traps.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
  7. * Copyright (C) 1995, 1996 Paul M. Antoine
  8. * Copyright (C) 1998 Ulf Carlsson
  9. * Copyright (C) 1999 Silicon Graphics, Inc.
  10. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11. * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
  13. * Copyright (C) 2014, Imagination Technologies Ltd.
  14. */
  15. #include <linux/bitops.h>
  16. #include <linux/bug.h>
  17. #include <linux/compiler.h>
  18. #include <linux/context_tracking.h>
  19. #include <linux/cpu_pm.h>
  20. #include <linux/kexec.h>
  21. #include <linux/init.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/sched.h>
  26. #include <linux/smp.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/bootmem.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/kgdb.h>
  33. #include <linux/kdebug.h>
  34. #include <linux/kprobes.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kdb.h>
  37. #include <linux/irq.h>
  38. #include <linux/perf_event.h>
  39. #include <asm/addrspace.h>
  40. #include <asm/bootinfo.h>
  41. #include <asm/branch.h>
  42. #include <asm/break.h>
  43. #include <asm/cop2.h>
  44. #include <asm/cpu.h>
  45. #include <asm/cpu-type.h>
  46. #include <asm/dsp.h>
  47. #include <asm/fpu.h>
  48. #include <asm/fpu_emulator.h>
  49. #include <asm/idle.h>
  50. #include <asm/mips-r2-to-r6-emul.h>
  51. #include <asm/mipsregs.h>
  52. #include <asm/mipsmtregs.h>
  53. #include <asm/module.h>
  54. #include <asm/msa.h>
  55. #include <asm/pgtable.h>
  56. #include <asm/ptrace.h>
  57. #include <asm/sections.h>
  58. #include <asm/tlbdebug.h>
  59. #include <asm/traps.h>
  60. #include <asm/uaccess.h>
  61. #include <asm/watch.h>
  62. #include <asm/mmu_context.h>
  63. #include <asm/types.h>
  64. #include <asm/stacktrace.h>
  65. #include <asm/uasm.h>
  66. extern void check_wait(void);
  67. extern asmlinkage void rollback_handle_int(void);
  68. extern asmlinkage void handle_int(void);
  69. extern u32 handle_tlbl[];
  70. extern u32 handle_tlbs[];
  71. extern u32 handle_tlbm[];
  72. extern asmlinkage void handle_adel(void);
  73. extern asmlinkage void handle_ades(void);
  74. extern asmlinkage void handle_ibe(void);
  75. extern asmlinkage void handle_dbe(void);
  76. extern asmlinkage void handle_sys(void);
  77. extern asmlinkage void handle_bp(void);
  78. extern asmlinkage void handle_ri(void);
  79. extern asmlinkage void handle_ri_rdhwr_vivt(void);
  80. extern asmlinkage void handle_ri_rdhwr(void);
  81. extern asmlinkage void handle_cpu(void);
  82. extern asmlinkage void handle_ov(void);
  83. extern asmlinkage void handle_tr(void);
  84. extern asmlinkage void handle_msa_fpe(void);
  85. extern asmlinkage void handle_fpe(void);
  86. extern asmlinkage void handle_ftlb(void);
  87. extern asmlinkage void handle_msa(void);
  88. extern asmlinkage void handle_mdmx(void);
  89. extern asmlinkage void handle_watch(void);
  90. extern asmlinkage void handle_mt(void);
  91. extern asmlinkage void handle_dsp(void);
  92. extern asmlinkage void handle_mcheck(void);
  93. extern asmlinkage void handle_reserved(void);
  94. extern void tlb_do_page_fault_0(void);
  95. void (*board_be_init)(void);
  96. int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  97. void (*board_nmi_handler_setup)(void);
  98. void (*board_ejtag_handler_setup)(void);
  99. void (*board_bind_eic_interrupt)(int irq, int regset);
  100. void (*board_ebase_setup)(void);
  101. void(*board_cache_error_setup)(void);
  102. static void show_raw_backtrace(unsigned long reg29)
  103. {
  104. unsigned long *sp = (unsigned long *)(reg29 & ~3);
  105. unsigned long addr;
  106. printk("Call Trace:");
  107. #ifdef CONFIG_KALLSYMS
  108. printk("\n");
  109. #endif
  110. while (!kstack_end(sp)) {
  111. unsigned long __user *p =
  112. (unsigned long __user *)(unsigned long)sp++;
  113. if (__get_user(addr, p)) {
  114. printk(" (Bad stack address)");
  115. break;
  116. }
  117. if (__kernel_text_address(addr))
  118. print_ip_sym(addr);
  119. }
  120. printk("\n");
  121. }
  122. #ifdef CONFIG_KALLSYMS
  123. int raw_show_trace;
  124. static int __init set_raw_show_trace(char *str)
  125. {
  126. raw_show_trace = 1;
  127. return 1;
  128. }
  129. __setup("raw_show_trace", set_raw_show_trace);
  130. #endif
  131. static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
  132. {
  133. unsigned long sp = regs->regs[29];
  134. unsigned long ra = regs->regs[31];
  135. unsigned long pc = regs->cp0_epc;
  136. if (!task)
  137. task = current;
  138. if (raw_show_trace || !__kernel_text_address(pc)) {
  139. show_raw_backtrace(sp);
  140. return;
  141. }
  142. printk("Call Trace:\n");
  143. do {
  144. print_ip_sym(pc);
  145. pc = unwind_stack(task, &sp, pc, &ra);
  146. } while (pc);
  147. printk("\n");
  148. }
  149. /*
  150. * This routine abuses get_user()/put_user() to reference pointers
  151. * with at least a bit of error checking ...
  152. */
  153. static void show_stacktrace(struct task_struct *task,
  154. const struct pt_regs *regs)
  155. {
  156. const int field = 2 * sizeof(unsigned long);
  157. long stackdata;
  158. int i;
  159. unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
  160. printk("Stack :");
  161. i = 0;
  162. while ((unsigned long) sp & (PAGE_SIZE - 1)) {
  163. if (i && ((i % (64 / field)) == 0))
  164. printk("\n ");
  165. if (i > 39) {
  166. printk(" ...");
  167. break;
  168. }
  169. if (__get_user(stackdata, sp++)) {
  170. printk(" (Bad stack address)");
  171. break;
  172. }
  173. printk(" %0*lx", field, stackdata);
  174. i++;
  175. }
  176. printk("\n");
  177. show_backtrace(task, regs);
  178. }
  179. void show_stack(struct task_struct *task, unsigned long *sp)
  180. {
  181. struct pt_regs regs;
  182. mm_segment_t old_fs = get_fs();
  183. if (sp) {
  184. regs.regs[29] = (unsigned long)sp;
  185. regs.regs[31] = 0;
  186. regs.cp0_epc = 0;
  187. } else {
  188. if (task && task != current) {
  189. regs.regs[29] = task->thread.reg29;
  190. regs.regs[31] = 0;
  191. regs.cp0_epc = task->thread.reg31;
  192. #ifdef CONFIG_KGDB_KDB
  193. } else if (atomic_read(&kgdb_active) != -1 &&
  194. kdb_current_regs) {
  195. memcpy(&regs, kdb_current_regs, sizeof(regs));
  196. #endif /* CONFIG_KGDB_KDB */
  197. } else {
  198. prepare_frametrace(&regs);
  199. }
  200. }
  201. /*
  202. * show_stack() deals exclusively with kernel mode, so be sure to access
  203. * the stack in the kernel (not user) address space.
  204. */
  205. set_fs(KERNEL_DS);
  206. show_stacktrace(task, &regs);
  207. set_fs(old_fs);
  208. }
  209. static void show_code(unsigned int __user *pc)
  210. {
  211. long i;
  212. unsigned short __user *pc16 = NULL;
  213. printk("\nCode:");
  214. if ((unsigned long)pc & 1)
  215. pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
  216. for(i = -3 ; i < 6 ; i++) {
  217. unsigned int insn;
  218. if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
  219. printk(" (Bad address in epc)\n");
  220. break;
  221. }
  222. printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
  223. }
  224. }
  225. static void __show_regs(const struct pt_regs *regs)
  226. {
  227. const int field = 2 * sizeof(unsigned long);
  228. unsigned int cause = regs->cp0_cause;
  229. unsigned int exccode;
  230. int i;
  231. show_regs_print_info(KERN_DEFAULT);
  232. /*
  233. * Saved main processor registers
  234. */
  235. for (i = 0; i < 32; ) {
  236. if ((i % 4) == 0)
  237. printk("$%2d :", i);
  238. if (i == 0)
  239. printk(" %0*lx", field, 0UL);
  240. else if (i == 26 || i == 27)
  241. printk(" %*s", field, "");
  242. else
  243. printk(" %0*lx", field, regs->regs[i]);
  244. i++;
  245. if ((i % 4) == 0)
  246. printk("\n");
  247. }
  248. #ifdef CONFIG_CPU_HAS_SMARTMIPS
  249. printk("Acx : %0*lx\n", field, regs->acx);
  250. #endif
  251. printk("Hi : %0*lx\n", field, regs->hi);
  252. printk("Lo : %0*lx\n", field, regs->lo);
  253. /*
  254. * Saved cp0 registers
  255. */
  256. printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
  257. (void *) regs->cp0_epc);
  258. printk("ra : %0*lx %pS\n", field, regs->regs[31],
  259. (void *) regs->regs[31]);
  260. printk("Status: %08x ", (uint32_t) regs->cp0_status);
  261. if (cpu_has_3kex) {
  262. if (regs->cp0_status & ST0_KUO)
  263. printk("KUo ");
  264. if (regs->cp0_status & ST0_IEO)
  265. printk("IEo ");
  266. if (regs->cp0_status & ST0_KUP)
  267. printk("KUp ");
  268. if (regs->cp0_status & ST0_IEP)
  269. printk("IEp ");
  270. if (regs->cp0_status & ST0_KUC)
  271. printk("KUc ");
  272. if (regs->cp0_status & ST0_IEC)
  273. printk("IEc ");
  274. } else if (cpu_has_4kex) {
  275. if (regs->cp0_status & ST0_KX)
  276. printk("KX ");
  277. if (regs->cp0_status & ST0_SX)
  278. printk("SX ");
  279. if (regs->cp0_status & ST0_UX)
  280. printk("UX ");
  281. switch (regs->cp0_status & ST0_KSU) {
  282. case KSU_USER:
  283. printk("USER ");
  284. break;
  285. case KSU_SUPERVISOR:
  286. printk("SUPERVISOR ");
  287. break;
  288. case KSU_KERNEL:
  289. printk("KERNEL ");
  290. break;
  291. default:
  292. printk("BAD_MODE ");
  293. break;
  294. }
  295. if (regs->cp0_status & ST0_ERL)
  296. printk("ERL ");
  297. if (regs->cp0_status & ST0_EXL)
  298. printk("EXL ");
  299. if (regs->cp0_status & ST0_IE)
  300. printk("IE ");
  301. }
  302. printk("\n");
  303. exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
  304. printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
  305. if (1 <= exccode && exccode <= 5)
  306. printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
  307. printk("PrId : %08x (%s)\n", read_c0_prid(),
  308. cpu_name_string());
  309. }
  310. /*
  311. * FIXME: really the generic show_regs should take a const pointer argument.
