
  2099. * Same reasoning can be applied to dirty page accounting.
  2100. */
  2101. if (!can_unsync && is_writable_pte(*sptep))
  2102. goto set_pte;
  2103. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2104. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2105. __func__, gfn);
  2106. ret = 1;
  2107. pte_access &= ~ACC_WRITE_MASK;
  2108. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2109. }
  2110. }
  2111. if (pte_access & ACC_WRITE_MASK) {
  2112. kvm_vcpu_mark_page_dirty(vcpu, gfn);
  2113. spte |= shadow_dirty_mask;
  2114. }
  2115. set_pte:
  2116. if (mmu_spte_update(sptep, spte))
  2117. kvm_flush_remote_tlbs(vcpu->kvm);
  2118. done:
  2119. return ret;
  2120. }
  2121. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2122. unsigned pte_access, int write_fault, int *emulate,
  2123. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2124. bool host_writable)
  2125. {
  2126. int was_rmapped = 0;
  2127. int rmap_count;
  2128. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2129. *sptep, write_fault, gfn);
  2130. if (is_rmap_spte(*sptep)) {
  2131. /*
  2132. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2133. * the parent of the now unreachable PTE.
  2134. */
  2135. if (level > PT_PAGE_TABLE_LEVEL &&
  2136. !is_large_pte(*sptep)) {
  2137. struct kvm_mmu_page *child;
  2138. u64 pte = *sptep;
  2139. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2140. drop_parent_pte(child, sptep);
  2141. kvm_flush_remote_tlbs(vcpu->kvm);
  2142. } else if (pfn != spte_to_pfn(*sptep)) {
  2143. pgprintk("hfn old %llx new %llx\n",
  2144. spte_to_pfn(*sptep), pfn);
  2145. drop_spte(vcpu->kvm, sptep);
  2146. kvm_flush_remote_tlbs(vcpu->kvm);
  2147. } else
  2148. was_rmapped = 1;
  2149. }
  2150. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2151. true, host_writable)) {
  2152. if (write_fault)
  2153. *emulate = 1;
  2154. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2155. }
  2156. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2157. *emulate = 1;
  2158. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2159. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2160. is_large_pte(*sptep)? "2MB" : "4kB",
  2161. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2162. *sptep, sptep);
  2163. if (!was_rmapped && is_large_pte(*sptep))
  2164. ++vcpu->kvm->stat.lpages;
  2165. if (is_shadow_present_pte(*sptep)) {
  2166. if (!was_rmapped) {
  2167. rmap_count = rmap_add(vcpu, sptep, gfn);
  2168. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2169. rmap_recycle(vcpu, sptep, gfn);
  2170. }
  2171. }
  2172. kvm_release_pfn_clean(pfn);
  2173. }
  2174. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2175. bool no_dirty_log)
  2176. {
  2177. struct kvm_memory_slot *slot;
  2178. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2179. if (!slot)
  2180. return KVM_PFN_ERR_FAULT;
  2181. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2182. }
  2183. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2184. struct kvm_mmu_page *sp,
  2185. u64 *start, u64 *end)
  2186. {
  2187. struct page *pages[PTE_PREFETCH_NUM];
  2188. struct kvm_memory_slot *slot;
  2189. unsigned access = sp->role.access;
  2190. int i, ret;
  2191. gfn_t gfn;
  2192. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2193. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
  2194. if (!slot)
  2195. return -1;
  2196. ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
  2197. if (ret <= 0)
  2198. return -1;
  2199. for (i = 0; i < ret; i++, gfn++, start++)
  2200. mmu_set_spte(vcpu, start, access, 0, NULL,
  2201. sp->role.level, gfn, page_to_pfn(pages[i]),
  2202. true, true);
  2203. return 0;
  2204. }
  2205. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2206. struct kvm_mmu_page *sp, u64 *sptep)
  2207. {
  2208. u64 *spte, *start = NULL;
  2209. int i;
  2210. WARN_ON(!sp->role.direct);
  2211. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2212. spte = sp->spt + i;
  2213. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2214. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2215. if (!start)
  2216. continue;
  2217. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2218. break;
  2219. start = NULL;
  2220. } else if (!start)
  2221. start = spte;
  2222. }
  2223. }
  2224. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2225. {
  2226. struct kvm_mmu_page *sp;
  2227. /*
  2228. * Since it's no accessed bit on EPT, it's no way to
  2229. * distinguish between actually accessed translations
  2230. * and prefetched, so disable pte prefetch if EPT is
  2231. * enabled.
  2232. */
  2233. if (!shadow_accessed_mask)
  2234. return;
  2235. sp = page_header(__pa(sptep));
  2236. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2237. return;
  2238. __direct_pte_prefetch(vcpu, sp, sptep);
  2239. }
  2240. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2241. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2242. bool prefault)
  2243. {
  2244. struct kvm_shadow_walk_iterator iterator;
  2245. struct kvm_mmu_page *sp;
  2246. int emulate = 0;
  2247. gfn_t pseudo_gfn;
  2248. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2249. return 0;
  2250. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2251. if (iterator.level == level) {
  2252. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2253. write, &emulate, level, gfn, pfn,
  2254. prefault, map_writable);
  2255. direct_pte_prefetch(vcpu, iterator.sptep);
  2256. ++vcpu->stat.pf_fixed;
  2257. break;
  2258. }
  2259. drop_large_spte(vcpu, iterator.sptep);
  2260. if (!is_shadow_present_pte(*iterator.sptep)) {
  2261. u64 base_addr = iterator.addr;
  2262. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2263. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2264. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2265. iterator.level - 1,
  2266. 1, ACC_ALL, iterator.sptep);
  2267. link_shadow_page(iterator.sptep, sp, true);
  2268. }
  2269. }
  2270. return emulate;
  2271. }
  2272. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2273. {
  2274. siginfo_t info;
  2275. info.si_signo = SIGBUS;
  2276. info.si_errno = 0;
  2277. info.si_code = BUS_MCEERR_AR;
  2278. info.si_addr = (void __user *)address;
  2279. info.si_addr_lsb = PAGE_SHIFT;
  2280. send_sig_info(SIGBUS, &info, tsk);
  2281. }
  2282. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2283. {
  2284. /*
  2285. * Do not cache the mmio info caused by writing the readonly gfn
  2286. * into the spte otherwise read access on readonly gfn also can
  2287. * caused mmio page fault and treat it as mmio access.
  2288. * Return 1 to tell kvm to emulate it.
  2289. */
  2290. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2291. return 1;
  2292. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2293. kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
  2294. return 0;
  2295. }
  2296. return -EFAULT;
  2297. }
  2298. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2299. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2300. {
  2301. pfn_t pfn = *pfnp;
  2302. gfn_t gfn = *gfnp;
  2303. int level = *levelp;
  2304. /*
  2305. * Check if it's a transparent hugepage. If this would be an
  2306. * hugetlbfs page, level wouldn't be set to
  2307. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2308. * here.
  2309. */
  2310. if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
  2311. level == PT_PAGE_TABLE_LEVEL &&
  2312. PageTransCompound(pfn_to_page(pfn)) &&
  2313. !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
  2314. unsigned long mask;
  2315. /*
  2316. * mmu_notifier_retry was successful and we hold the
  2317. * mmu_lock here, so the pmd can't become splitting
  2318. * from under us, and in turn
  2319. * __split_huge_page_refcount() can't run from under
  2320. * us and we can safely transfer the refcount from
  2321. * PG_tail to PG_head as we switch the pfn to tail to
  2322. * head.
  2323. */
  2324. *levelp = level = PT_DIRECTORY_LEVEL;
  2325. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2326. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2327. if (pfn & mask) {
  2328. gfn &= ~mask;
  2329. *gfnp = gfn;
  2330. kvm_release_pfn_clean(pfn);
  2331. pfn &= ~mask;
  2332. kvm_get_pfn(pfn);
  2333. *pfnp = pfn;
  2334. }
  2335. }
  2336. }
  2337. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2338. pfn_t pfn, unsigned access, int *ret_val)
  2339. {
  2340. bool ret = true;
  2341. /* The pfn is invalid, report the error! */
  2342. if (unlikely(is_error_pfn(pfn))) {
  2343. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2344. goto exit;
  2345. }
  2346. if (unlikely(is_noslot_pfn(pfn)))
  2347. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2348. ret = false;
  2349. exit:
  2350. return ret;
  2351. }
  2352. static bool page_fault_can_be_fast(u32 error_code)
  2353. {
  2354. /*
  2355. * Do not fix the mmio spte with invalid generation number which
  2356. * need to be updated by slow page fault path.
  2357. */
  2358. if (unlikely(error_code & PFERR_RSVD_MASK))
  2359. return false;
  2360. /*
  2361. * #PF can be fast only if the shadow page table is present and it
  2362. * is caused by write-protect, that means we just need change the
  2363. * W bit of the spte which can be done out of mmu-lock.
