tlbex.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12. * Copyright (C) 2011 MIPS Technologies, Inc.
  13. *
  14. * ... and the days got worse and worse and now you see
  15. * I've gone completly out of my mind.
  16. *
  17. * They're coming to take me a away haha
  18. * they're coming to take me a away hoho hihi haha
  19. * to the funny farm where code is beautiful all the time ...
  20. *
  21. * (Condolences to Napoleon XIV)
  22. */
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/smp.h>
  27. #include <linux/string.h>
  28. #include <linux/cache.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu-type.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/war.h>
  33. #include <asm/uasm.h>
  34. #include <asm/setup.h>
  35. static int mips_xpa_disabled;
  36. static int __init xpa_disable(char *s)
  37. {
  38. mips_xpa_disabled = 1;
  39. return 1;
  40. }
  41. __setup("noxpa", xpa_disable);
  42. /*
  43. * TLB load/store/modify handlers.
  44. *
  45. * Only the fastpath gets synthesized at runtime, the slowpath for
  46. * do_page_fault remains normal asm.
  47. */
  48. extern void tlb_do_page_fault_0(void);
  49. extern void tlb_do_page_fault_1(void);
  50. struct work_registers {
  51. int r1;
  52. int r2;
  53. int r3;
  54. };
  55. struct tlb_reg_save {
  56. unsigned long a;
  57. unsigned long b;
  58. } ____cacheline_aligned_in_smp;
  59. static struct tlb_reg_save handler_reg_save[NR_CPUS];
  60. static inline int r45k_bvahwbug(void)
  61. {
  62. /* XXX: We should probe for the presence of this bug, but we don't. */
  63. return 0;
  64. }
  65. static inline int r4k_250MHZhwbug(void)
  66. {
  67. /* XXX: We should probe for the presence of this bug, but we don't. */
  68. return 0;
  69. }
  70. static inline int __maybe_unused bcm1250_m3_war(void)
  71. {
  72. return BCM1250_M3_WAR;
  73. }
  74. static inline int __maybe_unused r10000_llsc_war(void)
  75. {
  76. return R10000_LLSC_WAR;
  77. }
  78. static int use_bbit_insns(void)
  79. {
  80. switch (current_cpu_type()) {
  81. case CPU_CAVIUM_OCTEON:
  82. case CPU_CAVIUM_OCTEON_PLUS:
  83. case CPU_CAVIUM_OCTEON2:
  84. case CPU_CAVIUM_OCTEON3:
  85. return 1;
  86. default:
  87. return 0;
  88. }
  89. }
  90. static int use_lwx_insns(void)
  91. {
  92. switch (current_cpu_type()) {
  93. case CPU_CAVIUM_OCTEON2:
  94. case CPU_CAVIUM_OCTEON3:
  95. return 1;
  96. default:
  97. return 0;
  98. }
  99. }
  100. #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
  101. CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
  102. static bool scratchpad_available(void)
  103. {
  104. return true;
  105. }
  106. static int scratchpad_offset(int i)
  107. {
  108. /*
  109. * CVMSEG starts at address -32768 and extends for
  110. * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
  111. */
  112. i += 1; /* Kernel use starts at the top and works down. */
  113. return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
  114. }
  115. #else
  116. static bool scratchpad_available(void)
  117. {
  118. return false;
  119. }
  120. static int scratchpad_offset(int i)
  121. {
  122. BUG();
  123. /* Really unreachable, but evidently some GCC want this. */
  124. return 0;
  125. }
  126. #endif
  127. /*
  128. * Found by experiment: At least some revisions of the 4kc throw under
  129. * some circumstances a machine check exception, triggered by invalid
  130. * values in the index register. Delaying the tlbp instruction until
  131. * after the next branch, plus adding an additional nop in front of
  132. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  133. * why; it's not an issue caused by the core RTL.
  134. *
  135. */
  136. static int m4kc_tlbp_war(void)
  137. {
  138. return (current_cpu_data.processor_id & 0xffff00) ==
  139. (PRID_COMP_MIPS | PRID_IMP_4KC);
  140. }
  141. /* Handle labels (which must be positive integers). */
  142. enum label_id {
  143. label_second_part = 1,
  144. label_leave,
  145. label_vmalloc,
  146. label_vmalloc_done,
  147. label_tlbw_hazard_0,
  148. label_split = label_tlbw_hazard_0 + 8,
  149. label_tlbl_goaround1,
  150. label_tlbl_goaround2,
  151. label_nopage_tlbl,
  152. label_nopage_tlbs,
  153. label_nopage_tlbm,
  154. label_smp_pgtable_change,
  155. label_r3000_write_probe_fail,
  156. label_large_segbits_fault,
  157. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  158. label_tlb_huge_update,
  159. #endif
  160. };
  161. UASM_L_LA(_second_part)
  162. UASM_L_LA(_leave)
  163. UASM_L_LA(_vmalloc)
  164. UASM_L_LA(_vmalloc_done)
  165. /* _tlbw_hazard_x is handled differently. */
  166. UASM_L_LA(_split)
  167. UASM_L_LA(_tlbl_goaround1)
  168. UASM_L_LA(_tlbl_goaround2)
  169. UASM_L_LA(_nopage_tlbl)
  170. UASM_L_LA(_nopage_tlbs)
  171. UASM_L_LA(_nopage_tlbm)
  172. UASM_L_LA(_smp_pgtable_change)
  173. UASM_L_LA(_r3000_write_probe_fail)
  174. UASM_L_LA(_large_segbits_fault)
  175. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  176. UASM_L_LA(_tlb_huge_update)
  177. #endif
  178. static int hazard_instance;
  179. static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
  180. {
  181. switch (instance) {
  182. case 0 ... 7:
  183. uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
  184. return;
  185. default:
  186. BUG();
  187. }
  188. }
  189. static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
  190. {
  191. switch (instance) {
  192. case 0 ... 7:
  193. uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
  194. break;
  195. default:
  196. BUG();
  197. }
  198. }
  199. /*
  200. * pgtable bits are assigned dynamically depending on processor feature
  201. * and statically based on kernel configuration. This spits out the actual
  202. * values the kernel is using. Required to make sense from disassembled
  203. * TLB exception handlers.
  204. */
  205. static void output_pgtable_bits_defines(void)
  206. {
  207. #define pr_define(fmt, ...) \
  208. pr_debug("#define " fmt, ##__VA_ARGS__)
  209. pr_debug("#include <asm/asm.h>\n");
  210. pr_debug("#include <asm/regdef.h>\n");
  211. pr_debug("\n");
  212. pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
  213. pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
  214. pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
  215. pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
  216. pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
  217. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  218. pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
  219. pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
  220. #endif
  221. #ifdef CONFIG_CPU_MIPSR2
  222. if (cpu_has_rixi) {
  223. #ifdef _PAGE_NO_EXEC_SHIFT
  224. pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
  225. pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
  226. #endif
  227. }
  228. #endif
  229. pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
  230. pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
  231. pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
  232. pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
  233. pr_debug("\n");
  234. }
  235. static inline void dump_handler(const char *symbol, const u32 *handler, int count)
  236. {
  237. int i;
  238. pr_debug("LEAF(%s)\n", symbol);
  239. pr_debug("\t.set push\n");
  240. pr_debug("\t.set noreorder\n");
  241. for (i = 0; i < count; i++)
  242. pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
  243. pr_debug("\t.set\tpop\n");
  244. pr_debug("\tEND(%s)\n", symbol);
  245. }
  246. /* The only general purpose registers allowed in TLB handlers. */
  247. #define K0 26
  248. #define K1 27
  249. /* Some CP0 registers */
  250. #define C0_INDEX 0, 0
  251. #define C0_ENTRYLO0 2, 0
  252. #define C0_TCBIND 2, 2
  253. #define C0_ENTRYLO1 3, 0
  254. #define C0_CONTEXT 4, 0
  255. #define C0_PAGEMASK 5, 0
  256. #define C0_BADVADDR 8, 0
  257. #define C0_ENTRYHI 10, 0
  258. #define C0_EPC 14, 0
  259. #define C0_XCONTEXT 20, 0
  260. #ifdef CONFIG_64BIT
  261. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  262. #else
  263. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  264. #endif
  265. /* The worst case length of the handler is around 18 instructions for
  266. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  267. * Maximum space available is 32 instructions for R3000 and 64
  268. * instructions for R4000.
  269. *
  270. * We deliberately chose a buffer size of 128, so we won't scribble
  271. * over anything important on overflow before we panic.