  312. */
  313. void show_regs(struct pt_regs *regs)
  314. {
  315. __show_regs((struct pt_regs *)regs);
  316. }
  317. void show_registers(struct pt_regs *regs)
  318. {
  319. const int field = 2 * sizeof(unsigned long);
  320. mm_segment_t old_fs = get_fs();
  321. __show_regs(regs);
  322. print_modules();
  323. printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
  324. current->comm, current->pid, current_thread_info(), current,
  325. field, current_thread_info()->tp_value);
  326. if (cpu_has_userlocal) {
  327. unsigned long tls;
  328. tls = read_c0_userlocal();
  329. if (tls != current_thread_info()->tp_value)
  330. printk("*HwTLS: %0*lx\n", field, tls);
  331. }
  332. if (!user_mode(regs))
  333. /* Necessary for getting the correct stack content */
  334. set_fs(KERNEL_DS);
  335. show_stacktrace(current, regs);
  336. show_code((unsigned int __user *) regs->cp0_epc);
  337. printk("\n");
  338. set_fs(old_fs);
  339. }
  340. static DEFINE_RAW_SPINLOCK(die_lock);
  341. void __noreturn die(const char *str, struct pt_regs *regs)
  342. {
  343. static int die_counter;
  344. int sig = SIGSEGV;
  345. oops_enter();
  346. if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
  347. SIGSEGV) == NOTIFY_STOP)
  348. sig = 0;
  349. console_verbose();
  350. raw_spin_lock_irq(&die_lock);
  351. bust_spinlocks(1);
  352. printk("%s[#%d]:\n", str, ++die_counter);
  353. show_registers(regs);
  354. add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
  355. raw_spin_unlock_irq(&die_lock);
  356. oops_exit();
  357. if (in_interrupt())
  358. panic("Fatal exception in interrupt");
  359. if (panic_on_oops) {
  360. printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
  361. ssleep(5);
  362. panic("Fatal exception");
  363. }
  364. if (regs && kexec_should_crash(current))
  365. crash_kexec(regs);
  366. do_exit(sig);
  367. }
  368. extern struct exception_table_entry __start___dbe_table[];
  369. extern struct exception_table_entry __stop___dbe_table[];
  370. __asm__(
  371. " .section __dbe_table, \"a\"\n"
  372. " .previous \n");
  373. /* Given an address, look for it in the exception tables. */
  374. static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
  375. {
  376. const struct exception_table_entry *e;
  377. e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
  378. if (!e)
  379. e = search_module_dbetables(addr);
  380. return e;
  381. }
  382. asmlinkage void do_be(struct pt_regs *regs)
  383. {
  384. const int field = 2 * sizeof(unsigned long);
  385. const struct exception_table_entry *fixup = NULL;
  386. int data = regs->cp0_cause & 4;
  387. int action = MIPS_BE_FATAL;
  388. enum ctx_state prev_state;
  389. prev_state = exception_enter();
  390. /* XXX For now. Fixme, this searches the wrong table ... */
  391. if (data && !user_mode(regs))
  392. fixup = search_dbe_tables(exception_epc(regs));
  393. if (fixup)
  394. action = MIPS_BE_FIXUP;
  395. if (board_be_handler)
  396. action = board_be_handler(regs, fixup != NULL);
  397. switch (action) {
  398. case MIPS_BE_DISCARD:
  399. goto out;
  400. case MIPS_BE_FIXUP:
  401. if (fixup) {
  402. regs->cp0_epc = fixup->nextinsn;
  403. goto out;
  404. }
  405. break;
  406. default:
  407. break;
  408. }
  409. /*
  410. * Assume it would be too dangerous to continue ...
  411. */
  412. printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
  413. data ? "Data" : "Instruction",
  414. field, regs->cp0_epc, field, regs->regs[31]);
  415. if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
  416. SIGBUS) == NOTIFY_STOP)
  417. goto out;
  418. die_if_kernel("Oops", regs);
  419. force_sig(SIGBUS, current);
  420. out:
  421. exception_exit(prev_state);
  422. }
  423. /*
  424. * ll/sc, rdhwr, sync emulation
  425. */
  426. #define OPCODE 0xfc000000
  427. #define BASE 0x03e00000
  428. #define RT 0x001f0000
  429. #define OFFSET 0x0000ffff
  430. #define LL 0xc0000000
  431. #define SC 0xe0000000
  432. #define SPEC0 0x00000000
  433. #define SPEC3 0x7c000000
  434. #define RD 0x0000f800
  435. #define FUNC 0x0000003f
  436. #define SYNC 0x0000000f
  437. #define RDHWR 0x0000003b
  438. /* microMIPS definitions */
  439. #define MM_POOL32A_FUNC 0xfc00ffff
  440. #define MM_RDHWR 0x00006b3c
  441. #define MM_RS 0x001f0000
  442. #define MM_RT 0x03e00000
  443. /*
  444. * The ll_bit is cleared by r*_switch.S
  445. */
  446. unsigned int ll_bit;
  447. struct task_struct *ll_task;
  448. static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
  449. {
  450. unsigned long value, __user *vaddr;
  451. long offset;
  452. /*
  453. * analyse the ll instruction that just caused a ri exception
  454. * and put the referenced address to addr.
  455. */
  456. /* sign extend offset */
  457. offset = opcode & OFFSET;
  458. offset <<= 16;
  459. offset >>= 16;
  460. vaddr = (unsigned long __user *)
  461. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  462. if ((unsigned long)vaddr & 3)
  463. return SIGBUS;
  464. if (get_user(value, vaddr))
  465. return SIGSEGV;
  466. preempt_disable();
  467. if (ll_task == NULL || ll_task == current) {
  468. ll_bit = 1;
  469. } else {
  470. ll_bit = 0;
  471. }
  472. ll_task = current;
  473. preempt_enable();
  474. regs->regs[(opcode & RT) >> 16] = value;
  475. return 0;
  476. }
  477. static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
  478. {
  479. unsigned long __user *vaddr;
  480. unsigned long reg;
  481. long offset;
  482. /*
  483. * analyse the sc instruction that just caused a ri exception
  484. * and put the referenced address to addr.
  485. */
  486. /* sign extend offset */
  487. offset = opcode & OFFSET;
  488. offset <<= 16;
  489. offset >>= 16;
  490. vaddr = (unsigned long __user *)
  491. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  492. reg = (opcode & RT) >> 16;
  493. if ((unsigned long)vaddr & 3)
  494. return SIGBUS;
  495. preempt_disable();
  496. if (ll_bit == 0 || ll_task != current) {
  497. regs->regs[reg] = 0;
  498. preempt_enable();
  499. return 0;
  500. }
  501. preempt_enable();
  502. if (put_user(regs->regs[reg], vaddr))
  503. return SIGSEGV;
  504. regs->regs[reg] = 1;
  505. return 0;
  506. }
  507. /*
  508. * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
  509. * opcodes are supposed to result in coprocessor unusable exceptions if
  510. * executed on ll/sc-less processors. That's the theory. In practice a
  511. * few processors such as NEC's VR4100 throw reserved instruction exceptions
  512. * instead, so we're doing the emulation thing in both exception handlers.
  513. */
  514. static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
  515. {
  516. if ((opcode & OPCODE) == LL) {
  517. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  518. 1, regs, 0);
  519. return simulate_ll(regs, opcode);
  520. }
  521. if ((opcode & OPCODE) == SC) {
  522. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  523. 1, regs, 0);
  524. return simulate_sc(regs, opcode);
  525. }
  526. return -1; /* Must be something else ... */
  527. }
  528. /*
  529. * Simulate trapping 'rdhwr' instructions to provide user accessible
  530. * registers not implemented in hardware.