  2364. */
  2365. if (!(error_code & PFERR_PRESENT_MASK) ||
  2366. !(error_code & PFERR_WRITE_MASK))
  2367. return false;
  2368. return true;
  2369. }
  2370. static bool
  2371. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  2372. u64 *sptep, u64 spte)
  2373. {
  2374. gfn_t gfn;
  2375. WARN_ON(!sp->role.direct);
  2376. /*
  2377. * The gfn of direct spte is stable since it is calculated
  2378. * by sp->gfn.
  2379. */
  2380. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2381. /*
  2382. * Theoretically we could also set dirty bit (and flush TLB) here in
  2383. * order to eliminate unnecessary PML logging. See comments in
  2384. * set_spte. But fast_page_fault is very unlikely to happen with PML
  2385. * enabled, so we do not do this. This might result in the same GPA
  2386. * to be logged in PML buffer again when the write really happens, and
  2387. * eventually to be called by mark_page_dirty twice. But it's also no
  2388. * harm. This also avoids the TLB flush needed after setting dirty bit
  2389. * so non-PML cases won't be impacted.
  2390. *
  2391. * Compare with set_spte where instead shadow_dirty_mask is set.
  2392. */
  2393. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2394. kvm_vcpu_mark_page_dirty(vcpu, gfn);
  2395. return true;
  2396. }
  2397. /*
  2398. * Return value:
  2399. * - true: let the vcpu to access on the same address again.
  2400. * - false: let the real page fault path to fix it.
  2401. */
  2402. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2403. u32 error_code)
  2404. {
  2405. struct kvm_shadow_walk_iterator iterator;
  2406. struct kvm_mmu_page *sp;
  2407. bool ret = false;
  2408. u64 spte = 0ull;
  2409. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2410. return false;
  2411. if (!page_fault_can_be_fast(error_code))
  2412. return false;
  2413. walk_shadow_page_lockless_begin(vcpu);
  2414. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2415. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2416. break;
  2417. /*
  2418. * If the mapping has been changed, let the vcpu fault on the
  2419. * same address again.
  2420. */
  2421. if (!is_rmap_spte(spte)) {
  2422. ret = true;
  2423. goto exit;
  2424. }
  2425. sp = page_header(__pa(iterator.sptep));
  2426. if (!is_last_spte(spte, sp->role.level))
  2427. goto exit;
  2428. /*
  2429. * Check if it is a spurious fault caused by TLB lazily flushed.
  2430. *
  2431. * Need not check the access of upper level table entries since
  2432. * they are always ACC_ALL.
  2433. */
  2434. if (is_writable_pte(spte)) {
  2435. ret = true;
  2436. goto exit;
  2437. }
  2438. /*
  2439. * Currently, to simplify the code, only the spte write-protected
  2440. * by dirty-log can be fast fixed.
  2441. */
  2442. if (!spte_is_locklessly_modifiable(spte))
  2443. goto exit;
  2444. /*
  2445. * Do not fix write-permission on the large spte since we only dirty
  2446. * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
  2447. * that means other pages are missed if its slot is dirty-logged.
  2448. *
  2449. * Instead, we let the slow page fault path create a normal spte to
  2450. * fix the access.
  2451. *
  2452. * See the comments in kvm_arch_commit_memory_region().
  2453. */
  2454. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2455. goto exit;
  2456. /*
  2457. * Currently, fast page fault only works for direct mapping since
  2458. * the gfn is not stable for indirect shadow page.
  2459. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2460. */
  2461. ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
  2462. exit:
  2463. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2464. spte, ret);
  2465. walk_shadow_page_lockless_end(vcpu);
  2466. return ret;
  2467. }
  2468. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2469. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2470. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2471. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2472. gfn_t gfn, bool prefault)
  2473. {
  2474. int r;
  2475. int level;
  2476. bool force_pt_level = false;
  2477. pfn_t pfn;
  2478. unsigned long mmu_seq;
  2479. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2480. level = mapping_level(vcpu, gfn, &force_pt_level);
  2481. if (likely(!force_pt_level)) {
  2482. /*
  2483. * This path builds a PAE pagetable - so we can map
  2484. * 2mb pages at maximum. Therefore check if the level
  2485. * is larger than that.
  2486. */
  2487. if (level > PT_DIRECTORY_LEVEL)
  2488. level = PT_DIRECTORY_LEVEL;
  2489. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2490. }
  2491. if (fast_page_fault(vcpu, v, level, error_code))
  2492. return 0;
  2493. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2494. smp_rmb();
  2495. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2496. return 0;
  2497. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2498. return r;
  2499. spin_lock(&vcpu->kvm->mmu_lock);
  2500. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2501. goto out_unlock;
  2502. make_mmu_pages_available(vcpu);
  2503. if (likely(!force_pt_level))
  2504. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2505. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2506. prefault);
  2507. spin_unlock(&vcpu->kvm->mmu_lock);
  2508. return r;
  2509. out_unlock:
  2510. spin_unlock(&vcpu->kvm->mmu_lock);
  2511. kvm_release_pfn_clean(pfn);
  2512. return 0;
  2513. }
  2514. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2515. {
  2516. int i;
  2517. struct kvm_mmu_page *sp;
  2518. LIST_HEAD(invalid_list);
  2519. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2520. return;
  2521. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2522. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2523. vcpu->arch.mmu.direct_map)) {
  2524. hpa_t root = vcpu->arch.mmu.root_hpa;
  2525. spin_lock(&vcpu->kvm->mmu_lock);
  2526. sp = page_header(root);
  2527. --sp->root_count;
  2528. if (!sp->root_count && sp->role.invalid) {
  2529. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2530. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2531. }
  2532. spin_unlock(&vcpu->kvm->mmu_lock);
  2533. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2534. return;
  2535. }
  2536. spin_lock(&vcpu->kvm->mmu_lock);
  2537. for (i = 0; i < 4; ++i) {
  2538. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2539. if (root) {
  2540. root &= PT64_BASE_ADDR_MASK;
  2541. sp = page_header(root);
  2542. --sp->root_count;
  2543. if (!sp->root_count && sp->role.invalid)
  2544. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2545. &invalid_list);
  2546. }
  2547. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2548. }
  2549. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2550. spin_unlock(&vcpu->kvm->mmu_lock);
  2551. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2552. }
  2553. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2554. {
  2555. int ret = 0;
  2556. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2557. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2558. ret = 1;
  2559. }
  2560. return ret;
  2561. }
  2562. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2563. {
  2564. struct kvm_mmu_page *sp;
  2565. unsigned i;
  2566. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2567. spin_lock(&vcpu->kvm->mmu_lock);
  2568. make_mmu_pages_available(vcpu);
  2569. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2570. 1, ACC_ALL, NULL);
  2571. ++sp->root_count;
  2572. spin_unlock(&vcpu->kvm->mmu_lock);
  2573. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2574. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2575. for (i = 0; i < 4; ++i) {
  2576. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2577. MMU_WARN_ON(VALID_PAGE(root));
  2578. spin_lock(&vcpu->kvm->mmu_lock);
  2579. make_mmu_pages_available(vcpu);
  2580. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2581. i << 30,
  2582. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2583. NULL);
  2584. root = __pa(sp->spt);
  2585. ++sp->root_count;
  2586. spin_unlock(&vcpu->kvm->mmu_lock);
  2587. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2588. }
  2589. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2590. } else
  2591. BUG();
  2592. return 0;
  2593. }
  2594. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2595. {
  2596. struct kvm_mmu_page *sp;
  2597. u64 pdptr, pm_mask;
  2598. gfn_t root_gfn;
  2599. int i;
  2600. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2601. if (mmu_check_root(vcpu, root_gfn))
  2602. return 1;
  2603. /*
  2604. * Do we shadow a long mode page table? If so we need to
  2605. * write-protect the guests page table root.
  2606. */
  2607. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2608. hpa_t root = vcpu->arch.mmu.root_hpa;
  2609. MMU_WARN_ON(VALID_PAGE(root));
  2610. spin_lock(&vcpu->kvm->mmu_lock);
  2611. make_mmu_pages_available(vcpu);
  2612. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2613. 0, ACC_ALL, NULL);
  2614. root = __pa(sp->spt);
  2615. ++sp->root_count;
  2616. spin_unlock(&vcpu->kvm->mmu_lock);
  2617. vcpu->arch.mmu.root_hpa = root;
  2618. return 0;
  2619. }
  2620. /*
  2621. * We shadow a 32 bit page table. This may be a legacy 2-level
  2622. * or a PAE 3-level page table. In either case we need to be aware that
  2623. * the shadow page table may be a PAE or a long mode page table.