  272. */
  273. static u32 tlb_handler[128];
  274. /* simply assume worst case size for labels and relocs */
  275. static struct uasm_label labels[128];
  276. static struct uasm_reloc relocs[128];
  277. static int check_for_high_segbits;
  278. static bool fill_includes_sw_bits;
  279. static unsigned int kscratch_used_mask;
  280. static inline int __maybe_unused c0_kscratch(void)
  281. {
  282. switch (current_cpu_type()) {
  283. case CPU_XLP:
  284. case CPU_XLR:
  285. return 22;
  286. default:
  287. return 31;
  288. }
  289. }
  290. static int allocate_kscratch(void)
  291. {
  292. int r;
  293. unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
  294. r = ffs(a);
  295. if (r == 0)
  296. return -1;
  297. r--; /* make it zero based */
  298. kscratch_used_mask |= (1 << r);
  299. return r;
  300. }
  301. static int scratch_reg;
  302. static int pgd_reg;
  303. enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
  304. static struct work_registers build_get_work_registers(u32 **p)
  305. {
  306. struct work_registers r;
  307. if (scratch_reg >= 0) {
  308. /* Save in CPU local C0_KScratch? */
  309. UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
  310. r.r1 = K0;
  311. r.r2 = K1;
  312. r.r3 = 1;
  313. return r;
  314. }
  315. if (num_possible_cpus() > 1) {
  316. /* Get smp_processor_id */
  317. UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
  318. UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
  319. /* handler_reg_save index in K0 */
  320. UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
  321. UASM_i_LA(p, K1, (long)&handler_reg_save);
  322. UASM_i_ADDU(p, K0, K0, K1);
  323. } else {
  324. UASM_i_LA(p, K0, (long)&handler_reg_save);
  325. }
  326. /* K0 now points to save area, save $1 and $2 */
  327. UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  328. UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  329. r.r1 = K1;
  330. r.r2 = 1;
  331. r.r3 = 2;
  332. return r;
  333. }
  334. static void build_restore_work_registers(u32 **p)
  335. {
  336. if (scratch_reg >= 0) {
  337. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  338. return;
  339. }
  340. /* K0 already points to save area, restore $1 and $2 */
  341. UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  342. UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  343. }
  344. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  345. /*
  346. * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
  347. * we cannot do r3000 under these circumstances.
  348. *
  349. * Declare pgd_current here instead of including mmu_context.h to avoid type
  350. * conflicts for tlbmiss_handler_setup_pgd
  351. */
  352. extern unsigned long pgd_current[];
  353. /*
  354. * The R3000 TLB handler is simple.
  355. */
  356. static void build_r3000_tlb_refill_handler(void)
  357. {
  358. long pgdc = (long)pgd_current;
  359. u32 *p;
  360. memset(tlb_handler, 0, sizeof(tlb_handler));
  361. p = tlb_handler;
  362. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  363. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  364. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  365. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  366. uasm_i_sll(&p, K0, K0, 2);
  367. uasm_i_addu(&p, K1, K1, K0);
  368. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  369. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  370. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  371. uasm_i_addu(&p, K1, K1, K0);
  372. uasm_i_lw(&p, K0, 0, K1);
  373. uasm_i_nop(&p); /* load delay */
  374. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  375. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  376. uasm_i_tlbwr(&p); /* cp0 delay */
  377. uasm_i_jr(&p, K1);
  378. uasm_i_rfe(&p); /* branch delay */
  379. if (p > tlb_handler + 32)
  380. panic("TLB refill handler space exceeded");
  381. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  382. (unsigned int)(p - tlb_handler));
  383. memcpy((void *)ebase, tlb_handler, 0x80);
  384. local_flush_icache_range(ebase, ebase + 0x80);
  385. dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
  386. }
  387. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  388. /*
  389. * The R4000 TLB handler is much more complicated. We have two
  390. * consecutive handler areas with 32 instructions space each.
  391. * Since they aren't used at the same time, we can overflow in the
  392. * other one.To keep things simple, we first assume linear space,
  393. * then we relocate it to the final handler layout as needed.
  394. */
  395. static u32 final_handler[64];
  396. /*
  397. * Hazards
  398. *
  399. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  400. * 2. A timing hazard exists for the TLBP instruction.
  401. *
  402. * stalling_instruction
  403. * TLBP
  404. *
  405. * The JTLB is being read for the TLBP throughout the stall generated by the
  406. * previous instruction. This is not really correct as the stalling instruction
  407. * can modify the address used to access the JTLB. The failure symptom is that
  408. * the TLBP instruction will use an address created for the stalling instruction
  409. * and not the address held in C0_ENHI and thus report the wrong results.
  410. *
  411. * The software work-around is to not allow the instruction preceding the TLBP
  412. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  413. *
  414. * Errata 2 will not be fixed. This errata is also on the R5000.
  415. *
  416. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  417. */
  418. static void __maybe_unused build_tlb_probe_entry(u32 **p)
  419. {
  420. switch (current_cpu_type()) {
  421. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  422. case CPU_R4600:
  423. case CPU_R4700:
  424. case CPU_R5000:
  425. case CPU_NEVADA:
  426. uasm_i_nop(p);
  427. uasm_i_tlbp(p);
  428. break;
  429. default:
  430. uasm_i_tlbp(p);
  431. break;
  432. }
  433. }
  434. /*
  435. * Write random or indexed TLB entry, and care about the hazards from
  436. * the preceding mtc0 and for the following eret.
  437. */
  438. enum tlb_write_entry { tlb_random, tlb_indexed };
  439. static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
  440. struct uasm_reloc **r,
  441. enum tlb_write_entry wmode)
  442. {
  443. void(*tlbw)(u32 **) = NULL;
  444. switch (wmode) {
  445. case tlb_random: tlbw = uasm_i_tlbwr; break;
  446. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  447. }
  448. if (cpu_has_mips_r2_r6) {
  449. if (cpu_has_mips_r2_exec_hazard)
  450. uasm_i_ehb(p);
  451. tlbw(p);
  452. return;
  453. }
  454. switch (current_cpu_type()) {
  455. case CPU_R4000PC:
  456. case CPU_R4000SC:
  457. case CPU_R4000MC:
  458. case CPU_R4400PC:
  459. case CPU_R4400SC:
  460. case CPU_R4400MC:
  461. /*
  462. * This branch uses up a mtc0 hazard nop slot and saves
  463. * two nops after the tlbw instruction.
  464. */
  465. uasm_bgezl_hazard(p, r, hazard_instance);
  466. tlbw(p);
  467. uasm_bgezl_label(l, p, hazard_instance);
  468. hazard_instance++;
  469. uasm_i_nop(p);
  470. break;
  471. case CPU_R4600:
  472. case CPU_R4700:
  473. uasm_i_nop(p);
  474. tlbw(p);
  475. uasm_i_nop(p);
  476. break;
  477. case CPU_R5000:
  478. case CPU_NEVADA:
  479. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  480. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  481. tlbw(p);
  482. break;
  483. case CPU_R4300:
  484. case CPU_5KC:
  485. case CPU_TX49XX:
  486. case CPU_PR4450:
  487. case CPU_XLR:
  488. uasm_i_nop(p);
  489. tlbw(p);
  490. break;
  491. case CPU_R10000:
  492. case CPU_R12000:
  493. case CPU_R14000:
  494. case CPU_R16000:
  495. case CPU_4KC:
  496. case CPU_4KEC:
  497. case CPU_M14KC:
  498. case CPU_M14KEC:
  499. case CPU_SB1:
  500. case CPU_SB1A:
  501. case CPU_4KSC:
  502. case CPU_20KC:
  503. case CPU_25KF:
  504. case CPU_BMIPS32:
  505. case CPU_BMIPS3300:
  506. case CPU_BMIPS4350:
  507. case CPU_BMIPS4380:
  508. case CPU_BMIPS5000:
  509. case CPU_LOONGSON2:
  510. case CPU_LOONGSON3:
  511. case CPU_R5500:
  512. if (m4kc_tlbp_war())
  513. uasm_i_nop(p);
  514. case CPU_ALCHEMY:
  515. tlbw(p);
  516. break;
  517. case CPU_RM7000:
  518. uasm_i_nop(p);
  519. uasm_i_nop(p);
  520. uasm_i_nop(p);
  521. uasm_i_nop(p);
  522. tlbw(p);
  523. break;
  524. case CPU_VR4111:
  525. case CPU_VR4121:
  526. case CPU_VR4122:
  527. case CPU_VR4181:
  528. case CPU_VR4181A:
  529. uasm_i_nop(p);
  530. uasm_i_nop(p);
  531. tlbw(p);
  532. uasm_i_nop(p);
  533. uasm_i_nop(p);
  534. break;
  535. case CPU_VR4131:
  536. case CPU_VR4133:
  537. case CPU_R5432:
  538. uasm_i_nop(p);
  539. uasm_i_nop(p);
  540. tlbw(p);
  541. break;
  542. case CPU_JZRISC:
  543. tlbw(p);
  544. uasm_i_nop(p);
  545. break;
  546. default:
  547. panic("No TLB refill handler yet (CPU type: %d)",
  548. current_cpu_type());
  549. break;
  550. }
  551. }
  552. static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
  553. unsigned int reg)
  554. {
  555. if (cpu_has_rixi && _PAGE_NO_EXEC) {
  556. if (fill_includes_sw_bits) {
  557. UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
  558. } else {
  559. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
  560. UASM_i_ROTR(p, reg, reg,
  561. ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
  562. }
  563. } else {
  564. #ifdef CONFIG_PHYS_ADDR_T_64BIT
  565. uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
  566. #else
  567. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
  568. #endif
  569. }
  570. }
  571. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  572. static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
  573. unsigned int tmp, enum label_id lid,
  574. int restore_scratch)
  575. {
  576. if (restore_scratch) {
  577. /* Reset default page size */
  578. if (PM_DEFAULT_MASK >> 16) {
  579. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  580. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  581. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  582. uasm_il_b(p, r, lid);
  583. } else if (PM_DEFAULT_MASK) {
  584. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  585. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  586. uasm_il_b(p, r, lid);
  587. } else {
  588. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  589. uasm_il_b(p, r, lid);
  590. }
  591. if (scratch_reg >= 0)
  592. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  593. else
  594. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  595. } else {
  596. /* Reset default page size */
  597. if (PM_DEFAULT_MASK >> 16) {
  598. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  599. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  600. uasm_il_b(p, r, lid);
  601. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  602. } else if (PM_DEFAULT_MASK) {
  603. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  604. uasm_il_b(p, r, lid);
  605. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  606. } else {
  607. uasm_il_b(p, r, lid);
  608. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  609. }
  610. }
  611. }
  612. static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
  613. struct uasm_reloc **r,
  614. unsigned int tmp,
  615. enum tlb_write_entry wmode,
  616. int restore_scratch)
  617. {
  618. /* Set huge page tlb entry size */
  619. uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
  620. uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
  621. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  622. build_tlb_write_entry(p, l, r, wmode);
  623. build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
  624. }
  625. /*
  626. * Check if Huge PTE is present, if so then jump to LABEL.