  531. */
  532. static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
  533. {
  534. struct thread_info *ti = task_thread_info(current);
  535. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  536. 1, regs, 0);
  537. switch (rd) {
  538. case 0: /* CPU number */
  539. regs->regs[rt] = smp_processor_id();
  540. return 0;
  541. case 1: /* SYNCI length */
  542. regs->regs[rt] = min(current_cpu_data.dcache.linesz,
  543. current_cpu_data.icache.linesz);
  544. return 0;
  545. case 2: /* Read count register */
  546. regs->regs[rt] = read_c0_count();
  547. return 0;
  548. case 3: /* Count register resolution */
  549. switch (current_cpu_type()) {
  550. case CPU_20KC:
  551. case CPU_25KF:
  552. regs->regs[rt] = 1;
  553. break;
  554. default:
  555. regs->regs[rt] = 2;
  556. }
  557. return 0;
  558. case 29:
  559. regs->regs[rt] = ti->tp_value;
  560. return 0;
  561. default:
  562. return -1;
  563. }
  564. }
  565. static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
  566. {
  567. if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
  568. int rd = (opcode & RD) >> 11;
  569. int rt = (opcode & RT) >> 16;
  570. simulate_rdhwr(regs, rd, rt);
  571. return 0;
  572. }
  573. /* Not ours. */
  574. return -1;
  575. }
  576. static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
  577. {
  578. if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
  579. int rd = (opcode & MM_RS) >> 16;
  580. int rt = (opcode & MM_RT) >> 21;
  581. simulate_rdhwr(regs, rd, rt);
  582. return 0;
  583. }
  584. /* Not ours. */
  585. return -1;
  586. }
  587. static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
  588. {
  589. if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
  590. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  591. 1, regs, 0);
  592. return 0;
  593. }
  594. return -1; /* Must be something else ... */
  595. }
  596. asmlinkage void do_ov(struct pt_regs *regs)
  597. {
  598. enum ctx_state prev_state;
  599. siginfo_t info;
  600. prev_state = exception_enter();
  601. die_if_kernel("Integer overflow", regs);
  602. info.si_code = FPE_INTOVF;
  603. info.si_signo = SIGFPE;
  604. info.si_errno = 0;
  605. info.si_addr = (void __user *) regs->cp0_epc;
  606. force_sig_info(SIGFPE, &info, current);
  607. exception_exit(prev_state);
  608. }
  609. int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
  610. {
  611. struct siginfo si = { 0 };
  612. switch (sig) {
  613. case 0:
  614. return 0;
  615. case SIGFPE:
  616. si.si_addr = fault_addr;
  617. si.si_signo = sig;
  618. /*
  619. * Inexact can happen together with Overflow or Underflow.
  620. * Respect the mask to deliver the correct exception.
  621. */
  622. fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
  623. (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
  624. if (fcr31 & FPU_CSR_INV_X)
  625. si.si_code = FPE_FLTINV;
  626. else if (fcr31 & FPU_CSR_DIV_X)
  627. si.si_code = FPE_FLTDIV;
  628. else if (fcr31 & FPU_CSR_OVF_X)
  629. si.si_code = FPE_FLTOVF;
  630. else if (fcr31 & FPU_CSR_UDF_X)
  631. si.si_code = FPE_FLTUND;
  632. else if (fcr31 & FPU_CSR_INE_X)
  633. si.si_code = FPE_FLTRES;
  634. else
  635. si.si_code = __SI_FAULT;
  636. force_sig_info(sig, &si, current);
  637. return 1;
  638. case SIGBUS:
  639. si.si_addr = fault_addr;
  640. si.si_signo = sig;
  641. si.si_code = BUS_ADRERR;
  642. force_sig_info(sig, &si, current);
  643. return 1;
  644. case SIGSEGV:
  645. si.si_addr = fault_addr;
  646. si.si_signo = sig;
  647. down_read(&current->mm->mmap_sem);
  648. if (find_vma(current->mm, (unsigned long)fault_addr))
  649. si.si_code = SEGV_ACCERR;
  650. else
  651. si.si_code = SEGV_MAPERR;
  652. up_read(&current->mm->mmap_sem);
  653. force_sig_info(sig, &si, current);
  654. return 1;
  655. default:
  656. force_sig(sig, current);
  657. return 1;
  658. }
  659. }
  660. static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
  661. unsigned long old_epc, unsigned long old_ra)
  662. {
  663. union mips_instruction inst = { .word = opcode };
  664. void __user *fault_addr;
  665. unsigned long fcr31;
  666. int sig;
  667. /* If it's obviously not an FP instruction, skip it */
  668. switch (inst.i_format.opcode) {
  669. case cop1_op:
  670. case cop1x_op:
  671. case lwc1_op:
  672. case ldc1_op:
  673. case swc1_op:
  674. case sdc1_op:
  675. break;
  676. default:
  677. return -1;
  678. }
  679. /*
  680. * do_ri skipped over the instruction via compute_return_epc, undo
  681. * that for the FPU emulator.
  682. */
  683. regs->cp0_epc = old_epc;
  684. regs->regs[31] = old_ra;
  685. /* Save the FP context to struct thread_struct */
  686. lose_fpu(1);
  687. /* Run the emulator */
  688. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  689. &fault_addr);
  690. fcr31 = current->thread.fpu.fcr31;
  691. /*
  692. * We can't allow the emulated instruction to leave any of
  693. * the cause bits set in $fcr31.
  694. */
  695. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  696. /* Restore the hardware register state */
  697. own_fpu(1);
  698. /* Send a signal if required. */
  699. process_fpemu_return(sig, fault_addr, fcr31);
  700. return 0;
  701. }
  702. /*
  703. * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
  704. */
  705. asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
  706. {
  707. enum ctx_state prev_state;
  708. void __user *fault_addr;
  709. int sig;
  710. prev_state = exception_enter();
  711. if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
  712. SIGFPE) == NOTIFY_STOP)
  713. goto out;
  714. /* Clear FCSR.Cause before enabling interrupts */
  715. write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
  716. local_irq_enable();
  717. die_if_kernel("FP exception in kernel code", regs);
  718. if (fcr31 & FPU_CSR_UNI_X) {
  719. /*
  720. * Unimplemented operation exception. If we've got the full
  721. * software emulator on-board, let's use it...
  722. *
  723. * Force FPU to dump state into task/thread context. We're
  724. * moving a lot of data here for what is probably a single
  725. * instruction, but the alternative is to pre-decode the FP
  726. * register operands before invoking the emulator, which seems
  727. * a bit extreme for what should be an infrequent event.
  728. */
  729. /* Ensure 'resume' not overwrite saved fp context again. */
  730. lose_fpu(1);
  731. /* Run the emulator */
  732. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  733. &fault_addr);
  734. fcr31 = current->thread.fpu.fcr31;
  735. /*
  736. * We can't allow the emulated instruction to leave any of
  737. * the cause bits set in $fcr31.
  738. */
  739. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  740. /* Restore the hardware register state */
  741. own_fpu(1); /* Using the FPU again. */
  742. } else {
  743. sig = SIGFPE;
  744. fault_addr = (void __user *) regs->cp0_epc;
  745. }
  746. /* Send a signal if required. */
  747. process_fpemu_return(sig, fault_addr, fcr31);
  748. out:
  749. exception_exit(prev_state);
  750. }
  751. void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
  752. const char *str)
  753. {
  754. siginfo_t info;
  755. char b[40];
  756. #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
  757. if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
  758. SIGTRAP) == NOTIFY_STOP)
  759. return;
  760. #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
  761. if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
  762. SIGTRAP) == NOTIFY_STOP)
  763. return;
  764. /*
  765. * A short test says that IRIX 5.3 sends SIGTRAP for all trap
  766. * insns, even for trap and break codes that indicate arithmetic
  767. * failures. Weird ...
  768. * But should we continue the brokenness??? --macro
  769. */
  770. switch (code) {
  771. case BRK_OVERFLOW:
  772. case BRK_DIVZERO:
  773. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  774. die_if_kernel(b, regs);
  775. if (code == BRK_DIVZERO)
  776. info.si_code = FPE_INTDIV;
  777. else
  778. info.si_code = FPE_INTOVF;
  779. info.si_signo = SIGFPE;
  780. info.si_errno = 0;
  781. info.si_addr = (void __user *) regs->cp0_epc;
  782. force_sig_info(SIGFPE, &info, current);
  783. break;
  784. case BRK_BUG:
  785. die_if_kernel("Kernel bug detected", regs);
  786. force_sig(SIGTRAP, current);
  787. break;
  788. case BRK_MEMU:
  789. /*
  790. * This breakpoint code is used by the FPU emulator to retake
  791. * control of the CPU after executing the instruction from the
  792. * delay slot of an emulated branch.
  793. *
  794. * Terminate if exception was recognized as a delay slot return
  795. * otherwise handle as normal.