  2624. */
  2625. pm_mask = PT_PRESENT_MASK;
  2626. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2627. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2628. for (i = 0; i < 4; ++i) {
  2629. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2630. MMU_WARN_ON(VALID_PAGE(root));
  2631. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2632. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2633. if (!is_present_gpte(pdptr)) {
  2634. vcpu->arch.mmu.pae_root[i] = 0;
  2635. continue;
  2636. }
  2637. root_gfn = pdptr >> PAGE_SHIFT;
  2638. if (mmu_check_root(vcpu, root_gfn))
  2639. return 1;
  2640. }
  2641. spin_lock(&vcpu->kvm->mmu_lock);
  2642. make_mmu_pages_available(vcpu);
  2643. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2644. PT32_ROOT_LEVEL, 0,
  2645. ACC_ALL, NULL);
  2646. root = __pa(sp->spt);
  2647. ++sp->root_count;
  2648. spin_unlock(&vcpu->kvm->mmu_lock);
  2649. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2650. }
  2651. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2652. /*
  2653. * If we shadow a 32 bit page table with a long mode page
  2654. * table we enter this path.
  2655. */
  2656. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2657. if (vcpu->arch.mmu.lm_root == NULL) {
  2658. /*
  2659. * The additional page necessary for this is only
  2660. * allocated on demand.
  2661. */
  2662. u64 *lm_root;
  2663. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2664. if (lm_root == NULL)
  2665. return 1;
  2666. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2667. vcpu->arch.mmu.lm_root = lm_root;
  2668. }
  2669. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2670. }
  2671. return 0;
  2672. }
  2673. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2674. {
  2675. if (vcpu->arch.mmu.direct_map)
  2676. return mmu_alloc_direct_roots(vcpu);
  2677. else
  2678. return mmu_alloc_shadow_roots(vcpu);
  2679. }
  2680. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2681. {
  2682. int i;
  2683. struct kvm_mmu_page *sp;
  2684. if (vcpu->arch.mmu.direct_map)
  2685. return;
  2686. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2687. return;
  2688. vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
  2689. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2690. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2691. hpa_t root = vcpu->arch.mmu.root_hpa;
  2692. sp = page_header(root);
  2693. mmu_sync_children(vcpu, sp);
  2694. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2695. return;
  2696. }
  2697. for (i = 0; i < 4; ++i) {
  2698. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2699. if (root && VALID_PAGE(root)) {
  2700. root &= PT64_BASE_ADDR_MASK;
  2701. sp = page_header(root);
  2702. mmu_sync_children(vcpu, sp);
  2703. }
  2704. }
  2705. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2706. }
  2707. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2708. {
  2709. spin_lock(&vcpu->kvm->mmu_lock);
  2710. mmu_sync_roots(vcpu);
  2711. spin_unlock(&vcpu->kvm->mmu_lock);
  2712. }
  2713. EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
  2714. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2715. u32 access, struct x86_exception *exception)
  2716. {
  2717. if (exception)
  2718. exception->error_code = 0;
  2719. return vaddr;
  2720. }
  2721. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2722. u32 access,
  2723. struct x86_exception *exception)
  2724. {
  2725. if (exception)
  2726. exception->error_code = 0;
  2727. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
  2728. }
  2729. static bool
  2730. __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
  2731. {
  2732. int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
  2733. return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
  2734. ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
  2735. }
  2736. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2737. {
  2738. return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
  2739. }
  2740. static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
  2741. {
  2742. return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
  2743. }
  2744. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2745. {
  2746. if (direct)
  2747. return vcpu_match_mmio_gpa(vcpu, addr);
  2748. return vcpu_match_mmio_gva(vcpu, addr);
  2749. }
  2750. /* return true if reserved bit is detected on spte. */
  2751. static bool
  2752. walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
  2753. {
  2754. struct kvm_shadow_walk_iterator iterator;
  2755. u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
  2756. int root, leaf;
  2757. bool reserved = false;
  2758. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2759. goto exit;
  2760. walk_shadow_page_lockless_begin(vcpu);
  2761. for (shadow_walk_init(&iterator, vcpu, addr),
  2762. leaf = root = iterator.level;
  2763. shadow_walk_okay(&iterator);
  2764. __shadow_walk_next(&iterator, spte)) {
  2765. spte = mmu_spte_get_lockless(iterator.sptep);
  2766. sptes[leaf - 1] = spte;
  2767. leaf--;
  2768. if (!is_shadow_present_pte(spte))
  2769. break;
  2770. reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
  2771. iterator.level);
  2772. }
  2773. walk_shadow_page_lockless_end(vcpu);
  2774. if (reserved) {
  2775. pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
  2776. __func__, addr);
  2777. while (root > leaf) {
  2778. pr_err("------ spte 0x%llx level %d.\n",
  2779. sptes[root - 1], root);
  2780. root--;
  2781. }
  2782. }
  2783. exit:
  2784. *sptep = spte;
  2785. return reserved;
  2786. }
  2787. int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2788. {
  2789. u64 spte;
  2790. bool reserved;
  2791. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2792. return RET_MMIO_PF_EMULATE;
  2793. reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
  2794. if (WARN_ON(reserved))
  2795. return RET_MMIO_PF_BUG;
  2796. if (is_mmio_spte(spte)) {
  2797. gfn_t gfn = get_mmio_spte_gfn(spte);
  2798. unsigned access = get_mmio_spte_access(spte);
  2799. if (!check_mmio_spte(vcpu, spte))
  2800. return RET_MMIO_PF_INVALID;
  2801. if (direct)
  2802. addr = 0;
  2803. trace_handle_mmio_page_fault(addr, gfn, access);
  2804. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2805. return RET_MMIO_PF_EMULATE;
  2806. }
  2807. /*
  2808. * If the page table is zapped by other cpus, let CPU fault again on
  2809. * the address.
  2810. */
  2811. return RET_MMIO_PF_RETRY;
  2812. }
  2813. EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
  2814. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2815. u32 error_code, bool prefault)
  2816. {
  2817. gfn_t gfn;
  2818. int r;
  2819. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2820. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2821. r = handle_mmio_page_fault(vcpu, gva, true);
  2822. if (likely(r != RET_MMIO_PF_INVALID))
  2823. return r;
  2824. }
  2825. r = mmu_topup_memory_caches(vcpu);
  2826. if (r)
  2827. return r;
  2828. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2829. gfn = gva >> PAGE_SHIFT;
  2830. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2831. error_code, gfn, prefault);
  2832. }
  2833. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2834. {
  2835. struct kvm_arch_async_pf arch;
  2836. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2837. arch.gfn = gfn;
  2838. arch.direct_map = vcpu->arch.mmu.direct_map;
  2839. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2840. return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
  2841. }
  2842. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2843. {
  2844. if (unlikely(!lapic_in_kernel(vcpu) ||
  2845. kvm_event_needs_reinjection(vcpu)))
  2846. return false;
  2847. return kvm_x86_ops->interrupt_allowed(vcpu);
  2848. }
  2849. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2850. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2851. {
  2852. struct kvm_memory_slot *slot;
  2853. bool async;
  2854. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  2855. async = false;
  2856. *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
  2857. if (!async)
  2858. return false; /* *pfn has correct page already */
  2859. if (!prefault && can_do_async_pf(vcpu)) {
  2860. trace_kvm_try_async_get_page(gva, gfn);
  2861. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2862. trace_kvm_async_pf_doublefault(gva, gfn);
  2863. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2864. return true;
  2865. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2866. return true;
  2867. }
  2868. *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
  2869. return false;
  2870. }
  2871. static bool
  2872. check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
  2873. {
  2874. int page_num = KVM_PAGES_PER_HPAGE(level);
  2875. gfn &= ~(page_num - 1);
  2876. return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
  2877. }
  2878. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2879. bool prefault)
  2880. {
  2881. pfn_t pfn;
  2882. int r;
  2883. int level;
  2884. bool force_pt_level;
  2885. gfn_t gfn = gpa >> PAGE_SHIFT;
  2886. unsigned long mmu_seq;
  2887. int write = error_code & PFERR_WRITE_MASK;
  2888. bool map_writable;
  2889. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2890. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2891. r = handle_mmio_page_fault(vcpu, gpa, true);
  2892. if (likely(r != RET_MMIO_PF_INVALID))
  2893. return r;
  2894. }
  2895. r = mmu_topup_memory_caches(vcpu);
  2896. if (r)
  2897. return r;
  2898. force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