  627. */
  628. static void
  629. build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
  630. unsigned int pmd, int lid)
  631. {
  632. UASM_i_LW(p, tmp, 0, pmd);
  633. if (use_bbit_insns()) {
  634. uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
  635. } else {
  636. uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
  637. uasm_il_bnez(p, r, tmp, lid);
  638. }
  639. }
  640. static void build_huge_update_entries(u32 **p, unsigned int pte,
  641. unsigned int tmp)
  642. {
  643. int small_sequence;
  644. /*
  645. * A huge PTE describes an area the size of the
  646. * configured huge page size. This is twice the
  647. * of the large TLB entry size we intend to use.
  648. * A TLB entry half the size of the configured
  649. * huge page size is configured into entrylo0
  650. * and entrylo1 to cover the contiguous huge PTE
  651. * address space.
  652. */
  653. small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
  654. /* We can clobber tmp. It isn't used after this.*/
  655. if (!small_sequence)
  656. uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
  657. build_convert_pte_to_entrylo(p, pte);
  658. UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
  659. /* convert to entrylo1 */
  660. if (small_sequence)
  661. UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
  662. else
  663. UASM_i_ADDU(p, pte, pte, tmp);
  664. UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
  665. }
  666. static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
  667. struct uasm_label **l,
  668. unsigned int pte,
  669. unsigned int ptr)
  670. {
  671. #ifdef CONFIG_SMP
  672. UASM_i_SC(p, pte, 0, ptr);
  673. uasm_il_beqz(p, r, pte, label_tlb_huge_update);
  674. UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
  675. #else
  676. UASM_i_SW(p, pte, 0, ptr);
  677. #endif
  678. build_huge_update_entries(p, pte, ptr);
  679. build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
  680. }
  681. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  682. #ifdef CONFIG_64BIT
  683. /*
  684. * TMP and PTR are scratch.
  685. * TMP will be clobbered, PTR will hold the pmd entry.
  686. */
  687. static void
  688. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  689. unsigned int tmp, unsigned int ptr)
  690. {
  691. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  692. long pgdc = (long)pgd_current;
  693. #endif
  694. /*
  695. * The vmalloc handling is not in the hotpath.
  696. */
  697. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  698. if (check_for_high_segbits) {
  699. /*
  700. * The kernel currently implicitely assumes that the
  701. * MIPS SEGBITS parameter for the processor is
  702. * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
  703. * allocate virtual addresses outside the maximum
  704. * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
  705. * that doesn't prevent user code from accessing the
  706. * higher xuseg addresses. Here, we make sure that
  707. * everything but the lower xuseg addresses goes down
  708. * the module_alloc/vmalloc path.
  709. */
  710. uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  711. uasm_il_bnez(p, r, ptr, label_vmalloc);
  712. } else {
  713. uasm_il_bltz(p, r, tmp, label_vmalloc);
  714. }
  715. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  716. if (pgd_reg != -1) {
  717. /* pgd is in pgd_reg */
  718. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  719. } else {
  720. #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
  721. /*
  722. * &pgd << 11 stored in CONTEXT [23..63].
  723. */
  724. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  725. /* Clear lower 23 bits of context. */
  726. uasm_i_dins(p, ptr, 0, 0, 23);
  727. /* 1 0 1 0 1 << 6 xkphys cached */
  728. uasm_i_ori(p, ptr, ptr, 0x540);
  729. uasm_i_drotr(p, ptr, ptr, 11);
  730. #elif defined(CONFIG_SMP)
  731. UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
  732. uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  733. UASM_i_LA_mostly(p, tmp, pgdc);
  734. uasm_i_daddu(p, ptr, ptr, tmp);
  735. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  736. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  737. #else
  738. UASM_i_LA_mostly(p, ptr, pgdc);
  739. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  740. #endif
  741. }
  742. uasm_l_vmalloc_done(l, *p);
  743. /* get pgd offset in bytes */
  744. uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
  745. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  746. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  747. #ifndef __PAGETABLE_PMD_FOLDED
  748. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  749. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  750. uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  751. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  752. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  753. #endif
  754. }
  755. /*
  756. * BVADDR is the faulting address, PTR is scratch.
  757. * PTR will hold the pgd for vmalloc.
  758. */
  759. static void
  760. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  761. unsigned int bvaddr, unsigned int ptr,
  762. enum vmalloc64_mode mode)
  763. {
  764. long swpd = (long)swapper_pg_dir;
  765. int single_insn_swpd;
  766. int did_vmalloc_branch = 0;
  767. single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
  768. uasm_l_vmalloc(l, *p);
  769. if (mode != not_refill && check_for_high_segbits) {
  770. if (single_insn_swpd) {
  771. uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
  772. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  773. did_vmalloc_branch = 1;
  774. /* fall through */
  775. } else {
  776. uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
  777. }
  778. }
  779. if (!did_vmalloc_branch) {
  780. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  781. uasm_il_b(p, r, label_vmalloc_done);
  782. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  783. } else {
  784. UASM_i_LA_mostly(p, ptr, swpd);
  785. uasm_il_b(p, r, label_vmalloc_done);
  786. if (uasm_in_compat_space_p(swpd))
  787. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  788. else
  789. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  790. }
  791. }
  792. if (mode != not_refill && check_for_high_segbits) {
  793. uasm_l_large_segbits_fault(l, *p);
  794. /*
  795. * We get here if we are an xsseg address, or if we are
  796. * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
  797. *
  798. * Ignoring xsseg (assume disabled so would generate
  799. * (address errors?), the only remaining possibility
  800. * is the upper xuseg addresses. On processors with
  801. * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
  802. * addresses would have taken an address error. We try
  803. * to mimic that here by taking a load/istream page
  804. * fault.
  805. */
  806. UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
  807. uasm_i_jr(p, ptr);
  808. if (mode == refill_scratch) {
  809. if (scratch_reg >= 0)
  810. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  811. else
  812. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  813. } else {
  814. uasm_i_nop(p);
  815. }
  816. }
  817. }
  818. #else /* !CONFIG_64BIT */
  819. /*
  820. * TMP and PTR are scratch.
  821. * TMP will be clobbered, PTR will hold the pgd entry.
  822. */
  823. static void __maybe_unused
  824. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  825. {
  826. if (pgd_reg != -1) {
  827. /* pgd is in pgd_reg */
  828. uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
  829. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  830. } else {
  831. long pgdc = (long)pgd_current;
  832. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  833. #ifdef CONFIG_SMP
  834. uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
  835. UASM_i_LA_mostly(p, tmp, pgdc);
  836. uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  837. uasm_i_addu(p, ptr, tmp, ptr);
  838. #else
  839. UASM_i_LA_mostly(p, ptr, pgdc);
  840. #endif
  841. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  842. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  843. }
  844. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  845. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  846. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  847. }
  848. #endif /* !CONFIG_64BIT */
  849. static void build_adjust_context(u32 **p, unsigned int ctx)
  850. {
  851. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  852. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  853. switch (current_cpu_type()) {
  854. case CPU_VR41XX:
  855. case CPU_VR4111:
  856. case CPU_VR4121:
  857. case CPU_VR4122:
  858. case CPU_VR4131:
  859. case CPU_VR4181:
  860. case CPU_VR4181A:
  861. case CPU_VR4133:
  862. shift += 2;
  863. break;
  864. default:
  865. break;
  866. }
  867. if (shift)
  868. UASM_i_SRL(p, ctx, ctx, shift);
  869. uasm_i_andi(p, ctx, ctx, mask);
  870. }
  871. static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  872. {
  873. /*
  874. * Bug workaround for the Nevada. It seems as if under certain
  875. * circumstances the move from cp0_context might produce a
  876. * bogus result when the mfc0 instruction and its consumer are
  877. * in a different cacheline or a load instruction, probably any
  878. * memory reference, is between them.
  879. */
  880. switch (current_cpu_type()) {
  881. case CPU_NEVADA:
  882. UASM_i_LW(p, ptr, 0, ptr);
  883. GET_CONTEXT(p, tmp); /* get context reg */
  884. break;
  885. default:
  886. GET_CONTEXT(p, tmp); /* get context reg */
  887. UASM_i_LW(p, ptr, 0, ptr);
  888. break;
  889. }
  890. build_adjust_context(p, tmp);
  891. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  892. }
  893. static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
  894. {
  895. /*
  896. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  897. * Kernel is a special case. Only a few CPUs use it.