  796. */
  797. if (do_dsemulret(regs))
  798. return;
  799. die_if_kernel("Math emu break/trap", regs);
  800. force_sig(SIGTRAP, current);
  801. break;
  802. default:
  803. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  804. die_if_kernel(b, regs);
  805. force_sig(SIGTRAP, current);
  806. }
  807. }
  808. asmlinkage void do_bp(struct pt_regs *regs)
  809. {
  810. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  811. unsigned int opcode, bcode;
  812. enum ctx_state prev_state;
  813. mm_segment_t seg;
  814. seg = get_fs();
  815. if (!user_mode(regs))
  816. set_fs(KERNEL_DS);
  817. prev_state = exception_enter();
  818. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  819. if (get_isa16_mode(regs->cp0_epc)) {
  820. u16 instr[2];
  821. if (__get_user(instr[0], (u16 __user *)epc))
  822. goto out_sigsegv;
  823. if (!cpu_has_mmips) {
  824. /* MIPS16e mode */
  825. bcode = (instr[0] >> 5) & 0x3f;
  826. } else if (mm_insn_16bit(instr[0])) {
  827. /* 16-bit microMIPS BREAK */
  828. bcode = instr[0] & 0xf;
  829. } else {
  830. /* 32-bit microMIPS BREAK */
  831. if (__get_user(instr[1], (u16 __user *)(epc + 2)))
  832. goto out_sigsegv;
  833. opcode = (instr[0] << 16) | instr[1];
  834. bcode = (opcode >> 6) & ((1 << 20) - 1);
  835. }
  836. } else {
  837. if (__get_user(opcode, (unsigned int __user *)epc))
  838. goto out_sigsegv;
  839. bcode = (opcode >> 6) & ((1 << 20) - 1);
  840. }
  841. /*
  842. * There is the ancient bug in the MIPS assemblers that the break
  843. * code starts left to bit 16 instead to bit 6 in the opcode.
  844. * Gas is bug-compatible, but not always, grrr...
  845. * We handle both cases with a simple heuristics. --macro
  846. */
  847. if (bcode >= (1 << 10))
  848. bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
  849. /*
  850. * notify the kprobe handlers, if instruction is likely to
  851. * pertain to them.
  852. */
  853. switch (bcode) {
  854. case BRK_UPROBE:
  855. if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
  856. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  857. goto out;
  858. else
  859. break;
  860. case BRK_UPROBE_XOL:
  861. if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
  862. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  863. goto out;
  864. else
  865. break;
  866. case BRK_KPROBE_BP:
  867. if (notify_die(DIE_BREAK, "debug", regs, bcode,
  868. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  869. goto out;
  870. else
  871. break;
  872. case BRK_KPROBE_SSTEPBP:
  873. if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
  874. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  875. goto out;
  876. else
  877. break;
  878. default:
  879. break;
  880. }
  881. do_trap_or_bp(regs, bcode, "Break");
  882. out:
  883. set_fs(seg);
  884. exception_exit(prev_state);
  885. return;
  886. out_sigsegv:
  887. force_sig(SIGSEGV, current);
  888. goto out;
  889. }
  890. asmlinkage void do_tr(struct pt_regs *regs)
  891. {
  892. u32 opcode, tcode = 0;
  893. enum ctx_state prev_state;
  894. u16 instr[2];
  895. mm_segment_t seg;
  896. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  897. seg = get_fs();
  898. if (!user_mode(regs))
  899. set_fs(get_ds());
  900. prev_state = exception_enter();
  901. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  902. if (get_isa16_mode(regs->cp0_epc)) {
  903. if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
  904. __get_user(instr[1], (u16 __user *)(epc + 2)))
  905. goto out_sigsegv;
  906. opcode = (instr[0] << 16) | instr[1];
  907. /* Immediate versions don't provide a code. */
  908. if (!(opcode & OPCODE))
  909. tcode = (opcode >> 12) & ((1 << 4) - 1);
  910. } else {
  911. if (__get_user(opcode, (u32 __user *)epc))
  912. goto out_sigsegv;
  913. /* Immediate versions don't provide a code. */
  914. if (!(opcode & OPCODE))
  915. tcode = (opcode >> 6) & ((1 << 10) - 1);
  916. }
  917. do_trap_or_bp(regs, tcode, "Trap");
  918. out:
  919. set_fs(seg);
  920. exception_exit(prev_state);
  921. return;
  922. out_sigsegv:
  923. force_sig(SIGSEGV, current);
  924. goto out;
  925. }
  926. asmlinkage void do_ri(struct pt_regs *regs)
  927. {
  928. unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
  929. unsigned long old_epc = regs->cp0_epc;
  930. unsigned long old31 = regs->regs[31];
  931. enum ctx_state prev_state;
  932. unsigned int opcode = 0;
  933. int status = -1;
  934. /*
  935. * Avoid any kernel code. Just emulate the R2 instruction
  936. * as quickly as possible.
  937. */
  938. if (mipsr2_emulation && cpu_has_mips_r6 &&
  939. likely(user_mode(regs)) &&
  940. likely(get_user(opcode, epc) >= 0)) {
  941. unsigned long fcr31 = 0;
  942. status = mipsr2_decoder(regs, opcode, &fcr31);
  943. switch (status) {
  944. case 0:
  945. case SIGEMT:
  946. task_thread_info(current)->r2_emul_return = 1;
  947. return;
  948. case SIGILL:
  949. goto no_r2_instr;
  950. default:
  951. process_fpemu_return(status,
  952. &current->thread.cp0_baduaddr,
  953. fcr31);
  954. task_thread_info(current)->r2_emul_return = 1;
  955. return;
  956. }
  957. }
  958. no_r2_instr:
  959. prev_state = exception_enter();
  960. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  961. if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
  962. SIGILL) == NOTIFY_STOP)
  963. goto out;
  964. die_if_kernel("Reserved instruction in kernel code", regs);
  965. if (unlikely(compute_return_epc(regs) < 0))
  966. goto out;
  967. if (get_isa16_mode(regs->cp0_epc)) {
  968. unsigned short mmop[2] = { 0 };
  969. if (unlikely(get_user(mmop[0], epc) < 0))
  970. status = SIGSEGV;
  971. if (unlikely(get_user(mmop[1], epc) < 0))
  972. status = SIGSEGV;
  973. opcode = (mmop[0] << 16) | mmop[1];
  974. if (status < 0)
  975. status = simulate_rdhwr_mm(regs, opcode);
  976. } else {
  977. if (unlikely(get_user(opcode, epc) < 0))
  978. status = SIGSEGV;
  979. if (!cpu_has_llsc && status < 0)
  980. status = simulate_llsc(regs, opcode);
  981. if (status < 0)
  982. status = simulate_rdhwr_normal(regs, opcode);
  983. if (status < 0)
  984. status = simulate_sync(regs, opcode);
  985. if (status < 0)
  986. status = simulate_fp(regs, opcode, old_epc, old31);
  987. }
  988. if (status < 0)
  989. status = SIGILL;
  990. if (unlikely(status > 0)) {
  991. regs->cp0_epc = old_epc; /* Undo skip-over. */
  992. regs->regs[31] = old31;
  993. force_sig(status, current);
  994. }
  995. out:
  996. exception_exit(prev_state);
  997. }
  998. /*
  999. * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
  1000. * emulated more than some threshold number of instructions, force migration to
  1001. * a "CPU" that has FP support.
  1002. */
  1003. static void mt_ase_fp_affinity(void)
  1004. {
  1005. #ifdef CONFIG_MIPS_MT_FPAFF
  1006. if (mt_fpemul_threshold > 0 &&
  1007. ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
  1008. /*
  1009. * If there's no FPU present, or if the application has already
  1010. * restricted the allowed set to exclude any CPUs with FPUs,
  1011. * we'll skip the procedure.
  1012. */
  1013. if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
  1014. cpumask_t tmask;
  1015. current->thread.user_cpus_allowed
  1016. = current->cpus_allowed;
  1017. cpumask_and(&tmask, &current->cpus_allowed,
  1018. &mt_fpu_cpumask);
  1019. set_cpus_allowed_ptr(current, &tmask);
  1020. set_thread_flag(TIF_FPUBOUND);
  1021. }
  1022. }
  1023. #endif /* CONFIG_MIPS_MT_FPAFF */
  1024. }
  1025. /*
  1026. * No lock; only written during early bootup by CPU 0.
  1027. */
  1028. static RAW_NOTIFIER_HEAD(cu2_chain);
  1029. int __ref register_cu2_notifier(struct notifier_block *nb)
  1030. {
  1031. return raw_notifier_chain_register(&cu2_chain, nb);
  1032. }
  1033. int cu2_notifier_call_chain(unsigned long val, void *v)
  1034. {
  1035. return raw_notifier_call_chain(&cu2_chain, val, v);
  1036. }
  1037. static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
  1038. void *data)
  1039. {
  1040. struct pt_regs *regs = data;
  1041. die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
  1042. "instruction", regs);
  1043. force_sig(SIGILL, current);
  1044. return NOTIFY_OK;
  1045. }
  1046. static int wait_on_fp_mode_switch(atomic_t *p)
  1047. {
  1048. /*
  1049. * The FP mode for this task is currently being switched. That may
  1050. * involve modifications to the format of this tasks FP context which
  1051. * make it unsafe to proceed with execution for the moment. Instead,
  1052. * schedule some other task.
  1053. */
  1054. schedule();
  1055. return 0;
  1056. }
  1057. static int enable_restore_fp_context(int msa)
  1058. {
  1059. int err, was_fpu_owner, prior_msa;
  1060. /*
  1061. * If an FP mode switch is currently underway, wait for it to
  1062. * complete before proceeding.
  1063. */
  1064. wait_on_atomic_t(&current->mm->context.fp_mode_switching,
  1065. wait_on_fp_mode_switch, TASK_KILLABLE);
  1066. if (!used_math()) {
  1067. /* First time FP context user. */
  1068. preempt_disable();
  1069. err = init_fpu();
  1070. if (msa && !err) {
  1071. enable_msa();
  1072. _init_msa_upper();
  1073. set_thread_flag(TIF_USEDMSA);
  1074. set_thread_flag(TIF_MSA_CTX_LIVE);
  1075. }
  1076. preempt_enable();
  1077. if (!err)
  1078. set_used_math();
  1079. return err;
  1080. }
  1081. /*
  1082. * This task has formerly used the FP context.