  2899. PT_DIRECTORY_LEVEL);
  2900. level = mapping_level(vcpu, gfn, &force_pt_level);
  2901. if (likely(!force_pt_level)) {
  2902. if (level > PT_DIRECTORY_LEVEL &&
  2903. !check_hugepage_cache_consistency(vcpu, gfn, level))
  2904. level = PT_DIRECTORY_LEVEL;
  2905. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2906. }
  2907. if (fast_page_fault(vcpu, gpa, level, error_code))
  2908. return 0;
  2909. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2910. smp_rmb();
  2911. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2912. return 0;
  2913. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2914. return r;
  2915. spin_lock(&vcpu->kvm->mmu_lock);
  2916. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2917. goto out_unlock;
  2918. make_mmu_pages_available(vcpu);
  2919. if (likely(!force_pt_level))
  2920. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2921. r = __direct_map(vcpu, gpa, write, map_writable,
  2922. level, gfn, pfn, prefault);
  2923. spin_unlock(&vcpu->kvm->mmu_lock);
  2924. return r;
  2925. out_unlock:
  2926. spin_unlock(&vcpu->kvm->mmu_lock);
  2927. kvm_release_pfn_clean(pfn);
  2928. return 0;
  2929. }
  2930. static void nonpaging_init_context(struct kvm_vcpu *vcpu,
  2931. struct kvm_mmu *context)
  2932. {
  2933. context->page_fault = nonpaging_page_fault;
  2934. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2935. context->sync_page = nonpaging_sync_page;
  2936. context->invlpg = nonpaging_invlpg;
  2937. context->update_pte = nonpaging_update_pte;
  2938. context->root_level = 0;
  2939. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2940. context->root_hpa = INVALID_PAGE;
  2941. context->direct_map = true;
  2942. context->nx = false;
  2943. }
  2944. void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
  2945. {
  2946. mmu_free_roots(vcpu);
  2947. }
  2948. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2949. {
  2950. return kvm_read_cr3(vcpu);
  2951. }
  2952. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2953. struct x86_exception *fault)
  2954. {
  2955. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2956. }
  2957. static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
  2958. unsigned access, int *nr_present)
  2959. {
  2960. if (unlikely(is_mmio_spte(*sptep))) {
  2961. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2962. mmu_spte_clear_no_track(sptep);
  2963. return true;
  2964. }
  2965. (*nr_present)++;
  2966. mark_mmio_spte(vcpu, sptep, gfn, access);
  2967. return true;
  2968. }
  2969. return false;
  2970. }
  2971. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2972. {
  2973. unsigned index;
  2974. index = level - 1;
  2975. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2976. return mmu->last_pte_bitmap & (1 << index);
  2977. }
  2978. #define PTTYPE_EPT 18 /* arbitrary */
  2979. #define PTTYPE PTTYPE_EPT
  2980. #include "paging_tmpl.h"
  2981. #undef PTTYPE
  2982. #define PTTYPE 64
  2983. #include "paging_tmpl.h"
  2984. #undef PTTYPE
  2985. #define PTTYPE 32
  2986. #include "paging_tmpl.h"
  2987. #undef PTTYPE
  2988. static void
  2989. __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2990. struct rsvd_bits_validate *rsvd_check,
  2991. int maxphyaddr, int level, bool nx, bool gbpages,
  2992. bool pse, bool amd)
  2993. {
  2994. u64 exb_bit_rsvd = 0;
  2995. u64 gbpages_bit_rsvd = 0;
  2996. u64 nonleaf_bit8_rsvd = 0;
  2997. rsvd_check->bad_mt_xwr = 0;
  2998. if (!nx)
  2999. exb_bit_rsvd = rsvd_bits(63, 63);
  3000. if (!gbpages)
  3001. gbpages_bit_rsvd = rsvd_bits(7, 7);
  3002. /*
  3003. * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
  3004. * leaf entries) on AMD CPUs only.
  3005. */
  3006. if (amd)
  3007. nonleaf_bit8_rsvd = rsvd_bits(8, 8);
  3008. switch (level) {
  3009. case PT32_ROOT_LEVEL:
  3010. /* no rsvd bits for 2 level 4K page table entries */
  3011. rsvd_check->rsvd_bits_mask[0][1] = 0;
  3012. rsvd_check->rsvd_bits_mask[0][0] = 0;
  3013. rsvd_check->rsvd_bits_mask[1][0] =
  3014. rsvd_check->rsvd_bits_mask[0][0];
  3015. if (!pse) {
  3016. rsvd_check->rsvd_bits_mask[1][1] = 0;
  3017. break;
  3018. }
  3019. if (is_cpuid_PSE36())
  3020. /* 36bits PSE 4MB page */
  3021. rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  3022. else
  3023. /* 32 bits PSE 4MB page */
  3024. rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  3025. break;
  3026. case PT32E_ROOT_LEVEL:
  3027. rsvd_check->rsvd_bits_mask[0][2] =
  3028. rsvd_bits(maxphyaddr, 63) |
  3029. rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
  3030. rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3031. rsvd_bits(maxphyaddr, 62); /* PDE */
  3032. rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3033. rsvd_bits(maxphyaddr, 62); /* PTE */
  3034. rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3035. rsvd_bits(maxphyaddr, 62) |
  3036. rsvd_bits(13, 20); /* large page */
  3037. rsvd_check->rsvd_bits_mask[1][0] =
  3038. rsvd_check->rsvd_bits_mask[0][0];
  3039. break;
  3040. case PT64_ROOT_LEVEL:
  3041. rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  3042. nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
  3043. rsvd_bits(maxphyaddr, 51);
  3044. rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  3045. nonleaf_bit8_rsvd | gbpages_bit_rsvd |
  3046. rsvd_bits(maxphyaddr, 51);
  3047. rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3048. rsvd_bits(maxphyaddr, 51);
  3049. rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3050. rsvd_bits(maxphyaddr, 51);
  3051. rsvd_check->rsvd_bits_mask[1][3] =
  3052. rsvd_check->rsvd_bits_mask[0][3];
  3053. rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  3054. gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
  3055. rsvd_bits(13, 29);
  3056. rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3057. rsvd_bits(maxphyaddr, 51) |
  3058. rsvd_bits(13, 20); /* large page */
  3059. rsvd_check->rsvd_bits_mask[1][0] =
  3060. rsvd_check->rsvd_bits_mask[0][0];
  3061. break;
  3062. }
  3063. }
  3064. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  3065. struct kvm_mmu *context)
  3066. {
  3067. __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
  3068. cpuid_maxphyaddr(vcpu), context->root_level,
  3069. context->nx, guest_cpuid_has_gbpages(vcpu),
  3070. is_pse(vcpu), guest_cpuid_is_amd(vcpu));
  3071. }
  3072. static void
  3073. __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
  3074. int maxphyaddr, bool execonly)
  3075. {
  3076. u64 bad_mt_xwr;
  3077. rsvd_check->rsvd_bits_mask[0][3] =
  3078. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
  3079. rsvd_check->rsvd_bits_mask[0][2] =
  3080. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3081. rsvd_check->rsvd_bits_mask[0][1] =
  3082. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3083. rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
  3084. /* large page */
  3085. rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
  3086. rsvd_check->rsvd_bits_mask[1][2] =
  3087. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
  3088. rsvd_check->rsvd_bits_mask[1][1] =
  3089. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
  3090. rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
  3091. bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
  3092. bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
  3093. bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
  3094. bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
  3095. bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
  3096. if (!execonly) {
  3097. /* bits 0..2 must not be 100 unless VMX capabilities allow it */
  3098. bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
  3099. }
  3100. rsvd_check->bad_mt_xwr = bad_mt_xwr;
  3101. }
  3102. static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
  3103. struct kvm_mmu *context, bool execonly)
  3104. {
  3105. __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
  3106. cpuid_maxphyaddr(vcpu), execonly);
  3107. }
  3108. /*
  3109. * the page table on host is the shadow page table for the page
  3110. * table in guest or amd nested guest, its mmu features completely
  3111. * follow the features in guest.
  3112. */
  3113. void
  3114. reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3115. {
  3116. /*
  3117. * Passing "true" to the last argument is okay; it adds a check
  3118. * on bit 8 of the SPTEs which KVM doesn't use anyway.
  3119. */
  3120. __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
  3121. boot_cpu_data.x86_phys_bits,
  3122. context->shadow_root_level, context->nx,
  3123. guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
  3124. true);
  3125. }
  3126. EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
  3127. static inline bool boot_cpu_is_amd(void)
  3128. {
  3129. WARN_ON_ONCE(!tdp_enabled);
  3130. return shadow_x_mask == 0;
  3131. }
  3132. /*
  3133. * the direct page table on host, use as much mmu features as
  3134. * possible, however, kvm currently does not do execution-protection.
  3135. */
  3136. static void
  3137. reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
  3138. struct kvm_mmu *context)
  3139. {
  3140. if (boot_cpu_is_amd())
  3141. __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
  3142. boot_cpu_data.x86_phys_bits,
  3143. context->shadow_root_level, false,
  3144. cpu_has_gbpages, true, true);
  3145. else
  3146. __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
  3147. boot_cpu_data.x86_phys_bits,
  3148. false);
  3149. }
  3150. /*
  3151. * as the comments in reset_shadow_zero_bits_mask() except it
  3152. * is the shadow page table for intel nested guest.