  898. */
  899. if (config_enabled(CONFIG_PHYS_ADDR_T_64BIT) && !cpu_has_64bits) {
  900. int pte_off_even = sizeof(pte_t) / 2;
  901. int pte_off_odd = pte_off_even + sizeof(pte_t);
  902. #ifdef CONFIG_XPA
  903. const int scratch = 1; /* Our extra working register */
  904. uasm_i_addu(p, scratch, 0, ptep);
  905. #endif
  906. uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
  907. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* odd pte */
  908. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  909. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  910. UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
  911. UASM_i_MTC0(p, ptep, C0_ENTRYLO1);
  912. #ifdef CONFIG_XPA
  913. uasm_i_lw(p, tmp, 0, scratch);
  914. uasm_i_lw(p, ptep, sizeof(pte_t), scratch);
  915. uasm_i_lui(p, scratch, 0xff);
  916. uasm_i_ori(p, scratch, scratch, 0xffff);
  917. uasm_i_and(p, tmp, scratch, tmp);
  918. uasm_i_and(p, ptep, scratch, ptep);
  919. uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
  920. uasm_i_mthc0(p, ptep, C0_ENTRYLO1);
  921. #endif
  922. return;
  923. }
  924. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  925. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  926. if (r45k_bvahwbug())
  927. build_tlb_probe_entry(p);
  928. build_convert_pte_to_entrylo(p, tmp);
  929. if (r4k_250MHZhwbug())
  930. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  931. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  932. build_convert_pte_to_entrylo(p, ptep);
  933. if (r45k_bvahwbug())
  934. uasm_i_mfc0(p, tmp, C0_INDEX);
  935. if (r4k_250MHZhwbug())
  936. UASM_i_MTC0(p, 0, C0_ENTRYLO1);
  937. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  938. }
  939. struct mips_huge_tlb_info {
  940. int huge_pte;
  941. int restore_scratch;
  942. bool need_reload_pte;
  943. };
  944. static struct mips_huge_tlb_info
  945. build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
  946. struct uasm_reloc **r, unsigned int tmp,
  947. unsigned int ptr, int c0_scratch_reg)
  948. {
  949. struct mips_huge_tlb_info rv;
  950. unsigned int even, odd;
  951. int vmalloc_branch_delay_filled = 0;
  952. const int scratch = 1; /* Our extra working register */
  953. rv.huge_pte = scratch;
  954. rv.restore_scratch = 0;
  955. rv.need_reload_pte = false;
  956. if (check_for_high_segbits) {
  957. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  958. if (pgd_reg != -1)
  959. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  960. else
  961. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  962. if (c0_scratch_reg >= 0)
  963. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  964. else
  965. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  966. uasm_i_dsrl_safe(p, scratch, tmp,
  967. PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  968. uasm_il_bnez(p, r, scratch, label_vmalloc);
  969. if (pgd_reg == -1) {
  970. vmalloc_branch_delay_filled = 1;
  971. /* Clear lower 23 bits of context. */
  972. uasm_i_dins(p, ptr, 0, 0, 23);
  973. }
  974. } else {
  975. if (pgd_reg != -1)
  976. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  977. else
  978. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  979. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  980. if (c0_scratch_reg >= 0)
  981. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  982. else
  983. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  984. if (pgd_reg == -1)
  985. /* Clear lower 23 bits of context. */
  986. uasm_i_dins(p, ptr, 0, 0, 23);
  987. uasm_il_bltz(p, r, tmp, label_vmalloc);
  988. }
  989. if (pgd_reg == -1) {
  990. vmalloc_branch_delay_filled = 1;
  991. /* 1 0 1 0 1 << 6 xkphys cached */
  992. uasm_i_ori(p, ptr, ptr, 0x540);
  993. uasm_i_drotr(p, ptr, ptr, 11);
  994. }
  995. #ifdef __PAGETABLE_PMD_FOLDED
  996. #define LOC_PTEP scratch
  997. #else
  998. #define LOC_PTEP ptr
  999. #endif
  1000. if (!vmalloc_branch_delay_filled)
  1001. /* get pgd offset in bytes */
  1002. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1003. uasm_l_vmalloc_done(l, *p);
  1004. /*
  1005. * tmp ptr
  1006. * fall-through case = badvaddr *pgd_current
  1007. * vmalloc case = badvaddr swapper_pg_dir
  1008. */
  1009. if (vmalloc_branch_delay_filled)
  1010. /* get pgd offset in bytes */
  1011. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1012. #ifdef __PAGETABLE_PMD_FOLDED
  1013. GET_CONTEXT(p, tmp); /* get context reg */
  1014. #endif
  1015. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
  1016. if (use_lwx_insns()) {
  1017. UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
  1018. } else {
  1019. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
  1020. uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
  1021. }
  1022. #ifndef __PAGETABLE_PMD_FOLDED
  1023. /* get pmd offset in bytes */
  1024. uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
  1025. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
  1026. GET_CONTEXT(p, tmp); /* get context reg */
  1027. if (use_lwx_insns()) {
  1028. UASM_i_LWX(p, scratch, scratch, ptr);
  1029. } else {
  1030. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
  1031. UASM_i_LW(p, scratch, 0, ptr);
  1032. }
  1033. #endif
  1034. /* Adjust the context during the load latency. */
  1035. build_adjust_context(p, tmp);
  1036. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1037. uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
  1038. /*
  1039. * The in the LWX case we don't want to do the load in the
  1040. * delay slot. It cannot issue in the same cycle and may be
  1041. * speculative and unneeded.
  1042. */
  1043. if (use_lwx_insns())
  1044. uasm_i_nop(p);
  1045. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  1046. /* build_update_entries */
  1047. if (use_lwx_insns()) {
  1048. even = ptr;
  1049. odd = tmp;
  1050. UASM_i_LWX(p, even, scratch, tmp);
  1051. UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
  1052. UASM_i_LWX(p, odd, scratch, tmp);
  1053. } else {
  1054. UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
  1055. even = tmp;
  1056. odd = ptr;
  1057. UASM_i_LW(p, even, 0, ptr); /* get even pte */
  1058. UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
  1059. }
  1060. if (cpu_has_rixi) {
  1061. uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
  1062. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1063. uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1064. } else {
  1065. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
  1066. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1067. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1068. }
  1069. UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
  1070. if (c0_scratch_reg >= 0) {
  1071. UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1072. build_tlb_write_entry(p, l, r, tlb_random);
  1073. uasm_l_leave(l, *p);
  1074. rv.restore_scratch = 1;
  1075. } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
  1076. build_tlb_write_entry(p, l, r, tlb_random);
  1077. uasm_l_leave(l, *p);
  1078. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1079. } else {
  1080. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1081. build_tlb_write_entry(p, l, r, tlb_random);
  1082. uasm_l_leave(l, *p);
  1083. rv.restore_scratch = 1;
  1084. }
  1085. uasm_i_eret(p); /* return from trap */
  1086. return rv;
  1087. }
  1088. /*
  1089. * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
  1090. * because EXL == 0. If we wrap, we can also use the 32 instruction
  1091. * slots before the XTLB refill exception handler which belong to the
  1092. * unused TLB refill exception.
  1093. */
  1094. #define MIPS64_REFILL_INSNS 32
  1095. static void build_r4000_tlb_refill_handler(void)
  1096. {
  1097. u32 *p = tlb_handler;
  1098. struct uasm_label *l = labels;
  1099. struct uasm_reloc *r = relocs;
  1100. u32 *f;
  1101. unsigned int final_len;
  1102. struct mips_huge_tlb_info htlb_info __maybe_unused;
  1103. enum vmalloc64_mode vmalloc_mode __maybe_unused;
  1104. memset(tlb_handler, 0, sizeof(tlb_handler));
  1105. memset(labels, 0, sizeof(labels));
  1106. memset(relocs, 0, sizeof(relocs));
  1107. memset(final_handler, 0, sizeof(final_handler));
  1108. if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
  1109. htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
  1110. scratch_reg);
  1111. vmalloc_mode = refill_scratch;
  1112. } else {
  1113. htlb_info.huge_pte = K0;
  1114. htlb_info.restore_scratch = 0;
  1115. htlb_info.need_reload_pte = true;
  1116. vmalloc_mode = refill_noscratch;
  1117. /*
  1118. * create the plain linear handler
  1119. */
  1120. if (bcm1250_m3_war()) {
  1121. unsigned int segbits = 44;
  1122. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1123. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1124. uasm_i_xor(&p, K0, K0, K1);
  1125. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1126. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1127. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1128. uasm_i_or(&p, K0, K0, K1);
  1129. uasm_il_bnez(&p, &r, K0, label_leave);
  1130. /* No need for uasm_i_nop */
  1131. }
  1132. #ifdef CONFIG_64BIT
  1133. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1134. #else
  1135. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1136. #endif
  1137. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1138. build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
  1139. #endif
  1140. build_get_ptep(&p, K0, K1);
  1141. build_update_entries(&p, K0, K1);
  1142. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1143. uasm_l_leave(&l, p);
  1144. uasm_i_eret(&p); /* return from trap */
  1145. }
  1146. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1147. uasm_l_tlb_huge_update(&l, p);
  1148. if (htlb_info.need_reload_pte)
  1149. UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
  1150. build_huge_update_entries(&p, htlb_info.huge_pte, K1);
  1151. build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
  1152. htlb_info.restore_scratch);
  1153. #endif
  1154. #ifdef CONFIG_64BIT
  1155. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
  1156. #endif
  1157. /*
  1158. * Overflow check: For the 64bit handler, we need at least one
  1159. * free instruction slot for the wrap-around branch. In worst
  1160. * case, if the intended insertion point is a delay slot, we
  1161. * need three, with the second nop'ed and the third being
  1162. * unused.