  1083. *
  1084. * If this thread has no live MSA vector context then we can simply
  1085. * restore the scalar FP context. If it has live MSA vector context
  1086. * (that is, it has or may have used MSA since last performing a
  1087. * function call) then we'll need to restore the vector context. This
  1088. * applies even if we're currently only executing a scalar FP
  1089. * instruction. This is because if we were to later execute an MSA
  1090. * instruction then we'd either have to:
  1091. *
  1092. * - Restore the vector context & clobber any registers modified by
  1093. * scalar FP instructions between now & then.
  1094. *
  1095. * or
  1096. *
  1097. * - Not restore the vector context & lose the most significant bits
  1098. * of all vector registers.
  1099. *
  1100. * Neither of those options is acceptable. We cannot restore the least
  1101. * significant bits of the registers now & only restore the most
  1102. * significant bits later because the most significant bits of any
  1103. * vector registers whose aliased FP register is modified now will have
  1104. * been zeroed. We'd have no way to know that when restoring the vector
  1105. * context & thus may load an outdated value for the most significant
  1106. * bits of a vector register.
  1107. */
  1108. if (!msa && !thread_msa_context_live())
  1109. return own_fpu(1);
  1110. /*
  1111. * This task is using or has previously used MSA. Thus we require
  1112. * that Status.FR == 1.
  1113. */
  1114. preempt_disable();
  1115. was_fpu_owner = is_fpu_owner();
  1116. err = own_fpu_inatomic(0);
  1117. if (err)
  1118. goto out;
  1119. enable_msa();
  1120. write_msa_csr(current->thread.fpu.msacsr);
  1121. set_thread_flag(TIF_USEDMSA);
  1122. /*
  1123. * If this is the first time that the task is using MSA and it has
  1124. * previously used scalar FP in this time slice then we already nave
  1125. * FP context which we shouldn't clobber. We do however need to clear
  1126. * the upper 64b of each vector register so that this task has no
  1127. * opportunity to see data left behind by another.
  1128. */
  1129. prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
  1130. if (!prior_msa && was_fpu_owner) {
  1131. _init_msa_upper();
  1132. goto out;
  1133. }
  1134. if (!prior_msa) {
  1135. /*
  1136. * Restore the least significant 64b of each vector register
  1137. * from the existing scalar FP context.
  1138. */
  1139. _restore_fp(current);
  1140. /*
  1141. * The task has not formerly used MSA, so clear the upper 64b
  1142. * of each vector register such that it cannot see data left
  1143. * behind by another task.
  1144. */
  1145. _init_msa_upper();
  1146. } else {
  1147. /* We need to restore the vector context. */
  1148. restore_msa(current);
  1149. /* Restore the scalar FP control & status register */
  1150. if (!was_fpu_owner)
  1151. write_32bit_cp1_register(CP1_STATUS,
  1152. current->thread.fpu.fcr31);
  1153. }
  1154. out:
  1155. preempt_enable();
  1156. return 0;
  1157. }
  1158. asmlinkage void do_cpu(struct pt_regs *regs)
  1159. {
  1160. enum ctx_state prev_state;
  1161. unsigned int __user *epc;
  1162. unsigned long old_epc, old31;
  1163. void __user *fault_addr;
  1164. unsigned int opcode;
  1165. unsigned long fcr31;
  1166. unsigned int cpid;
  1167. int status, err;
  1168. unsigned long __maybe_unused flags;
  1169. int sig;
  1170. prev_state = exception_enter();
  1171. cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
  1172. if (cpid != 2)
  1173. die_if_kernel("do_cpu invoked from kernel context!", regs);
  1174. switch (cpid) {
  1175. case 0:
  1176. epc = (unsigned int __user *)exception_epc(regs);
  1177. old_epc = regs->cp0_epc;
  1178. old31 = regs->regs[31];
  1179. opcode = 0;
  1180. status = -1;
  1181. if (unlikely(compute_return_epc(regs) < 0))
  1182. break;
  1183. if (get_isa16_mode(regs->cp0_epc)) {
  1184. unsigned short mmop[2] = { 0 };
  1185. if (unlikely(get_user(mmop[0], epc) < 0))
  1186. status = SIGSEGV;
  1187. if (unlikely(get_user(mmop[1], epc) < 0))
  1188. status = SIGSEGV;
  1189. opcode = (mmop[0] << 16) | mmop[1];
  1190. if (status < 0)
  1191. status = simulate_rdhwr_mm(regs, opcode);
  1192. } else {
  1193. if (unlikely(get_user(opcode, epc) < 0))
  1194. status = SIGSEGV;
  1195. if (!cpu_has_llsc && status < 0)
  1196. status = simulate_llsc(regs, opcode);
  1197. if (status < 0)
  1198. status = simulate_rdhwr_normal(regs, opcode);
  1199. }
  1200. if (status < 0)
  1201. status = SIGILL;
  1202. if (unlikely(status > 0)) {
  1203. regs->cp0_epc = old_epc; /* Undo skip-over. */
  1204. regs->regs[31] = old31;
  1205. force_sig(status, current);
  1206. }
  1207. break;
  1208. case 3:
  1209. /*
  1210. * The COP3 opcode space and consequently the CP0.Status.CU3
  1211. * bit and the CP0.Cause.CE=3 encoding have been removed as
  1212. * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
  1213. * up the space has been reused for COP1X instructions, that
  1214. * are enabled by the CP0.Status.CU1 bit and consequently
  1215. * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
  1216. * exceptions. Some FPU-less processors that implement one
  1217. * of these ISAs however use this code erroneously for COP1X
  1218. * instructions. Therefore we redirect this trap to the FP
  1219. * emulator too.
  1220. */
  1221. if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
  1222. force_sig(SIGILL, current);
  1223. break;
  1224. }
  1225. /* Fall through. */
  1226. case 1:
  1227. err = enable_restore_fp_context(0);
  1228. if (raw_cpu_has_fpu && !err)
  1229. break;
  1230. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
  1231. &fault_addr);
  1232. fcr31 = current->thread.fpu.fcr31;
  1233. /*
  1234. * We can't allow the emulated instruction to leave
  1235. * any of the cause bits set in $fcr31.
  1236. */
  1237. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  1238. /* Send a signal if required. */
  1239. if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
  1240. mt_ase_fp_affinity();
  1241. break;
  1242. case 2:
  1243. raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
  1244. break;
  1245. }
  1246. exception_exit(prev_state);
  1247. }
  1248. asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
  1249. {
  1250. enum ctx_state prev_state;
  1251. prev_state = exception_enter();
  1252. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  1253. if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
  1254. current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
  1255. goto out;
  1256. /* Clear MSACSR.Cause before enabling interrupts */
  1257. write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
  1258. local_irq_enable();
  1259. die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
  1260. force_sig(SIGFPE, current);
  1261. out:
  1262. exception_exit(prev_state);
  1263. }
  1264. asmlinkage void do_msa(struct pt_regs *regs)
  1265. {
  1266. enum ctx_state prev_state;
  1267. int err;
  1268. prev_state = exception_enter();
  1269. if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
  1270. force_sig(SIGILL, current);
  1271. goto out;
  1272. }
  1273. die_if_kernel("do_msa invoked from kernel context!", regs);
  1274. err = enable_restore_fp_context(1);
  1275. if (err)
  1276. force_sig(SIGILL, current);
  1277. out:
  1278. exception_exit(prev_state);
  1279. }
  1280. asmlinkage void do_mdmx(struct pt_regs *regs)
  1281. {
  1282. enum ctx_state prev_state;
  1283. prev_state = exception_enter();
  1284. force_sig(SIGILL, current);
  1285. exception_exit(prev_state);
  1286. }
  1287. /*
  1288. * Called with interrupts disabled.
  1289. */
  1290. asmlinkage void do_watch(struct pt_regs *regs)
  1291. {
  1292. enum ctx_state prev_state;
  1293. u32 cause;
  1294. prev_state = exception_enter();
  1295. /*
  1296. * Clear WP (bit 22) bit of cause register so we don't loop
  1297. * forever.
  1298. */
  1299. cause = read_c0_cause();
  1300. cause &= ~(1 << 22);
  1301. write_c0_cause(cause);
  1302. /*
  1303. * If the current thread has the watch registers loaded, save
  1304. * their values and send SIGTRAP. Otherwise another thread
  1305. * left the registers set, clear them and continue.