  3153. */
  3154. static void
  3155. reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
  3156. struct kvm_mmu *context, bool execonly)
  3157. {
  3158. __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
  3159. boot_cpu_data.x86_phys_bits, execonly);
  3160. }
  3161. static void update_permission_bitmask(struct kvm_vcpu *vcpu,
  3162. struct kvm_mmu *mmu, bool ept)
  3163. {
  3164. unsigned bit, byte, pfec;
  3165. u8 map;
  3166. bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
  3167. cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3168. cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3169. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  3170. pfec = byte << 1;
  3171. map = 0;
  3172. wf = pfec & PFERR_WRITE_MASK;
  3173. uf = pfec & PFERR_USER_MASK;
  3174. ff = pfec & PFERR_FETCH_MASK;
  3175. /*
  3176. * PFERR_RSVD_MASK bit is set in PFEC if the access is not
  3177. * subject to SMAP restrictions, and cleared otherwise. The
  3178. * bit is only meaningful if the SMAP bit is set in CR4.
  3179. */
  3180. smapf = !(pfec & PFERR_RSVD_MASK);
  3181. for (bit = 0; bit < 8; ++bit) {
  3182. x = bit & ACC_EXEC_MASK;
  3183. w = bit & ACC_WRITE_MASK;
  3184. u = bit & ACC_USER_MASK;
  3185. if (!ept) {
  3186. /* Not really needed: !nx will cause pte.nx to fault */
  3187. x |= !mmu->nx;
  3188. /* Allow supervisor writes if !cr0.wp */
  3189. w |= !is_write_protection(vcpu) && !uf;
  3190. /* Disallow supervisor fetches of user code if cr4.smep */
  3191. x &= !(cr4_smep && u && !uf);
  3192. /*
  3193. * SMAP:kernel-mode data accesses from user-mode
  3194. * mappings should fault. A fault is considered
  3195. * as a SMAP violation if all of the following
  3196. * conditions are ture:
  3197. * - X86_CR4_SMAP is set in CR4
  3198. * - An user page is accessed
  3199. * - Page fault in kernel mode
  3200. * - if CPL = 3 or X86_EFLAGS_AC is clear
  3201. *
  3202. * Here, we cover the first three conditions.
  3203. * The fourth is computed dynamically in
  3204. * permission_fault() and is in smapf.
  3205. *
  3206. * Also, SMAP does not affect instruction
  3207. * fetches, add the !ff check here to make it
  3208. * clearer.
  3209. */
  3210. smap = cr4_smap && u && !uf && !ff;
  3211. } else
  3212. /* Not really needed: no U/S accesses on ept */
  3213. u = 1;
  3214. fault = (ff && !x) || (uf && !u) || (wf && !w) ||
  3215. (smapf && smap);
  3216. map |= fault << bit;
  3217. }
  3218. mmu->permissions[byte] = map;
  3219. }
  3220. }
  3221. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  3222. {
  3223. u8 map;
  3224. unsigned level, root_level = mmu->root_level;
  3225. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  3226. if (root_level == PT32E_ROOT_LEVEL)
  3227. --root_level;
  3228. /* PT_PAGE_TABLE_LEVEL always terminates */
  3229. map = 1 | (1 << ps_set_index);
  3230. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  3231. if (level <= PT_PDPE_LEVEL
  3232. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  3233. map |= 1 << (ps_set_index | (level - 1));
  3234. }
  3235. mmu->last_pte_bitmap = map;
  3236. }
  3237. static void paging64_init_context_common(struct kvm_vcpu *vcpu,
  3238. struct kvm_mmu *context,
  3239. int level)
  3240. {
  3241. context->nx = is_nx(vcpu);
  3242. context->root_level = level;
  3243. reset_rsvds_bits_mask(vcpu, context);
  3244. update_permission_bitmask(vcpu, context, false);
  3245. update_last_pte_bitmap(vcpu, context);
  3246. MMU_WARN_ON(!is_pae(vcpu));
  3247. context->page_fault = paging64_page_fault;
  3248. context->gva_to_gpa = paging64_gva_to_gpa;
  3249. context->sync_page = paging64_sync_page;
  3250. context->invlpg = paging64_invlpg;
  3251. context->update_pte = paging64_update_pte;
  3252. context->shadow_root_level = level;
  3253. context->root_hpa = INVALID_PAGE;
  3254. context->direct_map = false;
  3255. }
  3256. static void paging64_init_context(struct kvm_vcpu *vcpu,
  3257. struct kvm_mmu *context)
  3258. {
  3259. paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3260. }
  3261. static void paging32_init_context(struct kvm_vcpu *vcpu,
  3262. struct kvm_mmu *context)
  3263. {
  3264. context->nx = false;
  3265. context->root_level = PT32_ROOT_LEVEL;
  3266. reset_rsvds_bits_mask(vcpu, context);
  3267. update_permission_bitmask(vcpu, context, false);
  3268. update_last_pte_bitmap(vcpu, context);
  3269. context->page_fault = paging32_page_fault;
  3270. context->gva_to_gpa = paging32_gva_to_gpa;
  3271. context->sync_page = paging32_sync_page;
  3272. context->invlpg = paging32_invlpg;
  3273. context->update_pte = paging32_update_pte;
  3274. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3275. context->root_hpa = INVALID_PAGE;
  3276. context->direct_map = false;
  3277. }
  3278. static void paging32E_init_context(struct kvm_vcpu *vcpu,
  3279. struct kvm_mmu *context)
  3280. {
  3281. paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3282. }
  3283. static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3284. {
  3285. struct kvm_mmu *context = &vcpu->arch.mmu;
  3286. context->base_role.word = 0;
  3287. context->base_role.smm = is_smm(vcpu);
  3288. context->page_fault = tdp_page_fault;
  3289. context->sync_page = nonpaging_sync_page;
  3290. context->invlpg = nonpaging_invlpg;
  3291. context->update_pte = nonpaging_update_pte;
  3292. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3293. context->root_hpa = INVALID_PAGE;
  3294. context->direct_map = true;
  3295. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3296. context->get_cr3 = get_cr3;
  3297. context->get_pdptr = kvm_pdptr_read;
  3298. context->inject_page_fault = kvm_inject_page_fault;
  3299. if (!is_paging(vcpu)) {
  3300. context->nx = false;
  3301. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3302. context->root_level = 0;
  3303. } else if (is_long_mode(vcpu)) {
  3304. context->nx = is_nx(vcpu);
  3305. context->root_level = PT64_ROOT_LEVEL;
  3306. reset_rsvds_bits_mask(vcpu, context);
  3307. context->gva_to_gpa = paging64_gva_to_gpa;
  3308. } else if (is_pae(vcpu)) {
  3309. context->nx = is_nx(vcpu);
  3310. context->root_level = PT32E_ROOT_LEVEL;
  3311. reset_rsvds_bits_mask(vcpu, context);
  3312. context->gva_to_gpa = paging64_gva_to_gpa;
  3313. } else {
  3314. context->nx = false;
  3315. context->root_level = PT32_ROOT_LEVEL;
  3316. reset_rsvds_bits_mask(vcpu, context);
  3317. context->gva_to_gpa = paging32_gva_to_gpa;
  3318. }
  3319. update_permission_bitmask(vcpu, context, false);
  3320. update_last_pte_bitmap(vcpu, context);
  3321. reset_tdp_shadow_zero_bits_mask(vcpu, context);
  3322. }
  3323. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
  3324. {
  3325. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3326. bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3327. struct kvm_mmu *context = &vcpu->arch.mmu;
  3328. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3329. if (!is_paging(vcpu))
  3330. nonpaging_init_context(vcpu, context);
  3331. else if (is_long_mode(vcpu))
  3332. paging64_init_context(vcpu, context);
  3333. else if (is_pae(vcpu))
  3334. paging32E_init_context(vcpu, context);
  3335. else
  3336. paging32_init_context(vcpu, context);
  3337. context->base_role.nxe = is_nx(vcpu);
  3338. context->base_role.cr4_pae = !!is_pae(vcpu);
  3339. context->base_role.cr0_wp = is_write_protection(vcpu);
  3340. context->base_role.smep_andnot_wp
  3341. = smep && !is_write_protection(vcpu);
  3342. context->base_role.smap_andnot_wp
  3343. = smap && !is_write_protection(vcpu);
  3344. context->base_role.smm = is_smm(vcpu);
  3345. reset_shadow_zero_bits_mask(vcpu, context);
  3346. }
  3347. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3348. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
  3349. {
  3350. struct kvm_mmu *context = &vcpu->arch.mmu;
  3351. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3352. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3353. context->nx = true;
  3354. context->page_fault = ept_page_fault;
  3355. context->gva_to_gpa = ept_gva_to_gpa;
  3356. context->sync_page = ept_sync_page;
  3357. context->invlpg = ept_invlpg;
  3358. context->update_pte = ept_update_pte;
  3359. context->root_level = context->shadow_root_level;
  3360. context->root_hpa = INVALID_PAGE;
  3361. context->direct_map = false;
  3362. update_permission_bitmask(vcpu, context, true);
  3363. reset_rsvds_bits_mask_ept(vcpu, context, execonly);
  3364. reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
  3365. }
  3366. EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
  3367. static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3368. {
  3369. struct kvm_mmu *context = &vcpu->arch.mmu;
  3370. kvm_init_shadow_mmu(vcpu);
  3371. context->set_cr3 = kvm_x86_ops->set_cr3;
  3372. context->get_cr3 = get_cr3;
  3373. context->get_pdptr = kvm_pdptr_read;
  3374. context->inject_page_fault = kvm_inject_page_fault;
  3375. }
  3376. static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3377. {
  3378. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3379. g_context->get_cr3 = get_cr3;
  3380. g_context->get_pdptr = kvm_pdptr_read;
  3381. g_context->inject_page_fault = kvm_inject_page_fault;
  3382. /*
  3383. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3384. * translation of l2_gpa to l1_gpa addresses is done using the
  3385. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3386. * functions between mmu and nested_mmu are swapped.