  1163. */
  1164. switch (boot_cpu_type()) {
  1165. default:
  1166. if (sizeof(long) == 4) {
  1167. case CPU_LOONGSON2:
  1168. /* Loongson2 ebase is different than r4k, we have more space */
  1169. if ((p - tlb_handler) > 64)
  1170. panic("TLB refill handler space exceeded");
  1171. /*
  1172. * Now fold the handler in the TLB refill handler space.
  1173. */
  1174. f = final_handler;
  1175. /* Simplest case, just copy the handler. */
  1176. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1177. final_len = p - tlb_handler;
  1178. break;
  1179. } else {
  1180. if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
  1181. || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
  1182. && uasm_insn_has_bdelay(relocs,
  1183. tlb_handler + MIPS64_REFILL_INSNS - 3)))
  1184. panic("TLB refill handler space exceeded");
  1185. /*
  1186. * Now fold the handler in the TLB refill handler space.
  1187. */
  1188. f = final_handler + MIPS64_REFILL_INSNS;
  1189. if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
  1190. /* Just copy the handler. */
  1191. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1192. final_len = p - tlb_handler;
  1193. } else {
  1194. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1195. const enum label_id ls = label_tlb_huge_update;
  1196. #else
  1197. const enum label_id ls = label_vmalloc;
  1198. #endif
  1199. u32 *split;
  1200. int ov = 0;
  1201. int i;
  1202. for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
  1203. ;
  1204. BUG_ON(i == ARRAY_SIZE(labels));
  1205. split = labels[i].addr;
  1206. /*
  1207. * See if we have overflown one way or the other.
  1208. */
  1209. if (split > tlb_handler + MIPS64_REFILL_INSNS ||
  1210. split < p - MIPS64_REFILL_INSNS)
  1211. ov = 1;
  1212. if (ov) {
  1213. /*
  1214. * Split two instructions before the end. One
  1215. * for the branch and one for the instruction
  1216. * in the delay slot.
  1217. */
  1218. split = tlb_handler + MIPS64_REFILL_INSNS - 2;
  1219. /*
  1220. * If the branch would fall in a delay slot,
  1221. * we must back up an additional instruction
  1222. * so that it is no longer in a delay slot.
  1223. */
  1224. if (uasm_insn_has_bdelay(relocs, split - 1))
  1225. split--;
  1226. }
  1227. /* Copy first part of the handler. */
  1228. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  1229. f += split - tlb_handler;
  1230. if (ov) {
  1231. /* Insert branch. */
  1232. uasm_l_split(&l, final_handler);
  1233. uasm_il_b(&f, &r, label_split);
  1234. if (uasm_insn_has_bdelay(relocs, split))
  1235. uasm_i_nop(&f);
  1236. else {
  1237. uasm_copy_handler(relocs, labels,
  1238. split, split + 1, f);
  1239. uasm_move_labels(labels, f, f + 1, -1);
  1240. f++;
  1241. split++;
  1242. }
  1243. }
  1244. /* Copy the rest of the handler. */
  1245. uasm_copy_handler(relocs, labels, split, p, final_handler);
  1246. final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
  1247. (p - split);
  1248. }
  1249. }
  1250. break;
  1251. }
  1252. uasm_resolve_relocs(relocs, labels);
  1253. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  1254. final_len);
  1255. memcpy((void *)ebase, final_handler, 0x100);
  1256. local_flush_icache_range(ebase, ebase + 0x100);
  1257. dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
  1258. }
  1259. extern u32 handle_tlbl[], handle_tlbl_end[];
  1260. extern u32 handle_tlbs[], handle_tlbs_end[];
  1261. extern u32 handle_tlbm[], handle_tlbm_end[];
  1262. extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
  1263. extern u32 tlbmiss_handler_setup_pgd_end[];
  1264. static void build_setup_pgd(void)
  1265. {
  1266. const int a0 = 4;
  1267. const int __maybe_unused a1 = 5;
  1268. const int __maybe_unused a2 = 6;
  1269. u32 *p = tlbmiss_handler_setup_pgd_start;
  1270. const int tlbmiss_handler_setup_pgd_size =
  1271. tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
  1272. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1273. long pgdc = (long)pgd_current;
  1274. #endif
  1275. memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
  1276. sizeof(tlbmiss_handler_setup_pgd[0]));
  1277. memset(labels, 0, sizeof(labels));
  1278. memset(relocs, 0, sizeof(relocs));
  1279. pgd_reg = allocate_kscratch();
  1280. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1281. if (pgd_reg == -1) {
  1282. struct uasm_label *l = labels;
  1283. struct uasm_reloc *r = relocs;
  1284. /* PGD << 11 in c0_Context */
  1285. /*
  1286. * If it is a ckseg0 address, convert to a physical
  1287. * address. Shifting right by 29 and adding 4 will
  1288. * result in zero for these addresses.
  1289. *
  1290. */
  1291. UASM_i_SRA(&p, a1, a0, 29);
  1292. UASM_i_ADDIU(&p, a1, a1, 4);
  1293. uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
  1294. uasm_i_nop(&p);
  1295. uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
  1296. uasm_l_tlbl_goaround1(&l, p);
  1297. UASM_i_SLL(&p, a0, a0, 11);
  1298. uasm_i_jr(&p, 31);
  1299. UASM_i_MTC0(&p, a0, C0_CONTEXT);
  1300. } else {
  1301. /* PGD in c0_KScratch */
  1302. uasm_i_jr(&p, 31);
  1303. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1304. }
  1305. #else
  1306. #ifdef CONFIG_SMP
  1307. /* Save PGD to pgd_current[smp_processor_id()] */
  1308. UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
  1309. UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
  1310. UASM_i_LA_mostly(&p, a2, pgdc);
  1311. UASM_i_ADDU(&p, a2, a2, a1);
  1312. UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
  1313. #else
  1314. UASM_i_LA_mostly(&p, a2, pgdc);
  1315. UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
  1316. #endif /* SMP */
  1317. uasm_i_jr(&p, 31);
  1318. /* if pgd_reg is allocated, save PGD also to scratch register */
  1319. if (pgd_reg != -1)
  1320. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1321. else
  1322. uasm_i_nop(&p);
  1323. #endif
  1324. if (p >= tlbmiss_handler_setup_pgd_end)
  1325. panic("tlbmiss_handler_setup_pgd space exceeded");
  1326. uasm_resolve_relocs(relocs, labels);
  1327. pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
  1328. (unsigned int)(p - tlbmiss_handler_setup_pgd));
  1329. dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
  1330. tlbmiss_handler_setup_pgd_size);
  1331. }
  1332. static void
  1333. iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
  1334. {
  1335. #ifdef CONFIG_SMP
  1336. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1337. if (cpu_has_64bits)
  1338. uasm_i_lld(p, pte, 0, ptr);
  1339. else
  1340. # endif
  1341. UASM_i_LL(p, pte, 0, ptr);
  1342. #else
  1343. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1344. if (cpu_has_64bits)
  1345. uasm_i_ld(p, pte, 0, ptr);
  1346. else
  1347. # endif
  1348. UASM_i_LW(p, pte, 0, ptr);
  1349. #endif
  1350. }
  1351. static void
  1352. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  1353. unsigned int mode)
  1354. {
  1355. #ifdef CONFIG_PHYS_ADDR_T_64BIT
  1356. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1357. if (!cpu_has_64bits) {
  1358. const int scratch = 1; /* Our extra working register */
  1359. uasm_i_lui(p, scratch, (mode >> 16));
  1360. uasm_i_or(p, pte, pte, scratch);
  1361. } else
  1362. #endif
  1363. uasm_i_ori(p, pte, pte, mode);
  1364. #ifdef CONFIG_SMP
  1365. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1366. if (cpu_has_64bits)
  1367. uasm_i_scd(p, pte, 0, ptr);
  1368. else
  1369. # endif
  1370. UASM_i_SC(p, pte, 0, ptr);
  1371. if (r10000_llsc_war())
  1372. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  1373. else
  1374. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1375. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1376. if (!cpu_has_64bits) {
  1377. /* no uasm_i_nop needed */
  1378. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1379. uasm_i_ori(p, pte, pte, hwmode);
  1380. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1381. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1382. /* no uasm_i_nop needed */
  1383. uasm_i_lw(p, pte, 0, ptr);
  1384. } else
  1385. uasm_i_nop(p);
  1386. # else
  1387. uasm_i_nop(p);
  1388. # endif
  1389. #else
  1390. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1391. if (cpu_has_64bits)
  1392. uasm_i_sd(p, pte, 0, ptr);
  1393. else
  1394. # endif
  1395. UASM_i_SW(p, pte, 0, ptr);
  1396. # ifdef CONFIG_PHYS_ADDR_T_64BIT
  1397. if (!cpu_has_64bits) {
  1398. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1399. uasm_i_ori(p, pte, pte, hwmode);
  1400. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1401. uasm_i_lw(p, pte, 0, ptr);
  1402. }
  1403. # endif
  1404. #endif
  1405. }
  1406. /*
  1407. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1408. * the page table where this PTE is located, PTE will be re-loaded
  1409. * with it's original value.