  1306. */
  1307. if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
  1308. mips_read_watch_registers();
  1309. local_irq_enable();
  1310. force_sig(SIGTRAP, current);
  1311. } else {
  1312. mips_clear_watch_registers();
  1313. local_irq_enable();
  1314. }
  1315. exception_exit(prev_state);
  1316. }
  1317. asmlinkage void do_mcheck(struct pt_regs *regs)
  1318. {
  1319. int multi_match = regs->cp0_status & ST0_TS;
  1320. enum ctx_state prev_state;
  1321. mm_segment_t old_fs = get_fs();
  1322. prev_state = exception_enter();
  1323. show_regs(regs);
  1324. if (multi_match) {
  1325. dump_tlb_regs();
  1326. pr_info("\n");
  1327. dump_tlb_all();
  1328. }
  1329. if (!user_mode(regs))
  1330. set_fs(KERNEL_DS);
  1331. show_code((unsigned int __user *) regs->cp0_epc);
  1332. set_fs(old_fs);
  1333. /*
  1334. * Some chips may have other causes of machine check (e.g. SB1
  1335. * graduation timer)
  1336. */
  1337. panic("Caught Machine Check exception - %scaused by multiple "
  1338. "matching entries in the TLB.",
  1339. (multi_match) ? "" : "not ");
  1340. }
  1341. asmlinkage void do_mt(struct pt_regs *regs)
  1342. {
  1343. int subcode;
  1344. subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
  1345. >> VPECONTROL_EXCPT_SHIFT;
  1346. switch (subcode) {
  1347. case 0:
  1348. printk(KERN_DEBUG "Thread Underflow\n");
  1349. break;
  1350. case 1:
  1351. printk(KERN_DEBUG "Thread Overflow\n");
  1352. break;
  1353. case 2:
  1354. printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
  1355. break;
  1356. case 3:
  1357. printk(KERN_DEBUG "Gating Storage Exception\n");
  1358. break;
  1359. case 4:
  1360. printk(KERN_DEBUG "YIELD Scheduler Exception\n");
  1361. break;
  1362. case 5:
  1363. printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
  1364. break;
  1365. default:
  1366. printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
  1367. subcode);
  1368. break;
  1369. }
  1370. die_if_kernel("MIPS MT Thread exception in kernel", regs);
  1371. force_sig(SIGILL, current);
  1372. }
  1373. asmlinkage void do_dsp(struct pt_regs *regs)
  1374. {
  1375. if (cpu_has_dsp)
  1376. panic("Unexpected DSP exception");
  1377. force_sig(SIGILL, current);
  1378. }
  1379. asmlinkage void do_reserved(struct pt_regs *regs)
  1380. {
  1381. /*
  1382. * Game over - no way to handle this if it ever occurs. Most probably
  1383. * caused by a new unknown cpu type or after another deadly
  1384. * hard/software error.
  1385. */
  1386. show_regs(regs);
  1387. panic("Caught reserved exception %ld - should not happen.",
  1388. (regs->cp0_cause & 0x7f) >> 2);
  1389. }
  1390. static int __initdata l1parity = 1;
  1391. static int __init nol1parity(char *s)
  1392. {
  1393. l1parity = 0;
  1394. return 1;
  1395. }
  1396. __setup("nol1par", nol1parity);
  1397. static int __initdata l2parity = 1;
  1398. static int __init nol2parity(char *s)
  1399. {
  1400. l2parity = 0;
  1401. return 1;
  1402. }
  1403. __setup("nol2par", nol2parity);
  1404. /*
  1405. * Some MIPS CPUs can enable/disable for cache parity detection, but do
  1406. * it different ways.
  1407. */
  1408. static inline void parity_protection_init(void)
  1409. {
  1410. switch (current_cpu_type()) {
  1411. case CPU_24K:
  1412. case CPU_34K:
  1413. case CPU_74K:
  1414. case CPU_1004K:
  1415. case CPU_1074K:
  1416. case CPU_INTERAPTIV:
  1417. case CPU_PROAPTIV:
  1418. case CPU_P5600:
  1419. case CPU_QEMU_GENERIC:
  1420. case CPU_I6400:
  1421. {
  1422. #define ERRCTL_PE 0x80000000
  1423. #define ERRCTL_L2P 0x00800000
  1424. unsigned long errctl;
  1425. unsigned int l1parity_present, l2parity_present;
  1426. errctl = read_c0_ecc();
  1427. errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
  1428. /* probe L1 parity support */
  1429. write_c0_ecc(errctl | ERRCTL_PE);
  1430. back_to_back_c0_hazard();
  1431. l1parity_present = (read_c0_ecc() & ERRCTL_PE);
  1432. /* probe L2 parity support */
  1433. write_c0_ecc(errctl|ERRCTL_L2P);
  1434. back_to_back_c0_hazard();
  1435. l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
  1436. if (l1parity_present && l2parity_present) {
  1437. if (l1parity)
  1438. errctl |= ERRCTL_PE;
  1439. if (l1parity ^ l2parity)
  1440. errctl |= ERRCTL_L2P;
  1441. } else if (l1parity_present) {
  1442. if (l1parity)
  1443. errctl |= ERRCTL_PE;
  1444. } else if (l2parity_present) {
  1445. if (l2parity)
  1446. errctl |= ERRCTL_L2P;
  1447. } else {
  1448. /* No parity available */
  1449. }
  1450. printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
  1451. write_c0_ecc(errctl);
  1452. back_to_back_c0_hazard();
  1453. errctl = read_c0_ecc();
  1454. printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
  1455. if (l1parity_present)
  1456. printk(KERN_INFO "Cache parity protection %sabled\n",
  1457. (errctl & ERRCTL_PE) ? "en" : "dis");
  1458. if (l2parity_present) {
  1459. if (l1parity_present && l1parity)
  1460. errctl ^= ERRCTL_L2P;
  1461. printk(KERN_INFO "L2 cache parity protection %sabled\n",
  1462. (errctl & ERRCTL_L2P) ? "en" : "dis");
  1463. }
  1464. }
  1465. break;
  1466. case CPU_5KC:
  1467. case CPU_5KE:
  1468. case CPU_LOONGSON1:
  1469. write_c0_ecc(0x80000000);
  1470. back_to_back_c0_hazard();
  1471. /* Set the PE bit (bit 31) in the c0_errctl register. */
  1472. printk(KERN_INFO "Cache parity protection %sabled\n",
  1473. (read_c0_ecc() & 0x80000000) ? "en" : "dis");
  1474. break;
  1475. case CPU_20KC:
  1476. case CPU_25KF:
  1477. /* Clear the DE bit (bit 16) in the c0_status register. */
  1478. printk(KERN_INFO "Enable cache parity protection for "
  1479. "MIPS 20KC/25KF CPUs.\n");
  1480. clear_c0_status(ST0_DE);
  1481. break;
  1482. default:
  1483. break;
  1484. }
  1485. }
  1486. asmlinkage void cache_parity_error(void)
  1487. {
  1488. const int field = 2 * sizeof(unsigned long);
  1489. unsigned int reg_val;
  1490. /* For the moment, report the problem and hang. */
  1491. printk("Cache error exception:\n");
  1492. printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1493. reg_val = read_c0_cacheerr();
  1494. printk("c0_cacheerr == %08x\n", reg_val);
  1495. printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1496. reg_val & (1<<30) ? "secondary" : "primary",
  1497. reg_val & (1<<31) ? "data" : "insn");
  1498. if ((cpu_has_mips_r2_r6) &&
  1499. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1500. pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
  1501. reg_val & (1<<29) ? "ED " : "",
  1502. reg_val & (1<<28) ? "ET " : "",
  1503. reg_val & (1<<27) ? "ES " : "",
  1504. reg_val & (1<<26) ? "EE " : "",
  1505. reg_val & (1<<25) ? "EB " : "",
  1506. reg_val & (1<<24) ? "EI " : "",
  1507. reg_val & (1<<23) ? "E1 " : "",
  1508. reg_val & (1<<22) ? "E0 " : "");
  1509. } else {
  1510. pr_err("Error bits: %s%s%s%s%s%s%s\n",
  1511. reg_val & (1<<29) ? "ED " : "",
  1512. reg_val & (1<<28) ? "ET " : "",
  1513. reg_val & (1<<26) ? "EE " : "",
  1514. reg_val & (1<<25) ? "EB " : "",
  1515. reg_val & (1<<24) ? "EI " : "",
  1516. reg_val & (1<<23) ? "E1 " : "",
  1517. reg_val & (1<<22) ? "E0 " : "");
  1518. }
  1519. printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
  1520. #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
  1521. if (reg_val & (1<<22))
  1522. printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
  1523. if (reg_val & (1<<23))
  1524. printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
  1525. #endif
  1526. panic("Can't handle the cache error!");
  1527. }
  1528. asmlinkage void do_ftlb(void)
  1529. {
  1530. const int field = 2 * sizeof(unsigned long);
  1531. unsigned int reg_val;
  1532. /* For the moment, report the problem and hang. */
  1533. if ((cpu_has_mips_r2_r6) &&
  1534. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1535. pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
  1536. read_c0_ecc());
  1537. pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1538. reg_val = read_c0_cacheerr();
  1539. pr_err("c0_cacheerr == %08x\n", reg_val);
  1540. if ((reg_val & 0xc0000000) == 0xc0000000) {
  1541. pr_err("Decoded c0_cacheerr: FTLB parity error\n");
  1542. } else {
  1543. pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1544. reg_val & (1<<30) ? "secondary" : "primary",
  1545. reg_val & (1<<31) ? "data" : "insn");
  1546. }
  1547. } else {
  1548. pr_err("FTLB error exception\n");
  1549. }
  1550. /* Just print the cacheerr bits for now */
  1551. cache_parity_error();
  1552. }
  1553. /*
  1554. * SDBBP EJTAG debug exception handler.
  1555. * We skip the instruction and return to the next instruction.
  1556. */
  1557. void ejtag_exception_handler(struct pt_regs *regs)
  1558. {
  1559. const int field = 2 * sizeof(unsigned long);
  1560. unsigned long depc, old_epc, old_ra;
  1561. unsigned int debug;
  1562. printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
  1563. depc = read_c0_depc();
  1564. debug = read_c0_debug();
  1565. printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
  1566. if (debug & 0x80000000) {
  1567. /*
  1568. * In branch delay slot.
  1569. * We cheat a little bit here and use EPC to calculate the
  1570. * debug return address (DEPC). EPC is restored after the
  1571. * calculation.