  3387. */
  3388. if (!is_paging(vcpu)) {
  3389. g_context->nx = false;
  3390. g_context->root_level = 0;
  3391. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3392. } else if (is_long_mode(vcpu)) {
  3393. g_context->nx = is_nx(vcpu);
  3394. g_context->root_level = PT64_ROOT_LEVEL;
  3395. reset_rsvds_bits_mask(vcpu, g_context);
  3396. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3397. } else if (is_pae(vcpu)) {
  3398. g_context->nx = is_nx(vcpu);
  3399. g_context->root_level = PT32E_ROOT_LEVEL;
  3400. reset_rsvds_bits_mask(vcpu, g_context);
  3401. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3402. } else {
  3403. g_context->nx = false;
  3404. g_context->root_level = PT32_ROOT_LEVEL;
  3405. reset_rsvds_bits_mask(vcpu, g_context);
  3406. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3407. }
  3408. update_permission_bitmask(vcpu, g_context, false);
  3409. update_last_pte_bitmap(vcpu, g_context);
  3410. }
  3411. static void init_kvm_mmu(struct kvm_vcpu *vcpu)
  3412. {
  3413. if (mmu_is_nested(vcpu))
  3414. init_kvm_nested_mmu(vcpu);
  3415. else if (tdp_enabled)
  3416. init_kvm_tdp_mmu(vcpu);
  3417. else
  3418. init_kvm_softmmu(vcpu);
  3419. }
  3420. void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3421. {
  3422. kvm_mmu_unload(vcpu);
  3423. init_kvm_mmu(vcpu);
  3424. }
  3425. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3426. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3427. {
  3428. int r;
  3429. r = mmu_topup_memory_caches(vcpu);
  3430. if (r)
  3431. goto out;
  3432. r = mmu_alloc_roots(vcpu);
  3433. kvm_mmu_sync_roots(vcpu);
  3434. if (r)
  3435. goto out;
  3436. /* set_cr3() should ensure TLB has been flushed */
  3437. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3438. out:
  3439. return r;
  3440. }
  3441. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3442. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3443. {
  3444. mmu_free_roots(vcpu);
  3445. WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3446. }
  3447. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3448. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3449. struct kvm_mmu_page *sp, u64 *spte,
  3450. const void *new)
  3451. {
  3452. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3453. ++vcpu->kvm->stat.mmu_pde_zapped;
  3454. return;
  3455. }
  3456. ++vcpu->kvm->stat.mmu_pte_updated;
  3457. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3458. }
  3459. static bool need_remote_flush(u64 old, u64 new)
  3460. {
  3461. if (!is_shadow_present_pte(old))
  3462. return false;
  3463. if (!is_shadow_present_pte(new))
  3464. return true;
  3465. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3466. return true;
  3467. old ^= shadow_nx_mask;
  3468. new ^= shadow_nx_mask;
  3469. return (old & ~new & PT64_PERM_MASK) != 0;
  3470. }
  3471. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3472. bool remote_flush, bool local_flush)
  3473. {
  3474. if (zap_page)
  3475. return;
  3476. if (remote_flush)
  3477. kvm_flush_remote_tlbs(vcpu->kvm);
  3478. else if (local_flush)
  3479. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3480. }
  3481. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3482. const u8 *new, int *bytes)
  3483. {
  3484. u64 gentry;
  3485. int r;
  3486. /*
  3487. * Assume that the pte write on a page table of the same type
  3488. * as the current vcpu paging mode since we update the sptes only
  3489. * when they have the same mode.
  3490. */
  3491. if (is_pae(vcpu) && *bytes == 4) {
  3492. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3493. *gpa &= ~(gpa_t)7;
  3494. *bytes = 8;
  3495. r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
  3496. if (r)
  3497. gentry = 0;
  3498. new = (const u8 *)&gentry;
  3499. }
  3500. switch (*bytes) {
  3501. case 4:
  3502. gentry = *(const u32 *)new;
  3503. break;
  3504. case 8:
  3505. gentry = *(const u64 *)new;
  3506. break;
  3507. default:
  3508. gentry = 0;
  3509. break;
  3510. }
  3511. return gentry;
  3512. }
  3513. /*
  3514. * If we're seeing too many writes to a page, it may no longer be a page table,
  3515. * or we may be forking, in which case it is better to unmap the page.
  3516. */
  3517. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3518. {
  3519. /*
  3520. * Skip write-flooding detected for the sp whose level is 1, because
  3521. * it can become unsync, then the guest page is not write-protected.
  3522. */
  3523. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3524. return false;
  3525. return ++sp->write_flooding_count >= 3;
  3526. }
  3527. /*
  3528. * Misaligned accesses are too much trouble to fix up; also, they usually
  3529. * indicate a page is not used as a page table.
  3530. */
  3531. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3532. int bytes)
  3533. {
  3534. unsigned offset, pte_size, misaligned;
  3535. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3536. gpa, bytes, sp->role.word);
  3537. offset = offset_in_page(gpa);
  3538. pte_size = sp->role.cr4_pae ? 8 : 4;
  3539. /*
  3540. * Sometimes, the OS only writes the last one bytes to update status
  3541. * bits, for example, in linux, andb instruction is used in clear_bit().
  3542. */
  3543. if (!(offset & (pte_size - 1)) && bytes == 1)
  3544. return false;
  3545. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3546. misaligned |= bytes < 4;
  3547. return misaligned;
  3548. }
  3549. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3550. {
  3551. unsigned page_offset, quadrant;
  3552. u64 *spte;
  3553. int level;
  3554. page_offset = offset_in_page(gpa);
  3555. level = sp->role.level;
  3556. *nspte = 1;
  3557. if (!sp->role.cr4_pae) {
  3558. page_offset <<= 1; /* 32->64 */
  3559. /*
  3560. * A 32-bit pde maps 4MB while the shadow pdes map
  3561. * only 2MB. So we need to double the offset again
  3562. * and zap two pdes instead of one.
  3563. */
  3564. if (level == PT32_ROOT_LEVEL) {
  3565. page_offset &= ~7; /* kill rounding error */
  3566. page_offset <<= 1;
  3567. *nspte = 2;
  3568. }
  3569. quadrant = page_offset >> PAGE_SHIFT;
  3570. page_offset &= ~PAGE_MASK;
  3571. if (quadrant != sp->role.quadrant)
  3572. return NULL;
  3573. }
  3574. spte = &sp->spt[page_offset / sizeof(*spte)];
  3575. return spte;
  3576. }
  3577. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3578. const u8 *new, int bytes)
  3579. {
  3580. gfn_t gfn = gpa >> PAGE_SHIFT;
  3581. struct kvm_mmu_page *sp;
  3582. LIST_HEAD(invalid_list);
  3583. u64 entry, gentry, *spte;
  3584. int npte;
  3585. bool remote_flush, local_flush, zap_page;
  3586. union kvm_mmu_page_role mask = { };
  3587. mask.cr0_wp = 1;
  3588. mask.cr4_pae = 1;
  3589. mask.nxe = 1;
  3590. mask.smep_andnot_wp = 1;
  3591. mask.smap_andnot_wp = 1;
  3592. mask.smm = 1;
  3593. /*
  3594. * If we don't have indirect shadow pages, it means no page is
  3595. * write-protected, so we can exit simply.
  3596. */
  3597. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3598. return;
  3599. zap_page = remote_flush = local_flush = false;
  3600. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3601. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3602. /*
  3603. * No need to care whether allocation memory is successful
  3604. * or not since pte prefetch is skiped if it does not have
  3605. * enough objects in the cache.