  1410. */
  1411. static void
  1412. build_pte_present(u32 **p, struct uasm_reloc **r,
  1413. int pte, int ptr, int scratch, enum label_id lid)
  1414. {
  1415. int t = scratch >= 0 ? scratch : pte;
  1416. int cur = pte;
  1417. if (cpu_has_rixi) {
  1418. if (use_bbit_insns()) {
  1419. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
  1420. uasm_i_nop(p);
  1421. } else {
  1422. if (_PAGE_PRESENT_SHIFT) {
  1423. uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
  1424. cur = t;
  1425. }
  1426. uasm_i_andi(p, t, cur, 1);
  1427. uasm_il_beqz(p, r, t, lid);
  1428. if (pte == t)
  1429. /* You lose the SMP race :-(*/
  1430. iPTE_LW(p, pte, ptr);
  1431. }
  1432. } else {
  1433. if (_PAGE_PRESENT_SHIFT) {
  1434. uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
  1435. cur = t;
  1436. }
  1437. uasm_i_andi(p, t, cur,
  1438. (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
  1439. uasm_i_xori(p, t, t,
  1440. (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
  1441. uasm_il_bnez(p, r, t, lid);
  1442. if (pte == t)
  1443. /* You lose the SMP race :-(*/
  1444. iPTE_LW(p, pte, ptr);
  1445. }
  1446. }
  1447. /* Make PTE valid, store result in PTR. */
  1448. static void
  1449. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1450. unsigned int ptr)
  1451. {
  1452. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1453. iPTE_SW(p, r, pte, ptr, mode);
  1454. }
  1455. /*
  1456. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1457. * restore PTE with value from PTR when done.
  1458. */
  1459. static void
  1460. build_pte_writable(u32 **p, struct uasm_reloc **r,
  1461. unsigned int pte, unsigned int ptr, int scratch,
  1462. enum label_id lid)
  1463. {
  1464. int t = scratch >= 0 ? scratch : pte;
  1465. int cur = pte;
  1466. if (_PAGE_PRESENT_SHIFT) {
  1467. uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
  1468. cur = t;
  1469. }
  1470. uasm_i_andi(p, t, cur,
  1471. (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
  1472. uasm_i_xori(p, t, t,
  1473. (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
  1474. uasm_il_bnez(p, r, t, lid);
  1475. if (pte == t)
  1476. /* You lose the SMP race :-(*/
  1477. iPTE_LW(p, pte, ptr);
  1478. else
  1479. uasm_i_nop(p);
  1480. }
  1481. /* Make PTE writable, update software status bits as well, then store
  1482. * at PTR.
  1483. */
  1484. static void
  1485. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1486. unsigned int ptr)
  1487. {
  1488. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1489. | _PAGE_DIRTY);
  1490. iPTE_SW(p, r, pte, ptr, mode);
  1491. }
  1492. /*
  1493. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1494. * restore PTE with value from PTR when done.
  1495. */
  1496. static void
  1497. build_pte_modifiable(u32 **p, struct uasm_reloc **r,
  1498. unsigned int pte, unsigned int ptr, int scratch,
  1499. enum label_id lid)
  1500. {
  1501. if (use_bbit_insns()) {
  1502. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
  1503. uasm_i_nop(p);
  1504. } else {
  1505. int t = scratch >= 0 ? scratch : pte;
  1506. uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
  1507. uasm_i_andi(p, t, t, 1);
  1508. uasm_il_beqz(p, r, t, lid);
  1509. if (pte == t)
  1510. /* You lose the SMP race :-(*/
  1511. iPTE_LW(p, pte, ptr);
  1512. }
  1513. }
  1514. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1515. /*
  1516. * R3000 style TLB load/store/modify handlers.
  1517. */
  1518. /*
  1519. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1520. * Then it returns.
  1521. */
  1522. static void
  1523. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1524. {
  1525. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1526. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1527. uasm_i_tlbwi(p);
  1528. uasm_i_jr(p, tmp);
  1529. uasm_i_rfe(p); /* branch delay */
  1530. }
  1531. /*
  1532. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1533. * or tlbwr as appropriate. This is because the index register
  1534. * may have the probe fail bit set as a result of a trap on a
  1535. * kseg2 access, i.e. without refill. Then it returns.
  1536. */
  1537. static void
  1538. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  1539. struct uasm_reloc **r, unsigned int pte,
  1540. unsigned int tmp)
  1541. {
  1542. uasm_i_mfc0(p, tmp, C0_INDEX);
  1543. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1544. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1545. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1546. uasm_i_tlbwi(p); /* cp0 delay */
  1547. uasm_i_jr(p, tmp);
  1548. uasm_i_rfe(p); /* branch delay */
  1549. uasm_l_r3000_write_probe_fail(l, *p);
  1550. uasm_i_tlbwr(p); /* cp0 delay */
  1551. uasm_i_jr(p, tmp);
  1552. uasm_i_rfe(p); /* branch delay */
  1553. }
  1554. static void
  1555. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1556. unsigned int ptr)
  1557. {
  1558. long pgdc = (long)pgd_current;
  1559. uasm_i_mfc0(p, pte, C0_BADVADDR);
  1560. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  1561. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  1562. uasm_i_srl(p, pte, pte, 22); /* load delay */
  1563. uasm_i_sll(p, pte, pte, 2);
  1564. uasm_i_addu(p, ptr, ptr, pte);
  1565. uasm_i_mfc0(p, pte, C0_CONTEXT);
  1566. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1567. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  1568. uasm_i_addu(p, ptr, ptr, pte);
  1569. uasm_i_lw(p, pte, 0, ptr);
  1570. uasm_i_tlbp(p); /* load delay */
  1571. }
  1572. static void build_r3000_tlb_load_handler(void)
  1573. {
  1574. u32 *p = handle_tlbl;
  1575. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1576. struct uasm_label *l = labels;
  1577. struct uasm_reloc *r = relocs;
  1578. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1579. memset(labels, 0, sizeof(labels));
  1580. memset(relocs, 0, sizeof(relocs));
  1581. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1582. build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
  1583. uasm_i_nop(&p); /* load delay */
  1584. build_make_valid(&p, &r, K0, K1);
  1585. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1586. uasm_l_nopage_tlbl(&l, p);
  1587. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1588. uasm_i_nop(&p);
  1589. if (p >= handle_tlbl_end)
  1590. panic("TLB load handler fastpath space exceeded");
  1591. uasm_resolve_relocs(relocs, labels);
  1592. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1593. (unsigned int)(p - handle_tlbl));
  1594. dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
  1595. }
  1596. static void build_r3000_tlb_store_handler(void)
  1597. {
  1598. u32 *p = handle_tlbs;
  1599. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1600. struct uasm_label *l = labels;
  1601. struct uasm_reloc *r = relocs;
  1602. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1603. memset(labels, 0, sizeof(labels));
  1604. memset(relocs, 0, sizeof(relocs));
  1605. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1606. build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
  1607. uasm_i_nop(&p); /* load delay */
  1608. build_make_write(&p, &r, K0, K1);
  1609. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1610. uasm_l_nopage_tlbs(&l, p);
  1611. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1612. uasm_i_nop(&p);
  1613. if (p >= handle_tlbs_end)
  1614. panic("TLB store handler fastpath space exceeded");
  1615. uasm_resolve_relocs(relocs, labels);
  1616. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1617. (unsigned int)(p - handle_tlbs));
  1618. dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
  1619. }
  1620. static void build_r3000_tlb_modify_handler(void)
  1621. {
  1622. u32 *p = handle_tlbm;
  1623. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1624. struct uasm_label *l = labels;
  1625. struct uasm_reloc *r = relocs;
  1626. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1627. memset(labels, 0, sizeof(labels));
  1628. memset(relocs, 0, sizeof(relocs));
  1629. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1630. build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
  1631. uasm_i_nop(&p); /* load delay */
  1632. build_make_write(&p, &r, K0, K1);
  1633. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1634. uasm_l_nopage_tlbm(&l, p);
  1635. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1636. uasm_i_nop(&p);
  1637. if (p >= handle_tlbm_end)
  1638. panic("TLB modify handler fastpath space exceeded");
  1639. uasm_resolve_relocs(relocs, labels);
  1640. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1641. (unsigned int)(p - handle_tlbm));
  1642. dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1643. }
  1644. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  1645. /*
  1646. * R4000 style TLB load/store/modify handlers.