  1572. */
  1573. old_epc = regs->cp0_epc;
  1574. old_ra = regs->regs[31];
  1575. regs->cp0_epc = depc;
  1576. compute_return_epc(regs);
  1577. depc = regs->cp0_epc;
  1578. regs->cp0_epc = old_epc;
  1579. regs->regs[31] = old_ra;
  1580. } else
  1581. depc += 4;
  1582. write_c0_depc(depc);
  1583. #if 0
  1584. printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
  1585. write_c0_debug(debug | 0x100);
  1586. #endif
  1587. }
  1588. /*
  1589. * NMI exception handler.
  1590. * No lock; only written during early bootup by CPU 0.
  1591. */
  1592. static RAW_NOTIFIER_HEAD(nmi_chain);
  1593. int register_nmi_notifier(struct notifier_block *nb)
  1594. {
  1595. return raw_notifier_chain_register(&nmi_chain, nb);
  1596. }
  1597. void __noreturn nmi_exception_handler(struct pt_regs *regs)
  1598. {
  1599. char str[100];
  1600. nmi_enter();
  1601. raw_notifier_call_chain(&nmi_chain, 0, regs);
  1602. bust_spinlocks(1);
  1603. snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
  1604. smp_processor_id(), regs->cp0_epc);
  1605. regs->cp0_epc = read_c0_errorepc();
  1606. die(str, regs);
  1607. nmi_exit();
  1608. }
  1609. #define VECTORSPACING 0x100 /* for EI/VI mode */
  1610. unsigned long ebase;
  1611. unsigned long exception_handlers[32];
  1612. unsigned long vi_handlers[64];
  1613. void __init *set_except_vector(int n, void *addr)
  1614. {
  1615. unsigned long handler = (unsigned long) addr;
  1616. unsigned long old_handler;
  1617. #ifdef CONFIG_CPU_MICROMIPS
  1618. /*
  1619. * Only the TLB handlers are cache aligned with an even
  1620. * address. All other handlers are on an odd address and
  1621. * require no modification. Otherwise, MIPS32 mode will
  1622. * be entered when handling any TLB exceptions. That
  1623. * would be bad...since we must stay in microMIPS mode.
  1624. */
  1625. if (!(handler & 0x1))
  1626. handler |= 1;
  1627. #endif
  1628. old_handler = xchg(&exception_handlers[n], handler);
  1629. if (n == 0 && cpu_has_divec) {
  1630. #ifdef CONFIG_CPU_MICROMIPS
  1631. unsigned long jump_mask = ~((1 << 27) - 1);
  1632. #else
  1633. unsigned long jump_mask = ~((1 << 28) - 1);
  1634. #endif
  1635. u32 *buf = (u32 *)(ebase + 0x200);
  1636. unsigned int k0 = 26;
  1637. if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
  1638. uasm_i_j(&buf, handler & ~jump_mask);
  1639. uasm_i_nop(&buf);
  1640. } else {
  1641. UASM_i_LA(&buf, k0, handler);
  1642. uasm_i_jr(&buf, k0);
  1643. uasm_i_nop(&buf);
  1644. }
  1645. local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
  1646. }
  1647. return (void *)old_handler;
  1648. }
  1649. static void do_default_vi(void)
  1650. {
  1651. show_regs(get_irq_regs());
  1652. panic("Caught unexpected vectored interrupt.");
  1653. }
  1654. static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
  1655. {
  1656. unsigned long handler;
  1657. unsigned long old_handler = vi_handlers[n];
  1658. int srssets = current_cpu_data.srsets;
  1659. u16 *h;
  1660. unsigned char *b;
  1661. BUG_ON(!cpu_has_veic && !cpu_has_vint);
  1662. if (addr == NULL) {
  1663. handler = (unsigned long) do_default_vi;
  1664. srs = 0;
  1665. } else
  1666. handler = (unsigned long) addr;
  1667. vi_handlers[n] = handler;
  1668. b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
  1669. if (srs >= srssets)
  1670. panic("Shadow register set %d not supported", srs);
  1671. if (cpu_has_veic) {
  1672. if (board_bind_eic_interrupt)
  1673. board_bind_eic_interrupt(n, srs);
  1674. } else if (cpu_has_vint) {
  1675. /* SRSMap is only defined if shadow sets are implemented */
  1676. if (srssets > 1)
  1677. change_c0_srsmap(0xf << n*4, srs << n*4);
  1678. }
  1679. if (srs == 0) {
  1680. /*
  1681. * If no shadow set is selected then use the default handler
  1682. * that does normal register saving and standard interrupt exit
  1683. */
  1684. extern char except_vec_vi, except_vec_vi_lui;
  1685. extern char except_vec_vi_ori, except_vec_vi_end;
  1686. extern char rollback_except_vec_vi;
  1687. char *vec_start = using_rollback_handler() ?
  1688. &rollback_except_vec_vi : &except_vec_vi;
  1689. #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
  1690. const int lui_offset = &except_vec_vi_lui - vec_start + 2;
  1691. const int ori_offset = &except_vec_vi_ori - vec_start + 2;
  1692. #else
  1693. const int lui_offset = &except_vec_vi_lui - vec_start;
  1694. const int ori_offset = &except_vec_vi_ori - vec_start;
  1695. #endif
  1696. const int handler_len = &except_vec_vi_end - vec_start;
  1697. if (handler_len > VECTORSPACING) {
  1698. /*
  1699. * Sigh... panicing won't help as the console
  1700. * is probably not configured :(
  1701. */
  1702. panic("VECTORSPACING too small");
  1703. }
  1704. set_handler(((unsigned long)b - ebase), vec_start,
  1705. #ifdef CONFIG_CPU_MICROMIPS
  1706. (handler_len - 1));
  1707. #else
  1708. handler_len);
  1709. #endif
  1710. h = (u16 *)(b + lui_offset);
  1711. *h = (handler >> 16) & 0xffff;
  1712. h = (u16 *)(b + ori_offset);
  1713. *h = (handler & 0xffff);
  1714. local_flush_icache_range((unsigned long)b,
  1715. (unsigned long)(b+handler_len));
  1716. }
  1717. else {
  1718. /*
  1719. * In other cases jump directly to the interrupt handler. It
  1720. * is the handler's responsibility to save registers if required
  1721. * (eg hi/lo) and return from the exception using "eret".
  1722. */
  1723. u32 insn;
  1724. h = (u16 *)b;
  1725. /* j handler */
  1726. #ifdef CONFIG_CPU_MICROMIPS
  1727. insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
  1728. #else
  1729. insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
  1730. #endif
  1731. h[0] = (insn >> 16) & 0xffff;
  1732. h[1] = insn & 0xffff;
  1733. h[2] = 0;
  1734. h[3] = 0;
  1735. local_flush_icache_range((unsigned long)b,
  1736. (unsigned long)(b+8));
  1737. }
  1738. return (void *)old_handler;
  1739. }
  1740. void *set_vi_handler(int n, vi_handler_t addr)
  1741. {
  1742. return set_vi_srs_handler(n, addr, 0);
  1743. }
  1744. extern void tlb_init(void);
  1745. /*
  1746. * Timer interrupt
  1747. */
  1748. int cp0_compare_irq;
  1749. EXPORT_SYMBOL_GPL(cp0_compare_irq);
  1750. int cp0_compare_irq_shift;
  1751. /*
  1752. * Performance counter IRQ or -1 if shared with timer
  1753. */
  1754. int cp0_perfcount_irq;
  1755. EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
  1756. /*
  1757. * Fast debug channel IRQ or -1 if not present
  1758. */
  1759. int cp0_fdc_irq;
  1760. EXPORT_SYMBOL_GPL(cp0_fdc_irq);
  1761. static int noulri;
  1762. static int __init ulri_disable(char *s)
  1763. {
  1764. pr_info("Disabling ulri\n");
  1765. noulri = 1;
  1766. return 1;
  1767. }
  1768. __setup("noulri", ulri_disable);
  1769. /* configure STATUS register */
  1770. static void configure_status(void)
  1771. {
  1772. /*
  1773. * Disable coprocessors and select 32-bit or 64-bit addressing
  1774. * and the 16/32 or 32/32 FPR register model. Reset the BEV
  1775. * flag that some firmware may have left set and the TS bit (for
  1776. * IP27). Set XX for ISA IV code to work.