  3606. */
  3607. mmu_topup_memory_caches(vcpu);
  3608. spin_lock(&vcpu->kvm->mmu_lock);
  3609. ++vcpu->kvm->stat.mmu_pte_write;
  3610. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3611. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3612. if (detect_write_misaligned(sp, gpa, bytes) ||
  3613. detect_write_flooding(sp)) {
  3614. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3615. &invalid_list);
  3616. ++vcpu->kvm->stat.mmu_flooded;
  3617. continue;
  3618. }
  3619. spte = get_written_sptes(sp, gpa, &npte);
  3620. if (!spte)
  3621. continue;
  3622. local_flush = true;
  3623. while (npte--) {
  3624. entry = *spte;
  3625. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3626. if (gentry &&
  3627. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3628. & mask.word) && rmap_can_add(vcpu))
  3629. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3630. if (need_remote_flush(entry, *spte))
  3631. remote_flush = true;
  3632. ++spte;
  3633. }
  3634. }
  3635. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3636. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3637. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3638. spin_unlock(&vcpu->kvm->mmu_lock);
  3639. }
  3640. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3641. {
  3642. gpa_t gpa;
  3643. int r;
  3644. if (vcpu->arch.mmu.direct_map)
  3645. return 0;
  3646. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3647. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3648. return r;
  3649. }
  3650. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3651. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3652. {
  3653. LIST_HEAD(invalid_list);
  3654. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3655. return;
  3656. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3657. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3658. break;
  3659. ++vcpu->kvm->stat.mmu_recycled;
  3660. }
  3661. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3662. }
  3663. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3664. {
  3665. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3666. return vcpu_match_mmio_gpa(vcpu, addr);
  3667. return vcpu_match_mmio_gva(vcpu, addr);
  3668. }
  3669. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3670. void *insn, int insn_len)
  3671. {
  3672. int r, emulation_type = EMULTYPE_RETRY;
  3673. enum emulation_result er;
  3674. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3675. if (r < 0)
  3676. goto out;
  3677. if (!r) {
  3678. r = 1;
  3679. goto out;
  3680. }
  3681. if (is_mmio_page_fault(vcpu, cr2))
  3682. emulation_type = 0;
  3683. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3684. switch (er) {
  3685. case EMULATE_DONE:
  3686. return 1;
  3687. case EMULATE_USER_EXIT:
  3688. ++vcpu->stat.mmio_exits;
  3689. /* fall through */
  3690. case EMULATE_FAIL:
  3691. return 0;
  3692. default:
  3693. BUG();
  3694. }
  3695. out:
  3696. return r;
  3697. }
  3698. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3699. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3700. {
  3701. vcpu->arch.mmu.invlpg(vcpu, gva);
  3702. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3703. ++vcpu->stat.invlpg;
  3704. }
  3705. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3706. void kvm_enable_tdp(void)
  3707. {
  3708. tdp_enabled = true;
  3709. }
  3710. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3711. void kvm_disable_tdp(void)
  3712. {
  3713. tdp_enabled = false;
  3714. }
  3715. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3716. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3717. {
  3718. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3719. if (vcpu->arch.mmu.lm_root != NULL)
  3720. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3721. }
  3722. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3723. {
  3724. struct page *page;
  3725. int i;
  3726. /*
  3727. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3728. * Therefore we need to allocate shadow page tables in the first
  3729. * 4GB of memory, which happens to fit the DMA32 zone.
  3730. */
  3731. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3732. if (!page)
  3733. return -ENOMEM;
  3734. vcpu->arch.mmu.pae_root = page_address(page);
  3735. for (i = 0; i < 4; ++i)
  3736. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3737. return 0;
  3738. }
  3739. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3740. {
  3741. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3742. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3743. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3744. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3745. return alloc_mmu_pages(vcpu);
  3746. }
  3747. void kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3748. {
  3749. MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3750. init_kvm_mmu(vcpu);
  3751. }
  3752. /* The return value indicates if tlb flush on all vcpus is needed. */
  3753. typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
  3754. /* The caller should hold mmu-lock before calling this function. */
  3755. static bool
  3756. slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3757. slot_level_handler fn, int start_level, int end_level,
  3758. gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
  3759. {
  3760. struct slot_rmap_walk_iterator iterator;
  3761. bool flush = false;
  3762. for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
  3763. end_gfn, &iterator) {
  3764. if (iterator.rmap)
  3765. flush |= fn(kvm, iterator.rmap);
  3766. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3767. if (flush && lock_flush_tlb) {
  3768. kvm_flush_remote_tlbs(kvm);
  3769. flush = false;
  3770. }
  3771. cond_resched_lock(&kvm->mmu_lock);
  3772. }
  3773. }
  3774. if (flush && lock_flush_tlb) {
  3775. kvm_flush_remote_tlbs(kvm);
  3776. flush = false;
  3777. }
  3778. return flush;
  3779. }
  3780. static bool
  3781. slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3782. slot_level_handler fn, int start_level, int end_level,
  3783. bool lock_flush_tlb)
  3784. {
  3785. return slot_handle_level_range(kvm, memslot, fn, start_level,
  3786. end_level, memslot->base_gfn,
  3787. memslot->base_gfn + memslot->npages - 1,
  3788. lock_flush_tlb);
  3789. }
  3790. static bool
  3791. slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3792. slot_level_handler fn, bool lock_flush_tlb)
  3793. {
  3794. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
  3795. PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
  3796. }
  3797. static bool
  3798. slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3799. slot_level_handler fn, bool lock_flush_tlb)
  3800. {
  3801. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
  3802. PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
  3803. }
  3804. static bool
  3805. slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3806. slot_level_handler fn, bool lock_flush_tlb)
  3807. {
  3808. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
  3809. PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
  3810. }
  3811. void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
  3812. {
  3813. struct kvm_memslots *slots;
  3814. struct kvm_memory_slot *memslot;
  3815. int i;
  3816. spin_lock(&kvm->mmu_lock);
  3817. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  3818. slots = __kvm_memslots(kvm, i);
  3819. kvm_for_each_memslot(memslot, slots) {
  3820. gfn_t start, end;
  3821. start = max(gfn_start, memslot->base_gfn);
  3822. end = min(gfn_end, memslot->base_gfn + memslot->npages);
  3823. if (start >= end)
  3824. continue;
  3825. slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
  3826. PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
  3827. start, end - 1, true);
  3828. }
  3829. }
  3830. spin_unlock(&kvm->mmu_lock);
  3831. }
  3832. static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
  3833. {
  3834. return __rmap_write_protect(kvm, rmapp, false);
  3835. }
  3836. void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
  3837. struct kvm_memory_slot *memslot)
  3838. {
  3839. bool flush;
  3840. spin_lock(&kvm->mmu_lock);
  3841. flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
  3842. false);
  3843. spin_unlock(&kvm->mmu_lock);
  3844. /*
  3845. * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
  3846. * which do tlb flush out of mmu-lock should be serialized by
  3847. * kvm->slots_lock otherwise tlb flush would be missed.
  3848. */
  3849. lockdep_assert_held(&kvm->slots_lock);
  3850. /*
  3851. * We can flush all the TLBs out of the mmu lock without TLB
  3852. * corruption since we just change the spte from writable to
  3853. * readonly so that we only need to care the case of changing
  3854. * spte from present to present (changing the spte from present
  3855. * to nonpresent will flush all the TLBs immediately), in other
  3856. * words, the only case we care is mmu_spte_update() where we
  3857. * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
  3858. * instead of PT_WRITABLE_MASK, that means it does not depend
  3859. * on PT_WRITABLE_MASK anymore.
  3860. */
  3861. if (flush)
  3862. kvm_flush_remote_tlbs(kvm);
  3863. }
  3864. static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
  3865. unsigned long *rmapp)
  3866. {
  3867. u64 *sptep;
  3868. struct rmap_iterator iter;
  3869. int need_tlb_flush = 0;
  3870. pfn_t pfn;
  3871. struct kvm_mmu_page *sp;
  3872. restart:
  3873. for_each_rmap_spte(rmapp, &iter, sptep) {
  3874. sp = page_header(__pa(sptep));
  3875. pfn = spte_to_pfn(*sptep);
  3876. /*
  3877. * We cannot do huge page mapping for indirect shadow pages,
  3878. * which are found on the last rmap (level = 1) when not using
  3879. * tdp; such shadow pages are synced with the page table in
  3880. * the guest, and the guest page table is using 4K page size
  3881. * mapping if the indirect sp has level = 1.
  3882. */
  3883. if (sp->role.direct &&
  3884. !kvm_is_reserved_pfn(pfn) &&
  3885. PageTransCompound(pfn_to_page(pfn))) {
  3886. drop_spte(kvm, sptep);
  3887. need_tlb_flush = 1;
  3888. goto restart;
  3889. }
  3890. }
  3891. return need_tlb_flush;
  3892. }
  3893. void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
  3894. const struct kvm_memory_slot *memslot)
  3895. {
  3896. /* FIXME: const-ify all uses of struct kvm_memory_slot. */
  3897. spin_lock(&kvm->mmu_lock);
  3898. slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
  3899. kvm_mmu_zap_collapsible_spte, true);
  3900. spin_unlock(&kvm->mmu_lock);
  3901. }
  3902. void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
  3903. struct kvm_memory_slot *memslot)
  3904. {
  3905. bool flush;
  3906. spin_lock(&kvm->mmu_lock);
  3907. flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
  3908. spin_unlock(&kvm->mmu_lock);
  3909. lockdep_assert_held(&kvm->slots_lock);
  3910. /*
  3911. * It's also safe to flush TLBs out of mmu lock here as currently this
  3912. * function is only used for dirty logging, in which case flushing TLB
  3913. * out of mmu lock also guarantees no dirty pages will be lost in
  3914. * dirty_bitmap.