  1647. */
  1648. static struct work_registers
  1649. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  1650. struct uasm_reloc **r)
  1651. {
  1652. struct work_registers wr = build_get_work_registers(p);
  1653. #ifdef CONFIG_64BIT
  1654. build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
  1655. #else
  1656. build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
  1657. #endif
  1658. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1659. /*
  1660. * For huge tlb entries, pmd doesn't contain an address but
  1661. * instead contains the tlb pte. Check the PAGE_HUGE bit and
  1662. * see if we need to jump to huge tlb processing.
  1663. */
  1664. build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
  1665. #endif
  1666. UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
  1667. UASM_i_LW(p, wr.r2, 0, wr.r2);
  1668. UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1669. uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1670. UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
  1671. #ifdef CONFIG_SMP
  1672. uasm_l_smp_pgtable_change(l, *p);
  1673. #endif
  1674. iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
  1675. if (!m4kc_tlbp_war()) {
  1676. build_tlb_probe_entry(p);
  1677. if (cpu_has_htw) {
  1678. /* race condition happens, leaving */
  1679. uasm_i_ehb(p);
  1680. uasm_i_mfc0(p, wr.r3, C0_INDEX);
  1681. uasm_il_bltz(p, r, wr.r3, label_leave);
  1682. uasm_i_nop(p);
  1683. }
  1684. }
  1685. return wr;
  1686. }
  1687. static void
  1688. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  1689. struct uasm_reloc **r, unsigned int tmp,
  1690. unsigned int ptr)
  1691. {
  1692. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  1693. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  1694. build_update_entries(p, tmp, ptr);
  1695. build_tlb_write_entry(p, l, r, tlb_indexed);
  1696. uasm_l_leave(l, *p);
  1697. build_restore_work_registers(p);
  1698. uasm_i_eret(p); /* return from trap */
  1699. #ifdef CONFIG_64BIT
  1700. build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
  1701. #endif
  1702. }
  1703. static void build_r4000_tlb_load_handler(void)
  1704. {
  1705. u32 *p = handle_tlbl;
  1706. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1707. struct uasm_label *l = labels;
  1708. struct uasm_reloc *r = relocs;
  1709. struct work_registers wr;
  1710. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1711. memset(labels, 0, sizeof(labels));
  1712. memset(relocs, 0, sizeof(relocs));
  1713. if (bcm1250_m3_war()) {
  1714. unsigned int segbits = 44;
  1715. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1716. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1717. uasm_i_xor(&p, K0, K0, K1);
  1718. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1719. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1720. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1721. uasm_i_or(&p, K0, K0, K1);
  1722. uasm_il_bnez(&p, &r, K0, label_leave);
  1723. /* No need for uasm_i_nop */
  1724. }
  1725. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1726. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1727. if (m4kc_tlbp_war())
  1728. build_tlb_probe_entry(&p);
  1729. if (cpu_has_rixi && !cpu_has_rixiex) {
  1730. /*
  1731. * If the page is not _PAGE_VALID, RI or XI could not
  1732. * have triggered it. Skip the expensive test..
  1733. */
  1734. if (use_bbit_insns()) {
  1735. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1736. label_tlbl_goaround1);
  1737. } else {
  1738. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1739. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
  1740. }
  1741. uasm_i_nop(&p);
  1742. uasm_i_tlbr(&p);
  1743. switch (current_cpu_type()) {
  1744. default:
  1745. if (cpu_has_mips_r2_exec_hazard) {
  1746. uasm_i_ehb(&p);
  1747. case CPU_CAVIUM_OCTEON:
  1748. case CPU_CAVIUM_OCTEON_PLUS:
  1749. case CPU_CAVIUM_OCTEON2:
  1750. break;
  1751. }
  1752. }
  1753. /* Examine entrylo 0 or 1 based on ptr. */
  1754. if (use_bbit_insns()) {
  1755. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1756. } else {
  1757. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1758. uasm_i_beqz(&p, wr.r3, 8);
  1759. }
  1760. /* load it in the delay slot*/
  1761. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1762. /* load it if ptr is odd */
  1763. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1764. /*
  1765. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1766. * XI must have triggered it.
  1767. */
  1768. if (use_bbit_insns()) {
  1769. uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
  1770. uasm_i_nop(&p);
  1771. uasm_l_tlbl_goaround1(&l, p);
  1772. } else {
  1773. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1774. uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
  1775. uasm_i_nop(&p);
  1776. }
  1777. uasm_l_tlbl_goaround1(&l, p);
  1778. }
  1779. build_make_valid(&p, &r, wr.r1, wr.r2);
  1780. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1781. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1782. /*
  1783. * This is the entry point when build_r4000_tlbchange_handler_head
  1784. * spots a huge page.
  1785. */
  1786. uasm_l_tlb_huge_update(&l, p);
  1787. iPTE_LW(&p, wr.r1, wr.r2);
  1788. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1789. build_tlb_probe_entry(&p);
  1790. if (cpu_has_rixi && !cpu_has_rixiex) {
  1791. /*
  1792. * If the page is not _PAGE_VALID, RI or XI could not
  1793. * have triggered it. Skip the expensive test..
  1794. */
  1795. if (use_bbit_insns()) {
  1796. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1797. label_tlbl_goaround2);
  1798. } else {
  1799. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1800. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1801. }
  1802. uasm_i_nop(&p);
  1803. uasm_i_tlbr(&p);
  1804. switch (current_cpu_type()) {
  1805. default:
  1806. if (cpu_has_mips_r2_exec_hazard) {
  1807. uasm_i_ehb(&p);
  1808. case CPU_CAVIUM_OCTEON:
  1809. case CPU_CAVIUM_OCTEON_PLUS:
  1810. case CPU_CAVIUM_OCTEON2:
  1811. break;
  1812. }
  1813. }
  1814. /* Examine entrylo 0 or 1 based on ptr. */
  1815. if (use_bbit_insns()) {
  1816. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1817. } else {
  1818. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1819. uasm_i_beqz(&p, wr.r3, 8);
  1820. }
  1821. /* load it in the delay slot*/
  1822. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1823. /* load it if ptr is odd */
  1824. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1825. /*
  1826. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1827. * XI must have triggered it.
  1828. */
  1829. if (use_bbit_insns()) {
  1830. uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
  1831. } else {
  1832. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1833. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1834. }
  1835. if (PM_DEFAULT_MASK == 0)
  1836. uasm_i_nop(&p);
  1837. /*
  1838. * We clobbered C0_PAGEMASK, restore it. On the other branch
  1839. * it is restored in build_huge_tlb_write_entry.
  1840. */
  1841. build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
  1842. uasm_l_tlbl_goaround2(&l, p);
  1843. }
  1844. uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
  1845. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1846. #endif
  1847. uasm_l_nopage_tlbl(&l, p);
  1848. build_restore_work_registers(&p);
  1849. #ifdef CONFIG_CPU_MICROMIPS
  1850. if ((unsigned long)tlb_do_page_fault_0 & 1) {
  1851. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
  1852. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
  1853. uasm_i_jr(&p, K0);
  1854. } else
  1855. #endif
  1856. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1857. uasm_i_nop(&p);
  1858. if (p >= handle_tlbl_end)
  1859. panic("TLB load handler fastpath space exceeded");
  1860. uasm_resolve_relocs(relocs, labels);
  1861. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1862. (unsigned int)(p - handle_tlbl));
  1863. dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
  1864. }
  1865. static void build_r4000_tlb_store_handler(void)
  1866. {
  1867. u32 *p = handle_tlbs;
  1868. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1869. struct uasm_label *l = labels;
  1870. struct uasm_reloc *r = relocs;
  1871. struct work_registers wr;
  1872. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1873. memset(labels, 0, sizeof(labels));
  1874. memset(relocs, 0, sizeof(relocs));
  1875. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1876. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1877. if (m4kc_tlbp_war())
  1878. build_tlb_probe_entry(&p);
  1879. build_make_write(&p, &r, wr.r1, wr.r2);
  1880. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1881. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1882. /*
  1883. * This is the entry point when
  1884. * build_r4000_tlbchange_handler_head spots a huge page.
  1885. */
  1886. uasm_l_tlb_huge_update(&l, p);
  1887. iPTE_LW(&p, wr.r1, wr.r2);
  1888. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1889. build_tlb_probe_entry(&p);
  1890. uasm_i_ori(&p, wr.r1, wr.r1,
  1891. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1892. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1893. #endif
  1894. uasm_l_nopage_tlbs(&l, p);
  1895. build_restore_work_registers(&p);
  1896. #ifdef CONFIG_CPU_MICROMIPS
  1897. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1898. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1899. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1900. uasm_i_jr(&p, K0);
  1901. } else
  1902. #endif
  1903. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1904. uasm_i_nop(&p);
  1905. if (p >= handle_tlbs_end)
  1906. panic("TLB store handler fastpath space exceeded");
  1907. uasm_resolve_relocs(relocs, labels);
  1908. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1909. (unsigned int)(p - handle_tlbs));
  1910. dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
  1911. }
  1912. static void build_r4000_tlb_modify_handler(void)
  1913. {
  1914. u32 *p = handle_tlbm;
  1915. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1916. struct uasm_label *l = labels;
  1917. struct uasm_reloc *r = relocs;
  1918. struct work_registers wr;
  1919. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1920. memset(labels, 0, sizeof(labels));
  1921. memset(relocs, 0, sizeof(relocs));
  1922. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1923. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1924. if (m4kc_tlbp_war())
  1925. build_tlb_probe_entry(&p);
  1926. /* Present and writable bits set, set accessed and dirty bits. */
  1927. build_make_write(&p, &r, wr.r1, wr.r2);
  1928. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1929. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1930. /*
  1931. * This is the entry point when
  1932. * build_r4000_tlbchange_handler_head spots a huge page.