  1777. */
  1778. unsigned int status_set = ST0_CU0;
  1779. #ifdef CONFIG_64BIT
  1780. status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
  1781. #endif
  1782. if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
  1783. status_set |= ST0_XX;
  1784. if (cpu_has_dsp)
  1785. status_set |= ST0_MX;
  1786. change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
  1787. status_set);
  1788. }
  1789. /* configure HWRENA register */
  1790. static void configure_hwrena(void)
  1791. {
  1792. unsigned int hwrena = cpu_hwrena_impl_bits;
  1793. if (cpu_has_mips_r2_r6)
  1794. hwrena |= 0x0000000f;
  1795. if (!noulri && cpu_has_userlocal)
  1796. hwrena |= (1 << 29);
  1797. if (hwrena)
  1798. write_c0_hwrena(hwrena);
  1799. }
  1800. static void configure_exception_vector(void)
  1801. {
  1802. if (cpu_has_veic || cpu_has_vint) {
  1803. unsigned long sr = set_c0_status(ST0_BEV);
  1804. write_c0_ebase(ebase);
  1805. write_c0_status(sr);
  1806. /* Setting vector spacing enables EI/VI mode */
  1807. change_c0_intctl(0x3e0, VECTORSPACING);
  1808. }
  1809. if (cpu_has_divec) {
  1810. if (cpu_has_mipsmt) {
  1811. unsigned int vpflags = dvpe();
  1812. set_c0_cause(CAUSEF_IV);
  1813. evpe(vpflags);
  1814. } else
  1815. set_c0_cause(CAUSEF_IV);
  1816. }
  1817. }
  1818. void per_cpu_trap_init(bool is_boot_cpu)
  1819. {
  1820. unsigned int cpu = smp_processor_id();
  1821. configure_status();
  1822. configure_hwrena();
  1823. configure_exception_vector();
  1824. /*
  1825. * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
  1826. *
  1827. * o read IntCtl.IPTI to determine the timer interrupt
  1828. * o read IntCtl.IPPCI to determine the performance counter interrupt
  1829. * o read IntCtl.IPFDC to determine the fast debug channel interrupt
  1830. */
  1831. if (cpu_has_mips_r2_r6) {
  1832. cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
  1833. cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
  1834. cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
  1835. cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
  1836. if (!cp0_fdc_irq)
  1837. cp0_fdc_irq = -1;
  1838. } else {
  1839. cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
  1840. cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
  1841. cp0_perfcount_irq = -1;
  1842. cp0_fdc_irq = -1;
  1843. }
  1844. if (!cpu_data[cpu].asid_cache)
  1845. cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
  1846. atomic_inc(&init_mm.mm_count);
  1847. current->active_mm = &init_mm;
  1848. BUG_ON(current->mm);
  1849. enter_lazy_tlb(&init_mm, current);
  1850. /* Boot CPU's cache setup in setup_arch(). */
  1851. if (!is_boot_cpu)
  1852. cpu_cache_init();
  1853. tlb_init();
  1854. TLBMISS_HANDLER_SETUP();
  1855. }
  1856. /* Install CPU exception handler */
  1857. void set_handler(unsigned long offset, void *addr, unsigned long size)
  1858. {
  1859. #ifdef CONFIG_CPU_MICROMIPS
  1860. memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
  1861. #else
  1862. memcpy((void *)(ebase + offset), addr, size);
  1863. #endif
  1864. local_flush_icache_range(ebase + offset, ebase + offset + size);
  1865. }
  1866. static char panic_null_cerr[] =
  1867. "Trying to set NULL cache error exception handler";
  1868. /*
  1869. * Install uncached CPU exception handler.
  1870. * This is suitable only for the cache error exception which is the only
  1871. * exception handler that is being run uncached.
  1872. */
  1873. void set_uncached_handler(unsigned long offset, void *addr,
  1874. unsigned long size)
  1875. {
  1876. unsigned long uncached_ebase = CKSEG1ADDR(ebase);
  1877. if (!addr)
  1878. panic(panic_null_cerr);
  1879. memcpy((void *)(uncached_ebase + offset), addr, size);
  1880. }
  1881. static int __initdata rdhwr_noopt;
  1882. static int __init set_rdhwr_noopt(char *str)
  1883. {
  1884. rdhwr_noopt = 1;
  1885. return 1;
  1886. }
  1887. __setup("rdhwr_noopt", set_rdhwr_noopt);
  1888. void __init trap_init(void)
  1889. {
  1890. extern char except_vec3_generic;
  1891. extern char except_vec4;
  1892. extern char except_vec3_r4000;
  1893. unsigned long i;
  1894. check_wait();
  1895. if (cpu_has_veic || cpu_has_vint) {
  1896. unsigned long size = 0x200 + VECTORSPACING*64;
  1897. ebase = (unsigned long)
  1898. __alloc_bootmem(size, 1 << fls(size), 0);
  1899. } else {
  1900. ebase = CAC_BASE;
  1901. if (cpu_has_mips_r2_r6)
  1902. ebase += (read_c0_ebase() & 0x3ffff000);
  1903. }
  1904. if (cpu_has_mmips) {
  1905. unsigned int config3 = read_c0_config3();
  1906. if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
  1907. write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
  1908. else
  1909. write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
  1910. }
  1911. if (board_ebase_setup)
  1912. board_ebase_setup();
  1913. per_cpu_trap_init(true);
  1914. /*
  1915. * Copy the generic exception handlers to their final destination.
  1916. * This will be overriden later as suitable for a particular
  1917. * configuration.
  1918. */
  1919. set_handler(0x180, &except_vec3_generic, 0x80);
  1920. /*
  1921. * Setup default vectors
  1922. */
  1923. for (i = 0; i <= 31; i++)
  1924. set_except_vector(i, handle_reserved);
  1925. /*
  1926. * Copy the EJTAG debug exception vector handler code to it's final
  1927. * destination.
  1928. */
  1929. if (cpu_has_ejtag && board_ejtag_handler_setup)
  1930. board_ejtag_handler_setup();
  1931. /*
  1932. * Only some CPUs have the watch exceptions.
  1933. */
  1934. if (cpu_has_watch)
  1935. set_except_vector(23, handle_watch);
  1936. /*
  1937. * Initialise interrupt handlers
  1938. */
  1939. if (cpu_has_veic || cpu_has_vint) {
  1940. int nvec = cpu_has_veic ? 64 : 8;
  1941. for (i = 0; i < nvec; i++)
  1942. set_vi_handler(i, NULL);
  1943. }
  1944. else if (cpu_has_divec)
  1945. set_handler(0x200, &except_vec4, 0x8);
  1946. /*
  1947. * Some CPUs can enable/disable for cache parity detection, but does
  1948. * it different ways.
  1949. */
  1950. parity_protection_init();
  1951. /*
  1952. * The Data Bus Errors / Instruction Bus Errors are signaled
  1953. * by external hardware. Therefore these two exceptions
  1954. * may have board specific handlers.
  1955. */
  1956. if (board_be_init)
  1957. board_be_init();
  1958. set_except_vector(0, using_rollback_handler() ? rollback_handle_int
  1959. : handle_int);
  1960. set_except_vector(1, handle_tlbm);
  1961. set_except_vector(2, handle_tlbl);
  1962. set_except_vector(3, handle_tlbs);
  1963. set_except_vector(4, handle_adel);
  1964. set_except_vector(5, handle_ades);
  1965. set_except_vector(6, handle_ibe);
  1966. set_except_vector(7, handle_dbe);
  1967. set_except_vector(8, handle_sys);
  1968. set_except_vector(9, handle_bp);
  1969. set_except_vector(10, rdhwr_noopt ? handle_ri :
  1970. (cpu_has_vtag_icache ?
  1971. handle_ri_rdhwr_vivt : handle_ri_rdhwr));
  1972. set_except_vector(11, handle_cpu);
  1973. set_except_vector(12, handle_ov);
  1974. set_except_vector(13, handle_tr);
  1975. set_except_vector(14, handle_msa_fpe);
  1976. if (current_cpu_type() == CPU_R6000 ||
  1977. current_cpu_type() == CPU_R6000A) {
  1978. /*
  1979. * The R6000 is the only R-series CPU that features a machine
  1980. * check exception (similar to the R4000 cache error) and
  1981. * unaligned ldc1/sdc1 exception. The handlers have not been
  1982. * written yet. Well, anyway there is no R6000 machine on the
  1983. * current list of targets for Linux/MIPS.
  1984. * (Duh, crap, there is someone with a triple R6k machine)
  1985. */
  1986. //set_except_vector(14, handle_mc);
  1987. //set_except_vector(15, handle_ndc);
  1988. }
  1989. if (board_nmi_handler_setup)
  1990. board_nmi_handler_setup();
  1991. if (cpu_has_fpu && !cpu_has_nofpuex)
  1992. set_except_vector(15, handle_fpe);
  1993. set_except_vector(16, handle_ftlb);
  1994. if (cpu_has_rixiex) {
  1995. set_except_vector(19, tlb_do_page_fault_0);
  1996. set_except_vector(20, tlb_do_page_fault_0);
  1997. }
  1998. set_except_vector(21, handle_msa);
  1999. set_except_vector(22, handle_mdmx);
  2000. if (cpu_has_mcheck)
  2001. set_except_vector(24, handle_mcheck);
  2002. if (cpu_has_mipsmt)
  2003. set_except_vector(25, handle_mt);
  2004. set_except_vector(26, handle_dsp);
  2005. if (board_cache_error_setup)
  2006. board_cache_error_setup();
  2007. if (cpu_has_vce)
  2008. /* Special exception: R4[04]00 uses also the divec space. */
  2009. set_handler(0x180, &except_vec3_r4000, 0x100);
  2010. else if (cpu_has_4kex)
  2011. set_handler(0x180, &except_vec3_generic, 0x80);
  2012. else
  2013. set_handler(0x080, &except_vec3_generic, 0x80);
  2014. local_flush_icache_range(ebase, ebase + 0x400);
  2015. sort_extable(__start___dbe_table, __stop___dbe_table);
  2016. cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
  2017. }
  2018. static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
  2019. void *v)
  2020. {
  2021. switch (cmd) {
  2022. case CPU_PM_ENTER_FAILED:
  2023. case CPU_PM_EXIT:
  2024. configure_status();
  2025. configure_hwrena();
  2026. configure_exception_vector();
  2027. /* Restore register with CPU number for TLB handlers */
  2028. TLBMISS_HANDLER_RESTORE();
  2029. break;
  2030. }
  2031. return NOTIFY_OK;
  2032. }
  2033. static struct notifier_block trap_pm_notifier_block = {
  2034. .notifier_call = trap_pm_notifier,
  2035. };
  2036. static int __init trap_pm_init(void)
  2037. {
  2038. return cpu_pm_register_notifier(&trap_pm_notifier_block);
  2039. }
  2040. arch_initcall(trap_pm_init);