  3915. */
  3916. if (flush)
  3917. kvm_flush_remote_tlbs(kvm);
  3918. }
  3919. EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
  3920. void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
  3921. struct kvm_memory_slot *memslot)
  3922. {
  3923. bool flush;
  3924. spin_lock(&kvm->mmu_lock);
  3925. flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
  3926. false);
  3927. spin_unlock(&kvm->mmu_lock);
  3928. /* see kvm_mmu_slot_remove_write_access */
  3929. lockdep_assert_held(&kvm->slots_lock);
  3930. if (flush)
  3931. kvm_flush_remote_tlbs(kvm);
  3932. }
  3933. EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
  3934. void kvm_mmu_slot_set_dirty(struct kvm *kvm,
  3935. struct kvm_memory_slot *memslot)
  3936. {
  3937. bool flush;
  3938. spin_lock(&kvm->mmu_lock);
  3939. flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
  3940. spin_unlock(&kvm->mmu_lock);
  3941. lockdep_assert_held(&kvm->slots_lock);
  3942. /* see kvm_mmu_slot_leaf_clear_dirty */
  3943. if (flush)
  3944. kvm_flush_remote_tlbs(kvm);
  3945. }
  3946. EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
  3947. #define BATCH_ZAP_PAGES 10
  3948. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3949. {
  3950. struct kvm_mmu_page *sp, *node;
  3951. int batch = 0;
  3952. restart:
  3953. list_for_each_entry_safe_reverse(sp, node,
  3954. &kvm->arch.active_mmu_pages, link) {
  3955. int ret;
  3956. /*
  3957. * No obsolete page exists before new created page since
  3958. * active_mmu_pages is the FIFO list.
  3959. */
  3960. if (!is_obsolete_sp(kvm, sp))
  3961. break;
  3962. /*
  3963. * Since we are reversely walking the list and the invalid
  3964. * list will be moved to the head, skip the invalid page
  3965. * can help us to avoid the infinity list walking.
  3966. */
  3967. if (sp->role.invalid)
  3968. continue;
  3969. /*
  3970. * Need not flush tlb since we only zap the sp with invalid
  3971. * generation number.
  3972. */
  3973. if (batch >= BATCH_ZAP_PAGES &&
  3974. cond_resched_lock(&kvm->mmu_lock)) {
  3975. batch = 0;
  3976. goto restart;
  3977. }
  3978. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3979. &kvm->arch.zapped_obsolete_pages);
  3980. batch += ret;
  3981. if (ret)
  3982. goto restart;
  3983. }
  3984. /*
  3985. * Should flush tlb before free page tables since lockless-walking
  3986. * may use the pages.
  3987. */
  3988. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3989. }
  3990. /*
  3991. * Fast invalidate all shadow pages and use lock-break technique
  3992. * to zap obsolete pages.
  3993. *
  3994. * It's required when memslot is being deleted or VM is being
  3995. * destroyed, in these cases, we should ensure that KVM MMU does
  3996. * not use any resource of the being-deleted slot or all slots
  3997. * after calling the function.
  3998. */
  3999. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  4000. {
  4001. spin_lock(&kvm->mmu_lock);
  4002. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  4003. kvm->arch.mmu_valid_gen++;
  4004. /*
  4005. * Notify all vcpus to reload its shadow page table
  4006. * and flush TLB. Then all vcpus will switch to new
  4007. * shadow page table with the new mmu_valid_gen.
  4008. *
  4009. * Note: we should do this under the protection of
  4010. * mmu-lock, otherwise, vcpu would purge shadow page
  4011. * but miss tlb flush.
  4012. */
  4013. kvm_reload_remote_mmus(kvm);
  4014. kvm_zap_obsolete_pages(kvm);
  4015. spin_unlock(&kvm->mmu_lock);
  4016. }
  4017. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  4018. {
  4019. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  4020. }
  4021. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
  4022. {
  4023. /*
  4024. * The very rare case: if the generation-number is round,
  4025. * zap all shadow pages.
  4026. */
  4027. if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
  4028. printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
  4029. kvm_mmu_invalidate_zap_all_pages(kvm);
  4030. }
  4031. }
  4032. static unsigned long
  4033. mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  4034. {
  4035. struct kvm *kvm;
  4036. int nr_to_scan = sc->nr_to_scan;
  4037. unsigned long freed = 0;
  4038. spin_lock(&kvm_lock);
  4039. list_for_each_entry(kvm, &vm_list, vm_list) {
  4040. int idx;
  4041. LIST_HEAD(invalid_list);
  4042. /*
  4043. * Never scan more than sc->nr_to_scan VM instances.
  4044. * Will not hit this condition practically since we do not try
  4045. * to shrink more than one VM and it is very unlikely to see
  4046. * !n_used_mmu_pages so many times.
  4047. */
  4048. if (!nr_to_scan--)
  4049. break;
  4050. /*
  4051. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  4052. * here. We may skip a VM instance errorneosly, but we do not
  4053. * want to shrink a VM that only started to populate its MMU
  4054. * anyway.
  4055. */
  4056. if (!kvm->arch.n_used_mmu_pages &&
  4057. !kvm_has_zapped_obsolete_pages(kvm))
  4058. continue;
  4059. idx = srcu_read_lock(&kvm->srcu);
  4060. spin_lock(&kvm->mmu_lock);
  4061. if (kvm_has_zapped_obsolete_pages(kvm)) {
  4062. kvm_mmu_commit_zap_page(kvm,
  4063. &kvm->arch.zapped_obsolete_pages);
  4064. goto unlock;
  4065. }
  4066. if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  4067. freed++;
  4068. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  4069. unlock:
  4070. spin_unlock(&kvm->mmu_lock);
  4071. srcu_read_unlock(&kvm->srcu, idx);
  4072. /*
  4073. * unfair on small ones
  4074. * per-vm shrinkers cry out
  4075. * sadness comes quickly
  4076. */
  4077. list_move_tail(&kvm->vm_list, &vm_list);
  4078. break;
  4079. }
  4080. spin_unlock(&kvm_lock);
  4081. return freed;
  4082. }
  4083. static unsigned long
  4084. mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  4085. {
  4086. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  4087. }
  4088. static struct shrinker mmu_shrinker = {
  4089. .count_objects = mmu_shrink_count,
  4090. .scan_objects = mmu_shrink_scan,
  4091. .seeks = DEFAULT_SEEKS * 10,
  4092. };
  4093. static void mmu_destroy_caches(void)
  4094. {
  4095. if (pte_list_desc_cache)
  4096. kmem_cache_destroy(pte_list_desc_cache);
  4097. if (mmu_page_header_cache)
  4098. kmem_cache_destroy(mmu_page_header_cache);
  4099. }
  4100. int kvm_mmu_module_init(void)
  4101. {
  4102. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  4103. sizeof(struct pte_list_desc),
  4104. 0, 0, NULL);
  4105. if (!pte_list_desc_cache)
  4106. goto nomem;
  4107. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  4108. sizeof(struct kvm_mmu_page),
  4109. 0, 0, NULL);
  4110. if (!mmu_page_header_cache)
  4111. goto nomem;
  4112. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
  4113. goto nomem;
  4114. register_shrinker(&mmu_shrinker);
  4115. return 0;
  4116. nomem:
  4117. mmu_destroy_caches();
  4118. return -ENOMEM;
  4119. }
  4120. /*
  4121. * Caculate mmu pages needed for kvm.
  4122. */
  4123. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  4124. {
  4125. unsigned int nr_mmu_pages;
  4126. unsigned int nr_pages = 0;
  4127. struct kvm_memslots *slots;
  4128. struct kvm_memory_slot *memslot;
  4129. int i;
  4130. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  4131. slots = __kvm_memslots(kvm, i);
  4132. kvm_for_each_memslot(memslot, slots)
  4133. nr_pages += memslot->npages;
  4134. }
  4135. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  4136. nr_mmu_pages = max(nr_mmu_pages,
  4137. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  4138. return nr_mmu_pages;
  4139. }
  4140. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  4141. {
  4142. kvm_mmu_unload(vcpu);
  4143. free_mmu_pages(vcpu);
  4144. mmu_free_memory_caches(vcpu);
  4145. }
  4146. void kvm_mmu_module_exit(void)
  4147. {
  4148. mmu_destroy_caches();
  4149. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  4150. unregister_shrinker(&mmu_shrinker);
  4151. mmu_audit_disable();
  4152. }