  1933. */
  1934. uasm_l_tlb_huge_update(&l, p);
  1935. iPTE_LW(&p, wr.r1, wr.r2);
  1936. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1937. build_tlb_probe_entry(&p);
  1938. uasm_i_ori(&p, wr.r1, wr.r1,
  1939. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1940. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1941. #endif
  1942. uasm_l_nopage_tlbm(&l, p);
  1943. build_restore_work_registers(&p);
  1944. #ifdef CONFIG_CPU_MICROMIPS
  1945. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1946. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1947. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1948. uasm_i_jr(&p, K0);
  1949. } else
  1950. #endif
  1951. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1952. uasm_i_nop(&p);
  1953. if (p >= handle_tlbm_end)
  1954. panic("TLB modify handler fastpath space exceeded");
  1955. uasm_resolve_relocs(relocs, labels);
  1956. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1957. (unsigned int)(p - handle_tlbm));
  1958. dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1959. }
  1960. static void flush_tlb_handlers(void)
  1961. {
  1962. local_flush_icache_range((unsigned long)handle_tlbl,
  1963. (unsigned long)handle_tlbl_end);
  1964. local_flush_icache_range((unsigned long)handle_tlbs,
  1965. (unsigned long)handle_tlbs_end);
  1966. local_flush_icache_range((unsigned long)handle_tlbm,
  1967. (unsigned long)handle_tlbm_end);
  1968. local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
  1969. (unsigned long)tlbmiss_handler_setup_pgd_end);
  1970. }
  1971. static void print_htw_config(void)
  1972. {
  1973. unsigned long config;
  1974. unsigned int pwctl;
  1975. const int field = 2 * sizeof(unsigned long);
  1976. config = read_c0_pwfield();
  1977. pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
  1978. field, config,
  1979. (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
  1980. (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
  1981. (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
  1982. (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
  1983. (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
  1984. config = read_c0_pwsize();
  1985. pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
  1986. field, config,
  1987. (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
  1988. (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
  1989. (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
  1990. (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
  1991. (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
  1992. pwctl = read_c0_pwctl();
  1993. pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
  1994. pwctl,
  1995. (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
  1996. (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
  1997. (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
  1998. (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
  1999. }
  2000. static void config_htw_params(void)
  2001. {
  2002. unsigned long pwfield, pwsize, ptei;
  2003. unsigned int config;
  2004. /*
  2005. * We are using 2-level page tables, so we only need to
  2006. * setup GDW and PTW appropriately. UDW and MDW will remain 0.
  2007. * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
  2008. * write values less than 0xc in these fields because the entire
  2009. * write will be dropped. As a result of which, we must preserve
  2010. * the original reset values and overwrite only what we really want.
  2011. */
  2012. pwfield = read_c0_pwfield();
  2013. /* re-initialize the GDI field */
  2014. pwfield &= ~MIPS_PWFIELD_GDI_MASK;
  2015. pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
  2016. /* re-initialize the PTI field including the even/odd bit */
  2017. pwfield &= ~MIPS_PWFIELD_PTI_MASK;
  2018. pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
  2019. if (CONFIG_PGTABLE_LEVELS >= 3) {
  2020. pwfield &= ~MIPS_PWFIELD_MDI_MASK;
  2021. pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
  2022. }
  2023. /* Set the PTEI right shift */
  2024. ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
  2025. pwfield |= ptei;
  2026. write_c0_pwfield(pwfield);
  2027. /* Check whether the PTEI value is supported */
  2028. back_to_back_c0_hazard();
  2029. pwfield = read_c0_pwfield();
  2030. if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
  2031. != ptei) {
  2032. pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
  2033. ptei);
  2034. /*
  2035. * Drop option to avoid HTW being enabled via another path
  2036. * (eg htw_reset())
  2037. */
  2038. current_cpu_data.options &= ~MIPS_CPU_HTW;
  2039. return;
  2040. }
  2041. pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
  2042. pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
  2043. if (CONFIG_PGTABLE_LEVELS >= 3)
  2044. pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
  2045. /* If XPA has been enabled, PTEs are 64-bit in size. */
  2046. if (config_enabled(CONFIG_64BITS) || (read_c0_pagegrain() & PG_ELPA))
  2047. pwsize |= 1;
  2048. write_c0_pwsize(pwsize);
  2049. /* Make sure everything is set before we enable the HTW */
  2050. back_to_back_c0_hazard();
  2051. /* Enable HTW and disable the rest of the pwctl fields */
  2052. config = 1 << MIPS_PWCTL_PWEN_SHIFT;
  2053. write_c0_pwctl(config);
  2054. pr_info("Hardware Page Table Walker enabled\n");
  2055. print_htw_config();
  2056. }
  2057. static void config_xpa_params(void)
  2058. {
  2059. #ifdef CONFIG_XPA
  2060. unsigned int pagegrain;
  2061. if (mips_xpa_disabled) {
  2062. pr_info("Extended Physical Addressing (XPA) disabled\n");
  2063. return;
  2064. }
  2065. pagegrain = read_c0_pagegrain();
  2066. write_c0_pagegrain(pagegrain | PG_ELPA);
  2067. back_to_back_c0_hazard();
  2068. pagegrain = read_c0_pagegrain();
  2069. if (pagegrain & PG_ELPA)
  2070. pr_info("Extended Physical Addressing (XPA) enabled\n");
  2071. else
  2072. panic("Extended Physical Addressing (XPA) disabled");
  2073. #endif
  2074. }
  2075. static void check_pabits(void)
  2076. {
  2077. unsigned long entry;
  2078. unsigned pabits, fillbits;
  2079. if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
  2080. /*
  2081. * We'll only be making use of the fact that we can rotate bits
  2082. * into the fill if the CPU supports RIXI, so don't bother
  2083. * probing this for CPUs which don't.
  2084. */
  2085. return;
  2086. }
  2087. write_c0_entrylo0(~0ul);
  2088. back_to_back_c0_hazard();
  2089. entry = read_c0_entrylo0();
  2090. /* clear all non-PFN bits */
  2091. entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
  2092. entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
  2093. /* find a lower bound on PABITS, and upper bound on fill bits */
  2094. pabits = fls_long(entry) + 6;
  2095. fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
  2096. /* minus the RI & XI bits */
  2097. fillbits -= min_t(unsigned, fillbits, 2);
  2098. if (fillbits >= ilog2(_PAGE_NO_EXEC))
  2099. fill_includes_sw_bits = true;
  2100. pr_debug("Entry* registers contain %u fill bits\n", fillbits);
  2101. }
  2102. void build_tlb_refill_handler(void)
  2103. {
  2104. /*
  2105. * The refill handler is generated per-CPU, multi-node systems
  2106. * may have local storage for it. The other handlers are only
  2107. * needed once.
  2108. */
  2109. static int run_once = 0;
  2110. output_pgtable_bits_defines();
  2111. check_pabits();
  2112. #ifdef CONFIG_64BIT
  2113. check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  2114. #endif
  2115. switch (current_cpu_type()) {
  2116. case CPU_R2000:
  2117. case CPU_R3000:
  2118. case CPU_R3000A:
  2119. case CPU_R3081E:
  2120. case CPU_TX3912:
  2121. case CPU_TX3922:
  2122. case CPU_TX3927:
  2123. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  2124. if (cpu_has_local_ebase)
  2125. build_r3000_tlb_refill_handler();
  2126. if (!run_once) {
  2127. if (!cpu_has_local_ebase)
  2128. build_r3000_tlb_refill_handler();
  2129. build_setup_pgd();
  2130. build_r3000_tlb_load_handler();
  2131. build_r3000_tlb_store_handler();
  2132. build_r3000_tlb_modify_handler();
  2133. flush_tlb_handlers();
  2134. run_once++;
  2135. }
  2136. #else
  2137. panic("No R3000 TLB refill handler");
  2138. #endif
  2139. break;
  2140. case CPU_R6000:
  2141. case CPU_R6000A:
  2142. panic("No R6000 TLB refill handler yet");
  2143. break;
  2144. case CPU_R8000:
  2145. panic("No R8000 TLB refill handler yet");
  2146. break;
  2147. default:
  2148. if (!run_once) {
  2149. scratch_reg = allocate_kscratch();
  2150. build_setup_pgd();
  2151. build_r4000_tlb_load_handler();
  2152. build_r4000_tlb_store_handler();
  2153. build_r4000_tlb_modify_handler();
  2154. if (!cpu_has_local_ebase)
  2155. build_r4000_tlb_refill_handler();
  2156. flush_tlb_handlers();
  2157. run_once++;
  2158. }
  2159. if (cpu_has_local_ebase)
  2160. build_r4000_tlb_refill_handler();
  2161. if (cpu_has_xpa)
  2162. config_xpa_params();
  2163. if (cpu_has_htw)
  2164. config_htw_params();
  2165. }
  2166. }